1
|
Niranjan V, Setlur AS, K C, Kumkum S, Dasgupta S, Singh V, Desai V, Kumar J. Exploring the Synergistic Mechanism of AP2A2 Transcription Factor Inhibition via Molecular Modeling and Simulations as a Novel Computational Approach for Combating Breast Cancer: In Silico Interpretations. Mol Biotechnol 2024; 66:2497-2521. [PMID: 37747672 DOI: 10.1007/s12033-023-00871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
Studies have shown that transcription factor AP2A2 (activator protein-2 alpha-2) is involved in the expression of DLEC1, a tumor suppressor gene, which, when mutated, will cause breast cancer and is thus an excellent target for breast cancer studies. Therefore, in the present research, a synergistic approach toward combating breast cancer is proposed by blocking AP2A2 factor, and allowing the cancer cells to be sensitive to anti-cancer drugs. The effect of AP2A2 on breast cancer was first understood via gene analysis from cBioPortal. AP2A2 was then modeled using RaptorX and its structure was validated from Ramachandran plots. Using all ligands from MolPort database, molecular docking was performed against AP2A2, from which the top three best docked ligands were studied for toxicity in humans using Protox-II. Once the ligands passed these tests, the best complexes were simulated at 200ns in Desmond Maestro, to comprehend their stabilities, followed by the computations of free energies of binding via Molecular mechanics- Generalized Born Solvent Accessibility method (MM-GBSA). The results showed that molecules MolPort-005-945-556 (sachharolipids), MolPort-001-741-124 (flavonoids), and MolPort-005-944-667 (lignan glycosides) with AP2A2 passed toxicity evaluation and belonged to toxicity classes 6, 5, and 5, respectively, with good docking energies. 200 ns simulations revealed stable complexes with slight conformational changes. Stability of ligands was confirmed via snapshots at every 20 ns of the trajectory. Radial distribution of these molecules against the protein revealed very slight deviation from binding pocket. Additionally, the free binding energies for these complexes were found to be - 54.93 ± 12.982 kcal/mol, - 44.39 ± 14.393 kcal/mol, and - 66.51 ± 13.522 kcal/mol, respectively. A preliminary computational validation of the inability of AP2A2 to bind to DLEC1 in the presence of ligands offers beneficial insights into the potential of these ligands. Therefore, this study sheds light on the potential natural molecules that could stably block AP2A2 with least deviation and act in synergy to aid anti-cancer drugs work on breast cancer cells.
Collapse
Affiliation(s)
- Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, Bangalore, 560059, India.
| | - Anagha S Setlur
- Department of Biotechnology, RV College of Engineering, Bangalore, 560059, India
| | - Chandrashekar K
- Department of Biotechnology, RV College of Engineering, Bangalore, 560059, India
| | - Sneha Kumkum
- Department of Biotechnology, RV College of Engineering, Bangalore, 560059, India
| | - Sanjana Dasgupta
- Department of Biotechnology, RV College of Engineering, Bangalore, 560059, India
| | - Varsha Singh
- Department of Biotechnology, RV College of Engineering, Bangalore, 560059, India
| | - Vrushali Desai
- Department of Biotechnology, RV College of Engineering, Bangalore, 560059, India
| | - Jitendra Kumar
- Biotechnology Industry Research Assistance Council (BIRAC), CGO complex Lodhi Road, New Delhi, India.
| |
Collapse
|
2
|
Jayarajan RO, Chakraborty S, Raghu KG, Purushothaman J, Veleri S. Joubert syndrome causing mutation in C2 domain of CC2D2A affects structural integrity of cilia and cellular signaling molecules. Exp Brain Res 2024; 242:619-637. [PMID: 38231387 DOI: 10.1007/s00221-023-06762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/08/2023] [Indexed: 01/18/2024]
Abstract
Cilia are organelles extend from cells to sense external signals for tuning intracellular signaling for optimal cellular functioning. They have evolved sensory and motor roles in various cells for tissue organization and homeostasis in development and post-development. More than a thousand genes are required for cilia function. Mutations in them cause multisystem disorders termed ciliopathies. The null mutations in CC2D2A result in Meckel syndrome (MKS), which is embryonic lethal, whereas patients who have missense mutations in the C2 domain of CC2D2A display Joubert syndrome (JBTS). They survive with blindness and mental retardation. How C2 domain defects cause disease conditions is not understood. To answer this question, C2 domain of Cc2d2a (mice gene) was knocked down (KD) in IMCD-3 cells by shRNA. This resulted in defective cilia morphology observed by immunofluorescence analysis. To further probe the cellular signaling alteration in affected cells, gene expression profiling was done by RNAseq and compared with the controls. Bioinformatics analysis revealed that the differentially expressed genes (DEGs) have functions in cilia. Among the 61 cilia DEGs identified, 50 genes were downregulated and 11 genes were upregulated. These cilia genes are involved in cilium assembly, protein trafficking to the cilium, intraflagellar transport (IFT), cellular signaling like polarity patterning, and Hedgehog signaling pathway. This suggests that the C2 domain of CC2D2A plays a critical role in cilia assembly and molecular signaling hosted in cilia for cellular homeostasis. Taken together, the missense mutations in the C2 domain of CC2D2A seen in JBTS might have affected cilia-mediated signaling in neurons of the retina and brain.
Collapse
Affiliation(s)
- Roopasree O Jayarajan
- Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Soura Chakraborty
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Kozhiparambil Gopalan Raghu
- Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jayamurthy Purushothaman
- Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shobi Veleri
- Drug Safety Division, National Institute of Nutrition, Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Govt. of India, Hyderabad, 500007, India.
| |
Collapse
|
3
|
Qiu GH, Que W, Yan S, Zheng X, Xie X, Huang C, Yang X, Hooi SC. The pro-survival function of DLEC1 and its protection of cancer cells against 5-FU-induced apoptosis through up-regulation of BCL-XL. Cytotechnology 2019; 71:23-33. [PMID: 30607648 DOI: 10.1007/s10616-018-0258-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/15/2018] [Indexed: 02/06/2023] Open
Abstract
The tumor suppressor DLEC1 has been shown to promote cell proliferation when AP-2α2 is down-regulated in HCT116 stable clones, suggesting its pro-survival nature. However, the pro-survival function of DLEC1 has not been confirmed in other cells and its underlying mechanisms remain elusive. Therefore, we knocked down DLEC1 in a panel of cell lines and found that DLEC1 depletion caused various extents of cell death through intrinsic pathway. DLEC1 overexpression promoted cell survival and reduced cell death in cancer cells after 5-FU treatment, while DLEC1 down-regulation sensitized cancer cells to 5-FU. Further studies demonstrated that DLEC1 attenuated the increase in cleaved PARP, caspase-3 and caspase-7, the activity of caspase-9 and the diffusion of cytosolic cytochrome c from mitochondria. Our data also showed that BCL-XL was up-regulated by DLEC1 in stable clones after 5-FU treatment. Altogether, these results indicated that DLEC1 protects cells against cell death induced by 5-FU through the attenuation of active proteins in caspase cascade and the up-regulation of BCL-XL. Therefore, DLEC1 can be a pro-survival protein under certain circumstances and a potential therapeutic target for increasing sensitivity of cancer cells to 5-FU.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, 364012, Fujian, People's Republic of China.
- Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province Universities, Longyan University, Longyan, 364012, Fujian, People's Republic of China.
- College of Life Sciences, Longyan University, Longyan, 364012, Fujian, People's Republic of China.
- Department of Physiology, Faculty of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| | - Wutang Que
- Orthopedics Department, Longyan First Hospital, Longyan, 364000, Fujian, People's Republic of China
| | - Shanying Yan
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, 364012, Fujian, People's Republic of China
- Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province Universities, Longyan University, Longyan, 364012, Fujian, People's Republic of China
- College of Life Sciences, Longyan University, Longyan, 364012, Fujian, People's Republic of China
| | - Xintian Zheng
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, 364012, Fujian, People's Republic of China
- Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province Universities, Longyan University, Longyan, 364012, Fujian, People's Republic of China
- College of Life Sciences, Longyan University, Longyan, 364012, Fujian, People's Republic of China
| | - Xiaojin Xie
- Department of Physiology, Faculty of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Cuiqin Huang
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, 364012, Fujian, People's Republic of China
- Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province Universities, Longyan University, Longyan, 364012, Fujian, People's Republic of China
- College of Life Sciences, Longyan University, Longyan, 364012, Fujian, People's Republic of China
| | - Xiaoyan Yang
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, 364012, Fujian, People's Republic of China
- Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province Universities, Longyan University, Longyan, 364012, Fujian, People's Republic of China
- College of Life Sciences, Longyan University, Longyan, 364012, Fujian, People's Republic of China
| | - Shing Chuan Hooi
- Department of Physiology, Faculty of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|