Banitalebi E, Abdizadeh T, Khademi Dehkordi M, Saghaei E, Mardaniyan Ghahfarrokhi M.
In silico study of potential immunonutrient-based sports supplements against COVID-19 via targeting ACE2 inhibition using molecular docking and molecular dynamics simulations.
J Biomol Struct Dyn 2023;
41:1041-1061. [PMID:
34931597 DOI:
10.1080/07391102.2021.2016489]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Use of some sports supplements can inhibit angiotensin-converting enzyme II (ACE2), a receptor for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as reviewed through molecular docking and sequent molecular dynamics (MD) simulations against this condition. The crystal structures of ACE2 receptors of SARS-CoV-2 and SARS-CoV, applied in docking analysis, were taken from the Protein Data Bank (PDB). The receptors were then prepared using the Molecular Operating Environment (MOE), as a drug-discovery software platform for docking. Supplements such as quercetin and beta glucan (β-glucan) were the top docked compounds to ACE2 receptor though they strongly interacted with CoV target protein. The study data showed that immune responses to immunonutrient-based sports compounds (viz. quercetin and β-glucan) in Coronavirus disease 2019 (COVID-19) were essential in mounting successful immune responses by athletes. While awaiting the development of an effective vaccine, there is a need to focus on immunonutrient-based sports supplements as preventive and therapeutic options that can be implemented in a safe and quick manner to bolster immune responses in athletes.Communicated by Ramaswamy H. Sarma.
Collapse