1
|
Deshpande N, Suryawanshi PV, Tripathy S. Unveiling the Quest: Crafting an Enzyme-Linked Immunosorbent Assay (ELISA) Technique to Uncover COVID-19 Antibodies. Cureus 2024; 16:e66659. [PMID: 39262508 PMCID: PMC11390149 DOI: 10.7759/cureus.66659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/11/2024] [Indexed: 09/13/2024] Open
Abstract
The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has had a profound impact on global health. Rapid and accurate diagnostic tools are crucial for effective disease control and management. The enzyme-linked immunosorbent assay (ELISA) has emerged as a reliable and widely used method for detecting COVID-19 antibodies in patients, which develop in response to SARS-CoV-2 infection. While the ELISA technique is effective in identifying the presence of antibodies and thus confirming exposure to the virus, its role in predicting the clinical course and severity of the disease is limited. ELISA primarily confirms prior exposure to the virus or vaccination status, but it does not directly correlate antibody levels with the severity or progression of the disease. The variability in clinical outcomes is influenced by factors such as viral load, patient co-morbidities, genetic predispositions, and the timing of the immune response. ELISA has diverse applications in epidemiology, vaccination assessment, and therapeutic development. It determines antibody prevalence, aids in surveillance, and evaluates vaccine effectiveness and antibody protection duration. ELISA quantitatively measures antibody levels, providing insights into the immune response and treatment efficacy. Challenges include specialized facilities and personnel, cross-reactivity, and false results. Multiplex assays and integration with other diagnostics are future directions. In summary, ELISA is an essential tool in COVID-19 diagnostics, enabling precise assessment of the immune response and contributing to effective strategies. The development of point-of-care devices that integrate ELISA technology could enable rapid and accessible testing in various settings. Additionally, integrating ELISA with other diagnostic platforms could enhance the overall diagnostic capabilities for COVID-19. Despite challenges, ongoing advancements in ELISA technology, and its integration with other diagnostic approaches, hold promise for further improving COVID-19 diagnostics and management strategies.
Collapse
Affiliation(s)
- Nitin Deshpande
- Department of Health Sciences, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
- Department of Health Sciences, Premium Chick Feeds Pvt Ltd, Pune, IND
| | - Poonam V Suryawanshi
- Department of Immunology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Srikanth Tripathy
- Department of Infectious Diseases, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| |
Collapse
|
2
|
Mohkam M, Sadraeian M, Lauto A, Gholami A, Nabavizadeh SH, Esmaeilzadeh H, Alyasin S. Exploring the potential and safety of quantum dots in allergy diagnostics. MICROSYSTEMS & NANOENGINEERING 2023; 9:145. [PMID: 38025887 PMCID: PMC10656439 DOI: 10.1038/s41378-023-00608-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 12/01/2023]
Abstract
Biomedical investigations in nanotherapeutics and nanomedicine have recently intensified in pursuit of new therapies with improved efficacy. Quantum dots (QDs) are promising nanomaterials that possess a wide array of advantageous properties, including electronic properties, optical properties, and engineered biocompatibility under physiological conditions. Due to these characteristics, QDs are mainly used for biomedical labeling and theranostic (therapeutic-diagnostic) agents. QDs can be functionalized with ligands to facilitate their interaction with the immune system, specific IgE, and effector cell receptors. However, undesirable side effects such as hypersensitivity and toxicity may occur, requiring further assessment. This review systematically summarizes the potential uses of QDs in the allergy field. An overview of the definition and development of QDs is provided, along with the applications of QDs in allergy studies, including the detection of allergen-specific IgE (sIgE), food allergens, and sIgE in cellular tests. The potential treatment of allergies with QDs is also described, highlighting the toxicity and biocompatibility of these nanodevices. Finally, we discuss the current findings on the immunotoxicity of QDs. Several favorable points regarding the use of QDs for allergy diagnosis and treatment are noted.
Collapse
Affiliation(s)
- Milad Mohkam
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Sadraeian
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Antonio Lauto
- School of Science, University of Western Sydney, Campbelltown, NSW 2560 Australia
- School of Medicine, University of Western Sydney, Campbelltown, NSW 2560 Australia
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Hesamodin Nabavizadeh
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Allergy and Clinical Immunology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Esmaeilzadeh
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Allergy and Clinical Immunology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheila Alyasin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Allergy and Clinical Immunology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Beeram R, Vepa KR, Soma VR. Recent Trends in SERS-Based Plasmonic Sensors for Disease Diagnostics, Biomolecules Detection, and Machine Learning Techniques. BIOSENSORS 2023; 13:328. [PMID: 36979540 PMCID: PMC10046859 DOI: 10.3390/bios13030328] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Surface-enhanced Raman spectroscopy/scattering (SERS) has evolved into a popular tool for applications in biology and medicine owing to its ease-of-use, non-destructive, and label-free approach. Advances in plasmonics and instrumentation have enabled the realization of SERS's full potential for the trace detection of biomolecules, disease diagnostics, and monitoring. We provide a brief review on the recent developments in the SERS technique for biosensing applications, with a particular focus on machine learning techniques used for the same. Initially, the article discusses the need for plasmonic sensors in biology and the advantage of SERS over existing techniques. In the later sections, the applications are organized as SERS-based biosensing for disease diagnosis focusing on cancer identification and respiratory diseases, including the recent SARS-CoV-2 detection. We then discuss progress in sensing microorganisms, such as bacteria, with a particular focus on plasmonic sensors for detecting biohazardous materials in view of homeland security. At the end of the article, we focus on machine learning techniques for the (a) identification, (b) classification, and (c) quantification in SERS for biology applications. The review covers the work from 2010 onwards, and the language is simplified to suit the needs of the interdisciplinary audience.
Collapse
Affiliation(s)
| | | | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia—Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
4
|
Mousavi SM, Hashemi SA, Yari Kalashgrani M, Omidifar N, Lai CW, Vijayakameswara Rao N, Gholami A, Chiang WH. The Pivotal Role of Quantum Dots-Based Biomarkers Integrated with Ultra-Sensitive Probes for Multiplex Detection of Human Viral Infections. Pharmaceuticals (Basel) 2022; 15:880. [PMID: 35890178 PMCID: PMC9319763 DOI: 10.3390/ph15070880] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/11/2022] Open
Abstract
The spread of viral diseases has caused global concern in recent years. Detecting viral infections has become challenging in medical research due to their high infectivity and mutation. A rapid and accurate detection method in biomedical and healthcare segments is essential for the effective treatment of pathogenic viruses and early detection of these viruses. Biosensors are used worldwide to detect viral infections associated with the molecular detection of biomarkers. Thus, detecting viruses based on quantum dots biomarkers is inexpensive and has great potential. To detect the ultrasensitive biomarkers of viral infections, QDs appear to be a promising option as biological probes, while physiological components have been used directly to detect multiple biomarkers simultaneously. The simultaneous measurement of numerous clinical parameters of the same sample volume is possible through multiplex detection of human viral infections, which reduces the time and cost required to record any data point. The purpose of this paper is to review recent studies on the effectiveness of the quantum dot as a detection tool for human pandemic viruses. In this review study, different types of quantum dots and their valuable properties in the structure of biomarkers were investigated. Finally, a vision for recent advances in quantum dot-based biomarkers was presented, whereby they can be integrated into super-sensitive probes for the multiplex detection of human viral infections.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan; (S.M.M.); (N.V.R.)
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada;
| | | | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Chin Wei Lai
- Nanotechnology and Catalysis Research Centre (NANOCAT), Level 3, Block A, Institute for Advanced Studies (IAS), Universiti Malaya (UM), Kuala Lumpur 50603, Malaysia;
| | - Neralla Vijayakameswara Rao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan; (S.M.M.); (N.V.R.)
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan; (S.M.M.); (N.V.R.)
| |
Collapse
|
5
|
Mousavi SM, Hashemi SA, Rahmanian V, Kalashgrani MY, Gholami A, Omidifar N, Chiang WH. Highly Sensitive Flexible SERS-Based Sensing Platform for Detection of COVID-19. BIOSENSORS 2022; 12:bios12070466. [PMID: 35884269 PMCID: PMC9312648 DOI: 10.3390/bios12070466] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 05/26/2023]
Abstract
COVID-19 continues to spread and has been declared a global emergency. Individuals with current or past infection should be identified as soon as possible to prevent the spread of disease. Surface-enhanced Raman spectroscopy (SERS) is an analytical technique that has the potential to be used to detect viruses at the site of therapy. In this context, SERS is an exciting technique because it provides a fingerprint for any material. It has been used with many COVID-19 virus subtypes, including Deltacron and Omicron, a novel coronavirus. Moreover, flexible SERS substrates, due to their unique advantages of sensitivity and flexibility, have recently attracted growing research interest in real-world applications such as medicine. Reviewing the latest flexible SERS-substrate developments is crucial for the further development of quality detection platforms. This article discusses the ultra-responsive detection methods used by flexible SERS substrate. Multiplex assays that combine ultra-responsive detection methods with their unique biomarkers and/or biomarkers for secondary diseases triggered by the development of infection are critical, according to this study. In addition, we discuss how flexible SERS-substrate-based ultrasensitive detection methods could transform disease diagnosis, control, and surveillance in the future. This study is believed to help researchers design and manufacture flexible SERS substrates with higher performance and lower cost, and ultimately better understand practical applications.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada;
| | - Vahid Rahmanian
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland;
| | | | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz 71468-64685, Iran;
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| |
Collapse
|
6
|
Boix-Besora A, Lorenzo E, Lavado-García J, Gòdia F, Cervera L. Optimization, Production, Purification and Characterization of HIV-1 GAG-Based Virus-like Particles Functionalized with SARS-CoV-2. Vaccines (Basel) 2022; 10:vaccines10020250. [PMID: 35214708 PMCID: PMC8874421 DOI: 10.3390/vaccines10020250] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 01/27/2023] Open
Abstract
Virus-like particles (VLPs) constitute a promising approach to recombinant vaccine development. They are robust, safe, versatile and highly immunogenic supra-molecular structures that closely mimic the native conformation of viruses without carrying their genetic material. HIV-1 Gag VLPs share similar characteristics with wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, making them a suitable platform for the expression of its spike membrane protein to generate a potential vaccine candidate for COVID-19. This work proposes a methodology for the generation of SARS-CoV-2 VLPs by their co-expression with HIV-1 Gag protein. We achieved VLP functionalization with coronavirus spike protein, optimized its expression using a design of experiments (DoE). We also performed the bioprocess at a bioreactor scale followed by a scalable downstream purification process consisting of two clarifications, an ion exchange and size-exclusion chromatography. The whole production process is conceived to enhance its transferability at current good manufacturing practice (cGMP) industrial scale manufacturing. Moreover, the approach proposed could be expanded to produce additional Gag-based VLPs against different diseases or COVID-19 variants.
Collapse
|