1
|
Zhou SQ, Feng P, Ye ML, Huang SY, He SW, Zhu XH, Chen J, Zhang Q, Li YQ. The E3 ligase NEURL3 suppresses epithelial-mesenchymal transition and metastasis in nasopharyngeal carcinoma by promoting vimentin degradation. J Exp Clin Cancer Res 2024; 43:14. [PMID: 38191501 PMCID: PMC10775674 DOI: 10.1186/s13046-024-02945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Metastasis has emerged as the major reason of treatment failure and mortality in patients with nasopharyngeal carcinoma (NPC). Growing evidence links abnormal DNA methylation to the initiation and progression of NPC. However, the precise regulatory mechanism behind these processes remains poorly understood. METHODS Bisulfite pyrosequencing, RT-qPCR, western blot, and immunohistochemistry were used to test the methylation and expression level of NEURL3 and its clinical significance. The biological function of NEURL3 was examined both in vitro and in vivo. Mass spectrometry, co-immunohistochemistry, immunofluorescence staining, and ubiquitin assays were performed to explore the regulatory mechanism of NEURL3. RESULTS The promoter region of NEURL3, encoding an E3 ubiquitin ligase, was obviously hypermethylated, leading to its downregulated expression in NPC. Clinically, NPC patients with a low NEURL3 expression indicated an unfavorable prognosis and were prone to develop distant metastasis. Overexpression of NEURL3 could suppress the epithelial mesenchymal transition and metastasis of NPC cells in vitro and in vivo. Mechanistically, NEURL3 promoted Vimentin degradation by increasing its K48-linked polyubiquitination at lysine 97. Specifically, the restoration of Vimentin expression could fully reverse the tumor suppressive effect of NEURL3 overexpression in NPC cells. CONCLUSIONS Collectively, our study uncovers a novel mechanism by which NEURL3 inhibits NPC metastasis, thereby providing a promising therapeutic target for NPC treatment.
Collapse
Affiliation(s)
- Shi-Qing Zhou
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Otorhinolaryngology Head and Neck Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Ping Feng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Ming-Liang Ye
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Sheng-Yan Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Shi-Wei He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Xun-Hua Zhu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Jun Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Qun Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, 510080, People's Republic of China.
| | - Ying-Qing Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
2
|
Jiang X, Jiang Y, An D, Jiang X, Zhou S, Liu Y, Tian R, Li Z, Zhao X, Xiang T, Ji P, Yang Y. Methylated tumor suppressor gene SCARA5 inhibits the proliferation, migration and invasion of nasopharyngeal carcinoma. Epigenomics 2023; 15:635-650. [PMID: 37554122 DOI: 10.2217/epi-2023-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023] Open
Abstract
Background: SCARA5 may play an important role in nasopharyngeal carcinoma. Materials & methods: PCR and immunohistochemistry were used to detect the expression and promoter methylation of SCARA5. Cell proliferation assays, spheroid culture, flow cytometry analysis, Transwell assays and xenotransplantation tests were utilized to determine the functional effects of SCARA5. RNA-sequencing, western blotting, immunofluorescence and dual-luciferase reporter assays were used to assess SCARA5-mediated outcomes. Results: SCARA5 was downregulated by promoter methylation. Overexpression of SCARA5 inhibited cell migration, invasion and proliferation. SCARA5 enhanced nasopharyngeal carcinoma cell sensitivity to chemotherapy with cisplatin and 5-fluorouracil. SCARA5 drives tumor apoptosis by downregulating HSPA2. Conclusion: SCARA5 may be a useful clinical marker in nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Xianyao Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yu Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Deqiang An
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xiaocong Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Shitong Zhou
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Department of Otorhinolaryngology Head & Neck Surgery, Chongqing General Hospital, No. 118 Xingguang Avenue, Liangjiang New District, Chongqing, 401147, China
| | - Yijun Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Rui Tian
- Key Laboratory of Molecular Oncology & Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Zhuoqing Li
- Key Laboratory of Molecular Oncology & Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xunping Zhao
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Tingxiu Xiang
- Key Laboratory of Molecular Oncology & Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University, No. 7 Shangqingsi Road, Yuzhong District, Chongqing, 400015, China
| | - Yucheng Yang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
3
|
Kondo S, Okabe A, Nakagawa T, Matsusaka K, Fukuyo M, Rahmutulla B, Dochi H, Mizokami H, Kitagawa Y, Kurokawa T, Mima M, Endo K, Sugimoto H, Wakisaka N, Misawa K, Yoshizaki T, Kaneda A. Repression of DERL3 via DNA methylation by Epstein-Barr virus latent membrane protein 1 in nasopharyngeal carcinoma. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166598. [PMID: 36372158 DOI: 10.1016/j.bbadis.2022.166598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/05/2022] [Accepted: 10/22/2022] [Indexed: 11/13/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is Epstein-Barr virus (EBV)-associated invasive malignancy. Increasing evidence indicates that epigenetic abnormalities, including DNA methylation, play important roles in the development of NPC. In particular, the EBV principal oncogene, latent membrane protein 1 (LMP1), is considered a key factor in inducing aberrant DNA methylation of several tumour suppressor genes in NPC, although the mechanism remains unclear. Herein, we comprehensively analysed the methylome data of Infinium BeadArray from 51 NPC and 52 normal nasopharyngeal tissues to identify LMP1-inducible methylation genes. Using hierarchical clustering analysis, we classified NPC into the high-methylation, low-methylation, and normal-like subgroups. We defined high-methylation genes as those that were methylated in the high-methylation subgroup only and common methylation genes as those that were methylated in both high- and low-methylation subgroups. Subsequently, we identified 715 LMP1-inducible methylation genes by observing the methylome data of the nasopharyngeal epithelial cell line with or without LMP1 expression. Because high-methylation genes were enriched with LMP1-inducible methylation genes, we extracted 95 high-methylation genes that overlapped with the LMP1-inducible methylation genes. Among them, we identified DERL3 as the most significantly methylated gene affected by LMP1 expression. DERL3 knockdown in cell lines resulted in significantly increased cell proliferation, migration, and invasion. Lower DERL3 expression was more frequently detected in the advanced T-stage NPC than in early T-stage NPC. These results indicate that DERL3 repression by DNA methylation contributes to NPC tumour progression.
Collapse
Affiliation(s)
- Satoru Kondo
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan
| | - Takuya Nakagawa
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan; Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-2856, Japan
| | - Keisuke Matsusaka
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan; Department of Pathology, Chiba University Hospital, Chiba, Chiba 260-2856, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan; Department of Genome Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan
| | - Hirotomo Dochi
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Harue Mizokami
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan
| | - Yuki Kitagawa
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Tomoya Kurokawa
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan; Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-2856, Japan
| | - Masato Mima
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan; Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kazuhira Endo
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Hisashi Sugimoto
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Naohiro Wakisaka
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Kiyoshi Misawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tomokazu Yoshizaki
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan.
| |
Collapse
|
4
|
Zhong X, Yang Y, Li B, Liang P, Huang Y, Zheng Q, Wang Y, Xiao X, Mo Y, Zhang Z, Zhou X, Huang G, Zhao W. Downregulation of SLC27A6 by DNA Hypermethylation Promotes Proliferation but Suppresses Metastasis of Nasopharyngeal Carcinoma Through Modulating Lipid Metabolism. Front Oncol 2022; 11:780410. [PMID: 35047398 PMCID: PMC8761909 DOI: 10.3389/fonc.2021.780410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Lipid is the building block and an important source of energy, contributing to the malignant behavior of tumor cells. Recent studies suggested that lipid droplets (LDs) accumulations were associated with nasopharyngeal carcinoma (NPC) progression. Solute carrier family 27 member 6 (SLC27A6) mediates the cellular uptake of long-chain fatty acid (LCFA), a necessary lipid component. However, the functions of SLC27A6 in NPC remain unknown. Here, we found a significant reduction of SLC27A6 mRNA in NPC tissues compared with normal nasopharyngeal epithelia (NNE). The promoter methylation ratio of SLC27A6 was greater in NPC than in non-cancerous tissues. The demethylation reagent 5-aza-2'-deoxycytidine (5-aza-dC) remarkably restored the mRNA expression of SLC27A6, suggesting that this gene was downregulated in NPC owing to DNA promoter hypermethylation. Furthermore, SLC27A6 overexpression level in NPC cell lines led to significant suppression of cell proliferation, clonogenicity in vitro, and tumorigenesis in vivo. Higher SLC27A6 expression, on the other hand, promoted NPC cell migration and invasion. In particular, re-expression of SLC27A6 faciliated epithelial-mesenchymal transition (EMT) signals in xenograft tumors. Furthermore, we observed that SLC27A6 enhanced the intracellular amount of triglyceride (TG) and total cholesterol (T-CHO) in NPC cells, contributing to lipid biosynthesis and increasing metastatic potential. Notably, the mRNA level of SLC27A6 was positively correlated with cancer stem cell (CSC) markers, CD24 and CD44. In summary, DNA promoter hypermethylation downregulated the expression of SLC27A6. Furthermore, re-expression of SLC27A6 inhibited the growth capacity of NPC cells but strengthened the CSC markers. Our findings revealed the dual role of SLC27A6 in NPC and shed novel light on the link between lipid metabolism and CSC maintenance.
Collapse
Affiliation(s)
- Xuemin Zhong
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China.,Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Nanning, China
| | - Yanping Yang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China.,Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Nanning, China
| | - Bo Li
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pan Liang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China.,Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Nanning, China
| | - Yiying Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qian Zheng
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Yifang Wang
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingxi Mo
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoying Zhou
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Guangwu Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China.,Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Nanning, China
| | - Weilin Zhao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
5
|
Han S, Tay JK, Loh CJL, Chu AJM, Yeong JPS, Lim CM, Toh HC. Epstein–Barr Virus Epithelial Cancers—A Comprehensive Understanding to Drive Novel Therapies. Front Immunol 2021; 12:734293. [PMID: 34956172 PMCID: PMC8702733 DOI: 10.3389/fimmu.2021.734293] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Epstein–Barr virus (EBV) is a ubiquitous oncovirus associated with specific epithelial and lymphoid cancers. Among the epithelial cancers, nasopharyngeal carcinoma (NPC), lymphoepithelioma-like carcinoma (LELC), and EBV-associated gastric cancers (EBVaGC) are the most common. The role of EBV in the pathogenesis of NPC and in the modulation of its tumour immune microenvironment (TIME) has been increasingly well described. Much less is known about the pathogenesis and tumour–microenvironment interactions in other EBV-associated epithelial cancers. Despite the expression of EBV-related viral oncoproteins and a generally immune-inflamed cancer subtype, EBV-associated epithelial cancers have limited systemic therapeutic options beyond conventional chemotherapy. Immune checkpoint inhibitors are effective only in a minority of these patients and even less efficacious with molecular targeting drugs. Here, we examine the key similarities and differences of NPC, LELC, and EBVaGC and comprehensively describe the clinical, pathological, and molecular characteristics of these cancers. A deeper comparative understanding of these EBV-driven cancers can potentially uncover targets in the tumour, TIME, and stroma, which may guide future drug development and cast light on resistance to immunotherapy.
Collapse
Affiliation(s)
- Shuting Han
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Joshua K. Tay
- Department of Otolaryngology—Head & Neck Surgery, National University of Singapore, Singapore, Singapore
| | | | | | - Joe Poh Sheng Yeong
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Chwee Ming Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- *Correspondence: Han Chong Toh,
| |
Collapse
|
6
|
Cui Z, Lin Y, Hu D, Wu J, Peng W, Chen Y. Diagnostic and Prognostic Potential of Circulating and Tissue BATF2 in Nasopharyngeal Carcinoma. Front Mol Biosci 2021; 8:724373. [PMID: 34778372 PMCID: PMC8581731 DOI: 10.3389/fmolb.2021.724373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Current biomarkers for nasopharyngeal carcinoma (NPC) are less effective for early diagnosis and prognosis. The basic leucine zipper ATF-like transcription factor 2 (BATF2) gene has been shown to have a tight association with the pathogenesis of various malignancies but received scant attention in NPC research. We aimed to assess the performances of circulating and tissue BATF2 in the diagnosis and prognosis of NPC. Materials and Methods: Immunohistochemistry (IHC) microarrays were performed to quantitate the BATF2 protein expression in NPC tissues. The relationships of BATF2 protein expression with clinicopathological characteristics and NPC prognosis were assessed. BATF2 mRNA expressions in serum and serum-derived exosomes were determined using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay. Results: The IHC microarrays revealed a predominant nuclear expression of BATF2 in NPC cells. The Kaplan-Meier survival analysis showed that BATF2-positive NPC patients enjoyed longer overall survival than BATF2-negative patients. NPC patients with serum and exosomal BATF2 mRNA expressions made up 51.47 and 48.52% of all patients, respectively. The AUCs of serum and exosomal BATF2 mRNA expressions in discriminating NPC from healthy controls were 0.9409 and 0.8983. Patients who had received radiochemotherapy exhibited higher serum and exosomal BATF2 mRNA expressions versus the levels at baseline as well as those detected in recurrent patients. Conclusion: BATF2 is expressed cancerous tissues, serum, and serum-derived exosomes in NPC patients. Circulating and tissue BATF2 can serve as a multipurpose biomarker capable of the diagnosis, prognosis prediction, efficacy evaluation, and recurrence monitoring in NPC.
Collapse
Affiliation(s)
- Zhaolei Cui
- Laboratory of Biochemistry and Molecular Biology Research, Department of Clinical Laboratory, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Yingying Lin
- Laboratory of Biochemistry and Molecular Biology Research, Department of Clinical Laboratory, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Dan Hu
- Department of Pathology, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Jing Wu
- Laboratory of Biochemistry and Molecular Biology Research, Department of Clinical Laboratory, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Wei Peng
- Laboratory of Biochemistry and Molecular Biology Research, Department of Clinical Laboratory, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Yan Chen
- Laboratory of Biochemistry and Molecular Biology Research, Department of Clinical Laboratory, Fujian Medical University Cancer Hospital, Fuzhou, China
| |
Collapse
|
7
|
Zhu QY, Zhao GX, Li Y, Talakatta G, Mai HQ, Le QT, Young LS, Zeng MS. Advances in pathogenesis and precision medicine for nasopharyngeal carcinoma. MedComm (Beijing) 2021; 2:175-206. [PMID: 34766141 PMCID: PMC8491203 DOI: 10.1002/mco2.32] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a squamous carcinoma with apparent geographical and racial distribution, mostly prevalent in East and Southeast Asia, particularly concentrated in southern China. The epidemiological trend over the past decades has suggested a substantial reduction in the incidence rate and mortality rate due to NPC. These results may reflect changes in lifestyle and environment, and more importantly, a deeper comprehension of the pathogenic mechanism of NPC, leading to much progress in the preventing, screening, and treating for this cancer. Herein, we present the recent advances on the key signal pathways involved in pathogenesis of NPC, the mechanism of Epstein‐Barr virus (EBV) entry into the cell, and the progress of EBV vaccine and screening biomarkers. We will also discuss in depth the development of various therapeutic approaches including radiotherapy, chemotherapy, surgery, targeted therapy, and immunotherapy. These research advancements have led to a new era of precision medicine in NPC.
Collapse
Affiliation(s)
- Qian-Ying Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Ge-Xin Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Yan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Girish Talakatta
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Hai-Qiang Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Quynh-Thu Le
- Department of Radiation Oncology Stanford California
| | - Lawrence S Young
- Warwick Medical School University of Warwick Coventry United Kingdom
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| |
Collapse
|
8
|
Du M, Hu X, Jiang X, Yin L, Chen J, Wen J, Fan Y, Peng F, Qian L, Wu J, He X. LncRNA EPB41L4A-AS2 represses Nasopharyngeal Carcinoma Metastasis by binding to YBX1 in the Nucleus and Sponging MiR-107 in the Cytoplasm. Int J Biol Sci 2021; 17:1963-1978. [PMID: 34131399 PMCID: PMC8193272 DOI: 10.7150/ijbs.55557] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/12/2021] [Indexed: 01/23/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is known for its potential to progress to the lymph nodes and distant metastases at an early stage. As an important regulator in tumorigenesis biological processes, the functions of lncRNA in NPC tumor development remain largely unclear. In this research, the expression of EPB41L4A-AS2 in NPC tissues and cells was analyzed via real-time quantitative polymerase chain reaction (qRT-PCR). CCK8, colony formation, and EDU experiments were used to determine the viability of NPC cells. Transwell and wound healing assays were performed to test NPC cell migration and invasion. RNA pull-down and mass spectrometry analysis were used to identify potential binding proteins. Then, a popliteal lymph node metastasis model was established to test NPC metastasis. EPB41L4A-AS2 is repressed by transforming growth factor-beta, which is downregulated in NPC cells and tissue. It is associated with the presence of distant metastasis and adverse outcomes. The univariate and multivariate survival assays confirmed that EPB41L4A-AS2 expression was an independent predictor of progression-free survival (PFS) in patients with NPC. Biological analyses showed that overexpression of EPB41L4A-AS2 reduced the metastasis and invasion of NPC in vitro and in vivo, but had no significant effect on cell proliferation. Mechanistically, in the nucleus we identified that EPB41L4A-AS2 relies on binding to YBX1 to reduce the stability of Snail mRNA to enhance the expression of E-cadherin and reverse the progression of epithelial-to-mesenchymal transition (EMT). In the cytoplasm, we found that EPB41L4A-AS2 blocked the invasion and migration of NPC cells by promoting LATS2 expression via sponging miR-107. In a whole, the findings of this study help to further understand the metastasis mechanism of NPC and could help in the prevention and treatment of NPC metastasis.
Collapse
Affiliation(s)
- Mingyu Du
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China
| | - Xinyu Hu
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China.,The Fourth Clinical School of Nanjing Medical University, Nanjing, China
| | - Xuesong Jiang
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China
| | - Li Yin
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China
| | - Jie Chen
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China
| | - Jing Wen
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China
| | - Yanxin Fan
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China
| | - Fanyu Peng
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China.,The Fourth Clinical School of Nanjing Medical University, Nanjing, China
| | - Luxi Qian
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China.,The Fourth Clinical School of Nanjing Medical University, Nanjing, China
| | - Jing Wu
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China
| | - Xia He
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China
| |
Collapse
|
9
|
Lu S, Yu Z, Xiao Z, Zhang Y. Gene Signatures and Prognostic Values of m 6A Genes in Nasopharyngeal Carcinoma. Front Oncol 2020; 10:875. [PMID: 32596151 PMCID: PMC7300221 DOI: 10.3389/fonc.2020.00875] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor with a high rate of local invasion and early distant metastasis. Accumulating studies suggest that N6-methyladenosine methylation (m6A) is closely related to tumorigenesis. However, the relationship between m6A-related genes and prognosis of NPC is poorly understood. Our research aims to discover the prognostic value of m6A RNA methylation genes in NPC. In this study, we analyzed the differentially expressed m6A-related genes between NPC samples and normal control samples and found that two upregulated genes (YTHDF3 and IGF2BP2) and one downregulated gene (METTL3) were overlapped in GSE68799 and GSE53819. Next, we found that high expression of IGF2BP1 and low expression of METTL3 and YTHDF3 in NPC patients showed poor progression-free survival (PFS). Subsequently, the four m6A genes were selected for consensus cluster analysis, and risk models were established. The risk signature, using three genes (GF2BP1 + IGF2BP2 + METTL3), was an independent prognostic factor and predicts the clinicopathological features of NPC. Additionally, the GO, KEGG analysis, and CIBERSORT algorithm revealed that the risk signature was closely associated to immune infiltration in NPC. Finally, the expression and clinical significance of METTL3 were successfully validated in NPC tissues using immunohistochemical techniques. In conclusion, our finding revealed the potential role of m6A modification in NPC, providing novel insight into NPC prognosis and therapeutic strategies.
Collapse
Affiliation(s)
- Shanshan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China.,The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhengzheng Yu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China.,The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiqiang Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China.,The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Yiya Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Lee HJ, Kim MJ, Kim YS, Choi MY, Cho GJ, Choi WS. UHRF1 silences gelsolin to inhibit cell death in early stage cervical cancer. Biochem Biophys Res Commun 2020; 526:1061-1068. [PMID: 32312517 DOI: 10.1016/j.bbrc.2020.03.185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022]
Abstract
Persistent infection with high-risk strains of human papillomavirus (HPV) is the primary cause of cervical cancer, the fourth most common cancer among women worldwide. Two oncoproteins encoded by the HPV genome, E6 and E7, are required for epigenetic modifications that promote cervical cancer development. We found that knockdown of HPV E6/E7 by siRNA reduced the levels of ubiquitin-like containing PHD and RING finger domain 1 (UHRF1) but increased the levels of gelsolin (GSN) in early stage cervical cancer cells. In addition, we found that UHRF1 levels were increased and GSN levels were decreased in early stage cervical cancer compared with those in normal cervical tissues, as shown by Western blot analysis, immunohistochemistry, and analysis of the Oncomine database. Moreover, knockdown of UHRF1 resulted in increased cell death in cervical cancer cell lines. Treatment of E6/E7-transformed HaCaT (HEK001) cells and HeLa cells with the DNA-hypomethylating agent 5-aza-2'-deoxycytidine and the histone deacetylase inhibitor Trichostatin A increased GSN expression levels. UHRF1 knockdown in HEK001 cells by siRNA or the UHRF1 antagonist thymoquinone increased GSN levels, induced cell cycle arrest and apoptosis, and increased the levels of p27 and cleaved PARP. Those results indicate that upregulation of UHRF1 by HPV E6/E7 causes GSN silencing and a reduction of cell death in early stage cervical cancer, suggesting that GSN might be a useful therapeutic target in early stage cervical cancer.
Collapse
Affiliation(s)
- Han Ju Lee
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Min Jun Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Yoon Sook Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Mee Young Choi
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Gyeong Jae Cho
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Wan Sung Choi
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.
| |
Collapse
|
11
|
Chen L, Chan LS, Lung HL, Yip TTC, Ngan RKC, Wong JWC, Lo KW, Ng WT, Lee AWM, Tsao GSW, Lung ML, Mak NK. Crucifera sulforaphane (SFN) inhibits the growth of nasopharyngeal carcinoma through DNA methyltransferase 1 (DNMT1)/Wnt inhibitory factor 1 (WIF1) axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:153058. [PMID: 31394414 DOI: 10.1016/j.phymed.2019.153058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Sulforaphane (SFN), a natural compound present in cruciferous vegetable, has been shown to possess anti-cancer activities. Cancer stem cell (CSC) in bulk tumor is generally considered as treatment resistant cell and involved in cancer recurrence. The effects of SFN on nasopharyngeal carcinoma (NPC) CSCs have not yet been explored. PURPOSE The present study aims to examine the anti-tumor activities of SFN on NPC cells with CSC-like properties and the underlying mechanisms. METHODS NPC cells growing in monolayer culture, CSCs-enriched NPC tumor spheres, and also the NPC nude mice xenograft were used to study the anti-tumor activities of SFN on NPC. The population of cells expressing CSC-associated markers was evaluated using flow cytometry and aldehyde dehydrogenase (ALDH) activity assay. The effect of DNA methyltransferase 1 (DNMT1) on the growth of NPC cells was analyzed by using small interfering RNA (siRNA)-mediated silencing method. RESULTS SFN was found to inhibit the formation of CSC-enriched NPC tumor spheres and reduce the population of cells with CSC-associated properties (SRY (Sex determining Region Y)-box 2 (SOX2) and ALDH). In the functional study, SFN was found to restore the expression of Wnt inhibitory factor 1 (WIF1) and the effect was accompanied with the downregulation of DNMT1. The functional activities of WIF1 and DNMT1 were confirmed using exogenously added recombinant WIF1 and siRNA knockdown of DNMT1. Moreover, SFN was found to inhibit the in vivo growth of C666-1 cells and enhance the anti-tumor effects of cisplatin. CONCLUSION Taken together, we demonstrated that SFN could suppress the growth of NPC cells via the DNMT1/WIF1 axis.
Collapse
Affiliation(s)
- Luo Chen
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Lai Sheung Chan
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Hong Lok Lung
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Timothy Tak Chun Yip
- Department of Clinical Oncology, Queen Elizabeth Hospital Hong Kong, Kowloon, Hong Kong, China; Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Roger Kai Cheong Ngan
- Department of Clinical Oncology, Queen Elizabeth Hospital Hong Kong, Kowloon, Hong Kong, China; Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Wai Tong Ng
- Clinical Oncology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong, China
| | - Anne Wing Mui Lee
- Department of Clinical Oncology, Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China
| | - George Sai Wah Tsao
- Department of Anatomy, Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Maria Li Lung
- Department of Clinical Oncology, Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Nai Ki Mak
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China.
| |
Collapse
|
12
|
Feng G, Qin L, Liao Z, Xiao X, Li B, Cui W, Liang L, Mo Y, Huang G, Li P, Zhou X, Zhang Z, Xiao X. Knockdown Rab11-FIP2 inhibits migration and invasion of nasopharyngeal carcinoma via suppressing Rho GTPase signaling. J Cell Biochem 2019; 121:1072-1086. [PMID: 31452257 DOI: 10.1002/jcb.29344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
Abstract
Rab11 family interacting protein 2 (Rab11-FIP2) is a conserved protein and effector molecule for the small GTPase Rab11. By interacting with Rab11 and MYO5B, Rab11-FIP2 regulates endosome trafficking of plasma membrane proteins, promoting cellular motility. The endosomal trafficking system in nasopharyngeal carcinoma (NPC) remains unclear. Here, an outlier analysis using the Oncomine database suggested that Rab11-FIP2 but not Rab11 and MYO5B was overexpressed in NPC. We confirmed that the transcription of Rab11-FIP2 was upregulated in NPC cell lines and primary tumor tissues as compared with a normal nasopharyngeal epithelial cell line and normal nasopharynx tissues. We further confirmed the elevated protein expression level of Rab11-FIP2 in NPC biopsies. Instead of regulating the epithelial-mesenchymal transition or Akt signaling pathway, knockdown of Rab11-FIP2 inhibited the migration and invasion ability of NPC cell lines by decreasing the expression of Rac and Cdc42. In summary, Rab11-FIP2 could be an oncogene in NPC, mainly contributing to metastatic capacity by activating Rho GTPase signaling.
Collapse
Affiliation(s)
- Guofei Feng
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Liting Qin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhipeng Liao
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiling Xiao
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Bo Li
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wanmeng Cui
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Libin Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yingxi Mo
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Guangwu Huang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ping Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoying Zhou
- Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhe Zhang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xue Xiao
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
13
|
Xie L, Jiang T, Cheng A, Zhang T, Huang P, Li P, Wen G, Lei F, Huang Y, Tang X, Gong J, Lin Y, Kuai J, Huang W. MiR-597 Targeting 14-3-3σ Enhances Cellular Invasion and EMT in Nasopharyngeal Carcinoma Cells. Curr Mol Pharmacol 2019; 12:105-114. [PMID: 30569880 DOI: 10.2174/1874467212666181218113930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/16/2018] [Accepted: 11/29/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Alterations in microRNAs (miRNAs) are related to the occurrence of nasopharyngeal carcinoma (NPC) and play an important role in the molecular mechanism of NPC. Our previous studies show low expression of 14-3-3σ (SFN) is related to the metastasis and differentiation of NPC, but the underlying molecular mechanisms remain unclear. METHODS Through bioinformatics analysis, we find miR-597 is the preferred target miRNA of 14-3-3σ. The expression level of 14-3-3σ in NPC cell lines was detected by Western blotting. The expression of miR-597 in NPC cell lines was detected by qRT-PCR. We transfected miR-597 mimic, miR-597 inhibitor and 14-3-3σ siRNA into 6-10B cells and then verified the expression of 14-3-3σ and EMT related proteins, including E-cadherin, N-cadherin and Vimentin by western blotting. The changes of migration and invasion ability of NPC cell lines before and after transfected were determined by wound healing assay and Transwell assay. RESULTS miR-597 expression was upregulated in NPC cell lines and repaired in related NPC cell lines, which exhibit a potent tumor-forming effect. After inhibiting the miR-597 expression, its effect on NPC cell line was obviously decreased. Moreover, 14-3-3σ acts as a tumor suppressor gene and its expression in NPC cell lines is negatively correlated with miR-597. Here 14-3-3σ was identified as a downstream target gene of miR-597, and its downregulation by miR-597 drives epithelial-mesenchymal transition (EMT) and promotes the migration and invasion of NPC. CONCLUSION Based on these findings, our study will provide theoretical and experimental evidences for molecular targeted therapy of NPC.
Collapse
Affiliation(s)
- Lisha Xie
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China.,Department of Yiyang Central Hospital, Yiyang, 413000, Hunan Province, China
| | - Tao Jiang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Ailan Cheng
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China.,Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang 421001, Hunan Province, China
| | - Ting Zhang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Pin Huang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Pei Li
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Gebo Wen
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang 421001, Hunan Province, China
| | - Fanghong Lei
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Yun Huang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Xia Tang
- Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Jie Gong
- Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Yunpeng Lin
- Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Jianke Kuai
- Department of Anesthesiology of Third Hospital of Xi'an, Xi'an 710018, Shanxi province, China
| | - Weiguo Huang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China.,Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang 421001, Hunan Province, China
| |
Collapse
|
14
|
Wahyuningsih L, Dwianingsih EK, Risanti ED, Tirtoprodjo P, Rinonce HT, Hakim FA, Herdini C, Fachiroh J. Tissue P16 is Associated with Smoking Status among Indonesian Nasopharyngeal Carcinoma Subjects. Asian Pac J Cancer Prev 2019; 20:2125-2130. [PMID: 31350975 PMCID: PMC6745211 DOI: 10.31557/apjcp.2019.20.7.2125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/17/2019] [Indexed: 11/25/2022] Open
Abstract
Background: Nasopharyngeal carcinoma (NPC) is a malignancy with high incidence in Southern China and South-East Asia. NPC incidence among males in Indonesia is estimated around 8.3/100,000 populations. Tobacco smoking is a common risk factor for cancer, including NPC. P16 is one of the key proteins related to the activation of apoptotic pathways, that commonly change during carcinogenesis. Carcinogenesis is often related to environmental exposure, including tobacco smoke. Objective: To analyze the association between P16 protein and smoking status among NPC subjects in Indonesia. Methods: Forty formalin fixed-paraffin embedded NPC tissue samples of known smoking status (20 smokers, 20 non-smokers) were collected from the Department of Anatomical Pathology, Dr. Sardjito Hospital, Yogyakarta. P16 was detected by immunohistochemistry staining. German semi-quantitative scoring system was applied to the P16 staining. Expression index with the score of 0 to 3 was classified as negative staining, meanwhile 4 to 12 was classified as positive staining. The association between P16 (score) and smoking status among NPC patients was analyzed using Fischer exact test. One-sided p ≤ 0.05 was considered as statistically significant. Results: All samples were Javanese males, with age range 25-76 years old. P16 positive staining among smokers was 5% (1/20), while among non-smokers was 40% (8/20). P16 among smokers was significantly lower than non-smokers patients (p=0.010). No difference was found between quantity of smoke and P16 score. Conclusion : A significant association between P16 and smoking status in Indonesian NPC patients has been revealed. The result of this study may be used to improve prevention and management of NPC cases related to smoking habit in Indonesia.
Collapse
Affiliation(s)
- Laila Wahyuningsih
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada (FK-KMK UGM), Yogyakarta, Indonesia
| | - Ery Kus Dwianingsih
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada (FK-KMK UGM), Yogyakarta, Indonesia
| | | | - Prijono Tirtoprodjo
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada (FK-KMK UGM), Yogyakarta, Indonesia
| | - Hanggoro Tri Rinonce
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada (FK-KMK UGM), Yogyakarta, Indonesia
| | - Fikar Arsyad Hakim
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada (FK-KMK UGM), Yogyakarta, Indonesia
| | - Camelia Herdini
- Department of Otorhinolaryngology Head and Neck Surgery, FK-KMK UGM, Yogyakarta, Indonesia
| | - Jajah Fachiroh
- Department of Histology and Cell Biology, FK-KMK UGM, Yogyakarta, Indonesia
| |
Collapse
|
15
|
Zhang J, Zheng ZQ, Yuan YW, Zhang PP, Li YQ, Wang YQ, Tang XR, Wen X, Hong XH, Lei Y, He QM, Yang XJ, Sun Y, Ma J, Liu N. NFAT1 Hypermethylation Promotes Epithelial-Mesenchymal Transition and Metastasis in Nasopharyngeal Carcinoma by Activating ITGA6 Transcription. Neoplasia 2019; 21:311-321. [PMID: 30772768 PMCID: PMC6378632 DOI: 10.1016/j.neo.2019.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022] Open
Abstract
DNA methylation is an important epigenetic change in carcinogenesis. However, the function and mechanism of DNA methylation dysregulation in nasopharyngeal carcinoma (NPC) is still largely unclear. Our previous genome-wide microarray data showed that NFAT1 is one of the most hypermethylated transcription factor genes in NPC tissues. Here, we found that NFAT1 hypermethylation contributes to its down-regulation in NPC. NFAT1 overexpression inhibited cell migration, invasion, and epithelial-mesenchymal transition in vitro and tumor metastasis in vivo. We further established that the tumor suppressor effect of NFAT1 is mediated by its inactivation of ITGA6 transcription. Our findings suggest the significance of activating NFAT1/ITGA6 signaling in aggressive NPC, defining a novel critical signaling mechanism that drives NPC invasion and metastasis and providing a novel target for future personalized therapy.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China; Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, PR China
| | - Zi-Qi Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Ya-Wei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, PR China
| | - Pan-Pan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Ying-Qin Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Ya-Qin Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Xin-Ran Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Xin Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Xiao-Hong Hong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Yuan Lei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Qing-Mei He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Xiao-Jing Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Ying Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Na Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
| |
Collapse
|
16
|
Zhang J, Li YQ, Guo R, Wang YQ, Zhang PP, Tang XR, Wen X, Hong XH, Lei Y, He QM, Yang XJ, Sun Y, Ma J, Liu N. Hypermethylation of SHISA3 Promotes Nasopharyngeal Carcinoma Metastasis by Reducing SGSM1 Stability. Cancer Res 2018; 79:747-759. [PMID: 30573520 DOI: 10.1158/0008-5472.can-18-1754] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/27/2018] [Accepted: 12/13/2018] [Indexed: 11/16/2022]
Abstract
Altered DNA methylation is a key feature of cancer, and aberrant methylation is important in nasopharyngeal carcinoma (NPC) development. However, the methylation mechanisms underlying metastasis of NPC remain unclear. Analyzing data from public databases and conducting our own experiments, we report here that promoter hypermethylation of SHISA3 is common and contributes to the downregulation of this gene in many types of tumors, including NPC. SHISA3 suppressed NPC cell invasion and metastasis in vitro and in vivo by impeding the E3 ubiquitin ligase tripartite motif containing 21 (TRIM21)-mediated ubiquitination and degradation small G protein signaling modulator 1 (SGSM1) and by inhibiting the MAPK pathway activation. Silencing SGSM1 abrogated the inhibitory effect of SHISA3 on NPC cell migration and invasion. This newly identified SHISA3-TRIM21-SGSM1 axis could be a novel therapeutic target in NPC. SIGNIFICANCE: These findings highlight the mechanism by which a newly identified tumor suppressor SHISA3 suppresses invasion and metastasis of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.,Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, P.R. China
| | - Ying-Qin Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Rui Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Ya-Qin Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Pan-Pan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Xin-Ran Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Xin Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Xiao-Hong Hong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yuan Lei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Qing-Mei He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Xiao-Jing Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Ying Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.
| | - Na Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.
| |
Collapse
|
17
|
Zhang P, He Q, Lei Y, Li Y, Wen X, Hong M, Zhang J, Ren X, Wang Y, Yang X, He Q, Ma J, Liu N. m 6A-mediated ZNF750 repression facilitates nasopharyngeal carcinoma progression. Cell Death Dis 2018; 9:1169. [PMID: 30518868 PMCID: PMC6281568 DOI: 10.1038/s41419-018-1224-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 11/09/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022]
Abstract
Nasopharyngeal carcinoma (NPC) progression is regulated by genetic, epigenetic, and epitranscript modulation. As one of the epitranscript modifications, the role of N6-Methyladenosine (m6A) has not been elucidated in NPC. In the present study, we found that the poorly methylated gene ZNF750 (encoding zinc finger protein 750) was downregulated in NPC tumor tissues and cell lines. Ectopic expression of ZNF750 blocked NPC growth in vitro and in vivo. Further studies revealed that m6A modifications maintained the low expression level of ZNF750 in NPC. Chromatin immunoprecipitation sequencing identified that ZNF750 directly regulated FGF14 (encoding fibroblast growth factor 14), ablation of which reversed ZNF750’s tumor repressor effect. Moreover, the ZNF750-FGF14 signaling axis inhibited NPC growth by promoting cell apoptosis. These findings uncovered the critical role of m6A in NPC, and stressed the regulatory function of the ZNF750-FGF14 signaling axis in modulating NPC progression, which provides theoretical guidance for the clinical treatment of NPC.
Collapse
Affiliation(s)
- Panpan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Qiuping He
- Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, China
| | - Yuan Lei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Yingqin Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Xin Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Mengzhi Hong
- Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, China
| | - Jian Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Xianyue Ren
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 510055, Guangzhou, Guangdong, China
| | - Yaqin Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Xiaojing Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Qingmei He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Na Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
| |
Collapse
|
18
|
Charostad J, Astani A, Goudarzi H, Faghihloo E. DNA methyltransferases in virus-associated cancers. Rev Med Virol 2018; 29:e2022. [PMID: 30511446 DOI: 10.1002/rmv.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022]
Abstract
Human tumor viruses are either casually linked or contribute in the development of human cancers. Viruses can stimulate oncogenesis through affecting diverse biological pathways in human cells. Growing data have demonstrated frequent involvement of one of the most characteristic parts of cellular epigenetic machinery, DNA methylation, in the oncogenesis. DNA methylation of cellular genes is catalyzed by DNA methyltransferases (DNMTs) as a key effector enzyme in this process. Dysregulation of DNMTs can cause aberrant gene methylation in promoter of cancer-related genes including tumor suppressor genes, resulting in gene silencing. In this regard, the role of tumor viruses is remarkable. Here, in this review, we used published information to elucidate whether tumor viruses are able to manipulate DNMT regulation, and if so, what are its consequences in the process of oncogenesis. This essay also aims to shed light on which cellular pathways have been engaged by viruses to induce DNMTs.
Collapse
Affiliation(s)
- Javad Charostad
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Astani
- Zoonotic Diseases Research Center, School of Public Health, Sahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Microbiology, Shahid Sadoghi University of Medical Science, Yazd, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Ren XY, Wen X, Li YQ, Zhang J, He QM, Yang XJ, Tang XR, Wang YQ, Zhang PP, Chen XZ, Cheng B, Ma J, Liu N. TIPE3 hypermethylation correlates with worse prognosis and promotes tumor progression in nasopharyngeal carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:227. [PMID: 30217224 PMCID: PMC6137889 DOI: 10.1186/s13046-018-0881-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/15/2018] [Indexed: 12/15/2022]
Abstract
Background Increasing evidence recognizes that DNA methylation abnormalities play critical roles in cancer development. Our previous genome-wide methylation profile showed that tumor necrosis factor-alpha-induced protein 8 like 3 (TIPE3) was hypermethylated in nasopharyngeal carcinoma (NPC). However, the relationship between TIPE3 methylation and its mRNA expression, as well as its biological roles in NPC are unknown. Methods Bisulfite pyrosequencing and quantitative RT-PCR were performed to quantify the TIPE3 methylation and expression levels. Kaplan-Meier curves and Cox regression analysis were used to estimate the correlation between TIPE3 methylation levels and survival in two patient cohorts collected from two hospitals (n = 441). The MTT, colony formation, Transwell migration and invasion assays, and xenograft tumor growth and lung metastatic colonization models were used to identify the functions of TIPE3 on NPC cells. Results We found that TIPE3 CpG island (CGI) was hypermethylated and its mRNA levels were downregulated in many cancers, including NPC. TIPE3 downregulation was associated with its CGI hypermethylation. Furthermore, NPC patients with high TIPE3 CGI methylation levels had poorer clinical outcomes than those with low methylation levels. The TIPE3 CGI methylation level was an independent prognostic factor. Moreover, restoring TIPE3 expression significantly inhibited NPC cell proliferation, migration and invasion in vitro, and suppressed tumor growth and lung metastatic colonization in vivo, while silencing TIPE3 acted in an opposite way. Conclusions TIPE3 downregulation correlates with its CGI hypermethylation in several solid cancers. TIPE3 acts as a tumor suppressor in NPC, providing a further insight into NPC progression and representing a potential prognostic biomarker for NPC. Electronic supplementary material The online version of this article (10.1186/s13046-018-0881-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xian-Yue Ren
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Xin Wen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Ying-Qing Li
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Jian Zhang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Qing-Mei He
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Xiao-Jing Yang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Xin-Ran Tang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Ya-Qin Wang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Pan-Pan Zhang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Xiao-Zhong Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, People's Republic of China
| | - Bin Cheng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Jun Ma
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Na Liu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
20
|
Li Y, Yang X, Du X, Lei Y, He Q, Hong X, Tang X, Wen X, Zhang P, Sun Y, Zhang J, Wang Y, Ma J, Liu N. RAB37 Hypermethylation Regulates Metastasis and Resistance to Docetaxel-Based Induction Chemotherapy in Nasopharyngeal Carcinoma. Clin Cancer Res 2018; 24:6495-6508. [PMID: 30131385 DOI: 10.1158/1078-0432.ccr-18-0532] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/30/2018] [Accepted: 08/17/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Epigenetic alterations play important roles in metastasis and drug resistance through gene regulation. However, the functional features and molecular mechanisms of epigenetic changes remain largely unclear in nasopharyngeal carcinoma (NPC) metastasis. EXPERIMENTAL DESIGN Gene regulatory network analysis was used to identify metastatic-specific dysregulated genes between normal and NPC tissues and the expression was validated in published Gene-Expression Omnibus data set. The regulatory and functional role of RAB37 downregulation was examined in NPC and was validated in vitro and in vivo, and downstream target of RAB37 was explored. The clinical value of RAB37 methylation was evaluated in NPC metastasis and chemosensitivity. RESULTS We identified RAB37 as a specific hypermethylated gene that is most commonly downregulated in NPC. Moreover, RAB37 downregulation was attributed to hypermethylation of its promoter and was significantly associated with metastasis- and docetaxel chemoresistance-related features in NPC. Ectopic RAB37 overexpression suppressed NPC cell metastasis and enhanced chemosensitivity to docetaxel. Mechanistically, RAB37 colocalized with TIMP2, regulated TIMP2 secretion, inhibited downstream MMP2 activity, and consequently altered NPC cell metastasis. Furthermore, RAB37 hypermethylation was correlated with poor clinical outcomes in patients with NPC. We developed a prognostic model based on RAB37 methylation and N stage that effectively predicted an increased risk of distant metastasis and a favorable response to docetaxel-containing induction chemotherapy (IC) in NPC patients. CONCLUSIONS This study shows that RAB37 hypermethylation is involved in NPC metastasis and chemoresistance, and that our prognostic model can identify patients who are at a high risk of distant metastasis and might benefit from for docetaxel IC.
Collapse
Affiliation(s)
- Yingqin Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Xiaojing Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Xiaojing Du
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Yuan Lei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Qingmei He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Xiaohong Hong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Xinran Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Xin Wen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Panpan Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Ying Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Jian Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Yaqin Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Jun Ma
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Na Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China.
| |
Collapse
|
21
|
Fan J, Zhang Y, Mu J, He X, Shao B, Zhou D, Peng W, Tang J, Jiang Y, Ren G, Xiang T. TET1 exerts its anti-tumor functions via demethylating DACT2 and SFRP2 to antagonize Wnt/β-catenin signaling pathway in nasopharyngeal carcinoma cells. Clin Epigenetics 2018; 10:103. [PMID: 30075814 PMCID: PMC6091063 DOI: 10.1186/s13148-018-0535-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/24/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND TET1 is a tumor suppressor gene (TSG) that codes for ten-eleven translocation methyl cytosine dioxygenase1 (TET1) catalyzing the conversion of 5-methylcytosine to 5-hydroxy methyl cytosine as a first step of TSG demethylation. Its hypermethylation has been associated with cancer pathogenesis. However, whether TET1 plays any role in nasopharyngeal carcinoma (NPC) remains unclear. This study investigated the expression and methylation of TET1 in NPC and confirmed its role and mechanism as a TSG. RESULTS TET1 expression was downregulated in NPC tissues compared with nasal septum deviation tissues. Demethylation of TET1 in HONE1 and HNE1 cells restored its expression with downregulated methylation, implying that TET1 was silenced by promoter hypermethylation. Ectopic expression of TET1 suppressed the growth of NPC cells, induced apoptosis, arrested cell division in G0/G1 phase, and inhibited cell migration and invasion, confirming TET1 TSG activity. TET1 decreased the expression of nuclear β-catenin and downstream target genes. Furthermore, TET1 could cause Wnt antagonists (DACT2, SFRP2) promoter demethylation and restore its expression in NPC cells. CONCLUSIONS Collectively, we conclude that TET1 exerts its anti-tumor functions in NPC cells by suppressing Wnt/β-catenin signaling via demethylation of Wnt antagonists (DACT2 and SFRP2).
Collapse
Affiliation(s)
- Jiangxia Fan
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Zhang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junhao Mu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqian He
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bianfei Shao
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dishu Zhou
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Tang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Jiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
22
|
Wu C, Peng S, Sun W, Luo M, Su B, Liu D, Hu G. Association of E-cadherin methylation with risk of nasopharyngeal cancer: A meta-analysis. Head Neck 2018; 40:2538-2545. [PMID: 29947108 DOI: 10.1002/hed.25319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 03/13/2018] [Accepted: 04/03/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Various studies have assessed the association between E-cadherin methylation and risk of nasopharyngeal cancer (NPC) but the conclusion remains unclear. This meta-analysis was conducted to evaluate the effects of E-cadherin methylation on the incidence and clinicopathological characteristics of NPC. METHODS Ten studies published up to June 30, 2016, were collected. Odds ratios (ORs) with corresponding confidence intervals (CIs) were calculated and summarized, respectively. RESULTS The E-cadherin methylation in NPC was significantly higher than those in normal groups (OR 16.23; 95% CI 8.34-31.60; P < .001). Ethnicity-stratified analysis indicated that E-cadherin methylation was strongly correlated with NPC among both Asians (OR 16.98; 95% CI 8.45-34.14; P < .001) and North Africans (OR 10.67; 95% CI 1.21-93.72; P = .033). However, further analysis showed that E-cadherin methylation was not strongly associated with clinicopathological feathers in patients with NPC. CONCLUSION The E-cadherin methylation is strongly associated with the incidence of NPC, which can serve as an effective biomarker for early detection of NPC.
Collapse
Affiliation(s)
- Cheng Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shan Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wei Sun
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Min Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Beibei Su
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Dongbo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Guoqing Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
23
|
Zhang Y, Fan J, Fan Y, Li L, He X, Xiang Q, Mu J, Zhou D, Sun X, Yang Y, Ren G, Tao Q, Xiang T. The new 6q27 tumor suppressor DACT2, frequently silenced by CpG methylation, sensitizes nasopharyngeal cancer cells to paclitaxel and 5-FU toxicity via β-catenin/Cdc25c signaling and G2/M arrest. Clin Epigenetics 2018; 10:26. [PMID: 30359298 PMCID: PMC6136178 DOI: 10.1186/s13148-018-0459-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/14/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is prevalent in South China, including Hong Kong and Southeast Asia, constantly associated with Epstein-Barr virus (EBV) infection. Epigenetic etiology attributed to EBV plays a critical role in NPC pathogenesis. Through previous CpG methylome study, we identified Disheveled-associated binding antagonist of beta-catenin 2 (DACT2) as a methylated target in NPC. Although DACT2 was shown to regulate Wnt signaling in some carcinomas, its functions in NPC pathogenesis remain unclear. METHODS RT-PCR, qPCR, MSP, and BGS were applied to measure expression levels and promoter methylation of DACT2 in NPC. Transwell, flow cytometric analysis, colony formation, and BrdU-ELISA assay were used to assess different biological functions affected by DACT2. Immunofluorescence, Western blot, and dual-luciferase reporter assay were used to explore the mechanisms of DACT2 functions. Chemosensitivity assay was used to measure the impact of DACT2 on chemotherapy drugs. RESULTS We found that DACT2 is readily expressed in multiple normal adult tissues including upper respiratory tissues. However, it is frequently downregulated in NPC and correlated with promoter methylation. DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine restored its expression in NPC cells. DACT2 methylation was further detected in 29/32 (91%) NPC tumors but not in any (0/8) normal nasopharyngeal tissue samples. Ectopic expression of DACT2 in NPC cells suppressed their proliferation, migration, and invasion through downregulating matrix metalloproteinases. DACT2 expression also induced G2/M arrest in NPC cells through directly suppressing β-catenin/Cdc25c signaling, which sensitized NPC cells to paclitaxel and 5-FU, but not cisplatin. CONCLUSION Our results demonstrate that DACT2 is frequently inactivated epigenetically by CpG methylation in NPC, while it inhibits NPC cell proliferation and metastasis via suppressing β-catenin/Cdc25c signaling. Our study suggests that DACT2 promoter methylation is a potential epigenetic biomarker for the detection and chemotherapy guidance of NPC.
Collapse
Affiliation(s)
- Yan Zhang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiangxia Fan
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yichao Fan
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoqian He
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junhao Mu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Danfeng Zhou
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuejuan Sun
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yucheng Yang
- Department of Otolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Tao
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China. .,Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
24
|
Zhang Q, Qiao L, Wang X, Ding C, Chen JJ. UHRF1 epigenetically down-regulates UbcH8 to inhibit apoptosis in cervical cancer cells. Cell Cycle 2018; 17:300-308. [PMID: 29157076 DOI: 10.1080/15384101.2017.1403686] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is an important epigenetic regulator that plays a part in DNA methylation, protein methylation and ubiquitination. It is also frequently overexpressed in many types of cancers, including cervical cancer, which is caused by human papillomavirus (HPV). In this study, we showed that UHRF1 was up-regulated in HPV oncogene E7 expressing cells and HPV-positive cervical cancer cells. We demonstrated that UHRF1 down-regulated the expression of UBE2L6 gene that encodes the ISG15-conjugating enzyme UbcH8. Overexpression of UHRF1 reduced UBE2L6 while knockdown UHRF1 elevated the expression of UBE2L6. We showed that UHRF1 regulated UBE2L6 gene by promoter hypermethylation in cervical cancer cells. Consistent with the functions of UHRF1, restored expression of UbcH8 induced apoptosis. These findings establish UBE2L6 as a novel target of UHRF1 that regulates the apoptosis function of UHRF1. Our studies suggest that UHRF1/ UbcH8 can be manipulated for therapy in cervical cancer.
Collapse
Affiliation(s)
- Qishu Zhang
- a Cancer Research Center , Shandong University School of Basic Medical Sciences , Jinan , Shandong 250012 , China
| | - Lijun Qiao
- a Cancer Research Center , Shandong University School of Basic Medical Sciences , Jinan , Shandong 250012 , China
| | - Xiao Wang
- b Department of Pathology , Shandong University School of Basic Medicine , Jinan , Shandong 250012 , China
| | - Changkuan Ding
- a Cancer Research Center , Shandong University School of Basic Medical Sciences , Jinan , Shandong 250012 , China
| | - Jason J Chen
- a Cancer Research Center , Shandong University School of Basic Medical Sciences , Jinan , Shandong 250012 , China
| |
Collapse
|
25
|
Zhou X, Xiao X, Huang T, Du C, Wang S, Mo Y, Ma N, Murata M, Li B, Wen W, Huang G, Zeng X, Zhang Z. Epigenetic inactivation of follistatin-like 1 mediates tumor immune evasion in nasopharyngeal carcinoma. Oncotarget 2017; 7:16433-44. [PMID: 26918942 PMCID: PMC4941326 DOI: 10.18632/oncotarget.7654] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/06/2016] [Indexed: 01/25/2023] Open
Abstract
Follistatin like-1 (FSTL1) is a secreted glycoprotein involved in a series of physiological and pathological processes. However, its contribution to the development of cancer, especially the pathogenesis of nasopharyngeal carcinoma (NPC), remains to be elucidated. We aimed to investigate the dysregulation of FSTL1 and its possible function in NPC. FSTL1 was frequently downregulated in NPC cell lines and primary tumor biopsies by promoter hypermethylation. Ectopic expression of FSTL1 significantly suppressed the colony formation, proliferation, migration and invasion ability of NPC cells and induced cell apoptosis. Overexpression of FSTL1 decreased the tumorigenicity of NPC cells in vivo. In addition, the proliferation of NPC cells in vitro was inhibited by treatment with soluble recombinant FSTL1 protein. The protein level of FSTL1 was decreased in primary NPC tumors and was associated with downregulated interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α). Furthermore, recombinant human FSTL1 protein induced secretion of IL-1β and TNF-α in macrophage cultures, therefore FSTL1 might activate macrophages and attenuate the immune evasion of NPC cells. In conclusion, the epigenetic downregulation of FSTL1 may suppress the proliferation and migration of NPC cells, leading to dysfunctional innate responses in surrounding macrophages.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Medical Research Center, Guangxi Medical University, Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tingting Huang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chunping Du
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shumin Wang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingxi Mo
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie, Japan
| | - Ning Ma
- Faculty of Nursing Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie, Japan
| | - Bo Li
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wensheng Wen
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangwu Huang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xianjie Zeng
- Department of Head and Neck Surgery, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
26
|
Lintz M, Muñoz A, Reinhart-King CA. The Mechanics of Single Cell and Collective Migration of Tumor Cells. J Biomech Eng 2017; 139:2580907. [PMID: 27814431 DOI: 10.1115/1.4035121] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Indexed: 12/20/2022]
Abstract
Metastasis is a dynamic process in which cancer cells navigate the tumor microenvironment, largely guided by external chemical and mechanical cues. Our current understanding of metastatic cell migration has relied primarily on studies of single cell migration, most of which have been performed using two-dimensional (2D) cell culture techniques and, more recently, using three-dimensional (3D) scaffolds. However, the current paradigm focused on single cell movements is shifting toward the idea that collective migration is likely one of the primary modes of migration during metastasis of many solid tumors. Not surprisingly, the mechanics of collective migration differ significantly from single cell movements. As such, techniques must be developed that enable in-depth analysis of collective migration, and those for examining single cell migration should be adopted and modified to study collective migration to allow for accurate comparison of the two. In this review, we will describe engineering approaches for studying metastatic migration, both single cell and collective, and how these approaches have yielded significant insight into the mechanics governing each process.
Collapse
Affiliation(s)
- Marianne Lintz
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 309 Weill Hall, Ithaca, NY 14853
| | - Adam Muñoz
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 309 Weill Hall, Ithaca, NY 14853
| | - Cynthia A Reinhart-King
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 302 Weill Hall, Ithaca, NY 14853 e-mail:
| |
Collapse
|
27
|
Zhang J, Wen X, Liu N, Li YQ, Tang XR, Wang YQ, He QM, Yang XJ, Zhang PP, Ma J, Sun Y. Epigenetic mediated zinc finger protein 671 downregulation promotes cell proliferation and tumorigenicity in nasopharyngeal carcinoma by inhibiting cell cycle arrest. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:147. [PMID: 29052525 PMCID: PMC5649082 DOI: 10.1186/s13046-017-0621-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022]
Abstract
Background Epigenetic abnormalities play important roles in nasopharyngeal cancer (NPC), however, the epigenetic changes associated with abnormal cell proliferation remain unclear. Methods We detected epigenetic change of ZNF671 in NPC tissues and cell lines by bisulfite pyrosequencing. We evaluated zinc finger protein 671 (ZNF671) expression in NPC cell lines and clinical tissues using real-time PCR and western blotting. Then, we established NPC cell lines that stably overexpressed ZNF671 and knocked down ZNF671 expression to explore its function in NPC in vitro and in vivo. Additionally, we investigated the potential mechanism of ZNF671 by identifying the mitotic spindle and G2/M checkpoint pathways pathway downstream genes using gene set enrichment analysis, flow cytometry and western blotting. Results ZNF671 was hypermethylated in NPC tissues and cell lines. The mRNA and protein expression of ZNF671 was down-regulated in NPC tissues and cell lines and the mRNA expression could be upregulated after the demethylation agent 5-aza-2′-deoxycytidine treatment. Overexpression of ZNF671 suppressed NPC cell proliferation and colony formation in vitro; silencing ZNF671 using a siRNA had the opposite effects. Additionally, overexpression of ZNF671 reduced the tumorigenicity of NPC cells in xenograft model in vivo. The mechanism study determined that overexpressing ZNF671 induced S phase arrest in NPC cells by upregulating p21 and downregulating cyclin D1 and c-myc. Conclusions Epigenetic mediated zinc finger protein 671 downregulation promotes cell proliferation and enhances tumorigenicity by inhibiting cell cycle arrest in NPC, which may represent a novel potential therapeutic target. Electronic supplementary material The online version of this article (10.1186/s13046-017-0621-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China
| | - Xin Wen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China
| | - Na Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China
| | - Ying-Qin Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China
| | - Xin-Ran Tang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China
| | - Ya-Qin Wang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China
| | - Qing-Mei He
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China
| | - Xiao-Jing Yang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China
| | - Pan-Pan Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China
| | - Jun Ma
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China.
| | - Ying Sun
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China.
| |
Collapse
|
28
|
Zhao W, Mo Y, Wang S, Midorikawa K, Ma N, Hiraku Y, Oikawa S, Huang G, Zhang Z, Murata M, Takeuchi K. Quantitation of DNA methylation in Epstein-Barr virus-associated nasopharyngeal carcinoma by bisulfite amplicon sequencing. BMC Cancer 2017; 17:489. [PMID: 28716111 PMCID: PMC5514474 DOI: 10.1186/s12885-017-3482-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 07/12/2017] [Indexed: 12/31/2022] Open
Abstract
Background Epigenetic changes, including DNA methylation, disrupt normal cell function, thus contributing to multiple steps of carcinogenesis. Nasopharyngeal carcinoma (NPC) is endemic in southern China and is highly associated with Epstein-Barr virus (EBV) infection. Significant changes of the host cell methylome are observed in EBV-associated NPC with cancer development. Epigenetic marks for NPC diagnosis are urgently needed. In order to explore DNA methylation marks, we investigated DNA methylation of candidate genes in EBV-associated nasopharyngeal carcinoma. Methods We first employed methyl-capture sequencing and cDNA microarrays to compare the genome-wide methylation profiles of seven NPC tissues and five non-cancer nasopharyngeal epithelium (NNE) tissues. We found 150 hypermethylated CpG islands spanning promoter regions and down-regulated genes. Furthermore, we quantified the methylation rates of seven candidate genes using bisulfite amplicon sequencing for nine NPC and nine NNE tissues. Results All seven candidate genes showed significantly higher methylation rates in NPC than in NNE tissues, and the ratios (NPC/NNE) were in descending order as follows: ITGA4 > RERG > ZNF671 > SHISA3 > ZNF549 > CR2 > RRAD. In particular, methylation levels of ITGA4, RERG, and ZNF671 could distinguish NPC patients from NNE subjects. Conclusions We identified the DNA methylation rates of previously unidentified NPC candidate genes. The combination of genome-wide and targeted methylation profiling by next-generation sequencers should provide useful information regarding cancer-specific aberrant methylation. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3482-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weilin Zhao
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.,Department of Otorhinolaryngology, Head and Neck Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan.,Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingxi Mo
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.,Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Present address: Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shumin Wang
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.,Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Present address: Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Kaoru Midorikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Ning Ma
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Yusuke Hiraku
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Guangwu Huang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Kazuhiko Takeuchi
- Department of Otorhinolaryngology, Head and Neck Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan.
| |
Collapse
|
29
|
Zhao Z, Liu W, Liu J, Wang J, Luo B. The effect of EBV on WIF1, NLK, and APC gene methylation and expression in gastric carcinoma and nasopharyngeal cancer. J Med Virol 2017; 89:1844-1851. [PMID: 28543390 DOI: 10.1002/jmv.24863] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 05/07/2017] [Indexed: 12/27/2022]
Abstract
Epstein-Barr virus (EBV) is an important DNA tumor virus that is associated with approximately 10% of gastric carcinomas and 99% of nasopharyngeal cancers (NPC). DNA methylation and microRNAs (miRNAs) are the most studied epigenetic mechanisms that can prompt disease susceptibility. This study aimed to detect the effect of EBV on Wnt inhibitory factor 1 (WIF1), Nemo-like kinase (NLK), and adenomatous polyposis coli (APC) gene methylation, and expression in gastric carcinoma and NPC. The WIF1, NLK, and APC gene mRNA expression levels were measured by real-time quantitative RT-PCR in four EBV-positive cell lines and four EBV-negative cell lines. Bisulfite genomic sequencing or methylation-specific PCR was used to detect the methylation status of the WIF1, NLK, and APC promoters. All cell lines were treated with 5-azacytidine (5-aza-dC), miR-BART19-3p mimics or an inhibitor, and analyzed by flow cytometry and MTT cell proliferation assays. The WIF1, NLK, and APC promoters were hypermethylated in all eight cell lines. 5-Aza-dC displayed a growth inhibitory effect on cells . After transfection with miR-BART19-3p mimics, the expression of WIF1, and APC decreased, and the cellular proliferation rate increased. After transfection with the miR-BART19-3p inhibitor, the expression levels were higher, and the cell growth was inhibited. In the NPC and GC cell lines, the promoters of WIF1, NLK, and APC are highly methylated, and the expression of these three genes is regulated by miR-BART19-3p. The activity of the Wnt pathway in EBV-associated tumors may be enhanced by miR-BART19-3p.
Collapse
Affiliation(s)
- Zhenzhen Zhao
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| | - Wen Liu
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| | - Jincheng Liu
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| | - Jiayi Wang
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| | - Bing Luo
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| |
Collapse
|
30
|
Ren X, Yang X, Cheng B, Chen X, Zhang T, He Q, Li B, Li Y, Tang X, Wen X, Zhong Q, Kang T, Zeng M, Liu N, Ma J. HOPX hypermethylation promotes metastasis via activating SNAIL transcription in nasopharyngeal carcinoma. Nat Commun 2017; 8:14053. [PMID: 28146149 PMCID: PMC5296651 DOI: 10.1038/ncomms14053] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 11/22/2016] [Indexed: 12/24/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is characterized by a high rate of local invasion and early distant metastasis. Increasing evidence indicates that epigenetic abnormalities play important roles in NPC development. However, the epigenetic mechanisms underlying NPC metastasis remain unclear. Here we investigate aberrantly methylated transcription factors in NPC tissues, and we identify the HOP homeobox HOPX as the most significantly hypermethylated gene. Consistently, we find that HOXP expression is downregulated in NPC tissues and NPC cell lines. Restoring HOPX expression suppresses metastasis and enhances chemosensitivity of NPC cells. These effects are mediated by HOPX-mediated epigenetic silencing of SNAIL transcription through the enhancement of histone H3K9 deacetylation in the SNAIL promoter. Moreover, we find that patients with high methylation levels of HOPX exhibit poor clinical outcomes in both the training and validation cohorts. In summary, HOPX acts as a tumour suppressor via the epigenetic regulation of SNAIL transcription, which provides a novel prognostic biomarker for NPC metastasis and therapeutic target for NPC treatment.
Collapse
Affiliation(s)
- Xianyue Ren
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road west, Guangzhou, Guangdong 510055, China
| | - Xiaojing Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Bin Cheng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road west, Guangzhou, Guangdong 510055, China
| | - Xiaozhong Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, 38 Guangji Road, Hangzhou, Zhejiang 310022, China
| | - Tianpeng Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, 132 Waihuan Road East, Guangzhou, Guangdong 510006, China
| | - Qingmei He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Bin Li
- Department of Radiation Oncology, Zhejiang Cancer Hospital, 38 Guangji Road, Hangzhou, Zhejiang 310022, China
| | - Yingqin Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Xinran Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Xin Wen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Qian Zhong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Tiebang Kang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Musheng Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Na Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Jun Ma
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| |
Collapse
|
31
|
Alhosin M, Omran Z, Zamzami MA, Al-Malki AL, Choudhry H, Mousli M, Bronner C. Signalling pathways in UHRF1-dependent regulation of tumor suppressor genes in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:174. [PMID: 27839516 PMCID: PMC5108085 DOI: 10.1186/s13046-016-0453-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/02/2016] [Indexed: 12/13/2022]
Abstract
Epigenetic silencing of tumor suppressor genes (TSGs) through DNA methylation and histone changes is a main hallmark of cancer. Ubiquitin-like with PHD and RING Finger domains 1 (UHRF1) is a potent oncogene overexpressed in various solid and haematological tumors and its high expression levels are associated with decreased expression of several TSGs including p16INK4A, BRCA1, PPARG and KiSS1. Using its several functional domains, UHRF1 creates a strong coordinated dialogue between DNA methylation and histone post-translation modification changes causing the epigenetic silencing of TSGs which allows cancer cells to escape apoptosis. To ensure the silencing of TSGs during cell division, UHRF1 recruits several enzymes including histone deacetylase 1 (HDAC1), DNA methyltransferase 1 (DNMT1) and histone lysine methyltransferases G9a and Suv39H1 to the right place at the right moment. Several in vitro and in vivo works have reported the direct implication of the epigenetic player UHRF1 in tumorigenesis through the repression of TSGs expression and suggested UHRF1 as a promising target for cancer treatment. This review describes the molecular mechanisms underlying UHRF1 regulation in cancer and discusses its importance as a therapeutic target to induce the reactivation of TSGs and subsequent apoptosis.
Collapse
Affiliation(s)
- Mahmoud Alhosin
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia. .,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia. .,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia. .,Biochemistry Department, Faculty of Sciences, Cancer and Mutagenesis Unit, King Fahd Centre for Medical Research, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Ziad Omran
- College of Pharmacy, Umm Al-Qura University, 21955, Makkah, Kingdom of Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman L Al-Malki
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marc Mousli
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Christian Bronner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.
| |
Collapse
|
32
|
Hettmann A, Demcsák A, Decsi G, Bach Á, Pálinkó D, Rovó L, Nagy K, Takács M, Minarovits J. Infectious Agents Associated with Head and Neck Carcinomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 897:63-80. [PMID: 26563307 DOI: 10.1007/5584_2015_5005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In addition to traditional risk factors such as smoking habits and alcohol consumption, certain microbes also play an important role in the generation of head and neck carcinomas. Infection with high-risk human papillomavirus types is strongly associated with the development of oropharyngeal carcinoma, and Epstein-Barr virus appears to be indispensable for the development of non-keratinizing squamous cell carcinoma of the nasopharynx. Other viruses including torque teno virus and hepatitis C virus may act as co-carcinogens, increasing the risk of malignant transformation. A shift in the composition of the oral microbiome was associated with the development of oral squamous cell carcinoma, although the causal or casual role of oral bacteria remains to be clarified. Conversion of ethanol to acetaldehyde, a mutagenic compound, by members of the oral microflora as well as by fungi including Candida albicans and others is a potential mechanism that may increase oral cancer risk. In addition, distinct Candida spp. also produce NBMA (N-nitrosobenzylmethylamine), a potent carcinogen. Inflammatory processes elicited by microbes may also facilitate tumorigenesis in the head and neck region.
Collapse
Affiliation(s)
- Andrea Hettmann
- Division of Virology, National Center for Epidemiology, Albert F. ut 2-6, H-1097, Budapest, Hungary
| | - Anett Demcsák
- Faculty of Dentistry, Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary
| | - Gábor Decsi
- Department of Oral Surgery, University of Szeged, Tisza Lajos krt. 64, H-6720, Szeged, Hungary
| | - Ádám Bach
- Faculty of Medicine, Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Tisza L. krt. 111, H-6725, Szeged, Hungary
| | - Dóra Pálinkó
- Faculty of Medicine, Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Tisza L. krt. 111, H-6725, Szeged, Hungary
| | - László Rovó
- Faculty of Medicine, Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Tisza L. krt. 111, H-6725, Szeged, Hungary
| | - Katalin Nagy
- Department of Oral Surgery, University of Szeged, Tisza Lajos krt. 64, H-6720, Szeged, Hungary
| | - Mária Takács
- Division of Virology, National Center for Epidemiology, Albert F. ut 2-6, H-1097, Budapest, Hungary
| | - Janos Minarovits
- Faculty of Dentistry, Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary.
| |
Collapse
|
33
|
Niu M, Gao D, Wen Q, Wei P, Pan S, Shuai C, Ma H, Xiang J, Li Z, Fan S, Li G, Peng S. MiR-29c regulates the expression of miR-34c and miR-449a by targeting DNA methyltransferase 3a and 3b in nasopharyngeal carcinoma. BMC Cancer 2016; 16:218. [PMID: 26975503 PMCID: PMC4791796 DOI: 10.1186/s12885-016-2253-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 03/08/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is prevalent in South East Asia and Southern China particularly, despite the reported 5-year survival ratio is relative higher than other deadly cancers such as liver, renal, pancreas cancer, the lethality is characterized by high metastatic potential in the early stage and high recurrence rate after radiation treatment. MicroRNA-29c was found to be down-regulated in the serum as well as in the tissue of nasopharyngeal carcinoma tissue. METHODS In this study, we found accidentally that the transfection of pre-miR-29c or miR-29c mimics significantly increases the expression level of miR-34c and miR-449a but doesn't affect that of miR-222 using real-time quantitative PCR in nasopharyngeal carcinoma cell lines. To explore the molecular mechanism of the regulatory role, the cells are treated with 5-Aza-2-deoxycytidine (5-Aza-CdR) treatment and the level of miR-34c and miR-449a but not miR-222 accumulated by the treatment. DNA methyltransferase 3a, 3b were down-regulated by the 5-Aza-CdR treatment with western blot and real-time quantitative PCR. RESULTS We found that pre-miR-29c or miR-29c mimics significantly increases the expression level of miR-34c and miR-449a. We further found DNA methyltransferase 3a and 3b are the target gene of miR-29c. Restoration of miR-29c in NPC cells down-regulated DNA methyltransferase 3a, 3b, but not DNA methyltransferase T1. CONCLUSIONS The regulation of miR-29c/DNMTs/miR-34c\449a is an important molecular axis of NPC development and targeting DNMTs or restoring of miR-29c might be a promising therapy strategy for the prevention of NPC.
Collapse
Affiliation(s)
- Man Niu
- />Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China
- />Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, 410078 China
| | - Dan Gao
- />Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, 410078 China
| | - Qiuyuan Wen
- />Department of Pathology, Second Xiangya Hospital, Central South University, Changsha, 410011 China
| | - Pingpin Wei
- />Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, 410078 China
| | - Suming Pan
- />Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, 410078 China
- />Guandong Provincial Yuebei People’s Hospital, Shaoguan, 512025 China
| | - Cijun Shuai
- />Orthopedic Biomedical Materials Institute, Central South University, Changsha, 410083 China
| | - Huiling Ma
- />Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, 410078 China
| | - Juanjuan Xiang
- />Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China
- />Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, 410078 China
| | - Zheng Li
- />Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China
- />Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, 410078 China
| | - Songqing Fan
- />Department of Pathology, Second Xiangya Hospital, Central South University, Changsha, 410011 China
| | - Guiyuan Li
- />Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China
- />Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, 410078 China
| | - Shuping Peng
- />Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China
- />Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, 410078 China
| |
Collapse
|
34
|
Jiang W, Cai R, Chen QQ. DNA Methylation Biomarkers for Nasopharyngeal Carcinoma: Diagnostic and Prognostic Tools. Asian Pac J Cancer Prev 2016; 16:8059-65. [DOI: 10.7314/apjcp.2015.16.18.8059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
35
|
Epigenetic Alterations in Epstein-Barr Virus-Associated Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 879:39-69. [PMID: 26659263 DOI: 10.1007/978-3-319-24738-0_3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Balasubramanian A, Subramaniam R, Narayanan V, Annamalai T, Ramanathan A. BRD7 promoter hypermethylation as an indicator of well differentiated oral squamous cell carcinomas. Asian Pac J Cancer Prev 2015; 16:1615-9. [PMID: 25743841 DOI: 10.7314/apjcp.2015.16.4.1615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Promoter hypermethylation mediated gene silencing of tumor suppressor genes is considered as most frequent mechanism than genetic aberrations such as mutations in the development of cancers. BRD7 is a single bromodomain containing protein that functions as a subunit of SWI/SNF chromatin-remodeling complex to regulate transcription. It also interacts with the well know tumor suppressor protein p53 to trans- activate genes involved in cell cycle arrest. Loss of expression of BRD7 has been observed in breast cancers and nasopharyngeal carcinomas due to promoter hypermethylation. However, the genetic status of BRD7 in oral squamous cell carcinomas (OSCCs) is not known, although OSCC is one of the most common among all reported cancers in the Indian population. Hence, in the present study we investigated OSCC samples to determine the occurrence of hypermethylation in the promoter region of BRD7 and understand its prevalence. MATERIALS AND METHODS Genomic DNA extracted from biopsy tissues of twenty three oral squamous cell carcinomas were digested with methylation sensitive HpaII type2 restriction enzyme that recognizes and cuts unmethylated CCGG motifs. The digested DNA samples were amplified with primers flanking the CCGG motifs in promoter region of BRD7 gene. The PCR amplified products were analyzed by agarose gel electrophoresis along with undigested amplification control. RESULTS Methylation sensitive enzyme technique identified methylation of BRD7 promoter region seventeen out of twenty three (74%) well differentiated oral squamous cell carcinoma samples. CONCLUSIONS The identification of BRD7 promoter hypermethylation in 74% of well differentiated oral squamous cell carcinomas indicates that the methylation dependent silencing of BRD7 gene is a frequent event in carcinogenesis. To the best of our knowledge, the present study is the first to report the occurrence of BRD7and its high prevalence in oral squamous cell carcinomas.
Collapse
Affiliation(s)
- Anandh Balasubramanian
- Oral and Maxillofacial Surgery, Faculty of Dentistry, Sri Ramachandra University, Potheri, India E-mail :
| | | | | | | | | |
Collapse
|
37
|
Nawaz I, Hu LF, Du ZM, Moumad K, Ignatyev I, Pavlova TV, Kashuba V, Almgren M, Zabarovsky ER, Ernberg I. Integrin α9 gene promoter is hypermethylated and downregulated in nasopharyngeal carcinoma. Oncotarget 2015; 6:31493-507. [PMID: 26372814 PMCID: PMC4741620 DOI: 10.18632/oncotarget.5154] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 08/27/2015] [Indexed: 02/07/2023] Open
Abstract
Epigenetic silencing of tumor suppressor genes (TSGs) by promoter methylation can be an early event in the multi-step process of carcinogenesis. Human chromosome 3 contains clusters of TSGs involved in many cancer types including nasopharyngeal carcinoma (NPC), the most common cancer in Southern China. Among ten candidate TSGs identified in chromosome 3 using NotI microarray, ITGA9 and WNT7A could be validated. 5'-aza-2' deoxycytidine treatment restored the expression of ITGA9 and WNT7A in two NPC cell lines. Immunostaining showed strong expression of these genes in the membrane and cytoplasm of adjacent control nasopharyngeal epithelium cells, while they were weakly expressed in NPC tumor cells. The ITGA9 promoter showed marked differentially methylation between tumor and control tissue, whereas no differentially methylation could be detected for the WNT7A promoter. The expression level of ITGA9 in NPC tumors was downregulated 4.9-fold, compared to the expression in control. ITGA9 methylation was detected by methylation specific PCR (MSP) in 56% of EBV positive NPC-cases with 100% specificity. Taken together, this suggests that ITGA9 might be a TSG in NPC that is involved in tumor cell biology. The possibility of using ITGA9 methylation as a marker for early detection of NPC should further be explored.
Collapse
Affiliation(s)
- Imran Nawaz
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology, Faculty of Life Sciences, University of Balochistan, Quetta, Pakistan
| | - Li-Fu Hu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Zi-Ming Du
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- State Key Laboratory of Oncology in South China, and Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, P.R. China
| | - Khalid Moumad
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Oncovirology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Ilya Ignatyev
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tatiana V. Pavlova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Vladimir Kashuba
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Malin Almgren
- Department Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Centre for Molecular Medicine, Stockholm, Sweden
| | - Eugene R. Zabarovsky
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical & Experimental Medicine, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Nawaz I, Moumad K, Martorelli D, Ennaji MM, Zhou X, Zhang Z, Dolcetti R, Khyatti M, Ernberg I, Hu LF. Detection of nasopharyngeal carcinoma in Morocco (North Africa) using a multiplex methylation-specific PCR biomarker assay. Clin Epigenetics 2015; 7:89. [PMID: 26300994 PMCID: PMC4546349 DOI: 10.1186/s13148-015-0119-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/31/2015] [Indexed: 12/25/2022] Open
Abstract
Background Silencing of tumor suppressor genes (TSGs) or activation of oncogenes by, e.g., aberrant promoter methylation, may be early events during carcinogenesis. The methylation status of such genes can be used for early detection of cancer. We are pursuing this approach in our efforts to develop markers for early detection and follow-up of nasopharyngeal carcinoma (NPC). We set out to develop this approach to allow identification of NPC from Morocco and then also compared with NPC samples from different geographical locations and different ethnicity with different NPC incidences, Epstein-Barr virus (EBV) prevalence, and environments. Results By multiplex methylation-specific PCR (MMSP), multiple relevant genes can be detected simultaneously, to achieve high sensitivity and specificity. The strong association of EBV with NPC is also very useful in such an approach. We have initially screened for 12 potential marker genes including EBV genes coding for EBV nuclear antigen 1 (EBNA1) and latent membrane protein-1 (LMP1) and ten potential TSGs obtained from previously published data. The resulting assay included EBNA1, LMP1, and three cellular TSGs: ITGA9, RASSF1A, and P16. We evaluated this assay on 64 NPC patient biopsies from Morocco, Italy, and China compared to deoxyribonucleic acid (DNA) from 20 nasopharyngeal control tissues. In the Moroccan NPC cohort (n = 44), prevalence of the EBNA1 gene showed the highest sensitivity (36/44; 82 %) with 94 % specificity. Out of eight (18 %) EBNA1 negative Moroccan samples, only three were positive for at least one methylated cellular gene. By detection of cellular marker genes, the sensitivity increased from 82 to 89 % (39/44). In the whole material of 64 biopsies from three geographical locations, at least any one marker (viral or cellular) could be detected in 91 % of biopsies with 90 % specificity. In a pilot evaluating assay performance on serum DNA from NPC and controls including samples from Italy (n = 11) and China (n = 5), at least any one marker from the MMSP assay could be detected in 88 %, but the specificity was only 50 %. Conclusions An MMSP assay has the potential for detection of NPC by screening in high-risk populations. Serum-derived DNA seems not as good as earlier published NPC swab DNA for screening purpose.
Collapse
Affiliation(s)
- Imran Nawaz
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, Stockholm, SE-17177 Sweden.,Department of Microbiology, Faculty of Life Sciences, University of Balochistan, Quetta, Pakistan
| | - Khalid Moumad
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Oncovirology Laboratory, Institut Pasteur du Maroc, 20360 Casablanca, Morocco
| | - Debora Martorelli
- Cancer Bio-Immunotherapy Unit Centro di Riferimento Oncologico IRCCS - National Cancer Institute, Via Franco Gallini, 233081 Aviano, PN Italy
| | - Moulay Mustapha Ennaji
- University Hassan II, Faculty of Sciences and Techniques, Mohammedia - Casablanca, Laboratory of Virology, Microbiology and Quality/ETB, Mohammedia, , BP 146, 20650 Morocco
| | - Xiaoying Zhou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, Stockholm, SE-17177 Sweden.,Department of Orolaryngology - Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Guangxi, People's Republic of China
| | - Zhe Zhang
- Department of Orolaryngology - Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Guangxi, People's Republic of China
| | - Riccardo Dolcetti
- Cancer Bio-Immunotherapy Unit Centro di Riferimento Oncologico IRCCS - National Cancer Institute, Via Franco Gallini, 233081 Aviano, PN Italy
| | - Meriem Khyatti
- Oncovirology Laboratory, Institut Pasteur du Maroc, 20360 Casablanca, Morocco
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, Stockholm, SE-17177 Sweden
| | - Li-Fu Hu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, Stockholm, SE-17177 Sweden
| |
Collapse
|
39
|
Liu MT, Chen MK, Huang CC, Huang CY. Prognostic Value of Molecular Markers and Implication for Molecular Targeted Therapies in Nasopharyngeal Carcinoma: An Update in an Era of New Targeted Molecules Development. World J Oncol 2015; 6:243-261. [PMID: 29147412 PMCID: PMC5649942 DOI: 10.14740/wjon610w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2012] [Indexed: 12/15/2022] Open
Abstract
The aim of the study was to evaluate the prognostic significance of molecular biomarkers which could provide information for more accurate prognostication and development of novel therapeutic strategies for nasopharyngeal carcinoma (NPC). NPC is a unique malignant epithelial carcinoma of head and neck region, with an intimate association with the Epstein-Barr virus (EBV). Currently, the prediction of NPC prognosis is mainly based on the clinical TNM staging; however, NPC patients with the same clinical stage often present different clinical outcomes, suggesting that the TNM stage is insufficient to precisely predict the prognosis of this disease. In this review, we give an overview of the prognostic value of molecular markers in NPC and discuss potential strategies of targeted therapies for treatment of NPC. Molecular biomarkers, which play roles in abnormal proliferation signaling pathways (such as Wnt/β-catenin pathway), intracellular mitogenic signal aberration (such as hypoxia-inducible factor (HIF)-1α), receptor-mediated aberrations (such as vascular endothelial growth factor (VEGF)), tumor suppressors (such as p16 and p27 activity), cell cycle aberrations (such as cyclin D1 and cyclin E), cell adhesion aberrations (such as E-cadherin), apoptosis dysregualtion (such as survivin) and centromere aberration (centromere protein H), are prognostic markers for NPC. Plasma EBV DNA concentrations and EBV-encoded latent membrane proteins are also prognostic markers for NPC. Implication of molecular targeted therapies in NPC was discussed. Such therapies could have potential in combination with different cytotoxic agents to combat and eradicate tumor cells. In order to further improve overall survival for patients with loco-regionally advanced NPC, the development of innovative strategies, including prognostic molecular markers and molecular targeted agents is needed.
Collapse
Affiliation(s)
- Mu-Tai Liu
- Department of Radiation Oncology, Changhua Christian Hospital, 135 Nan Shiau Street, Changhua, Taiwan 500, ROC.,Department of Oncology, National Taiwan University Hospital, 7 Chung San South Road, Taipei, Taiwan 100, ROC.,Department of Medicine, Chang Shan Medical University, 110 Section 1, Chien- Kuo N. Road, Taichung, Taiwan 402, ROC.,Department of Radiology, Yuanpei University of Science and Technology, 306 Yuanpei Street, Hsinchu, Taiwan 300, ROC
| | - Mu-Kuan Chen
- Department of Radiology, Yuanpei University of Science and Technology, 306 Yuanpei Street, Hsinchu, Taiwan 300, ROC.,Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, 135 Nan Shiau Street, Changhua, Taiwan 500, ROC
| | - Chia-Chun Huang
- Department of Radiation Oncology, Changhua Christian Hospital, 135 Nan Shiau Street, Changhua, Taiwan 500, ROC
| | - Chao-Yuan Huang
- Department of Oncology, National Taiwan University Hospital, 7 Chung San South Road, Taipei, Taiwan 100, ROC
| |
Collapse
|
40
|
Li L, Zhang Y, Fan Y, Sun K, Su X, Du Z, Tsao SW, Loh TKS, Sun H, Chan ATC, Zeng YX, Chan WY, Chan FK, Tao Q. Characterization of the nasopharyngeal carcinoma methylome identifies aberrant disruption of key signaling pathways and methylated tumor suppressor genes. Epigenomics 2014; 7:155-73. [PMID: 25479246 DOI: 10.2217/epi.14.79] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIMS Nasopharyngeal carcinoma (NPC) is a common tumor consistently associated with Epstein-Barr virus infection and prevalent in South China, including Hong Kong, and southeast Asia. Current genomic sequencing studies found only rare mutations in NPC, indicating its critical epigenetic etiology, while no epigenome exists for NPC as yet. MATERIALS & METHODS We profiled the methylomes of NPC cell lines and primary tumors, together with normal nasopharyngeal epithelial cells, using methylated DNA immunoprecipitation (MeDIP). RESULTS We observed extensive, genome-wide methylation of cellular genes. Epigenetic disruption of Wnt, MAPK, TGF-β and Hedgehog signaling pathways was detected. Methylation of Wnt signaling regulators (SFRP1, 2, 4 and 5, DACT2, DKK2 and DKK3) was frequently detected in tumor and nasal swab samples from NPC patients. Functional studies showed that these genes are bona fide tumor-suppressor genes for NPC. CONCLUSION The NPC methylome shows a special high-degree CpG methylation epigenotype, similar to the Epstein-Barr virus-infected gastric cancer, indicating a critical epigenetic etiology for NPC pathogenesis.
Collapse
Affiliation(s)
- Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Li L, Zhang Y, Guo BB, Chan FKL, Tao Q. Oncogenic induction of cellular high CpG methylation by Epstein-Barr virus in malignant epithelial cells. CHINESE JOURNAL OF CANCER 2014; 33:604-8. [PMID: 25322866 PMCID: PMC4308656 DOI: 10.5732/cjc.014.10191] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epstein-Barr virus (EBV) is a well-known human herpesvirus associated with virtually all nasopharyngeal carcinoma (NPC) and ∼10% of gastric cancer (GC) worldwide. Increasing evidence shows that acquired genetic and epigenetic alterations lead to the initiation and progression of NPC and GC. However, even deep whole exome sequencing studies showed a relatively low frequency of gene mutations in NPC and EBV-associated GC (EBVaGC), suggesting a predominant role of epigenetic abnormities, especially promoter CpG methylation, in the pathogenesis of NPC and EBVaGC. High frequencies of promoter methylation of tumor suppressor genes (TSGs) have been frequently reported in NPC and EBVaGC, with several EBV-induced methylated TSGs identified. Further characterization of the epigenomes (genome-wide CpG methylation profile—methylome) of NPC and EBVaGC shows that these EBV-associated tumors display a unique high CpG methylation epigenotype with more extensive gene methylation accumulation, indicating that EBV acts as a direct epigenetic driver for these cancers. Mechanistically, oncogenic modulation of cellular CpG methylation machinery, such as DNA methyltransferases (DNMTs), by EBV-encoded viral proteins accounts for the EBV-induced high CpG methylation epigenotype in NPC and EBVaGC. Thus, uncovering the EBV-associated unique epigenotype of NPC and EBVaGC would provide new insight into the molecular pathogenesis of these unique EBV-associated tumors and further help to develop pharmacologic strategies targeting cellular methylation machinery in these malignancies.
Collapse
Affiliation(s)
- Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, Hong Kong SAR, China.
| | | | | | | | | |
Collapse
|
42
|
Tsang CM, Deng W, Yip YL, Zeng MS, Lo KW, Tsao SW. Epstein-Barr virus infection and persistence in nasopharyngeal epithelial cells. CHINESE JOURNAL OF CANCER 2014; 33:549-55. [PMID: 25223910 PMCID: PMC4244318 DOI: 10.5732/cjc.014.10169] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epstein-Barr virus (EBV) infection is closely associated with undifferentiated nasopharyngeal carcinoma (NPC), strongly implicating a role for EBV in NPC pathogenesis; conversely, EBV infection is rarely detected in normal nasopharyngeal epithelial tissues. In general, EBV does not show a strong tropism for infecting human epithelial cells, and EBV infection in oropharyngeal epithelial cells is believed to be lytic in nature. To establish life-long infection in humans, EBV has evolved efficient strategies to infect B cells and hijack their cellular machinery for latent infection. Lytic EBV infection in oropharyngeal epithelial cells, though an infrequent event, is believed to be a major source of infectious EBV particles for salivary transmission. The biological events associated with nasopharyngeal epithelial cells are only beginning to be understood with the advancement of EBV infection methods and the availability of nasopharyngeal epithelial cell models for EBV infection studies. EBV infection in human epithelial cells is a highly inefficient process compared to that in B cells, which express the complement receptor type 2 (CR2) to mediate EBV infection. Although receptor(s) on the epithelial cell surface for EBV infection remain(s) to be identified, EBV infection in epithelial cells could be achieved via the interaction of glycoproteins on the viral envelope with surface integrins on epithelial cells, which might trigger membrane fusion to internalize EBV in cells. Normal nasopharyngeal epithelial cells are not permissive for latent EBV infection, and EBV infection in normal nasopharyngeal epithelial cells usually results in growth arrest. However, genetic alterations in premalignant nasopharyngeal epithelial cells, including p16 deletion and cyclin D1 overexpression, could override the growth inhibitory effect of EBV infection to support stable and latent EBV infection in nasopharyngeal epithelial cells. The EBV episome in NPC is clonal in nature, suggesting that NPC develops from a single EBV-infected nasopharyngeal epithelial cell, and the establishment of persistent and latent EBV infection in premalignant nasopharyngeal epithelium may represent an early and critical event for NPC development.
Collapse
Affiliation(s)
- Chi Man Tsang
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | | | | | | | | | | |
Collapse
|
43
|
Hutajulu SH, Kurnianda J, Tan IB, Middeldorp JM. Therapeutic implications of Epstein-Barr virus infection for the treatment of nasopharyngeal carcinoma. Ther Clin Risk Manag 2014; 10:721-36. [PMID: 25228810 PMCID: PMC4161530 DOI: 10.2147/tcrm.s47434] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is highly endemic in certain regions including the People’s Republic of China and Southeast Asia. Its etiology is unique and multifactorial, involving genetic background, epigenetic, and environment factors, including Epstein–Barr virus (EBV) infection. The presence of EBV in all tumor cells, aberrant pattern of antibodies against EBV antigens in patient sera, and elevated viral DNA in patient circulation as well as nasopharyngeal site underline the role of EBV during NPC development. In NPC tumors, EBV expresses latency type II, where three EBV-encoded proteins, Epstein–Barr nuclear antigen 1, latent membrane protein 1 and 2 (LMP1, 2), are expressed along with BamH1-A rightward reading frame 1, Epstein–Barr virus-encoded small nuclear RNAs, and BamH1-A rightward transcripts. Among all encoded proteins, LMP1 plays a central role in the propagation of NPC. Standard treatment of NPC consists of radiotherapy with or without chemotherapy for early stage, concurrent chemoradiotherapy in locally advanced tumors, and palliative systemic chemotherapy in metastatic disease. However, this standard care has limitations, allowing recurrences and disease progression in a certain proportion of cases. Although the pathophysiological link and molecular process of EBV-induced oncogenesis are not fully understood, therapeutic approaches targeting the virus may increase the cure rate and add clinical benefit. The promising results of early phase clinical trials on EBV-specific immunotherapy, epigenetic therapy, and treatment with viral lytic induction offer new options for treating NPC.
Collapse
Affiliation(s)
- Susanna Hilda Hutajulu
- Department of Internal Medicine, Faculty of Medicine Universitas Gadjah Mada/Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - Johan Kurnianda
- Department of Internal Medicine, Faculty of Medicine Universitas Gadjah Mada/Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - I Bing Tan
- Department of Ear, Nose and Throat, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands ; Department of Ear, Nose and Throat, Faculty of Medicine Universitas Gadjah Mada/Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - Jaap M Middeldorp
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Peng XH, Huang HR, Lu J, Liu X, Zhao FP, Zhang B, Lin SX, Wang L, Chen HH, Xu X, Wang F, Li XP. MiR-124 suppresses tumor growth and metastasis by targeting Foxq1 in nasopharyngeal carcinoma. Mol Cancer 2014; 13:186. [PMID: 25098939 PMCID: PMC4267157 DOI: 10.1186/1476-4598-13-186] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 08/01/2014] [Indexed: 01/10/2023] Open
Abstract
Background The molecular mechanisms underlying dysregulation of microRNAs have been documented in nasopharyngeal carcinoma (NPC). Our previous study demonstrated that plasma miR-124 was down-regulated in NPC using microarray analysis and quantitative PCR validation. Though growing studies showed that down-regulated miR-124 was closely related to tumourigenesis in various types of cancers, the role of miR-124 in NPC remains largely unknown. Methods The expression level of miR-124 was evaluated in NPC cell lines and patient specimens using quantitative reverse transcription-PCR (Real-time qPCR). The clinicopathological significance of the resultant data was later analyzed. Then, we explored the role of miR-124 in NPC tumorigenesis by in vitro and in vivo experiments. Homo sapiens forkhead box Q1 (Foxq1) was confirmed as a novel direct target gene of miR-124 by the dual-luciferase assay and western bolt. Results We found that miR-124 was commonly down-regulated in NPC specimens and NPC cell lines. The expression of miR-124 was inversely correlation with clinical stages and marked on T stages. Then, the ectopic expression of miR-124 dramatically inhibited cell proliferation, colony formation, migration and invasion in vitro, as well as tumor growth and metastasis in vivo. Furthermore, we identified Foxq1 as a novel direct target of miR-124. Functional studies showed that knockdown of Foxq1 inhibited cell growth, migration and invasion, whereas Foxq1 overexpression partially rescued the suppressive effect of miR-124 in NPC. In clinical specimens, Foxq1 was commonly up-regulated in NPC, and the level increased with clinical stages and T stages. Additionally, the level of Foxq1 was inversely correlated with miR-124. Conclusions Our results demonstrate that miR-124 functions as a tumor-suppressive microRNA in NPC, and that its suppressive effects are mediated chiefly by repressing Foxq1 expression. MiR-124 could serve as an independent biomarker to identify patients with different clinical characteristics. Therefore, our findings provide valuable clues toward the understanding the of mechanisms of NPC pathogenesis and provide an opportunity to develop new effective clinical therapies in the future. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-186) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiang Ping Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
45
|
Nawaz I, Qiu X, Wu H, Li Y, Fan Y, Hu LF, Zhou Q, Ernberg I. Development of a multiplex methylation specific PCR suitable for (early) detection of non-small cell lung cancer. Epigenetics 2014; 9:1138-48. [PMID: 24937636 DOI: 10.4161/epi.29499] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lung cancer is a worldwide health problem and a leading cause of cancer-related deaths. Silencing of potential tumor suppressor genes (TSGs) by aberrant promoter methylation is an early event in the initiation and development of cancer. Thus, methylated cancer type-specific TSGs in DNA can serve as useful biomarkers for early cancer detection. We have now developed a "Multiplex Methylation Specific PCR" (MMSP) assay for analysis of the methylation status of multiple potential TSGs by a single PCR reaction. This method will be useful for early diagnosis and treatment outcome studies of non-small cell lung cancer (NSCLC). Genome-wide CpG methylation and expression microarrays were performed on lung cancer tissues and matched distant non-cancerous tissues from three NSCLC patients from China. Thirty-eight potential TSGs were selected and analyzed by methylation PCR on bisulfite treated DNA. On the basis of sensitivity and specificity, six marker genes, HOXA9, TBX5, PITX2, CALCA, RASSF1A, and DLEC1, were selected to establish the MMSP assay. This assay was then used to analyze lung cancer tissues and matched distant non-cancerous tissues from 70 patients with NSCLC, as well as 24 patients with benign pulmonary lesion as controls. The sensitivity of the assay was 99% (69/70). HOXA9 and TBX5 were the 2 most sensitive marker genes: 87% (61/70) and 84% (59/70), respectively. RASSF1A and DLEC1 showed the highest specificity at 99% (69/70). Using the criterion of identifying at least any two methylated marker genes, 61/70 cancer samples were positive, corresponding to a sensitivity of 87% and a specificity of 94%. Early stage I or II NSCLC could even be detected with a 100% specificity and 86% sensitivity. In conclusion, MMSP has the potential to be developed into a population-based screening tool and can be useful for early diagnosis of NSCLC. It might also be suitable for monitoring treatment outcome and recurrence.
Collapse
Affiliation(s)
- Imran Nawaz
- Department of Microbiology; Tumor and Cell Biology; Karolinska Institute; Stockholm, Sweden; Department of Microbiology; Faculty of Life Sciences; University of Balochistan; Quetta, Pakistan
| | - Xiaoming Qiu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment; Tianjin Lung Cancer Institute; Tianjin Medical University General Hospital; Tianjin, PR China
| | - Heng Wu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment; Tianjin Lung Cancer Institute; Tianjin Medical University General Hospital; Tianjin, PR China
| | - Yang Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment; Tianjin Lung Cancer Institute; Tianjin Medical University General Hospital; Tianjin, PR China
| | - Yaguang Fan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment; Tianjin Lung Cancer Institute; Tianjin Medical University General Hospital; Tianjin, PR China
| | - Li-Fu Hu
- Department of Microbiology; Tumor and Cell Biology; Karolinska Institute; Stockholm, Sweden
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment; Tianjin Lung Cancer Institute; Tianjin Medical University General Hospital; Tianjin, PR China
| | - Ingemar Ernberg
- Department of Microbiology; Tumor and Cell Biology; Karolinska Institute; Stockholm, Sweden
| |
Collapse
|
46
|
Feng X, Ren C, Zhou W, Liu W, Zeng L, Li G, Wang L, Li M, Zhu B, Yao K, Jiang X. Promoter hypermethylation along with LOH, but not mutation, contributes to inactivation of DLC-1
in nasopharyngeal carcinoma. Mol Carcinog 2013; 53:858-70. [DOI: 10.1002/mc.22044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 04/08/2013] [Accepted: 04/14/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Xiangling Feng
- Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Key Laboratory for Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Cancer Research Institute, Xiangya School of Medicine; Central South University; Changsha, Hunan, P.R. China
| | - Caiping Ren
- Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Key Laboratory for Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Cancer Research Institute, Xiangya School of Medicine; Central South University; Changsha, Hunan, P.R. China
| | - Wen Zhou
- Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Key Laboratory for Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Cancer Research Institute, Xiangya School of Medicine; Central South University; Changsha, Hunan, P.R. China
| | - Weidong Liu
- Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Key Laboratory for Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Cancer Research Institute, Xiangya School of Medicine; Central South University; Changsha, Hunan, P.R. China
| | - Liang Zeng
- Department of Pathology; Hunan Tumor Hospital; Changsha, Hunan, P.R. China
| | - Guifei Li
- Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Key Laboratory for Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Cancer Research Institute, Xiangya School of Medicine; Central South University; Changsha, Hunan, P.R. China
| | - Lei Wang
- Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Key Laboratory for Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Cancer Research Institute, Xiangya School of Medicine; Central South University; Changsha, Hunan, P.R. China
| | - Min Li
- Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Key Laboratory for Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Cancer Research Institute, Xiangya School of Medicine; Central South University; Changsha, Hunan, P.R. China
| | - Bin Zhu
- Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Key Laboratory for Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Cancer Research Institute, Xiangya School of Medicine; Central South University; Changsha, Hunan, P.R. China
| | - Kaitai Yao
- Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Key Laboratory for Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Cancer Research Institute, Xiangya School of Medicine; Central South University; Changsha, Hunan, P.R. China
- Cancer Research Institute; Southern Medical University; Guangzhou, Guangdong, P.R. China
| | - Xingjun Jiang
- Department of Neurosurgery; Xiangya Hospital, Central South University; Changsha, Hunan, P.R. China
| |
Collapse
|
47
|
Lowered risk of nasopharyngeal carcinoma and intake of plant vitamin, fresh fish, green tea and coffee: a case-control study in Taiwan. PLoS One 2012; 7:e41779. [PMID: 22848600 PMCID: PMC3407060 DOI: 10.1371/journal.pone.0041779] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/25/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A case-control study was conducted to evaluate the role of adult diet on nasopharyngeal carcinoma (NPC) in Taiwan. METHODS A total of 375 incident NPC cases and 327 controls matched to the cases on sex, age, and residence were recruited between July 1991 and December 1994. A structured questionnaire inquiring complete dietary history, socio-demographic characteristics, and other potential confounding factors was used in the personal interview. Unconditional logistic regression analysis was used to estimate multivariate-adjusted odds ratio (OR(adj)) with 95% confidence interval (CI) after accounting for known risk factors. RESULTS Fresh fish (OR(adj), 0.56; 95% CI, 0.38-0.83 for the highest vs. lowest tertile of intake), green tea (OR(adj), 0.61; 95% CI, 0.40-0.91 for drinking ≥1 times/week vs. never) and coffee (OR(adj), 0.56; 95% CI, 0.37-0.85 for drinking ≥0.5 times/week vs. never) were inversely associated with the NPC risk. No association with NPC risk was observed for the intake of meats, salted fish, fresh vegetables, fruits and milk. Intake of vitamin A from plant sources was associated with a decreased NPC risk (OR(adj), 0.62; 95% CI, 0.41-0.94 for the highest vs. lowest tertile). CONCLUSION The study findings suggest that certain adult dietary patterns might protect against the development of NPC.
Collapse
|
48
|
Yan C, Liu C, Jin Q, Li Z, Tao B, Cai Z. The promoter methylation of the Syk gene in nasopharyngeal carcinoma cell lines. Oncol Lett 2012; 4:505-508. [PMID: 22970047 DOI: 10.3892/ol.2012.763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 06/14/2012] [Indexed: 01/24/2023] Open
Abstract
The aim of this study was to investigate the mRNA and protein expression levels of the Syk gene as well as its promoter methylation in nasopharyngeal carcinoma (NPC) cell lines. The CNE-1 (highly differentiated), CNE-2 (poorly differentiated) and NP69 (non-cancerous human immortalized nasopharyngeal epithelial cells) cell lines were used in the present study. The MS-PCR, Q-RT-PCR and western blotting methods were used to examine the Syk gene promoter methylation levels and mRNA and protein expression in the three cell lines. The promoter methylation levels in CNE-1, CNE-2 and NP69 cells were 36%, 62% and 0, respectively. The mRNA levels in CNE-1 and CNE-2 cells were 42±3.5 and 28±2% of that in NP69, respectively; the protein levels in CNE-1 and CNE-2 cells were 36±4.5 and 16±2.5 of that in NP69, respectively; the statistical differences between groups were significant. The lower differentiation levels of the NPC cell lines correlate with lower levels of mRNA and protein expression of the Syk gene, as well as higher promoter methylation levels.
Collapse
Affiliation(s)
- Chong Yan
- Departments of Otolaryngology - Head and Neck Surgery, Taizhou Municipal Hospital, Taizhou, Zhejiang 318000, P.R. China
| | | | | | | | | | | |
Collapse
|
49
|
Tang S, Huang W, Zhong M, Yin L, Jiang H, Hou S, Gan P, Yuan Y. Identification Keratin 1 as a cDDP-resistant protein in nasopharyngeal carcinoma cell lines. J Proteomics 2012; 75:2352-60. [DOI: 10.1016/j.jprot.2012.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 01/18/2012] [Accepted: 02/03/2012] [Indexed: 12/28/2022]
|