1
|
Hu C, Zhang N, Xu D, Chen Z, Yu J, Yang Z, Zhang C. Clinical presentations and diagnostic approaches of pediatric necrotizing tracheobronchitis with influenza A virus and Staphylococcus aureus co-infections. Sci Rep 2024; 14:20880. [PMID: 39242687 PMCID: PMC11379925 DOI: 10.1038/s41598-024-71867-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
In March 2023, our pediatric intensive care unit (PICU) retrospectively examined six cases of pediatric necrotizing tracheobronchitis (NTB), focusing on co-infections with influenza A virus (IAV) and Staphylococcus aureus (S. aureus). This study aimed to elucidate NTB's clinical characteristics, diagnostics, and therapeutic approaches. Diagnostics included symptom assessment, microbiological testing that confirmed all patients were positive for IAV H1N1 with a predominant S. aureus co-infection, and bronchoscopy. The patients predominantly exhibited fever, cough, and dyspnea. Laboratory analysis revealed decreased lymphocyte counts and elevated infection markers like C-reactive protein and procalcitonin. Chest computed tomography (CT) scans detected tracheobronchial obstructions in half of the cases, while bronchoscopy showed severe mucosal congestion, edema, necrosis, and purulent-hemorrhagic exudates. Treatments encompassed comprehensive strategies like oxygen therapy, intubation, bronchoscopic interventions, thoracentesis, oseltamivir, and a regimen of antibiotics. Our findings suggested potential correlations between clinical markers, notably lymphocyte count and procalcitonin, and clinical interventions such as the number of rescues and intensive care unit (ICU) duration. This research highlights the importance of early detection and the role of bronchoscopy and specific markers in assessing NTB, advocating for continued research in larger cohorts to better understand its clinical trajectory and refine treatment approaches for this challenging pediatric disease.
Collapse
Affiliation(s)
- Chanchan Hu
- Department of Pediatric Intensive Care Unit (PICU), Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Nan Zhang
- Department of Pediatric Intensive Care Unit (PICU), Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Dan Xu
- Department of Pediatric Intensive Care Unit (PICU), Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Zhenjie Chen
- Department of Pediatric Intensive Care Unit (PICU), Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Jia Yu
- Department of Pediatric Intensive Care Unit (PICU), Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Zihao Yang
- Department of Pediatric Intensive Care Unit (PICU), Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| | - Chenmei Zhang
- Department of Pediatric Intensive Care Unit (PICU), Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| |
Collapse
|
2
|
Mazuryk J, Klepacka K, Kutner W, Sharma PS. Glyphosate: Hepatotoxicity, Nephrotoxicity, Hemotoxicity, Carcinogenicity, and Clinical Cases of Endocrine, Reproductive, Cardiovascular, and Pulmonary System Intoxication. ACS Pharmacol Transl Sci 2024; 7:1205-1236. [PMID: 38751624 PMCID: PMC11092036 DOI: 10.1021/acsptsci.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 05/18/2024]
Abstract
Glyphosate (GLP) is an active agent of GLP-based herbicides (GBHs), i.e., broad-spectrum and postemergent weedkillers, commercialized by Monsanto as, e.g., Roundup and RangerPro formulants. The GBH crop spraying, dedicated to genetically engineered GLP-resistant crops, has revolutionized modern agriculture by increasing the production yield. However, abusively administered GBHs' ingredients, e.g., GLP, polyoxyethyleneamine, and heavy metals, have polluted environmental and industrial areas far beyond farmlands, causing global contamination and life-threatening risk, which has led to the recent local bans of GBH use. Moreover, preclinical and clinical reports have demonstrated harmful impacts of GLP and other GBH ingredients on the gut microbiome, gastrointestinal tract, liver, kidney, and endocrine, as well as reproductive, and cardiopulmonary systems, whereas carcinogenicity of these herbicides remains controversial. Occupational exposure to GBH dysregulates the hypothalamic-pituitary-adrenal axis, responsible for steroidogenesis and endocrinal secretion, thus affecting hormonal homeostasis, functions of reproductive organs, and fertility. On the other hand, acute intoxication with GBH, characterized by dehydration, oliguria, paralytic ileus, as well as hypovolemic and cardiogenic shock, pulmonary edema, hyperkalemia, and metabolic acidosis, may occur fatally. As no antidote has been developed for GBH poisoning so far, the detoxification is mainly symptomatic and supportive and requires intensive care based on gastric lavage, extracorporeal blood filtering, and intravenous lipid emulsion infusion. The current review comprehensively discusses the molecular and physiological basics of the GLP- and/or GBH-induced diseases of the endocrine and reproductive systems, and cardiopulmonary-, nephro-, and hepatotoxicities, presented in recent preclinical studies and case reports on the accidental or intentional ingestions with the most popular GBHs. Finally, they briefly describe modern and future healthcare methods and tools for GLP detection, determination, and detoxification. Future electronically powered, decision-making, and user-friendly devices targeting major GLP/GBH's modes of actions, i.e., dysbiosis and the inhibition of AChE, shall enable self-handled or point-of-care professional-assisted evaluation of the harm followed with rapid capturing GBH xenobiotics in the body and precise determining the GBH pathology-associated biomarkers levels.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Department
of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Bio
& Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Katarzyna Klepacka
- ENSEMBLE sp. z o. o., 01-919 Warsaw, Poland
- Faculty
of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Włodzimierz Kutner
- Department
of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Faculty
of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional
Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
3
|
Mazuryk J, Klepacka K, Kutner W, Sharma PS. Glyphosate: Impact on the microbiota-gut-brain axis and the immune-nervous system, and clinical cases of multiorgan toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115965. [PMID: 38244513 DOI: 10.1016/j.ecoenv.2024.115965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/25/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
Glyphosate (GLP) and GLP-based herbicides (GBHs), such as polyethoxylated tallow amine-based GLP surfactants (GLP-SH), developed in the late 70', have become the most popular and controversial agrochemicals ever produced. Nowadays, GBHs have reached 350 million hectares of crops in over 140 countries, with an annual turnover of 5 billion and 11 billion USD in the U.S.A. and worldwide, respectively. Because of the highly efficient inhibitory activity of GLP targeted to the 5-enolpyruvylshikimate-3-phosphate synthase pathway, present in plants and several bacterial strains, the GLP-resistant crop-based genetic agricultural revolution has decreased famine and improved the costs and quality of living in developing countries. However, this progress has come at the cost of the 50-year GBH overuse, leading to environmental pollution, animal intoxication, bacterial resistance, and sustained occupational exposure of the herbicide farm and companies' workers. According to preclinical and clinical studies covered in the present review, poisoning with GLP, GLP-SH, and GBHs devastatingly affects gut microbiota and the microbiota-gut-brain (MGB) axis, leading to dysbiosis and gastrointestinal (GI) ailments, as well as immunosuppression and inappropriate immunostimulation, cholinergic neurotransmission dysregulation, neuroendocrinal system disarray, and neurodevelopmental and neurobehavioral alterations. Herein, we mainly focus on the contribution of gut microbiota (GM) to neurological impairments, e.g., stroke and neurodegenerative and neuropsychiatric disorders. The current review provides a comprehensive introduction to GLP's microbiological and neurochemical activities, including deviation of the intestinal Firmicutes-to-Bacteroidetes ratio, acetylcholinesterase inhibition, excitotoxicity, and mind-altering processes. Besides, it summarizes and critically discusses recent preclinical studies and clinical case reports concerning the harmful impacts of GBHs on the GI tract, MGB axis, and nervous system. Finally, an insightful comparison of toxic effects caused by GLP, GBH-SH, and GBHs is presented. To this end, we propose a first-to-date survey of clinical case reports on intoxications with these herbicides.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; Bio & Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium.
| | - Katarzyna Klepacka
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; ENSEMBLE(3) sp. z o. o., 01-919 Warsaw, Poland
| | - Włodzimierz Kutner
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
4
|
Mazuryk J, Klepacka K, Kutner W, Sharma PS. Glyphosate Separating and Sensing for Precision Agriculture and Environmental Protection in the Era of Smart Materials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37384557 DOI: 10.1021/acs.est.3c01269] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The present article critically and comprehensively reviews the most recent reports on smart sensors for determining glyphosate (GLP), an active agent of GLP-based herbicides (GBHs) traditionally used in agriculture over the past decades. Commercialized in 1974, GBHs have now reached 350 million hectares of crops in over 140 countries with an annual turnover of 11 billion USD worldwide. However, rolling exploitation of GLP and GBHs in the last decades has led to environmental pollution, animal intoxication, bacterial resistance, and sustained occupational exposure of the herbicide of farm and companies' workers. Intoxication with these herbicides dysregulates the microbiome-gut-brain axis, cholinergic neurotransmission, and endocrine system, causing paralytic ileus, hyperkalemia, oliguria, pulmonary edema, and cardiogenic shock. Precision agriculture, i.e., an (information technology)-enhanced approach to crop management, including a site-specific determination of agrochemicals, derives from the benefits of smart materials (SMs), data science, and nanosensors. Those typically feature fluorescent molecularly imprinted polymers or immunochemical aptamer artificial receptors integrated with electrochemical transducers. Fabricated as portable or wearable lab-on-chips, smartphones, and soft robotics and connected with SM-based devices that provide machine learning algorithms and online databases, they integrate, process, analyze, and interpret massive amounts of spatiotemporal data in a user-friendly and decision-making manner. Exploited for the ultrasensitive determination of toxins, including GLP, they will become practical tools in farmlands and point-of-care testing. Expectedly, smart sensors can be used for personalized diagnostics, real-time water, food, soil, and air quality monitoring, site-specific herbicide management, and crop control.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Bio & Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Katarzyna Klepacka
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- ENSEMBLE3 sp. z o. o., 01-919 Warsaw, Poland
- Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Włodzimierz Kutner
- Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
- Modified Electrodes for Potential Application in Sensors and Cells Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
5
|
Chugh RM, Bhanja P, Norris A, Saha S. Experimental Models to Study COVID-19 Effect in Stem Cells. Cells 2021; 10:E91. [PMID: 33430424 PMCID: PMC7827246 DOI: 10.3390/cells10010091] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
The new strain of coronavirus (severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)) emerged in 2019 and hence is often referred to as coronavirus disease 2019 (COVID-19). This disease causes hypoxic respiratory failure and acute respiratory distress syndrome (ARDS), and is considered as the cause of a global pandemic. Very limited reports in addition to ex vivo model systems are available to understand the mechanism of action of this virus, which can be used for testing of any drug efficacy against virus infectivity. COVID-19 induces tissue stem cell loss, resulting inhibition of epithelial repair followed by inflammatory fibrotic consequences. Development of clinically relevant models is important to examine the impact of the COVID-19 virus in tissue stem cells among different organs. In this review, we discuss ex vivo experimental models available to study the effect of COVID-19 on tissue stem cells.
Collapse
Affiliation(s)
- Rishi Man Chugh
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (R.M.C.); (P.B.)
| | - Payel Bhanja
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (R.M.C.); (P.B.)
| | - Andrew Norris
- BCN Bio Sciences, Pasadena, CA 91107, USA;
- David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Subhrajit Saha
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (R.M.C.); (P.B.)
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|