1
|
Bonnin N, Piel AK, Brown RP, Li Y, Connell JA, Avitto AN, Boubli JP, Chitayat A, Giles J, Gundlapally MS, Lipende I, Lonsdorf EV, Mjungu D, Mwacha D, Pintea L, Pusey AE, Raphael J, Wich SA, Wilson ML, Wroblewski EE, Hahn BH, Stewart FA. Barriers to chimpanzee gene flow at the south-east edge of their distribution. Mol Ecol 2023; 32:3842-3858. [PMID: 37277946 PMCID: PMC10421595 DOI: 10.1111/mec.16986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023]
Abstract
Populations on the edge of a species' distribution may represent an important source of adaptive diversity, yet these populations tend to be more fragmented and are more likely to be geographically isolated. Lack of genetic exchanges between such populations, due to barriers to animal movement, can not only compromise adaptive potential but also lead to the fixation of deleterious alleles. The south-eastern edge of chimpanzee distribution is particularly fragmented, and conflicting hypotheses have been proposed about population connectivity and viability. To address this uncertainty, we generated both mitochondrial and MiSeq-based microsatellite genotypes for 290 individuals ranging across western Tanzania. While shared mitochondrial haplotypes confirmed historical gene flow, our microsatellite analyses revealed two distinct clusters, suggesting two populations currently isolated from one another. However, we found evidence of high levels of gene flow maintained within each of these clusters, one of which covers an 18,000 km2 ecosystem. Landscape genetic analyses confirmed the presence of barriers to gene flow with rivers and bare habitats highly restricting chimpanzee movement. Our study demonstrates how advances in sequencing technologies, combined with the development of landscape genetics approaches, can resolve ambiguities in the genetic history of critical populations and better inform conservation efforts of endangered species.
Collapse
Affiliation(s)
- Noémie Bonnin
- School of Biological and Environmental Sciences, Liverpool John Moores University, UK
| | - Alex K. Piel
- Department of Anthropology, University College London, London, UK
| | - Richard P. Brown
- School of Biological and Environmental Sciences, Liverpool John Moores University, UK
| | - Yingying Li
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jesse A. Connell
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alexa N. Avitto
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jean P. Boubli
- School of Science, Engineering & Environment, University of Salford, Salford, UK
| | - Adrienne Chitayat
- Institute of Biodiversity and Ecological Dynamics, University of Amsterdam, The Netherlands
| | - Jasmin Giles
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Madhurima S. Gundlapally
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Iddi Lipende
- Tanzania Wildlife Research Institute (TAWIRI), Arusha, Tanzania
| | - Elizabeth V. Lonsdorf
- Department of Psychology, Franklin and Marshall College, Lancaster, PA 17604, USA
- Department of Anthropology, Emory University, Atlanta, GA 30322, USA
| | - Deus Mjungu
- Gombe Stream Research Centre, The Jane Goodall Institute–Tanzania, P.O. Box 1182, Kigoma, Tanzania
| | - Dismas Mwacha
- Gombe Stream Research Centre, The Jane Goodall Institute–Tanzania, P.O. Box 1182, Kigoma, Tanzania
| | - Lilian Pintea
- Conservation Science Department, the Jane Goodall Institute, Washington, DC, 20036, USA
| | - Anne E. Pusey
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | | | - Serge A. Wich
- School of Biological and Environmental Sciences, Liverpool John Moores University, UK
- Institute of Biodiversity and Ecological Dynamics, University of Amsterdam, The Netherlands
| | - Michael L. Wilson
- Department of Anthropology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
- Institute on the Environment, University of Minnesota, St. Paul, MN 55108, USA
| | | | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fiona A. Stewart
- School of Biological and Environmental Sciences, Liverpool John Moores University, UK
- Department of Anthropology, University College London, London, UK
| |
Collapse
|
2
|
Paladini G, Shinn AP, Taylor NGH, Bron JE, Hansen H. Geographical distribution of Gyrodactylus salaris Malmberg, 1957 (Monogenea, Gyrodactylidae). Parasit Vectors 2021; 14:34. [PMID: 33422145 PMCID: PMC7796612 DOI: 10.1186/s13071-020-04504-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/28/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Gyrodactylus salaris Malmberg, 1957 is an OIE (Office International des Epizooties)-listed parasitic pathogen and had until the current study been reported from 19 countries across Europe, although many of these records require confirmation. The last comprehensive evaluation regarding the distribution of G. salaris, however, was made in 2007, although some of the states identified as being G. salaris-positive were ascribed this status based on misidentifications, on partial data resulting from either morphological or molecular tests, or from records that have not been revisited since their early reporting. It is thus important to go through the reports on G. salaris to obtain a status for each country. METHODS To provide a revised update of the G. salaris distribution, a literature review was necessary. This literature, however, was not always readily accessible and, in certain cases, the article only made superficial reference to the parasite without providing details or data to support the identification. In most cases, the original specimens were not deposited in a national collection. Additional Gyrodactylus material for the current study was obtained from selected salmonid populations with the aim to contribute to current understanding regarding the distribution of G. salaris. Additional parasite material collected for this study was processed following standard procedures for species identification in Gyrodactylus [1]. RESULTS From the work conducted in the current study, G. salaris is reported from a further three regions in Italy, alongside three other species, and appears to occur extensively throughout central Italy without causing significant mortalities to its rainbow trout, Oncorhynchus mykiss (Walbaum), host. The analysis of archive material from G. salaris-positive farms would suggest that G. salaris has been in this country since at least 2000. Material obtained from rainbow trout from Finland and Germany are confirmed as G. salaris, supporting existing data for these countries. No specimens of G. salaris, however, were found in the additional Gyrodactylus material obtained from rainbow trout reared in Portugal and Spain. A morphologically similar species, Gyrodactylus teuchis Lautraite, Blanc, Thiery, Daniel et Vigneulle, 1999, however, was found. CONCLUSIONS Following the present review, Gyrodactylus salaris is reported from 23 out of 50 recognised states throughout Europe; only records from 14 of these states have been confirmed by either morphology and/or by an appropriate molecular test and are considered valid, while only nine of these records have been confirmed by a combination of both methods.
Collapse
Affiliation(s)
- Giuseppe Paladini
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA Scotland, UK
| | - Andrew P. Shinn
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA Scotland, UK
- Benchmark R&D (Thailand), No. 57/1 Moo 6, Samed Sub-District, Muang Chonburi District, Chonburi, Chonburi Province 20000 Thailand
| | | | - James E. Bron
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA Scotland, UK
| | - Haakon Hansen
- Norwegian Veterinary Institute, PO Box 750 Sentrum, Oslo, N-0106 Norway
| |
Collapse
|
3
|
A large wild salmon stock shows genetic and life history differentiation within, but not between, rivers. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01317-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractAnadromous salmonid fishes frequently exhibit strong geographic population structuring. However, population genetic differentiation of Atlantic salmon (Salmo salar) at fine geographic scales differs across equivalent spatial extents in different regions. So far, fine-scale genetic differentiation has not been assessed in rivers of the Baltic Sea, a region that contains an evolutionarily distinct Atlantic salmon lineage. Thus, Baltic salmon are currently managed on the river level, without focus on potential genetic structure and diversity within rivers. Here, we used microsatellites to characterize the genetic structure of wild juvenile salmon sampled throughout the interconnected, northern Baltic Tornio and Kalix Rivers. We found genetic differentiation within the two rivers, but not between them: salmon in the upper reaches differed from individuals in the lower reaches, regardless of river system. Further, examining smolts migrating from the river to the sea and adults returning from the sea to spawn, we found an association between the genetic structure and seasonal migration timing. Out-migrating smolts genetically assigned to upper river reaches were older and tended to reach the sea later in the season than smolts from the lower reaches. In contrast, mature adults originating from the upper reaches returned to the river early in the season. Our observation of genetic population structuring between downstream and upstream reaches of the large Tornio and Kalix rivers, and its association with migration timing, implies that careful temporal management of the northern Baltic fisheries would help to preserve the diversity and sustainability of the wild salmon stocks of these rivers.
Collapse
|
4
|
Mieszkowska A, Górniak M, Jurczak-Kurek A, Ziętara MS. Revision of Gyrodactylus salaris phylogeny inspired by new evidence for Eemian crossing between lineages living on grayling in Baltic and White sea basins. PeerJ 2018; 6:e5167. [PMID: 30083435 PMCID: PMC6077759 DOI: 10.7717/peerj.5167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/13/2018] [Indexed: 12/03/2022] Open
Abstract
In this research, grayling-specific Gyrodactylus salarisMalmberg, 1957 isolates from Baltic Sea basin were collected in Sweden for the first time. Samples were obtained in three drainage systems: Kalixälven (River Kaitum), Ljungan (River Sölvbacka strömmar), and Umeälven (River Juktån). Three molecular markers were analysed: nuclear ITS rDNA (Internal Transcribed Spacer) and ADNAM1 (Anonymous DNA Marker 1), and mitochondrial cox1 gene. As a result, four new mitochondrial haplotypes were identified (III-C1tt, III-C1ttht, IX-A1tt and X-A1tt). The ADNAM1 analyses resulted in revealing two new alleles (WS4 and BS9) and two new genotypes (T6 and T7). T7 seems to be an indicator of ancient crossing between Baltic and White Sea lineages of the parasite which happened during a first 3000-year period of Eemian interglacial about 130,000 years ago in the connection between Baltic and White Sea. Molecular clock estimates were adjusted, revealing the mean substitution rate and the divergence rate among branches of 3.6% (95% HPD: 2.2%–5.2%) and 7.2% per million years, respectively. As a result, cox1 phylogeny rooted with the introgressed haplotypes has been revised and altered in accordance to new data, revealing fourteen equidistant lineages five of which have been excluded from the study. Based on the new phylogenetic approach, including the molecular clock, this work suggests an overall revision of G. salaris phylogeny and attempts at precisely drawing the division of lineages within this polytypic species as well as proposes unification in nomenclature for its strains.
Collapse
Affiliation(s)
- Agata Mieszkowska
- Department of Molecular Evolution, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Marcin Górniak
- Department of Molecular Evolution, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Agata Jurczak-Kurek
- Department of Molecular Evolution, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Marek S Ziętara
- Department of Molecular Evolution, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
5
|
Genomic signatures of parasite-driven natural selection in north European Atlantic salmon (Salmo salar). Mar Genomics 2018; 39:26-38. [DOI: 10.1016/j.margen.2018.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/16/2017] [Accepted: 01/08/2018] [Indexed: 02/06/2023]
|
6
|
Lumme J, Zietara MS. Horizontal transmission of the ectoparasite Gyrodactylus arcuatus (Monogenea: Gyrodactylidae) to the next generation of the three-spined stickleback Gasterosteus aculeatus. Folia Parasitol (Praha) 2018; 65. [DOI: 10.14411/fp.2018.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/17/2018] [Indexed: 11/19/2022]
|
7
|
Lumme J, Anttila P, Rintamäki P, Koski P, Romakkaniemi A. Genetic gradient of a host-parasite pair along a river persisted ten years against physical mobility: Baltic Salmo salar vs. Gyrodactylus salaris. INFECTION GENETICS AND EVOLUTION 2016; 45:33-39. [PMID: 27507427 DOI: 10.1016/j.meegid.2016.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/17/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
Abstract
The Atlantic salmon, Salmo salar L., in the Tornio River in the Northern Baltic Sea basin accommodates a monogenean ectoparasite, Gyrodactylus salaris. The aim of the study was to understand the population structure of apparently co-adapted host-parasite system: no parasite-associated mortality has been reported. The parasite burden among salmon juveniles (parr) was monitored along 460km of the river in 2000-2009. Among the parr, 33.0% were infected (nfish=1913). The genetic structure of the parasite population was studied by sequencing an anonymous nuclear DNA marker (ADNAM1, three main genotypes) and mitochondrial CO1 (three clades, six haplotypes). During the ten years, the parasite population was strongly and stably genetically differentiated among up- and downstream nurseries (nADNAM1=411, FST=0.579; nCO1=443, FST=0.534). Infection prevalence among the smolts migrating to sea was higher than in the sedentary parr populations (82.2%, nfish=129). The spatial differentiation observed among the sedentary juveniles was reflected temporally in the smolt run: parasite genotypes dominating the upper part of the river arrived later than downstream dwellers (medians June 4 and June 2) to the trap 7km from the river mouth. The nuclear and mitochondrial markers were in stable disequilibrium which was not relaxed in the contact zone or among the smolts where the parasite clones often met on individual fish. Only five parasite specimens on smolts (nworms=217) were putative recent sexual recombinants. The contribution of extant salmon hatcheries into the infection was negligible. The host salmon population in Tornio River is known to show significant spatial differentiation (FST=0.022). The stable spatial genetic structure of the parasite against the high physical mobility suggested a possibility of local co-adaptation of the host-parasite subpopulations.
Collapse
Affiliation(s)
- Jaakko Lumme
- Department of Biology, University of Oulu, FI-90014 Oulu, Finland
| | - Pasi Anttila
- Department of Biology, University of Oulu, FI-90014 Oulu, Finland; Finnish Food Safety Authority Evira, Production Animal and Wildlife Health Research Unit, FI-90590 Oulu, Finland
| | - Päivi Rintamäki
- Department of Biology, University of Oulu, FI-90014 Oulu, Finland
| | - Perttu Koski
- Finnish Food Safety Authority Evira, Production Animal and Wildlife Health Research Unit, FI-90590 Oulu, Finland.
| | - Atso Romakkaniemi
- Natural Resources Institute Finland (Luke), Oulu Game and Fisheries Research, FI-90014 Oulu, Finland
| |
Collapse
|
8
|
Lumme J, Mäkinen H, Ermolenko AV, Gregg JL, Ziętara MS. Displaced phylogeographic signals from Gyrodactylus arcuatus, a parasite of the three-spined stickleback Gasterosteus aculeatus, suggest freshwater glacial refugia in Europe. Int J Parasitol 2016; 46:545-54. [PMID: 27155331 DOI: 10.1016/j.ijpara.2016.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/25/2016] [Accepted: 03/06/2016] [Indexed: 11/17/2022]
Abstract
We examined the global mitochondrial phylogeography of Gyrodactylus arcuatus, a flatworm ectoparasite of three-spined stickleback Gasterosteus aculeatus. In accordance with the suggested high divergence rate of 13%/million years, the genetic variation of the parasite was high: haplotype diversity h=0.985 and nucleotide diversity π=0.0161. The differentiation among the parasite populations was substantial (Φst=0.759), with two main allopatric clades (here termed Euro and North) accounting for 54% of the total genetic variation. The diversity center of the Euro clade was in the Baltic Sea, while the North clade was spread across the Barents and White Seas. A single haplotype within the North clade was found in the western and eastern Pacific Ocean. Divergence of main clades was estimated to be circa 200 thousand years ago. Each main clade was further divided into six distinct subclades, estimated to have diverged in isolation since 135 thousand years ago. This second division corresponds approximately to the Eemian interglacial predating the last glacial maximum. A demographic expansion of the subclades is associated with colonisation of northern Europe since the last glacial maximum, circa 15-40 thousand years ago. The parasite phylogeny is most likely explained by sequential isolated bottlenecks and expansions in numerous allopatric refugia. The postglacial intermingling and high variation in the marine parasite populations, separately in the Baltic and Barents Seas, suggest low competition of divergent parasite matrilines, coupled with a large population size and high rate of dispersal of hosts. The genetic contribution of the assumed refugial fish populations maintaining the parasite during the last glacial maximum was not detected among the marine sticklebacks, which perhaps were infected after range expansion.
Collapse
Affiliation(s)
| | | | - Alexey V Ermolenko
- Institute of Biology and Soil Science, Russian Academy of Sciences, Vladivostok, Russia
| | - Jacob L Gregg
- U.S. Geological Survey, Marrowstone Marine Field Station, Nordland, WA, USA
| | - Marek S Ziętara
- University of Oulu, Oulu, Finland; Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
9
|
Ieshko E, Barskaya Y, Parshukov A, Lumme J, Khlunov O. Occurrence and morphogenetic characteristics of Gyrodactylus (Monogenea: Gyrodactylidae) from a rainbow trout farm (Lake Ladoga, Russia). Acta Parasitol 2016; 61:151-7. [PMID: 26751886 DOI: 10.1515/ap-2016-0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/12/2015] [Indexed: 11/15/2022]
Abstract
Gyrodactylus parasite infected juveniles on rainbow trout Oncorhynchus mykiss (Walbaum, 1792) from a fish farm in Lake Ladoga were investigated. The observed cases of infection in fish featured a high prevalence, when almost all of the fish were infected. However, if an outbreak of the monogenean infection is observed in spring, the intensity of the infection may be low, and when the infection occurs in the ice-covered period (late autumn - winter), the number of parasites on the fins of a single fish may exceed 3000 specimens. Molecular identification of the parasite demonstrated that the infecting clone was identical with rainbow trout specific strain of Gyrodactylus salaris RBT widely spread in Northern Europe, but a small proportion of the parasites were the hybrid clone Gyrodactylus pomeraniae x G. lavareti. Morphological variations of hooks and other opisthaptor parts in the monogenean Gyrodactylus depending on the intensity of infection in rainbow trout were demonstrated.
Collapse
|
10
|
Genetic population structure of Gyrodactylus thymalli (Monogenea) in a large Norwegian river system. Parasitology 2015; 142:1693-702. [PMID: 26463886 DOI: 10.1017/s003118201500133x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The extent of geographic genetic variation is the result of several processes such as mutation, gene flow, selection and drift. Processes that structure the populations of parasite species are often directly linked to the processes that influence the host. Here, we investigate the genetic population structure of the ectoparasite Gyrodactylus thymalli Žitňan, 1960 (Monogenea) collected from grayling (Thymallus thymallus L.) throughout the river Glomma, the largest watercourse in Norway. Parts of the mitochondrial dehydrogenase subunit 5 (NADH 5) and cytochrome oxidase I (COI) genes from 309 G. thymalli were analysed to study the genetic variation and investigated the geographical distribution of parasite haplotypes. Three main clusters of haplotypes dominated the three distinct geographic parts of the river system; one cluster dominated in the western main stem of the river, one in the eastern and one in the lower part. There was a positive correlation between pairwise genetic distance and hydrographic distance. The results indicate restricted gene flow between sub-populations of G. thymalli, most likely due to barriers that limit upstream migration of infected grayling. More than 80% of the populations had private haplotypes, also indicating long-time isolation of sub-populations. According to a molecular clock calibration, much of the haplotype diversity of G. thymalli in the river Glomma has developed after the last glaciation.
Collapse
|
11
|
Delgado C, García G. Coevolution between Contracaecum (Nematoda, Anisakidae) and Austrolebias (Cyprinodontiformes, Rivulidae) host-parasite complex from SW Atlantic coastal basins. Parasitol Res 2014; 114:913-27. [PMID: 25544701 DOI: 10.1007/s00436-014-4257-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 12/15/2014] [Indexed: 11/26/2022]
Abstract
In recent years, molecular studies in host-parasite interactions in terms of coevolution have become important. Larvae (L3) of two species of Contracaecum were found parasitizing species of Rivulidae in the Atlantic coastal basins from Uruguay. The aim of this study is to determine the patterns of differentiation of this host-parasite complex in order to clarify possible coevolutionary events in such interaction throughout phylogeographic approach using both nuclear and mitochondrial molecular markers (internal transcribed spacers (ITS) and cytochrome oxidase subunit 1 (cox-1)). Based on both markers, intraspecific variation in Contracaecum species was lower than 2 %, while interspecific variation was greater than 10 %. Both species of Contracaecum constitute monophyletic groups. Contracaecum resulted in a paraphyletic genus when incorporating other Contracaecum species and closely related nematode sequences from GenBank. ITS regions showed that Contracaecum sp. 1 is more closely related to other species of the same genus than with their counterparts from Atlantic coastal basins in Uruguay. Haplotype network for both markers corroborate the existence of two distinct taxa. While ITS pairwise FST comparisons and the indirect estimate of gene flow confirm the existence of two distinct Contracaecum species, mitochondrial gene detected low levels of migrants between some of the populations from both species. Our results suggest that coevolution in this host-parasite complex species is plausible. Parasite cladogenetic events occur almost simultaneously with the separation of the hypothetical ancestors of each species complex of Austrolebias during Pliocene. Additionally, the two lineages of Contracaecum colonize differently the species within each of the Austrolebias complexes.
Collapse
Affiliation(s)
- Cecilia Delgado
- Sección Genética Evolutiva, Facultad de Ciencias, UdelaR, Iguá 4225, 11400, Montevideo, Uruguay,
| | | |
Collapse
|
12
|
Fromm B, Burow S, Hahn C, Bachmann L. MicroRNA loci support conspecificity of Gyrodactylus salaris and Gyrodactylus thymalli (Platyhelminthes: Monogenea). Int J Parasitol 2014; 44:787-93. [PMID: 24998346 DOI: 10.1016/j.ijpara.2014.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/20/2014] [Accepted: 05/30/2014] [Indexed: 10/25/2022]
Abstract
The monogenean flatworm Gyrodactylus salaris is a serious threat to wild and farmed Atlantic salmon stocks in Norway. Morphologically, the closely related but harmless Gyrodactylus thymalli on grayling can hardly be distinguished from G. salaris. Until now, molecular approaches could not resolve unambiguously whether G. salaris and G. thymalli represent just one polytypic species, two polytypic species or a complex of more than two species. In the first known genome-wide analysis utilizing 37 conserved microRNA loci, the genetic differentiation of seven populations of G. salaris and G. thymalli was assessed. The concatenated alignment spanned 21,742bp including 62 variable positions. A neighbor-joining cluster analysis did not support any host-based or mitochondrial haplotype-based grouping of strains. We conclude that a two species concept for G. salaris and G. thymalli does not reflect meaningful biological entities. Instead, G. salaris and G. thymalli are just one species comprising several pathogenic and non-pathogenic strains on various primary hosts. Following the International Code for Zoological Nomenclature, G. salaris Malmberg, 1957 is the valid species name with G. thymalli Žitňan, 1960 becoming the junior synonym. Accordingly, the range of G. salaris is significantly increased, given that formerly G. salaris-free countries such as e.g., Great Britain are now within the species' natural range. The synonymization of G. salaris and G. thymalli implies severe challenges to current disease management routines, which assume that G. salaris and G. thymalli are readily distinguishable. Protocols for reliable identification of pathogenic and non-pathogenic strains of G. salaris need to be developed.
Collapse
Affiliation(s)
| | - Susann Burow
- Natural History Museum, University of Oslo, Norway
| | | | | |
Collapse
|
13
|
Zueva KJ, Lumme J, Veselov AE, Kent MP, Lien S, Primmer CR. Footprints of directional selection in wild Atlantic salmon populations: evidence for parasite-driven evolution? PLoS One 2014; 9:e91672. [PMID: 24670947 PMCID: PMC3966780 DOI: 10.1371/journal.pone.0091672] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 02/14/2014] [Indexed: 12/15/2022] Open
Abstract
Mechanisms of host-parasite co-adaptation have long been of interest in evolutionary biology; however, determining the genetic basis of parasite resistance has been challenging. Current advances in genome technologies provide new opportunities for obtaining a genome-scale view of the action of parasite-driven natural selection in wild populations and thus facilitate the search for specific genomic regions underlying inter-population differences in pathogen response. European populations of Atlantic salmon (Salmo salar L.) exhibit natural variance in susceptibility levels to the ectoparasite Gyrodactylus salaris Malmberg 1957, ranging from resistance to extreme susceptibility, and are therefore a good model for studying the evolution of virulence and resistance. However, distinguishing the molecular signatures of genetic drift and environment-associated selection in small populations such as land-locked Atlantic salmon populations presents a challenge, specifically in the search for pathogen-driven selection. We used a novel genome-scan analysis approach that enabled us to i) identify signals of selection in salmon populations affected by varying levels of genetic drift and ii) separate potentially selected loci into the categories of pathogen (G. salaris)-driven selection and selection acting upon other environmental characteristics. A total of 4631 single nucleotide polymorphisms (SNPs) were screened in Atlantic salmon from 12 different northern European populations. We identified three genomic regions potentially affected by parasite-driven selection, as well as three regions presumably affected by salinity-driven directional selection. Functional annotation of candidate SNPs is consistent with the role of the detected genomic regions in immune defence and, implicitly, in osmoregulation. These results provide new insights into the genetic basis of pathogen susceptibility in Atlantic salmon and will enable future searches for the specific genes involved.
Collapse
Affiliation(s)
- Ksenia J. Zueva
- Department of Biology, University of Turku, Turku, Finland
- * E-mail:
| | - Jaakko Lumme
- Department of Biology, University of Oulu, Oulu, Finland
| | - Alexey E. Veselov
- Institute of Biology, Karelian Research Centre of RAS, Petrozavodsk, Russia
| | - Matthew P. Kent
- Centre for Integrative Genetics (CIGENE) and Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE) and Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | | |
Collapse
|
14
|
Ozerov MY, Veselov AJ, Lumme J, Primmer CR. Genetic structure of freshwater Atlantic salmon (Salmo salar L.) populations from the lakes Onega and Ladoga of northwest Russia and implications for conservation. CONSERV GENET 2010. [DOI: 10.1007/s10592-010-0064-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Tonteri A, Vasemägi A, Lumme J, Primmer CR. Beyond MHC: signals of elevated selection pressure on Atlantic salmon (Salmo salar) immune-relevant loci. Mol Ecol 2010; 19:1273-82. [PMID: 20196809 DOI: 10.1111/j.1365-294x.2010.04573.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Using Atlantic salmon (Salmo salar) as a model system, we investigated whether 18 microsatellites tightly linked to immune-relevant genes have experienced different selection pressures than 76 loci with no obvious association with immune function. Immune-relevant loci were identified as outliers by two outlier tests significantly more often than nonimmune linked loci (22% vs. 1.6%). In addition, the allele frequencies of immune relevant markers were more often correlated with latitude and temperature. Combined, these results support the hypothesis that immune-relevant loci more frequently exhibit footprints of selection than other loci. They also indicate that the correlation between immune-relevant loci and latitude may be due to temperature-induced differences in pathogen-driven selection or some other environmental factor correlated with latitude.
Collapse
Affiliation(s)
- A Tonteri
- Division of Genetics and Physiology, Department of Biology, University of Turku, FIN-20014 Turku, Finland
| | | | | | | |
Collapse
|
16
|
Introgression of distant mitochondria into the genome of Gyrodactylus salaris: Nuclear and mitochondrial markers are necessary to identify parasite strains. Acta Parasitol 2010. [DOI: 10.2478/s11686-010-0016-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractNovel combinations of mitochondrial DNA (CO1) and internal transcribed spacers of nuclear ribosomal DNA (ITS) were detected among Gyrodactylus parasites on brown trout (Salmo trutta L.), rainbow trout (Oncorhynchus mykiss (Walbaum)), and Ohrid trout (Salmo letnica (Karaman)) from salmonid farms in Poland and Macedonia. Some clones differed from standard ITS only by ≤ 4 nucleotides, but they belonged to a mtDNA clade that differed from the Northern European lineages of G. salaris by d MCL = 0.266 ± 0.108 (maximum composite likelihood distance). The divergence of d MCL = 0.013 ± 0.005 within the alien mtDNA clade suggested introgression from an unknown maternal ancestor into the G. salaris Malmberg genome 137 to 57 kyr ago (or, less probably, repeated introgression). A comparable modern hybrid was detected based on permanently heterozygous ITS (28 bp/1264 = 2.2%) in a clone that is widespread throughout Finnish rainbow trout farms. This was a F1 hybrid of maternal G. pomeraniae Kuusela, Ziętara et Lumme (on roach, Rutilus rutilus (L.)) and G. lavareti Malmberg (on whitefish, Coregonus lavaretus (L.)). The mtDNA of the parental species differed by d MCL = 0.290 ± 0.130. The observations emphasize that both nuclear and maternally-inherited DNA markers are necessary to characterize sexually-produced lineages or clones of Gyrodactylus. The hybridization events demonstrated predict incongruence of mitochondrial vs. nuclear gene trees, i.e., reticulate evolution in species trees.
Collapse
|