1
|
Shokri A, Pourheydar B, Hossein Farjah G, Krimipour M, Pourheydar M. Effects of glibenclamide and troxerutin on the sperm parameters and histopathological changes of testis in streptozotocin-induced diabetic male rats: An experimental study. Int J Reprod Biomed 2023; 21:123-138. [PMID: 37034291 PMCID: PMC10073866 DOI: 10.18502/ijrm.v21i2.12803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/18/2022] [Accepted: 12/05/2022] [Indexed: 04/11/2023] Open
Abstract
Background Oxidative stress is a major contributor to diabetes mellitus (DM), which leads to testicular damage and infertility. Objective The aim of this study was to investigate the effects of glibenclamide (GL) as a chemical medicine and troxerutin (TR) as an herbal agent on sperm parameters and histopathological changes of testis in diabetic male rats. Materials and Methods Forty male Wistar rats (230-260 gr) were randomly divided into 5 groups (n = 8/each), including control, diabetic (D), GL, TR, and GL+TR. DM was induced by the administration of 60 mg/kg streptozotocin intraperitoneally. The groups were treated with 5 mg/kg/day of GL or 150 mg/kg/day of TR via oral gavage for 4 wk. In the final stage of the treatment, blood sampling was done for biochemical analysis. The rats were then sacrificed and their left testis and epididymis were dissected for sperm analysis, histopathology, and morphometric assessment. Results A significant decrease in the number, motility, viability, maturity, and chromatin quality of sperm was found in diabetic rats compared to control group. (p < 0.001). DM also increased the malondialdehyde level and decreased the level of the serum's total antioxidant capacity compared to the control group (p < 0.001). Furthermore, we observed a significant difference in seminiferous tubule diameter, germinal epithelium height, and testicular histological abnormalities in diabetic rats compared to control group (p < 0.001). Administration of GL, TR, and their combination improved the above-mentioned parameters, and treatment with TR provided a higher improvement (p < 0.001). Conclusion According to these findings, it can be concluded that TR plays a more influential role than GL to treat diabetic-induced infertility.
Collapse
Affiliation(s)
- Aynaz Shokri
- Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Bagher Pourheydar
- Neurophysiology Research Center, Department of Anatomical Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Gholam Hossein Farjah
- Neurophysiology Research Center, Department of Anatomical Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Krimipour
- Department of Anatomical Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Pourheydar
- Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
2
|
Baptista BG, Ribeiro M, Cardozo LF, Leal VDO, Regis B, Mafra D. Nutritional benefits of ginger for patients with non-communicable diseases. Clin Nutr ESPEN 2022; 49:1-16. [PMID: 35623800 DOI: 10.1016/j.clnesp.2022.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 01/10/2023]
Abstract
Ginger (Zingiber officinale) is a famous dietary spice rich in bioactive components like gingerols, and it has been used for a long time as food and medicine. Indeed, clinical studies have confirmed the anti-inflammatory and antioxidant properties of ginger. Thus, ginger seems to be an excellent complementary nutritional strategy for non-communicable diseases (NCD) such as obesity, diabetes, cardiovascular disease and chronic kidney disease. This narrative review aims to discuss the possible effects of ginger on the mitigation of common complications such as inflammation, oxidative stress, and gut dysbiosis in NCD.
Collapse
Affiliation(s)
- Beatriz G Baptista
- Graduate Program in Medical Sciences, Federal Fluminense University, Niteroi-Rio de Janeiro, (RJ), Brazil
| | - Marcia Ribeiro
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Ludmila Fmf Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Viviane de O Leal
- Division of Nutrition, Pedro Ernesto University Hospital, State of Rio de Janeiro University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Bruna Regis
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Denise Mafra
- Graduate Program in Medical Sciences, Federal Fluminense University, Niteroi-Rio de Janeiro, (RJ), Brazil; Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil.
| |
Collapse
|
3
|
Pagano E, Souto EB, Durazzo A, Sharifi-Rad J, Lucarini M, Souto SB, Salehi B, Zam W, Montanaro V, Lucariello G, Izzo AA, Santini A, Romano B. Ginger (Zingiber officinale Roscoe) as a nutraceutical: Focus on the metabolic, analgesic, and antiinflammatory effects. Phytother Res 2021; 35:2403-2417. [PMID: 33278054 DOI: 10.1002/ptr.6964] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/01/2020] [Accepted: 11/12/2020] [Indexed: 01/10/2023]
Abstract
Ginger (from the rizhome of Zingiber officinale Roscoe) has been widely used in ethnomedicine for the cure of several ailments. Main active ingredients include phenolic compounds named gingerols. In modern phytotherapy, ginger preparations are predominantly used to counteract nausea and vomiting in pregnant women. However, a number of other pharmacological actions of potential therapeutic interest, which might broaden the spectrum of its clinical use, have been reported. This focused review aims at giving a shot on the antinflammatory, analgesic, and metabolic actions of Zingiber officinale preparations, with a discussion on the clinical applications in knee osteoarthritis, dysmenorrhea, type‐2 diabetes, hyperlipidemia, overweight, and obesity.
Collapse
Affiliation(s)
- Ester Pagano
- Department of Pharmacy, School of Medicine, University of Napoli Federico II, Naples, Italy
| | - Eliana B Souto
- Faculty of Pharmacy of University of Coimbra Azinhaga de Santa Comba, Coimbra, Portugal
- CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
| | | | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | | | - Selma B Souto
- Department of Endocrinology, Hospital de São João, Alameda Prof. Hernâni Monteiro, Porto, Portugal
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Wissam Zam
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, Al-Andalus University for Medical Sciences, Tartous, Syria
| | - Vittorino Montanaro
- Divisione di Urologia P.O. di Castellammare di Stabia (Napoli), Naples, Italy
| | - Giuseppe Lucariello
- Department of Pharmacy, School of Medicine, University of Napoli Federico II, Naples, Italy
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine, University of Napoli Federico II, Naples, Italy
| | - Antonello Santini
- Department of Pharmacy, School of Medicine, University of Napoli Federico II, Naples, Italy
| | - Barbara Romano
- Department of Pharmacy, School of Medicine, University of Napoli Federico II, Naples, Italy
| |
Collapse
|
4
|
Saeedifar AM, Mosayebi G, Ghazavi A, Ganji A. Synergistic Evaluation of Ginger and Licorice Extracts in a Mouse Model of Colorectal Cancer. Nutr Cancer 2020; 73:1068-1078. [PMID: 32586136 DOI: 10.1080/01635581.2020.1784440] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/14/2020] [Accepted: 06/14/2020] [Indexed: 01/12/2023]
Abstract
Herbal medicine can be used to overcome the side effects of conventional treatments. This study aimed to evaluate the anticancer activities of ginger and licorice extracts, as well as the synergistic effects of their combination. Ginger ethanolic extract (GEE) and licorice methanolic extract (LME) were isolated by a Soxhlet extractor. Next, the anti-proliferative activity of the extracts, apoptosis induction, tumor growth inhibition, and tumor-infiltrating T lymphocytes were investigated. The MTT (3-[4, 5-dimethylthiazol-2-yl]-2, five diphenyl tetrazolium bromide) assay showed that GEE and LME decreased the CT26 cell viability in a dose-dependent manner; however, the GEE + LME combination was more effective (P < 0.05). The CT26 cells treated with each extract showed a significant increase in Bax/Bcl-2 ratio and caspase-3 gene expression, especially in the GEE + LME group (P < 0.001). Tumor volume significantly reduced in the GEE + LME group, compared to the negative controls. Finally, mice treated with GEE + LME showed a significant increase in the CTL/Treg cell ratio (P < 0.001) and Bax/Bcl2 ratio (P < 0.05). The study results revealed that GEE + LME can suppress cancer cell growth, increase apoptosis, and improve CTL infiltrating to the tumor site in a synergetic manner in-vivo and in-vitro. Therefore, the prepared mixture can be used in future clinical trials.
Collapse
Affiliation(s)
- Amir Mohammad Saeedifar
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ghasem Mosayebi
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Ali Ghazavi
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran
| | - Ali Ganji
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
5
|
Mutavdzin S, Gopcevic K, Stankovic S, Jakovljevic Uzelac J, Labudovic Borovic M, Djuric D. The Effects of Folic Acid Administration on Cardiac Oxidative Stress and Cardiovascular Biomarkers in Diabetic Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1342549. [PMID: 31308875 PMCID: PMC6594301 DOI: 10.1155/2019/1342549] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/22/2019] [Accepted: 05/15/2019] [Indexed: 01/10/2023]
Abstract
The aim of this study was to examine the effects of folic acid administration on the antioxidant enzyme (superoxide dismutase (SOD) and catalase (CAT)) activities, lactate and malate dehydrogenase (LDH and MDH) activities, and certain LDH and MDH isoform distribution in the cardiac tissue of diabetic Wistar male rats. Diabetes mellitus (DM) was induced by streptozotocin (STZ). There were five groups: C1-control (physiological saline 1 ml/kg, i.p. one day), C2-control with daily physiological saline treatment (1 ml/kg, i.p. 28 days), DM-diabetes mellitus (STZ 100 mg/kg in physiological saline, i.p. one day), FA-folic acid (5 mg/kg in physiological saline, i.p. 28 days), and DM+FA-diabetes mellitus and folic acid group (STZ 100 mg/kg in physiological saline, i.p. one day, and folic acid 5 mg/kg in physiological saline, i.p. 28 days). After four weeks, animal hearts were isolated for measurement of enzyme activities, as well as for histomorphometry analyses. An elevated glucose level and a decreased insulin level were obtained in the DM group. SOD, CAT, and MDH activities were elevated in the DM group, while there was no difference in LDH activity among the groups. In all tested groups, four LDH and three MDH isoforms were detected in the heart tissue, but with differences in their relative activities among the groups. Left ventricular cardiomyocyte transversal diameters were significantly smaller in both diabetic groups. Folic acid treatment of diabetic rats induced a reduced glucose level and reduced CAT, SOD, and MDH activities and alleviated the decrease in cardiomyocyte diameters. In conclusion, increased activities of antioxidant enzymes and MDH may be the consequence of oxidative stress caused by DM. Administration of the folic acid has a protective effect since it leads to reduction in glycemia and activities of the certain examined enzymes in the rats with experimentally induced DM.
Collapse
Affiliation(s)
- Slavica Mutavdzin
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Kristina Gopcevic
- Institute of Chemistry in Medicine “Prof. Dr. Petar Matavulj”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sanja Stankovic
- Centre of Medical Biochemistry, Clinical Centre of Serbia, Belgrade, Serbia
| | - Jovana Jakovljevic Uzelac
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Labudovic Borovic
- Institute of Histology and Embryology “Aleksandar Dj. Kostic”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragan Djuric
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Alotaibi MR, Fatani AJ, Almnaizel AT, Ahmed MM, Abuohashish HM, Al-Rejaie SS. In vivo Assessment of Combined Effects of Glibenclamide and Losartan in Diabetic Rats. Med Princ Pract 2019; 28:178-185. [PMID: 30537701 PMCID: PMC6545916 DOI: 10.1159/000496104] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 12/10/2018] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Diabetic complications involve multiple pathological pathways, including hyperglycemia-induced oxidative stress and inflammation. Combination therapy is usually employed to improve treatment outcomes and to lower potential adverse effects. In this study, we evaluated the effects of antidiabetic and antihypertensive agents, glibenclamide (GLI) and losartan (LT), on diabetes mellitus (DM)-associated metabolic changes in rats. MATERIALS AND METHODS Streptozotocin-induced diabetic animals were orally treated with GLI 5 mg/kg and/or LT 25 mg/kg for 4 weeks. Blood glucose, insulin, aspartate aminotransferase, alanine aminotransferase, urinary creatinine, and urea levels were measured. Serum, liver, and kidney values of inflammatory markers, such as interleukin-1β, tumor necrosis factor alpha, and interleukin-6 were assessed, along with lipid peroxidation products (e.g., thiobarbituric acid reactive substances), endogenous antioxidants (e.g., glutathione), as well as antioxidant enzyme activities (e.g., catalase, superoxide dismutase, and glutathione peroxidase). Finally, histological changes in liver and kidney tissues were evaluated. RESULTS DM markedly induced systemic, hepatic, and renal inflammation and lowered antioxidant defense mechanisms. Treatment of diabetic rats with either GLI or LT significantly improved liver and kidney functions and histological structure. Moreover, both medications reduced signs of oxidative stress and inflammation in blood, liver, and kidney samples. Combining GLI and LT showed similar protective potential against systemic, hepatic, and renal oxidative stress and inflammation. CONCLUSION Adding LT to GLI therapy revealed prospective antioxidant and anti-inflammatory action, while no synergistic or additive effects were observed.
Collapse
Affiliation(s)
- Moureq R Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amal J Fatani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed T Almnaizel
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hatem M Abuohashish
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,
| |
Collapse
|
7
|
Srinivasan K. Ginger rhizomes (Zingiber officinale): A spice with multiple health beneficial potentials. PHARMANUTRITION 2017. [DOI: 10.1016/j.phanu.2017.01.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Otunola GA, Oloyede OB, Oladiji AT, Afolayan AJ. Selected spices and their combination modulate hypercholesterolemia-induced oxidative stress in experimental rats. Biol Res 2014; 47:5. [PMID: 25027235 PMCID: PMC4060372 DOI: 10.1186/0717-6287-47-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/09/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Effect of aqueous extracts of Allium sativum (garlic), Zingiber officinale (ginger), Capsicum fructensces (cayenne pepper) and their mixture on oxidative stress in rats fed high Cholesterol/high fat diet was investigated. Rats were randomly distributed into six groups (n=6) and given different dietary/spice treatments. Group 1 standard rat chow (control), group 2, hypercholesterolemic diet plus water, and groups 3, 4, 5, 6, hypercholesterolemic diet with 0.5 ml 200 mg · kg-1 aqueous extracts of garlic, ginger, cayenne pepper or their mixture respectively daily for 4 weeks. RESULTS Pronounced oxidative stress in the hypercholesterolemic rats evidenced by significant (p<0.05) increase in MDA levels, and suppression of the antioxidant enzymes system in rat's liver, kidney, heart and brain tissues was observed. Extracts of spices singly or combined administered at 200 mg.kg-1 body weight significantly (p<0.05) reduced MDA levels and restored activities of antioxidant enzymes. CONCLUSIONS It is concluded that consumption of garlic, ginger, pepper, or their mixture may help to modulate oxidative stress caused by hypercholesterolemia in rats.
Collapse
Affiliation(s)
- Gloria A Otunola
- />Medicinal Plant and Economic Development Research Centre, Department of Botany, University of Fort Hare, Alice, 5700 South Africa
- />Department of Home Economics and Food Science, University of Ilorin, Ilorin, Nigeria
| | | | | | - Anthony J Afolayan
- />Medicinal Plant and Economic Development Research Centre, Department of Botany, University of Fort Hare, Alice, 5700 South Africa
| |
Collapse
|