1
|
Khalifa A, Anwar MM, Alshareef WA, El-Gebaly EA, Elseginy SA, Abdelwahed SH. Design, Synthesis, and Antimicrobial Evaluation of New Thiopyrimidine-Benzenesulfonamide Compounds. Molecules 2024; 29:4778. [PMID: 39407706 PMCID: PMC11477697 DOI: 10.3390/molecules29194778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Bacterial infection poses a serious threat to human life due to the rapidly growing resistance of bacteria to antibacterial drugs, which is a significant public health issue. This study was focused on the design and synthesis of a new series of 25 analogues bearing a 5-cyano-6-oxo-4-substituted phenyl-1,6-dihydropyrimidine scaffold hybridized with different substituted benzenesulfonamides through the thioacetamide linker M1-25. The antimicrobial activity of the new molecules was studied against various Gram-positive, Gram-negative, and fungal strains. All the tested compounds showed promising broad-spectrum antimicrobial efficacy, especially against K. pneumoniae and P. aeruginosa. Furthermore, the most promising compounds, 6M, 19M, 20M, and 25M, were subjected to minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. In addition, the antivirulence activity of the compounds was also examined using multiple biofilm assays. The new compounds promisingly revealed the suppression of microbial biofilm formation in the examined K. pneumoniae and P. aeruginosa microbial isolates. Additionally, in silico ADMET studies were conducted to determine their oral bioavailability, drug-likeness characteristics, and human toxicity risks. It is suggested that new pyrimidine-benzenesulfonamide derivatives may serve as model compounds for the further optimization and development of new antimicrobial and antisepsis candidates.
Collapse
Affiliation(s)
- Abdalrahman Khalifa
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA;
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Manal M. Anwar
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo P.O. Box 12622, Egypt;
| | - Walaa A. Alshareef
- Microbiology and Immunology Department, Faculty of Pharmacy, O6U, Giza P.O. Box 12585, Egypt; (W.A.A.); (E.A.E.-G.)
| | - Eman A. El-Gebaly
- Microbiology and Immunology Department, Faculty of Pharmacy, O6U, Giza P.O. Box 12585, Egypt; (W.A.A.); (E.A.E.-G.)
| | - Samia A. Elseginy
- Green Chemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo P.O. Box 12622, Egypt;
| | - Sameh H. Abdelwahed
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA;
| |
Collapse
|
2
|
Jandl B, Dighe S, Gasche C, Makristathis A, Muttenthaler M. Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities. Clin Microbiol Rev 2024; 37:e0013323. [PMID: 38995034 PMCID: PMC11391705 DOI: 10.1128/cmr.00133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYThe human intestinal tract harbors a profound variety of microorganisms that live in symbiosis with the host and each other. It is a complex and highly dynamic environment whose homeostasis directly relates to human health. Dysbiosis of the gut microbiota and polymicrobial biofilms have been associated with gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel diseases, and colorectal cancers. This review covers the molecular composition and organization of intestinal biofilms, mechanistic aspects of biofilm signaling networks for bacterial communication and behavior, and synergistic effects in polymicrobial biofilms. It further describes the clinical relevance and diseases associated with gut biofilms, the role of biofilms in antimicrobial resistance, and the intestinal host defense system and therapeutic strategies counteracting biofilms. Taken together, this review summarizes the latest knowledge and research on intestinal biofilms and their role in gut disorders and provides directions toward the development of biofilm-specific treatments.
Collapse
Affiliation(s)
- Bernhard Jandl
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christoph Gasche
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Athanasios Makristathis
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Aboelnaga N, Elsayed SW, Abdelsalam NA, Salem S, Saif NA, Elsayed M, Ayman S, Nasr M, Elhadidy M. Deciphering the dynamics of methicillin-resistant Staphylococcus aureus biofilm formation: from molecular signaling to nanotherapeutic advances. Cell Commun Signal 2024; 22:188. [PMID: 38519959 PMCID: PMC10958940 DOI: 10.1186/s12964-024-01511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/01/2024] [Indexed: 03/25/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) represents a global threat, necessitating the development of effective solutions to combat this emerging superbug. In response to selective pressures within healthcare, community, and livestock settings, MRSA has evolved increased biofilm formation as a multifaceted virulence and defensive mechanism, enabling the bacterium to thrive in harsh conditions. This review discusses the molecular mechanisms contributing to biofilm formation across its developmental stages, hence representing a step forward in developing promising strategies for impeding or eradicating biofilms. During staphylococcal biofilm development, cell wall-anchored proteins attach bacterial cells to biotic or abiotic surfaces; extracellular polymeric substances build scaffolds for biofilm formation; the cidABC operon controls cell lysis within the biofilm, and proteases facilitate dispersal. Beside the three main sequential stages of biofilm formation (attachment, maturation, and dispersal), this review unveils two unique developmental stages in the biofilm formation process for MRSA; multiplication and exodus. We also highlighted the quorum sensing as a cell-to-cell communication process, allowing distant bacterial cells to adapt to the conditions surrounding the bacterial biofilm. In S. aureus, the quorum sensing process is mediated by autoinducing peptides (AIPs) as signaling molecules, with the accessory gene regulator system playing a pivotal role in orchestrating the production of AIPs and various virulence factors. Several quorum inhibitors showed promising anti-virulence and antibiofilm effects that vary in type and function according to the targeted molecule. Disrupting the biofilm architecture and eradicating sessile bacterial cells are crucial steps to prevent colonization on other surfaces or organs. In this context, nanoparticles emerge as efficient carriers for delivering antimicrobial and antibiofilm agents throughout the biofilm architecture. Although metal-based nanoparticles have been previously used in combatting biofilms, its non-degradability and toxicity within the human body presents a real challenge. Therefore, organic nanoparticles in conjunction with quorum inhibitors have been proposed as a promising strategy against biofilms. As nanotherapeutics continue to gain recognition as an antibiofilm strategy, the development of more antibiofilm nanotherapeutics could offer a promising solution to combat biofilm-mediated resistance.
Collapse
Affiliation(s)
- Nirmeen Aboelnaga
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Salma W Elsayed
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nehal Adel Abdelsalam
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Salma Salem
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Nehal A Saif
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Manar Elsayed
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Shehab Ayman
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed Elhadidy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
4
|
Mounir R, Alshareef WA, El Gebaly EA, El-Haddad AE, Ahmed AMS, Mohamed OG, Enan ET, Mosallam S, Tripathi A, Selim HMRM, Bukhari SI, Alfaraj R, Ragab GM, El-Gazar AA, El-Emam SZ. Unlocking the Power of Onion Peel Extracts: Antimicrobial and Anti-Inflammatory Effects Improve Wound Healing through Repressing Notch-1/NLRP3/Caspase-1 Signaling. Pharmaceuticals (Basel) 2023; 16:1379. [PMID: 37895850 PMCID: PMC10609719 DOI: 10.3390/ph16101379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Onion peels are often discarded, representing an unlimited amount of food by-products; however, they are a valuable source of bioactive phenolics. Thus, we utilized UPLC-MS/MS to analyze the metabolomic profiles of red (RO) and yellow (YO) onion peel extracts. The cytotoxic (SRB assay), anti-inflammatory (Griess assay), and antimicrobial (sensitivity test, MIC, antibiofilm, and SP-SDS tests) properties were assessed in vitro. Additionally, histological analysis, immunohistochemistry, and ELISA tests were conducted to investigate the healing potential in excisional skin wound injury and Candida albicans infection in vivo. RO extract demonstrated antibacterial activity, limited skin infection with C. albicans, and improved the skin's appearance due to the abundance of quercetin and anthocyanin derivatives. Both extracts reduced lipopolysaccharide-induced nitric oxide release in vitro and showed a negligible cytotoxic effect on MCF-7 and HT29 cells. When extracts were tested in vivo for their ability to promote tissue regeneration, it was found that YO peel extract had the greatest impact. Further biochemical analysis revealed that YO extract suppressed NLRP3/caspase-1 signaling and decreased inflammatory cytokines. Furthermore, YO extract decreased Notch-1 levels and boosted VEGF-mediated angiogenesis. Our findings imply that onion peel extract can effectively treat wounds by reducing microbial infection, reducing inflammation, and promoting tissue regeneration.
Collapse
Affiliation(s)
- Rafik Mounir
- Pharmacognosy Department, Faculty of Pharmacy, Misr University for Science and Technology, Giza 12585, Egypt;
| | - Walaa A. Alshareef
- Microbiology and Immunology Department, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt; (W.A.A.); (E.A.E.G.)
| | - Eman A. El Gebaly
- Microbiology and Immunology Department, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt; (W.A.A.); (E.A.E.G.)
| | - Alaadin E. El-Haddad
- Pharmacognosy Department, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt;
| | - Abdallah M. Said Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt; (A.M.S.A.); (A.A.E.-G.)
| | - Osama G. Mohamed
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt;
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Eman T. Enan
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
- Department of Basic Medical Sciences, College of medicine, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Shaimaa Mosallam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Heba Mohammed Refat M. Selim
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Maarefa University, Diriyah, Riyadh 13713, Saudi Arabia;
- Microbiology and Immunology Department, Faculty of Pharmacy (Girls); Al-Azhar University, Cairo 11651, Egypt
| | - Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.I.B.); (R.A.)
| | - Rihaf Alfaraj
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.I.B.); (R.A.)
| | - Ghada M. Ragab
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr University for Science and Technology, Giza 12585, Egypt;
| | - Amira A. El-Gazar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt; (A.M.S.A.); (A.A.E.-G.)
| | - Soad Z. El-Emam
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt; (A.M.S.A.); (A.A.E.-G.)
| |
Collapse
|
5
|
Ali A, Zahra A, Kamthan M, Husain FM, Albalawi T, Zubair M, Alatawy R, Abid M, Noorani MS. Microbial Biofilms: Applications, Clinical Consequences, and Alternative Therapies. Microorganisms 2023; 11:1934. [PMID: 37630494 PMCID: PMC10459820 DOI: 10.3390/microorganisms11081934] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 08/27/2023] Open
Abstract
Biofilms are complex communities of microorganisms that grow on surfaces and are embedded in a matrix of extracellular polymeric substances. These are prevalent in various natural and man-made environments, ranging from industrial settings to medical devices, where they can have both positive and negative impacts. This review explores the diverse applications of microbial biofilms, their clinical consequences, and alternative therapies targeting these resilient structures. We have discussed beneficial applications of microbial biofilms, including their role in wastewater treatment, bioremediation, food industries, agriculture, and biotechnology. Additionally, we have highlighted the mechanisms of biofilm formation and clinical consequences of biofilms in the context of human health. We have also focused on the association of biofilms with antibiotic resistance, chronic infections, and medical device-related infections. To overcome these challenges, alternative therapeutic strategies are explored. The review examines the potential of various antimicrobial agents, such as antimicrobial peptides, quorum-sensing inhibitors, phytoextracts, and nanoparticles, in targeting biofilms. Furthermore, we highlight the future directions for research in this area and the potential of phytotherapy for the prevention and treatment of biofilm-related infections in clinical settings.
Collapse
Affiliation(s)
- Asghar Ali
- Clinical Biochemistry Lab, D/O Biochemistry, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| | - Andaleeb Zahra
- Department of Botany, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| | - Mohan Kamthan
- Clinical Biochemistry Lab, D/O Biochemistry, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Thamer Albalawi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohammad Zubair
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.Z.); (R.A.)
| | - Roba Alatawy
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.Z.); (R.A.)
| | - Mohammad Abid
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Md Salik Noorani
- Department of Botany, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| |
Collapse
|
6
|
Uzelac M, Sladonja B, Šola I, Dudaš S, Bilić J, Famuyide IM, McGaw LJ, Eloff JN, Mikulic-Petkovsek M, Poljuha D. Invasive Alien Species as a Potential Source of Phytopharmaceuticals: Phenolic Composition and Antimicrobial and Cytotoxic Activity of Robinia pseudoacacia L. Leaf and Flower Extracts. PLANTS (BASEL, SWITZERLAND) 2023; 12:2715. [PMID: 37514330 PMCID: PMC10385011 DOI: 10.3390/plants12142715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Black locust (Robinia pseudoacacia L.), an invasive tree in Europe, commonly known for its negative impact on biodiversity, is a rich source of phenolic compounds recognized in traditional medicine. Since the metabolite profile depends on the environment and climate, this study aimed to provide the first LC-MS phytochemical screening of the black locust from the Istria region (Croatia). The compounds were extracted from leaves and flowers with 70% ethanol and 80% methanol. Total phenolics (TP) and flavonoids (TF), as well as antioxidant capacity (AC) measured by ABTS (17.49-146.41 mg TE/g DW), DPPH (24.67-118.49 mg TE/g DW), and FRAP (7.38-77.53 mg TE/g DW) assays, were higher in leaf than in flower extracts. Higher TP and total non-flavonoid (TNF) values were displayed in ethanolic than in methanolic extracts. In total, 64 compounds were identified, of which flavonols (20) and hydroxycinnamic acid derivatives (15) were the most represented. Flavanols such as catechin dominated in leaf extracts, followed by flavonols, with kaempferol glucuronyl rhamnosyl hexosides as the main compound, respectively. Flower extracts had the highest share of flavones, followed by ellagitannins, with luteolin dirhamnosyl hexosides and vescalagin, respectively, being predominant. The extracts had good quorum sensing, biofilm formation prevention, and eradicating capacity. The results provided new insights into the phytochemical properties of R. pseudoacacia as the first step toward its potential pharmaceutical use.
Collapse
Affiliation(s)
- Mirela Uzelac
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Barbara Sladonja
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Ivana Šola
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Slavica Dudaš
- Agricultural Department, Polytechnic of Rijeka, Karla Huguesa 6, 52440 Poreč, Croatia
| | - Josipa Bilić
- METRIS Research Centre, Istrian University of Applied Sciences, Zagrebačka 30, 52100 Pula, Croatia
| | - Ibukun M Famuyide
- Phytomedicine Programme, Paraclinical Sciences Department, University of Pretoria, P/Bag X04, Onderstepoort, Pretoria 0110, Gauteng, South Africa
| | - Lyndy J McGaw
- Phytomedicine Programme, Paraclinical Sciences Department, University of Pretoria, P/Bag X04, Onderstepoort, Pretoria 0110, Gauteng, South Africa
| | - Jacobus N Eloff
- Phytomedicine Programme, Paraclinical Sciences Department, University of Pretoria, P/Bag X04, Onderstepoort, Pretoria 0110, Gauteng, South Africa
| | - Maja Mikulic-Petkovsek
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Danijela Poljuha
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| |
Collapse
|
7
|
Sierra-Quitian AG, Hernandez-Moreno LV, Pabon-Baquero LC, Prieto-Rodriguez JA, Patiño-Ladino OJ. Antiquorum and Antibiofilm Activities of Piper bogotense C. DC. against Pseudomonas aeruginosa and Identification of Bioactive Compounds. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091901. [PMID: 37176959 PMCID: PMC10180994 DOI: 10.3390/plants12091901] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
The present study describes the anti-biofilm and quorum sensing (QS) inhibitory potential of extracts and chemical constituents from Piper bogotense. Antibiofilm potential was determined through crystal violet assay against Pseudomonas aeruginosa, while QS inhibition efficacy was determined through violacein inhibition assay using Chromobacterium violaceum as a bacterial model. Additionally, this study reports the effects of the chemical constituents isolated in P. bogotense against various virulent factors associated with QS, such as the percentage decrease in pyocyanin, elastase, and protease production. The chemical study led to the isolation and identification of two prenylated benzoic acids (1 and 2) and a prenylated hydroquinone 3, of which compounds 1 and 2 are reported for the first time for P. bogotense. The ethanolic extract and the DCM fraction from P. bogotense stand out for reducing violacein production in C. violaceum, as well as the biofilm formation in P. aeruginosa. Compounds 2 and 3 stand out for having the lowest violacein production (43.8% and 68.3%), as well as the lowest production of virulence factors such as elastase (60.2% and 51.4%) and pyocyanin (39.7% and 33.2%). These results demonstrate the potential of P. bogotense components to be used as an alternative control against multidrug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Andrés G Sierra-Quitian
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Bogotá 111321, Colombia
| | - Lida V Hernandez-Moreno
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Bogotá 111321, Colombia
| | - Ludy C Pabon-Baquero
- Escuela de Ciencias Básicas y Aplicadas, Universidad de La Salle, Bogotá 111711, Colombia
| | - Juliet A Prieto-Rodriguez
- Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Oscar J Patiño-Ladino
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Bogotá 111321, Colombia
| |
Collapse
|
8
|
Natural Medicine a Promising Candidate in Combating Microbial Biofilm. Antibiotics (Basel) 2023; 12:antibiotics12020299. [PMID: 36830210 PMCID: PMC9952808 DOI: 10.3390/antibiotics12020299] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Studies on biofilm-related infections are gaining prominence owing to their involvement in most clinical infections and seriously threatening global public health. A biofilm is a natural form of bacterial growth ubiquitous in ecological niches, considered to be a generic survival mechanism adopted by both pathogenic and non-pathogenic microorganisms and entailing heterogeneous cell development within the matrix. In the ecological niche, quorum sensing is a communication channel that is crucial to developing biofilms. Biofilm formation leads to increased resistance to unfavourable ecological effects, comprising resistance to antibiotics and antimicrobial agents. Biofilms are frequently combated with modern conventional medicines such as antibiotics, but at present, they are considered inadequate for the treatment of multi-drug resistance; therefore, it is vital to discover some new antimicrobial agents that can prevent the production and growth of biofilm, in addition to minimizing the side effects of such therapies. In the search for some alternative and safe therapies, natural plant-derived phytomedicines are gaining popularity among the research community. Phytomedicines are natural agents derived from natural plants. These plant-derived agents may include flavonoids, terpenoids, lectins, alkaloids, polypeptides, polyacetylenes, phenolics, and essential oils. Since they are natural agents, they cause minimal side effects, so could be administered with dose flexibility. It is vital to discover some new antimicrobial agents that can control the production and growth of biofilms. This review summarizes and analyzes the efficacy characteristics and corresponding mechanisms of natural-product-based antibiofilm agents, i.e., phytochemicals, biosurfactants, antimicrobial peptides, and their sources, along with their mechanism, quorum sensing signalling pathways, disrupting extracellular matrix adhesion. The review also provides some other strategies to inhibit biofilm-related illness. The prepared list of newly discovered natural antibiofilm agents could help in devising novel strategies for biofilm-associated infections.
Collapse
|
9
|
Jalil V, Khan M, Haider SZ, Shamim S. Investigation of the Antibacterial, Anti-Biofilm, and Antioxidative Effect of Piper betle Leaf Extract against Bacillus gaemokensis MW067143 Isolated from Dental Caries, an In Vitro-In Silico Approach. Microorganisms 2022; 10:2485. [PMID: 36557738 PMCID: PMC9788100 DOI: 10.3390/microorganisms10122485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 12/23/2022] Open
Abstract
Among oral diseases, dental caries is one of the most frequent to affect human health. The current research work aimed to ascertain the antibacterial, anti-biofilm, and antioxidative potential of Piper betle leaf extract against bacteria isolated from dental caries. Analysis for the presence of phytochemical compounds revealed compounds, such as tannins, steroids, phenolic compounds, and alkaloids, which were also confirmed by TLC and FTIR. GC-MS analysis elucidated the presence of 20 phytocompounds, among which were some well-reported bioactive compounds. The chloroform extract of P. betle demonstrated good antibacterial activity (7 mm) and minimum inhibitory concentration (MIC) (100 mg mL-1) against Bacillus gaemokensis MW067143, which was the frequent biofilm producer among isolated bacterial strains. Fractions of the extract were isolated through column chromatography, after which the antibacterial activity was again evaluated. Spirost-8-en-11-one,3-hydroxy(3β,5α,14β,20β,22β,25R), an oxosteroid in nature, was observed to exhibit remarkable antibacterial potential (12 mm) against B. gaemokensis. Bacterial cells treated with P. betle extract had elevated SOD, APOX, POX, and GR activity, while its proteolytic activity against whole bacterial proteins was pronounced with the suppression of several proteins (50, 40, 15, and 10 kDa) in SDS-PAGE. Bacterial cells treated with P. betle extract demonstrated decreased growth, while the extract was also observed to exhibit inhibition of biofilm formation (70.11%) and demolition of established B. gaemokensis biofilms (57.98%). SEM analysis revealed significant changes to bacterial morphology post treatment with P. betle, with cellular disintegration being prominent. In silico network pharmacology analysis elucidated proteins like ESR1 and IL6 to be majorly involved in biological pathways of dental caries, which also interact with the protective ability of P. betle. Gene Ontology (GO) terms and KEGG pathways were also screened using enrichment analysis. Molecular docking demonstrated the highest binding affinity of Spirost-8-en-11-one,3-hydroxy-,(3β,5α,14β,20β,22β,25R) with bacterial proteins FabI (-12 kcal/mol), MurB (-17.1 kcal/mol), and FtsZ (-14.9 kcal/mol). Therefore, it is suggested that P. betle can serve a potentially therapeutic role and could be used in the preparation of herbal formulations for managing bacterial flora.
Collapse
Affiliation(s)
| | | | | | - Saba Shamim
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Defence Road Campus, Off-Bhobatian Chowk, Lahore 54000, Pakistan
| |
Collapse
|
10
|
Circella E, Casalino G, D’Amico F, Pugliese N, Dimuccio MM, Camarda A, Bozzo G. In Vitro Antimicrobial Effectiveness Tests Using Garlic ( Allium sativum) against Salmonella enterica Subspecies enterica Serovar Enteritidis. Antibiotics (Basel) 2022; 11:1481. [PMID: 36358136 PMCID: PMC9686557 DOI: 10.3390/antibiotics11111481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 07/29/2023] Open
Abstract
In recent years, there has been a more prudent use of drugs on livestock farms and alternative products have been considered, with a view of reducing the risk of the onset of antibiotic resistance. Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) may cause disease in poultry, and it is also responsible for human food poisoning. The aim of this study was to evaluate the efficacy of garlic against S. Enteritidis and to define its Minimal Inhibitory Concentration (MIC)90 and MIC50 values. The study was carried out in vitro, testing 26 S. Enteritidis strains identified in laying hens from various farms in Southern Italy. A preliminary efficacy trial was carried out on two strains, S. Enteritidis and Escherichia coli, using a garlic concentration of 10 mg/mL (1%). Later, 26 strains of S. Enteritidis at 106 Colony Forming Unit (CFU) and 104 CFU were tested with different concentrations of garlic, ranging from 10 mg/mL to 1 mg/mL. Based on the results, intermediate concentrations of garlic, from 5 mg/mL to 4 mg/mL and 4 mg/mL to 3 mg/mL, were used to test 106 CFU and 104 CFU, respectively. The data were statistically analyzed. The MIC90 was 4.75 mg/mL for strains tested at 106 CFU and 4 mg/mL for strains tested at 104 CFU. The results highlight garlic's potential to inhibit the growth of Salmonella enterica ser. Enteritidis in vitro. Efficacy was dependent on the microbial concentration used. In vivo efficacy trials will be crucial to confirm the efficacy of garlic against S. Enteritidis and to assess whether garlic can be used in poultry flocks to prevent the spread of the bacterium in the field.
Collapse
|
11
|
Nazzaro F, Polito F, Amato G, Caputo L, Francolino R, D’Acierno A, Fratianni F, Candido V, Coppola R, De Feo V. Chemical Composition of Essential Oils of Bulbs and Aerial Parts of Two Cultivars of Allium sativum and Their Antibiofilm Activity against Food and Nosocomial Pathogens. Antibiotics (Basel) 2022; 11:antibiotics11060724. [PMID: 35740131 PMCID: PMC9219697 DOI: 10.3390/antibiotics11060724] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
This work aimed to evaluate the chemical composition of the essential oils (EOs) of two cultivars of Allium sativum and their antibiofilm activity against the food pathogens Acinetobacter baumannii, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus. The crystal violet assay ascertained the susceptibility of the bacterial biofilms, while the MTT assay let to evaluations of the metabolic changes occurring in the bacterial cells within biofilms. Their chemical composition indicated some sulfuric compounds (i.e., allicin, diallyl disulfide, and allyl propyl disulfide), and decene as some of the main components of the EOs. The aerial parts and bulbs’ EOs from the two cultivars showed chemical differences, which seemed to affect the antibiofilm activity. The EOs from aerial parts of ‘Bianco del Veneto’ inhibited the biofilm formation of L. monocytogenes and E. coli (60.55% and 40.33%, respectively). In comparison, the ‘Staravec’ EO inhibited the cellular metabolism of E. coli (62.44%) and S. aureus (51.52%) sessile cells. These results indicate their possible use as preserving agents in the food industry and suggest their potential exploitation in the development of new formulations to avoid or limit nosocomial infections.
Collapse
Affiliation(s)
- Filomena Nazzaro
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy; (G.A.); (A.D.); (F.F.); (R.C.); (V.D.F.)
- Correspondence:
| | - Flavio Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (F.P.); (L.C.); (R.F.)
| | - Giuseppe Amato
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy; (G.A.); (A.D.); (F.F.); (R.C.); (V.D.F.)
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (F.P.); (L.C.); (R.F.)
| | - Rosaria Francolino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (F.P.); (L.C.); (R.F.)
| | - Antonio D’Acierno
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy; (G.A.); (A.D.); (F.F.); (R.C.); (V.D.F.)
| | - Florinda Fratianni
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy; (G.A.); (A.D.); (F.F.); (R.C.); (V.D.F.)
| | - Vincenzo Candido
- Department of European and Mediterranean Culture, University of Basilicata, Via Lanera, 20, 75100 Matera, Italy;
| | - Raffaele Coppola
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy; (G.A.); (A.D.); (F.F.); (R.C.); (V.D.F.)
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Vincenzo De Feo
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy; (G.A.); (A.D.); (F.F.); (R.C.); (V.D.F.)
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (F.P.); (L.C.); (R.F.)
| |
Collapse
|
12
|
Xu S, Liao Y, Wang Q, Liu L, Yang W. Current studies and potential future research directions on biological effects and related mechanisms of allicin. Crit Rev Food Sci Nutr 2022; 63:7722-7748. [PMID: 35293826 DOI: 10.1080/10408398.2022.2049691] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Allicin, a thiosulfonate extract from freshly minced garlic, has been reported to have various biological effects on different organs and systems of animals and human. It can reduce oxidative stress, inhibit inflammatory response, resist pathogen infection and regulate intestinal flora. In addition, dozens of studies also demonstrated allicin could reduce blood glucose level, protect cardiovascular system and nervous system, and fight against cancers. Allicin was widely used in disease prevention and health care. However, more investigations on human cohort study are needed to verify the biological or clinical effects of allicin in the future. In this review, we summarized the biological effects of allicin from previous outstanding and valuable studies and provided useful information for future studies on the health effects of allicin.
Collapse
Affiliation(s)
- Shiyin Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| | - Qi Wang
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Olawuwo OS, Famuyide IM, McGaw LJ. Antibacterial and Antibiofilm Activity of Selected Medicinal Plant Leaf Extracts Against Pathogens Implicated in Poultry Diseases. Front Vet Sci 2022; 9:820304. [PMID: 35310417 PMCID: PMC8926311 DOI: 10.3389/fvets.2022.820304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistant poultry pathogens are responsible for treatment failure and economic losses, and can also be a source of resistant zoonotic infections representing a risk to human health. In 2006 the European Union banned the use of antibiotics as growth promoters in farm animals and other regions are likely to follow suit. Alternative products and strategies are sought to help maintain animal gut health to reduce the prevalence of pathogens in the food chain. The minimum inhibitory concentration (MIC) of organic and aqueous leaf extracts of Alchornea laxiflora, Ficus exasperata, Morinda lucida, Jatropha gossypiifolia, Ocimum gratissimum, and Acalypha wilkesiana were tested against bacterial poultry pathogens including Staphylococcus aureus, Enterococcus faecalis, Salmonella spp., Escherichia coli, Campylobacter spp., and fungal species (Aspergillus fumigatus, Aspergillus flavus, and Candida albicans) using a 2-fold serial microdilution method. Activity of extracts against biofilms of the pathogens was done using a modified crystal violet staining in vitro assay. The safety of extracts was determined against Vero and Caco-2 cells using a tetrazolium-based in vitro assay. Acetone and cold water extracts of M. lucida had the best activity against three bacteria (MIC = 0.05-0.07 mg/ml) and two fungal (MIC = 0.03-0.15 mg/ml) organisms, respectively. The E. coli isolate and A. flavus were the most susceptible bacteria and fungi, respectively. Caco-2 cells generally displayed higher selectivity index (SI) values compared to Vero cells and average SI values against Vero and Caco-2 cells for both bacteria and fungi ranged from 0.01 to 4.48 and 0.005 to 16.41, respectively. All plant extracts had good anti-biofilm activity (>50%) against at least one organism. The disruption of established biofilm growth by the plant samples proved to be more difficult to achieve than efficacy against planktonic forms of bacteria. This study shows that some of the plant species are potential candidates as alternative feed additives in poultry production. In the future, a poultry feed trial to evaluate their in vivo efficacy as herbal feed additives will be conducted.
Collapse
Affiliation(s)
| | | | - Lyndy J. McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
14
|
Snoussi M, Noumi E, Hajlaoui H, Bouslama L, Hamdi A, Saeed M, Alreshidi M, Adnan M, Al-Rashidi A, Aouadi K, Ghannay S, Ceylan O, De Feo V, Kadri A. Phytochemical Profiling of Allium subhirsutum L. Aqueous Extract with Antioxidant, Antimicrobial, Antibiofilm, and Anti-Quorum Sensing Properties: In Vitro and In Silico Studies. PLANTS 2022; 11:plants11040495. [PMID: 35214828 PMCID: PMC8878528 DOI: 10.3390/plants11040495] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/16/2022]
Abstract
The present study was the first to evaluate the phytochemical composition, antioxidant, antimicrobial, antibiofilm, and anti-quorum sensing potential of Allium subhirsutum L. (hairy garlic) aqueous extract through in vitro and in silico studies. The phytochemical profile revealed the presence of saponins, terpenes, flavonols/flavonones, flavonoids, and fatty acids, particularly with flavonoids (231 ± 0.022 mg QE/g extract), tannins (159 ± 0.006 mg TAE/g extract), and phenols (4 ± 0.004 mg GAE/g extract). Gas chromatography–mass spectrometry (GC–MS) analysis identified 15 bioactive compounds, such as 5-hydroxymethylfurfural (37.04%), methyl methanethiolsulfonate (21.33%), furfural (7.64%), beta-D-glucopyranose, 1,6-anhydro- (6.17%), 1,6-anhydro-beta-D-glucofuranose (3.6%), trisulfide, di-2-propenyl (2.70%), and diallyl disulfide (1.93%). The extract was found to be non-toxic with 50% cytotoxic concentration higher than 30,000 µg/mL. The investigation of the antioxidant activity via DPPH (2, 2-diphenyl-1-picrylhydrazyl) and FRAP (IC50 = 1 μg/mL), ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); IC50 = 0.698 ± 0.107 μg/mL), and β-carotene (IC50 = 0.811 ± 0.036 mg/mL) was assessed. Nevertheless, good antimicrobial potential against a diverse panel of microorganisms with bacteriostatic and fungistatic effect was observed. Quorum sensing inhibition effects were also assessed, and the data showed the ability of the extract to inhibit the production of violacein by the mutant C. violaceum strain in concentration-dependent manner. Similarly, the biofilm formation by all tested strains was inhibited at low concentrations. In silico pharmacokinetic and toxicological prediction indicated that, out of the sixteen identified compounds, fourteen showed promising drug ability and could be used as lead compounds for further development and drug design. Hence, these findings support the popular use of hairy garlic as a source of bioactive compounds with potential application for human health.
Collapse
Affiliation(s)
- Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.); (M.A.); (M.A.); (A.A.-R.)
- Laboratory of Genetics, Biodiversity and Valorisation of Bioressources, High Institute of Biotechnology, University of Monastir, Monastir 5000, Tunisia
- Correspondence: (M.S.); (V.D.F.); Tel.: +966-530-463-706 (M.S.); Fax: +39-089-969-602 (V.D.F.)
| | - Emira Noumi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.); (M.A.); (M.A.); (A.A.-R.)
- Laboratory of Bioressources: Integrative Biology and Recovery, High Institute of Biotechnology, University of Monastir, Monastir 5000, Tunisia
| | - Hafed Hajlaoui
- Research Unit Valorization and Optimization of Resource Exploitation (UR16ES04), Faculty of Science and Technology of Sidi Bouzid, Campus University Agricultural City, University of Kairouan, Sidi Bouzid 9100, Tunisia;
| | - Lamjed Bouslama
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria (CBBC), BP 901, Hammam Lif 2050, Tunisia;
| | - Assia Hamdi
- Laboratoire de Développement Chimique Galénique et Pharmacologique des Médicaments, Faculté’ de Pharmacie, Université de Monastir, Monastir 5000, Tunisia;
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.); (M.A.); (M.A.); (A.A.-R.)
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.); (M.A.); (M.A.); (A.A.-R.)
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.); (M.A.); (M.A.); (A.A.-R.)
| | - Ayshah Al-Rashidi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.); (M.A.); (M.A.); (A.A.-R.)
| | - Kaïss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (K.A.); (S.G.)
- Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5019, Tunisia
| | - Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (K.A.); (S.G.)
| | - Ozgur Ceylan
- Ula Ali Kocman Vocational School, Mugla SitkiKocman University, Mugla 48147, Turkey;
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy
- Correspondence: (M.S.); (V.D.F.); Tel.: +966-530-463-706 (M.S.); Fax: +39-089-969-602 (V.D.F.)
| | - Adel Kadri
- Department of Chemistry, College of Science and Arts in Baljurashi, Albaha University, Albaha 65731, Saudi Arabia;
- Department of Chemistry, Faculty of Science of Sfax, University of Sfax, B.P. 1171, Sfax 3000, Tunisia
| |
Collapse
|
15
|
Rafey HA, Shah AH, Khalid Khan M, Kamran M, Tayyab M. Evaluation of the antibiofilm and antimicrobial activities of Glycyrrhiza glabra and Viola odorata in poly herbal formulations. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Traditional polyherbal formulations are essential part of health system in various populations in the subcontinent region including Pakistan, however scientific evaluation of such claims are not significant. In this investigation, the antibiofilm and antimicrobial activities of Glycyrrhiza glabra and Viola odorata, two important ingredients of a traditional herbal formulation were determined in synergism. Various fractions of plants extract were prepared in the order of polarity. All fractions were tested against Gram negative (Streptococcus pneumoniae, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa) and Gram positive (Staphylococcus aureus and Salmonella typhi) bacteria and antimicrobial activity was assessed using agar diffusion method. The MIC (Minimum Inhibitory concentration), was assessed. Finally antibiofilm activities were determined using 96 micro wells plate by calculating percent inhibition. In case of Viola oldorata, the inhibition zone ranged between (6 mm to 18 mm±1.24) against the test strains. The highest inhibition was recorded against gram positive bacteria Strep: Pneumoniae (20 mm±0.99) followed by S. aureus (18 mm±1.02) using methanolic extract. A moderate level of inhibition was seen in case of Glycyrrhiza glabra against the microbial strains. It was noticed that Glycyrrhiza Glabra was more active against gram negative bacteria. The methanolic fraction presented highest activity against e coli (18 mm±0.96) followed by K. pneumoniae and P. aureginosa (12 mm±1.22).The MIC ranged between 4–8 mg/mL. During antibiofilm assay, a moderate level of inhibition occurs using the Viola odorata (40%inhibition) and Glycyrrhiza glabra (45%inhibition), that increased by using combination of both plants in 50:50 ratio. It was concluded that the effective properties of indigenous poly herbal formulation are due to synergism causing greater antibiofilm characteristics against the biofilm producer strains as well as other pathogenic microorganisms.
Collapse
Affiliation(s)
- Hafiz Abdul Rafey
- NPRL (Natural Products Research Lab) Department of Pharmacognosy, Faculty of Pharmacy, Gomal University D.I.Khan, KPK, Pakistan
| | - Abdul Haleem Shah
- Department of Biological Sciences / Dean of Sciences, Gomal University, D.I.Khan, KPK, Pakistan
| | - Muhammad Khalid Khan
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, D.I.Khan. KPK, Pakistan
| | - Muhammad Kamran
- NPRL (Natural Products Research Lab) Department of Pharmacognosy, Faculty of Pharmacy, Gomal University D.I.Khan, KPK, Pakistan
| | - Muhammad Tayyab
- NPRL (Natural Products Research Lab) Department of Pharmacognosy, Faculty of Pharmacy, Gomal University D.I.Khan, KPK, Pakistan
| |
Collapse
|
16
|
Rahman MM, Rahaman MS, Islam MR, Hossain ME, Mannan Mithi F, Ahmed M, Saldías M, Akkol EK, Sobarzo-Sánchez E. Multifunctional Therapeutic Potential of Phytocomplexes and Natural Extracts for Antimicrobial Properties. Antibiotics (Basel) 2021; 10:1076. [PMID: 34572660 PMCID: PMC8468069 DOI: 10.3390/antibiotics10091076] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
Natural products have been known for their antimicrobial factors since time immemorial. Infectious diseases are a worldwide burden that have been deteriorating because of the improvement of species impervious to various anti-infection agents. Hence, the distinguishing proof of antimicrobial specialists with high-power dynamic against MDR microorganisms is central to conquer this issue. Successful treatment of infection involves the improvement of new drugs or some common source of novel medications. Numerous naturally occurring antimicrobial agents can be of plant origin, animal origin, microbial origin, etc. Many plant and animal products have antimicrobial activities due to various active principles, secondary metabolites, or phytochemicals like alkaloids, tannins, terpenoids, essential oils, flavonoids, lectins, phagocytic cells, and many other organic constituents. Phytocomplexes' antimicrobial movement frequently results from a few particles acting in cooperative energy, and the clinical impacts might be because of the direct effects against microorganisms. The restorative plants that may furnish novel medication lead the antimicrobial movement. The purpose of this study is to investigate the antimicrobial properties of the phytocomplexes and natural extracts of the plants that are ordinarily being utilized as conventional medications and then recommended the chance of utilizing them in drugs for the treatment of multiple drug-resistant disease.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Md. Emon Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Faria Mannan Mithi
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Marianela Saldías
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey;
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile;
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
17
|
Bhatwalkar SB, Mondal R, Krishna SBN, Adam JK, Govender P, Anupam R. Antibacterial Properties of Organosulfur Compounds of Garlic ( Allium sativum). Front Microbiol 2021; 12:613077. [PMID: 34394014 PMCID: PMC8362743 DOI: 10.3389/fmicb.2021.613077] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Garlic (Allium sativum), a popular food spice and flavoring agent, has also been used traditionally to treat various ailments especially bacterial infections for centuries in various cultures around the world. The principal phytochemicals that exhibit antibacterial activity are oil-soluble organosulfur compounds that include allicin, ajoenes, and allyl sulfides. The organosulfur compounds of garlic exhibit a range of antibacterial properties such as bactericidal, antibiofilm, antitoxin, and anti-quorum sensing activity against a wide range of bacteria including multi-drug resistant (MDR) strains. The reactive organosulfur compounds form disulfide bonds with free sulfhydryl groups of enzymes and compromise the integrity of the bacterial membrane. The World Health Organization (WHO) has recognized the development of antibiotic resistance as a global health concern and emphasizes antibiotic stewardship along with the urgent need to develop novel antibiotics. Multiple antibacterial effects of organosulfur compounds provide an excellent framework to develop them into novel antibiotics. The review provides a focused and comprehensive portrait of the status of garlic and its compounds as antibacterial agents. In addition, the emerging role of new technologies to harness the potential of garlic as a novel antibacterial agent is discussed.
Collapse
Affiliation(s)
- Sushma Bagde Bhatwalkar
- Department of Biotechnology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | - Rajesh Mondal
- Indian Council of Medical Research, Bhopal Memorial Hospital & Research Centre, Bhopal, India
| | - Suresh Babu Naidu Krishna
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban, South Africa
| | - Jamila Khatoon Adam
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban, South Africa
| | - Patrick Govender
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Rajaneesh Anupam
- Department of Biotechnology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| |
Collapse
|
18
|
Investigating Ghanaian Allium Species for Anti-Infective and Resistance-Reversal Natural Product Leads to Mitigate Multidrug-Resistance in Tuberculosis. Antibiotics (Basel) 2021; 10:antibiotics10080902. [PMID: 34438951 PMCID: PMC8388710 DOI: 10.3390/antibiotics10080902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
The bulbs of Allium species are a known source of antibacterial phytochemicals. Anti-infective, efflux pump and biofilm inhibitory activities of bulb extracts of selected Ghanaian shallots Allium cepa var aggregatum were evaluated using the HT-SPOTi assay and other whole-cell phenotypic screening techniques to determine their possible mechanisms of action. Ethanol and aqueous extracts of white A. cepa inhibited the growth of Mycobacterium smegmatis mc2 155 and Escherichia coli, respectively. The majority of the Allium extracts significantly (p < 0.05) exhibited efflux pump inhibitory activity against all the acid-fast, Gram-positive and Gram-negative strains used. Hexane and chloroform extract of the pink A. cepa and the aqueous extract of the white A. cepa significantly inhibited M. smegmatis biofilm formation. For Pseudomonas aeruginosa, the inhibition was observed at 250 µg/mL for the aqueous extract (~77.34%) and 125 µg/mL for the hexane extract (~76.51%). The results suggest that Ghanaian shallots could potentially be useful when further developed to tackle antimicrobial resistance, particularly in tuberculosis (TB).
Collapse
|
19
|
Erhabor RC, Aderogba MA, Erhabor JO, Nkadimeng SM, McGaw LJ. In vitro bioactivity of the fractions and isolated compound from Combretum elaeagnoides leaf extract against selected foodborne pathogens. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113981. [PMID: 33647425 DOI: 10.1016/j.jep.2021.113981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Combretum species are used traditionally for the treatment of diarrhoea, hookworm, fever, inflammation, pain and infectious diseases. Infections are commonly caused by the intake of food contaminated with foodborne pathogens. These are a significant concern in the food industry owing to their ability to form biofilms and cause food spoilage, despite the availability of modern food preservation techniques. Combretum elaeagnoides Klotzsch (Combretaceae) is used in southern African traditional medicine against infections and diarrhoea. AIM OF THE STUDY This study evaluated the antimicrobial ability of C. elaeagnoides leaf fractions and the isolated compound quercetin-3-O-rhamnoside against a panel of foodborne pathogens, and biofilms formed by them. The samples were also assessed for their antioxidant activity and cytotoxicity. MATERIALS AND METHODS Fractions prepared from the methanol extract of the leaves, and a bioactive compound (quercetin-3-O-rhamnoside) isolated from the ethyl acetate fraction were investigated for activity against nine reference and clinical strains of foodborne pathogens. The microdilution method was used to determine the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of the fractions and compound. The inhibition of biofilm formation and the crystal violet staining assays were used to determine the antibiofilm efficacy. The DPPH (2, 2-diphenyl-1-picrylhydrazyl) assay and the 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) electron reduction assay were used to determine the antioxidant potential of the fractions and compound. The cytotoxicity was assessed using the 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay against Vero African monkey kidney cells. RESULTS The fractions were active against all tested organisms, with MIC values ranging from 0.03 to 1.25 mg/mL. The best MBC was 0.63 mg/mL. All the fractions and the purified compound inhibited biofilm formation of Staphylococcus aureus and Salmonella Typhimurium, with percentage inhibition values greater than 50% at 1 mg/mL. The compound had very promising antibiofilm activity against Escherichia coli 1 (ATCC 25922) with percentage inhibition of >150%. The compound and fractions had good radical scavenging potential against the DPPH and ABTS radicals. Quercetin-3-O-rhamnoside and the fractions were relatively non-cytotoxic. CONCLUSION The ability of the fractions and compound to reduce and inhibit biofilm biomass and their promising antioxidant potential provide motivation to further investigate the use of plants to protect food products from contamination, as well as to treat infections characterized by bacterial biofilms.
Collapse
Affiliation(s)
- Rosemary C Erhabor
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X01, Onderstepoort, 0110, South Africa.
| | - Mutalib A Aderogba
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X01, Onderstepoort, 0110, South Africa; Department of Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria.
| | - Joseph O Erhabor
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X01, Onderstepoort, 0110, South Africa; Phytomedicine Unit, Department of Plant Biology and Biotechnology, University of Benin, PMB, 1154, Benin City, Nigeria.
| | - Sanah M Nkadimeng
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X01, Onderstepoort, 0110, South Africa.
| | - Lyndy J McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X01, Onderstepoort, 0110, South Africa.
| |
Collapse
|
20
|
Yong YY, Ong MWK, Dykes G, Choo WS. Betacyanin-inhibited biofilm formation of co-culture of Staphylococcus aureus and Pseudomonas aeruginosa on different polymer surfaces. FEMS Microbiol Lett 2020; 368:6041720. [PMID: 33338235 DOI: 10.1093/femsle/fnaa214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus and Pseudomonas aeruginosa are bacteria that cause biofilm-associated infections. The aim of this study was to determine the activity of combined betacyanin fractions from Amaranthus dubius (red spinach) and Hylocereus polyrhizus (red pitahaya) against biofilms formed by co-culture of S. aureus and P. aeruginosa on different polymer surfaces. Various formulations containing different concentrations of the betacyanin fractions were investigated for biofilm-inhibiting activity on polystyrene surfaces using crystal violet assay and scanning electron microscopy. A combination of each betacyanin fraction (0.625 mg mL-1) reduced biofilm formation of five S. aureus strains and four P. aeruginosa strains from optical density values of 1.24-3.84 and 1.25-3.52 to 0.81-2.63 and 0.80-1.71, respectively. These combined fractions also significantly inhibited dual-species biofilms by 2.30 and reduced 1.0-1.3 log CFU cm-2 bacterial attachment on polymer surfaces such as polyvinyl chloride, polyethylene, polypropylene and silicone rubber. This study demonstrated an increase in biofilm-inhibiting activity against biofilms formed by two species using combined fractions than that by using single fractions. Betacyanins found in different plants could collectively be used to potentially decrease the risk of biofilm-associated infections caused by these bacteria on hydrophobic polymers.
Collapse
Affiliation(s)
- Yi Yi Yong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Michelle Wei Kim Ong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Gary Dykes
- School of Public Health, Curtin University, 6102, Bentley, Western Australia, Australia
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
21
|
Caputo L, Amato G, Fratianni F, Coppola R, Candido V, De Feo V, Nazzaro F. Chemical Characterization and Antibiofilm Activities of Bulbs and Leaves of Two Aglione ( Allium ampeloprasum var. holmense Asch. et Graebn.) Landraces Grown in Southern Italy. Molecules 2020; 25:molecules25235486. [PMID: 33255153 PMCID: PMC7727684 DOI: 10.3390/molecules25235486] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 11/25/2022] Open
Abstract
The present study was carried out to determine some biochemical characteristics, in particular the total polyphenol content and the free radical scavenging activity, of the extracts recovered from bulbs and aerial parts (these last often considered as by-products) of two landraces of A. ampeloprasum var. holmense cultivated in Southern Italy. For the first time, the capacity of the extracts of these landraces to inhibit the formation of biofilm of different Gram-negative and Gram-positive bacteria and to affect the metabolism of the cells present within the bacterial biofilm was evaluated. All extracts exhibited an amount of total polyphenols not lower than 2.86 mg/g of dried product and revealed a noteworthy antioxidant activity, with EC50 values not exceeding 4.95 mg. In both cases, the aerial parts extracts were more effective than the bulb extracts, which also showed a minor amount of total polyphenols. The extracts inhibited mainly the adhesive capability of Pseudomonas aeruginosa and Staphylococcus aureus, by 95.78% and 85.01%, respectively. The extracts demonstrated to inhibit also the metabolism of the bacterial cells reaching levels up to 90%. Finally, as assessed by the assays performed on the 24-h preformed biofilms, all the extracts were also capable to cause a reduction in bacterial biomass and to affect their metabolism.
Collapse
Affiliation(s)
- Lucia Caputo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 84084 Salerno, Italy; (L.C.); (G.A.)
| | - Giuseppe Amato
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 84084 Salerno, Italy; (L.C.); (G.A.)
| | - Florinda Fratianni
- Institute of Food Sciences, CNR-ISA, Via Roma 64, 83100 Avellino, Italy;
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via de Sanctis snc, 86100 Campobasso, Italy;
| | - Vincenzo Candido
- School of Agricultural, Forest, Food and Environmental Sciences, University of Basilicata, Viale dell’Ateneo Lucano, 85100 Potenza, Italy;
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 84084 Salerno, Italy; (L.C.); (G.A.)
- Correspondence: (V.D.F.); (F.N.); Tel.: +39-089-969-751 (V.D.F.); +39-082-529-9102 (F.N.)
| | - Filomena Nazzaro
- Institute of Food Sciences, CNR-ISA, Via Roma 64, 83100 Avellino, Italy;
- Correspondence: (V.D.F.); (F.N.); Tel.: +39-089-969-751 (V.D.F.); +39-082-529-9102 (F.N.)
| |
Collapse
|
22
|
Abifarin TO, Otunola GA, Afolayan AJ. Assessment of the phytochemical, antioxidant and antibacterial activities of Heteromorpha arborescens (Spreng.) Cham & Schltdl. leaf extracts. F1000Res 2020; 9:1079. [PMID: 33093952 PMCID: PMC7533734 DOI: 10.12688/f1000research.25197.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Heteromorpha arborescens (Spreng.) Cham. and Schltdl (Apiaceae) is widely used traditionally for the treatment of a wide range of diseases in Southern and Eastern Africa. Although previous studies have reported the biological activities of hexane, ethyl acetate and methanol extracts of H. arborescens leaves, there is no scientific information on the phytochemical contents, antioxidant and antibacterial activities of acetone, ethanol, aqueous and blanched extracts. This study is therefore aimed to investigate and compare the phytochemical contents, antioxidant and antibacterial activities of acetone, ethanol, aqueous and blanched extracts of H. arborescens leaves. Methods: Phytochemical analysis for the total phenolic, flavonoid, proanthocyanidin, alkaloid and saponin contents of all the fractions were determined by spectroscopic methods, while the free radical scavenging potential of the extracts were evaluated using DPPH, ABTS radical scavenging and total antioxidant capacity assays. Micro dilution method was used to determine the Minimum Inhibitory Concentrations (MIC) of H. arborescens leaf extracts against Bacillus pumilus, Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. Results: Total phenol content of the extracts ranged between 15.10 mg GAE/g- 42.50 mg GAE/g, proanthocyanidin was 459-8402.1 mg QE/g, and flavonoid content of 109.24-235.79 mg QE/g. In addition, alkaloids (5.59%) and saponins (23.33%) were present in significant amounts. Based on the IC 50 values, the ethanol extract exhibited the highest total antioxidant activity (0.013 mg/mL) with highest inhibition against DPPH and ABTS radicals (0.06 and 0.049 mg/mL respectively). Considerable antibacterial activities were observed in the acetone, ethanol and blanched extracts with MIC values ranging from 1.563-12.5 mg/mL; however, the aqueous extract was inactive against all the bacteria strains. Conclusion: The study suggests that H. arborescens leaves could be a valuable source of bioactive compounds. Although the blanching process significantly decreased polyphenolic contents and antioxidant activities of the extracts, it increased the antibacterial compounds.
Collapse
Affiliation(s)
- Taiwo Oluwafunmilola Abifarin
- Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, University of Fort Hare, Alice 5700, Eastern Cape, South Africa
| | - Gloria Aderonke Otunola
- Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, University of Fort Hare, Alice 5700, Eastern Cape, South Africa
| | - Anthony Jide Afolayan
- Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, University of Fort Hare, Alice 5700, Eastern Cape, South Africa
| |
Collapse
|
23
|
Is combined medication with natural medicine a promising therapy for bacterial biofilm infection? Biomed Pharmacother 2020; 128:110184. [DOI: 10.1016/j.biopha.2020.110184] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 12/11/2022] Open
|
24
|
Combined effects of Allium sativum and Cuminum cyminum essential oils on planktonic and biofilm forms of Salmonella typhimurium isolates. 3 Biotech 2020; 10:315. [PMID: 32596100 DOI: 10.1007/s13205-020-02286-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022] Open
Abstract
Sa lmonella typhimurium (S. typhimurium) represents an important global public health problem and has the ability to survive under desiccation conditions in foods and food processing facilities for years. The aim of this study was to investigate the effects of Allium sativum (A. sativum) and Cuminum cyminum (C. cyminum) essential oils (EOs) against planktonic growth, biofilm formation and quorum sensing (QS) of S. Typhimurium isolates, the strong biofilm producers. The major components of EOs were determined by gas chromatography-mass spectrometry (GC-MS). Biofilm formation of S. Typhimurium isolates was measured by crystal violet staining. Then, the effects of the EOs on the planktonic cell growth (using determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)), measurement of the synergistic effects of EOs (using checkerboard method), biofilm formation (using microtiter-plate test and scanning electron microscope (SEM)), and expression of QS and cellulose synthesis genes (using quantitative real-time PCR) were assessed. Finally, tetrazolium-based colorimetric (MTT) assay was used to examine EOs cytotoxicity on the Vero cell line. GC-MS analysis showed that terpineol, carene and pinene in C. cyminum EO and sulfur compounds in A. sativum EO were the major components of the plant extract. The Geometric mean of MIC values of the A. sativum and C. cyminum were 0.66 and 2.62 μL mL-1, respectively. The geometric means of the fractional inhibitory concentration index (FICi) for both EOs were calculated as 1.05. The qPCR results showed that MIC/2 concentrations of both EOs significantly down-regulated of QS (sdiA and luxS) and cellulose synthesis (csgD and adrA) genes. Scanning electron microscopy showed the EOs reduced the amount of S. Typhimurium mature biofilm. In general, we showed that C. cyminum and A. sativum EOs can be considered as the potential agents against planktonic and biofilm form of S. Typhimurium without any concern of cytotoxic effect at 4 MIC concentrations on the eukaryotic Vero cells.
Collapse
|
25
|
Somrani M, Inglés MC, Debbabi H, Abidi F, Palop A. Garlic, Onion, and Cinnamon Essential Oil Anti-biofilms' Effect against Listeria monocytogenes. Foods 2020; 9:E567. [PMID: 32375294 PMCID: PMC7278783 DOI: 10.3390/foods9050567] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
Biofilms represent a serious problem for food industries due to their persistence in processing surfaces, from which they can cause food spoilage or, even worse, lead to foodborne diseases. Microorganisms immersed in biofilms are more resistant to biocides. The search for natural effective alternatives for the prevention and the control of biofilms has increased lately. The aim of this research was to test the antibacterial and the anti-biofilm activities of cinnamon, onion, and garlic essential oils against Listeria monocytogenes. The methodology highlighted first the effect of these essential oils on L. monocytogenes using disc diffusion and minimum inhibitory concentration (MIC) methods and then on initial cell attachment and six hours preformed biofilms. The inhibition of biofilms was assessed by crystal violet assay. Sulfides were the most abundant compounds present in onion and garlic essential oils, while cinnamaldehyde was predominant in cinnamon essential oil. MIC values were of 0.025 mg mL-1 for onion essential oil and 0.100 mg mL-1 for cinnamon and garlic. Onion essential oil inhibited initial cell attachment by 77% at 0.5 of the MIC dose, while at MIC, cinnamon and garlic essential oils inhibited the initial microbial adhesion completely. All three essential oils completely inhibited initial cell attachment when applied at 2 MIC. On the contrary, preformed biofilms were more resistant, and the inhibition rate ranged from 33% to 78%. In summary, this investigation revealed that the essential oils of garlic, onion, and cinnamon show an effective antibiofilm activity against L. monocytogenes and are promising natural antimicrobial alternatives for food processing facilities.
Collapse
Affiliation(s)
- Mariem Somrani
- Departamento de Ingeniería Agronómica, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain;
- Department of AgriFood Industries, UR17AGR01-PATIO, National Agronomic Institute of Tunisia, University of Carthage, 1082 Tunis, Tunisia;
| | | | - Hajer Debbabi
- Department of AgriFood Industries, UR17AGR01-PATIO, National Agronomic Institute of Tunisia, University of Carthage, 1082 Tunis, Tunisia;
| | - Ferid Abidi
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology, University of Carthage, 1080 Tunis, Tunisia;
| | - Alfredo Palop
- Departamento de Ingeniería Agronómica, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain;
| |
Collapse
|
26
|
Antibacterial and Antibiofilm Properties of Medicinal Plant Extracts against Multi Drug Resistant Staphylococcus Species and Non Fermenter Bacteria. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.42] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
27
|
Di Onofrio V, Gesuele R, Maione A, Liguori G, Liguori R, Guida M, Nigro R, Galdiero E. Prevention of Pseudomonas aeruginosa Biofilm Formation on Soft Contact Lenses by Allium sativum Fermented Extract (BGE) and Cannabinol Oil Extract (CBD). Antibiotics (Basel) 2019; 8:antibiotics8040258. [PMID: 31835470 PMCID: PMC6963262 DOI: 10.3390/antibiotics8040258] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 01/09/2023] Open
Abstract
Two natural mixtures, Allium sativum fermented extract (BGE) and cannabinol oil extract (CBD), were assessed for their ability to inhibit and remove Pseudomonas aeruginosa biofilms on soft contact lenses in comparison to a multipurpose Soft Contact Lens-care solution present on the Italian market. Pseudomonas aeruginosa (ATCC 9027 strain) and Pseudomonas aeruginosa clinical strains isolated from ocular swabs were tested. Quantification of the biofilm was done using the microtiter plate assay and the fractional inhibitory concentration index was calculated. Both forms of Pseudomonas aeruginosa generated biofilms. BGE at minimal inhibitory concentration (MIC) showed inhibition percentages higher than 55% for both strains, and CBD inhibited biofilm formation by about 70%. The care solution at MIC inhibited biofilm formation by about 50% for both strains tested. The effect of BGE on the eradication of the microbial biofilm on soft contact lenses at MIC was 45% eradication for P. aeruginosa ATCC 9027 and 36% for P. aeruginosa clinical strain. For CBD, we observed 24% biofilm eradication for both strains. For the care solution, the eradication MICs were 43% eradication for P. aeruginosa ATCC 9027 and 41% for P. aeruginosa clinical strain. It was observed that both the test soft contact lenses solution/BGE (fractional inhibitory concentration index: 0.450) and the test soft contact lenses solution/CBD (fractional inhibitory concentration index: 0.153) combinations exhibited synergistic antibiofilm activity against most of the studied bacteria. The study showed that BGE and CBD have good effect on inhibition of biofilm formation and removal of preformed biofilms, which makes them promising agents that could be exploited to develop more effective care solutions.
Collapse
Affiliation(s)
- Valeria Di Onofrio
- Department of Sciences and Technologies, University of Naples “Parthenope”, Business District, Block C4, 80143 Naples, Italy;
- Correspondence:
| | - Renato Gesuele
- Department of Biology, University of Naples “Federico II”, Via Cinthia, 80126 Naples, Italy; (R.G.); (A.M.); (M.G.); (E.G.)
| | - Angela Maione
- Department of Biology, University of Naples “Federico II”, Via Cinthia, 80126 Naples, Italy; (R.G.); (A.M.); (M.G.); (E.G.)
| | - Giorgio Liguori
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, Via Medina 40, 80133 Naples, Italy;
| | - Renato Liguori
- Department of Sciences and Technologies, University of Naples “Parthenope”, Business District, Block C4, 80143 Naples, Italy;
| | - Marco Guida
- Department of Biology, University of Naples “Federico II”, Via Cinthia, 80126 Naples, Italy; (R.G.); (A.M.); (M.G.); (E.G.)
| | - Roberto Nigro
- Department of Chemical, Material and Production Engineering, University of Naples “Federico II”, Piazzale V. Tecchio 80, 80125 Naples, Italy;
| | - Emilia Galdiero
- Department of Biology, University of Naples “Federico II”, Via Cinthia, 80126 Naples, Italy; (R.G.); (A.M.); (M.G.); (E.G.)
| |
Collapse
|
28
|
Lahiri D, Dash S, Dutta R, Nag M. Elucidating the effect of anti-biofilm activity of bioactive compounds extracted from plants. J Biosci 2019; 44:52. [PMID: 31180065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Dibyajit Lahiri
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | | | | | | |
Collapse
|
29
|
Potential efficacy of garlic lock therapy in combating biofilm and catheter-associated infections; experimental studies on an animal model with focus on toxicological aspects. Saudi Pharm J 2019; 27:830-840. [PMID: 31516325 PMCID: PMC6734154 DOI: 10.1016/j.jsps.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/14/2019] [Indexed: 12/29/2022] Open
Abstract
Background Life-threatening central venous catheter-related infections are primarily initiated by biofilm formation on the catheter surface. Antibiotic lock therapy is recommended for eradicating intraluminal biofilm. In the era of antibiotic resistance, antibiotics of natural origins provide an effective and cheap option for combating resistant strains. Garlic especially stole the spotlight because of its impressive antimicrobial effectiveness against such superbugs. Aim Is to estimate the potential use of fresh garlic extract (FGE) as a lock agent against multi-drug resistant (MDR) bacteria. Methods The agar well diffusion and broth microdilution techniques were employed to test the antimicrobial activities of FGE against five MDR strains; E. coli, Pseudomonas aeruginosa (P. aeruginosa), Klebsiella pneumoniae (K. pneumoniae), Serratia marscens (S. marscens) and Methicillin-resistant Staphylococcus aureus (MRSA). Then the protective and therapeutic efficiencies of FGE against bacterial biofilms were in-vitro evaluated; at concentrations of 100, 75, 50 and 25%; in tissue culture plate (TCP) and on the polyurethane (PU) sheets using the crystal violet (CV) assay and colony-forming unit (CFU), respectively. Scanning electron microscopy (SEM) was also used to confirm eradication of biofilms on PU sheets. Finally, systemic and deep tissue infections by P. aeruginosa and MRSA were induced in mice that were then treated by FGE at either 100 or 200 mg/kg for seven days. Where the antibacterial activity was assessed by tissue and blood culturing at the end of the treatment period. Biochemical, hematological and histological parameters were also investigated. Results FGE exhibited potent in-vitro and in-vivo antibacterial and antibiofilm activities against MDR strains. It not only didn’t exhibit toxicological effects at the hematological and the histological levels but also provided protective effects as demonstrated by the significant drop in the biochemical parameters. Conclusion FGE has the potential to be used as a prophylactic and/or therapeutic lock agent against biofilm-associated infections caused by MDR bacteria.
Collapse
|
30
|
|
31
|
Liaqat A, Zahoor T, Atif Randhawa M, Shahid M. Characterization and antimicrobial potential of bioactive components of sonicated extract from garlic (
Allium sativum
) against foodborne pathogens. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13936] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Atif Liaqat
- National Institute of Food Science and Technology, University of Agriculture Faisalabad Pakistan
| | - Tahir Zahoor
- National Institute of Food Science and Technology, University of Agriculture Faisalabad Pakistan
| | - Muhammad Atif Randhawa
- National Institute of Food Science and Technology, University of Agriculture Faisalabad Pakistan
| | - Muhammad Shahid
- Department of Biochemistry University of Agriculture Faisalabad Pakistan
| |
Collapse
|
32
|
Lu L, Hu W, Tian Z, Yuan D, Yi G, Zhou Y, Cheng Q, Zhu J, Li M. Developing natural products as potential anti-biofilm agents. Chin Med 2019; 14:11. [PMID: 30936939 PMCID: PMC6425673 DOI: 10.1186/s13020-019-0232-2] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
Biofilm is a natural form of bacterial growth ubiquitously in environmental niches. The biofilm formation results in increased resistance to negative environmental influences including resistance to antibiotics and antimicrobial agents. Quorum sensing (QS) is cell-to-cell communication mechanism, which plays an important role in biofilm development and balances the environment when the bacteria density becomes high. Due to the prominent points of biofilms implicated in infectious disease and the spread of multi-drug resistance, it is urgent to discover new antibacterial agents that can regulate biofilm formation and development. Accumulated evidences demonstrated that natural products from plants had antimicrobial and chemo-preventive properties in modulation of biofilm formation in the last two decades. This review will summarize recent studies on the discovery of natural anti-biofilm agents from plants with clear-cut mechanisms or identified molecular addresses, as well as some herbs with unknown mechanisms or unidentified bioactive ingredients. We also focus on the progression of techniques on the extraction and identification of natural anti-biofilm substances. Besides, anti-biofilm therapeutics undergoing clinical trials are discussed. These newly discovered natural anti-biofilm agents are promising candidates which could provide novel strategies for biofilm-associated infections.
Collapse
Affiliation(s)
- Lan Lu
- 1Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan People's Republic of China.,2Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan People's Republic of China
| | - Wei Hu
- 4Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong People's Republic of China.,5Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Zeru Tian
- 6School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Dandan Yuan
- 7Department of Internal Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong People's Republic of China
| | - Guojuan Yi
- 1Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan People's Republic of China
| | - Yangyang Zhou
- 1Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan People's Republic of China
| | - Qiang Cheng
- 1Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan People's Republic of China
| | - Jie Zhu
- 1Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan People's Republic of China
| | - Mingxing Li
- 2Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan People's Republic of China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan People's Republic of China
| |
Collapse
|
33
|
Effect of Fractioning on Antibacterial Activity of Enantia chlorantha Oliver (Annonaceae) Methanol Extract and Mode of Action. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4831593. [PMID: 29853954 PMCID: PMC5949159 DOI: 10.1155/2018/4831593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/19/2018] [Accepted: 04/01/2018] [Indexed: 11/17/2022]
Abstract
Infectious diseases caused by bacteria constitute the main cause of morbidity and mortality throughout the world and mainly in developing countries. In this work, the influence of fractioning and the mode of action of stem barks methanol extract of Enantia chlorantha were investigated. The aim was to optimize the antibacterial activity of the methanol extract. The extract was prepared by maceration of barks powder in methanol. Fractioning was done using increasing solvents polarity. Standard phytochemical methods were used for phytochemical screening. Minimum Inhibitory Concentrations (MIC) and Minimum Bactericidal Concentration (MBC) of the methanol extract and fractions were determined using broth microdilution method. The studied mode of action of both methanol extract and n-butanol fraction included antibiofilm activity, H+-ATPase-mediated proton pumping assay, salt tolerance, and cells cycle. The methanol extract of E. chlorantha stem barks was found to be active on all the bacteria tested (32 ≤ MIC ≤ 512 μg/mL), its activity being significant (MIC < 100 μg/ml) out of 5 of the 28 clinical isolates used. Salmonella enterica serovar paratyphi A was the most sensitive (32 μg/mL). Compared to the extract and other fractions, the n-butanol fraction was found to be more active (32 ≤ MIC ≤ 256). Significant antibacterial activity of this fraction was observed out of 10 of the 28 bacterial isolates and 3 out of 7 bacterial strains. Lowest MIC values (32 μg/ml) of this fraction were obtained with Escherichia coli (136), Pseudomonas aeruginosa (CIP 76110), and Salmonella enterica serovar typhi 9. The methanol extract of E. chlorantha and its n-butanol fraction revealed several modes of action including the prolongation of the latency phase of the bacterial growth, the inhibition of the pump with protons H+ - ATPases bacterial, the loss of the salt tolerance of the Staphylococcus aureus, and inhibition of the formation of the bacterial biofilm. The present results showed that the n-butanol fraction of the methanol stem barks extract of E. chlorantha possess the essential antibacterial components and could best be used to fight against bacterial infections as compared to methanol extract.
Collapse
|
34
|
Shukla S, Park J, Park JH, Lee JS, Kim M. Development of novel Meju starter culture using plant extracts with reduced Bacillus cereus counts and enhanced functional properties. Sci Rep 2017; 7:11409. [PMID: 28900166 PMCID: PMC5595882 DOI: 10.1038/s41598-017-09551-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/24/2017] [Indexed: 12/23/2022] Open
Abstract
We developed a novel type of Meju starter culture using single and combined extracts of Allium sativum (garlic clove), Nelumbo nucifera (lotus leaves), and Ginkgo biloba (ginkgo leaves) to improve the quality and functionality of Meju-based fermented products. Meju samples fermented with plant extracts (10 mg/ml) showed phenolic contents of 11.4-31.6 mg/g (gallic acid equivalents). Samples of extracts (garlic clove, lotus leaves, ginkgo leaves and their combination) fermented with Meju strongly inhibited tyrosinase, α-glucosidase, and elastase activities by 36.43-64.34%, 45.08-48.02%, and 4.52-10.90%, respectively. Specifically, ginkgo leaves extract added to fermented Meju samples at different concentrations (1% and 10%) strongly inhibited tyrosinase, α-glucosidase, and elastase activities and exhibited a potent antibacterial effect against Bacillus cereus with a significant reduction in bacterial counts compared with the effects observed for garlic clove and lotus leaf added to Meju samples. Scanning electron microscopy revealed severe morphological alterations of the B. cereus cell wall in response to ginkgo leaf extracts. Gas chromatographic mass spectroscopic analysis of plant extract-supplemented Meju samples and control Meju samples identified 113 bioactive compounds representing 98.44-99.98% total extract. The proposed approach may be useful for the development of various fermented functional foods at traditional and commercial levels.
Collapse
Affiliation(s)
- Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul, 04620, Republic of Korea
- Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Juyeon Park
- Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Jung Hyun Park
- Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Jong Suk Lee
- Department of Food, Nutrition and Cooking, Taegu Science University, Daegu, 41453, Republic of Korea
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|