1
|
Ma Z, Chen Q, Liu Z, Li X, Zhang H, Feng X. Genetically predicted inflammatory proteins and the risk of atrial fibrillation: a bidirectional Mendelian randomization study. Front Cardiovasc Med 2024; 11:1375750. [PMID: 38988665 PMCID: PMC11234858 DOI: 10.3389/fcvm.2024.1375750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/28/2024] [Indexed: 07/12/2024] Open
Abstract
Purpose The causal associations between inflammatory factors and atrial fibrillation (AF) remained unclear. We aimed to investigate whether genetically predicted inflammatory proteins are related to the risk of AF, and vice versa. Methods A bidirectional two-sample Mendelian randomization study was performed. The genetic variation of 91 inflammatory proteins were derived from genome-wide association study (GWAS) data of European ancestry (n = 14,824). Summary statistics for AF were obtained from a published meta-analysis study (n = 1,030,836) and the FinnGen study (n = 261,395). Results Genetically predicted fibroblast growth factor 5 (FGF5) was significantly positively associated with risk of AF [[odds ratio (OR): 1.07; 95% CI: 1.04-1.10; P < 0.01], and CD40l receptor was significantly negatively associated with risk of AF (OR: 0.95; 95% CI: 0.92-0.98; P = 0.02) in the meta-analysis study. In the FinnGen study, similar results were observed in FGF5 (OR: 1.11; 95% CI: 1.06-1.16; P < 0.01) and CD40l receptor (OR: 0.93; 95% CI: 0.89-0.97; P = 0.03) for AF. In the FinnGen study, TNF-beta was significantly positively associated with risk of AF (OR: 1.05; 95% CI: 1.02-1.09; P = 0.03) and leukemia inhibitory factor receptor was significantly negatively associated with risk of AF (OR: 0.86; 95% CI: 0.80-0.91; P = 0.001). The causal effect of AF on inflammatory proteins was not observed. Conclusion Our study suggested that FGF5 and CD40l receptor have a potential causal association with AF, and targeting these factors may help in the treatment of AF.
Collapse
Affiliation(s)
| | | | | | | | - Huaming Zhang
- Division of Cardiology, Departments of Internal Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Feng
- Division of Cardiology, Departments of Internal Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Nitz K, Herrmann J, Lerman A, Lutgens E. Costimulatory and Coinhibitory Immune Checkpoints in Atherosclerosis: Therapeutic Targets in Atherosclerosis? JACC Basic Transl Sci 2024; 9:827-843. [PMID: 39070270 PMCID: PMC11282889 DOI: 10.1016/j.jacbts.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 07/30/2024]
Abstract
The benefits of current state-of-the-art treatments to combat atherosclerotic cardiovascular disease (ASCVD) have stagnated. Treatments are mostly based on controlling cardiovascular risk factors, especially hyperlipidemia. Although the most recent advances with PCSK-9 inhibitors support the hyperlipidemia aspect of ASCVD, several lines of experimental evidence have outlined that atherosclerosis is also driven by inflammation. In the past years, phase 1, 2, and 3 clinical trials targeting inflammation to combat ASCVD have revealed that patients do tolerate such immune therapies, show decreases in inflammatory markers, and/or have reductions in cardiovascular endpoints. However, the search for the optimal anti-inflammatory or immune-modulating strategy and the stratification of patients who would benefit from such treatments and appropriate treatment regimens to combat ASCVD is only just beginning. In this review, we focus on immune checkpoint-based therapeutics (costimulation and coinhibition), many of which are already approved by the U.S. Food and Drug Administration for the treatment of cancer or autoimmune diseases, and discuss their use as a novel immunotherapeutic strategy to treat ASCVD.
Collapse
Affiliation(s)
- Katrin Nitz
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Esther Lutgens
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Tian S, Wang Y, Wan J, Yang M, Fu Z. Co-stimulators CD40-CD40L, a potential immune-therapy target for atherosclerosis: A review. Medicine (Baltimore) 2024; 103:e37718. [PMID: 38579073 PMCID: PMC10994492 DOI: 10.1097/md.0000000000037718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/04/2024] [Indexed: 04/07/2024] Open
Abstract
The interaction between CD40 and CD40 ligand (CD40L) a crucial co-stimulatory signal for activating adaptive immune cells, has a noteworthy role in atherosclerosis. It is well-known that atherosclerosis is linked to immune inflammation in blood vessels. In atherosclerotic lesions, there is a multitude of proinflammatory cytokines, adhesion molecules, and collagen, as well as smooth muscle cells, macrophages, and T lymphocytes, particularly the binding of CD40 and CD40L. Therefore, research on inhibiting the CD40-CD40L system to prevent atherosclerosis has been ongoing for more than 30 years. However, it's essential to note that long-term direct suppression of CD40 or CD40L could potentially result in immunosuppression, emphasizing the critical role of the CD40-CD40L system in atherosclerosis. Thus, specifically targeting the CD40-CD40L interaction on particular cell types or their downstream signaling pathways may be a robust strategy for mitigating atherosclerosis, reducing potential side effects. This review aims to summarize the potential utility of the CD40-CD40L system as a viable therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Simeng Tian
- Department of Immunology, Basic Medicine College, Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University, Heilongjiang Academy of Medical Science, Harbin, China
- The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yufei Wang
- Department of Neurosurgery & Nursing Teaching and Research Office, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jie Wan
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mao Yang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhenkun Fu
- Department of Immunology, Basic Medicine College, Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University, Heilongjiang Academy of Medical Science, Harbin, China
| |
Collapse
|
4
|
Wagner AH, Klersy A, Sultan CS, Hecker M. Potential role of soluble CD40 receptor in chronic inflammatory diseases. Biochem Pharmacol 2023; 217:115858. [PMID: 37863325 DOI: 10.1016/j.bcp.2023.115858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
The CD40 receptor and its ligand CD154 are widely expressed in various immune-competent cells. Interaction of CD154 with CD40 is essential for B-cell growth, differentiation, and immunoglobulin class switching. Many other immune-competent cells involved in innate and adaptive immunity communicate through this co-stimulatory ligand-receptor dyad. CD40-CD154 interaction is involved in the pathogenesis of numerous inflammatory and autoimmune diseases. While CD40 and CD154 are membrane-bound proteins, their soluble counterparts are generated by proteolytic cleavage or alternative splicing. This review summarises current knowledge about the impact of single nucleotide polymorphisms in the human CD40 gene and compensatory changes in the plasma level of the soluble CD40 receptor (sCD40) isoform in related pro-inflammatory diseases. It discusses regulation patterns of the disintegrin metalloprotease ADAM17 function leading to ectodomain shedding of transmembrane proteins, such as pro-inflammatory adhesion molecules or CD40. The role of sCD40 as a potential biomarker for chronic inflammatory diseases will also be discussed.
Collapse
Affiliation(s)
- A H Wagner
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.
| | - A Klersy
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - C S Sultan
- Department of Medical Chemistry, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - M Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
5
|
Lu C, Donners MMPC, Karel J, de Boer H, van Zonneveld AJ, den Ruijter H, Jukema JW, Kraaijeveld A, Kuiper J, Pasterkamp G, Cavill R, Perales-Patón J, Ferrannini E, Goossens P, Biessen EAL. Sex-specific differences in cytokine signaling pathways in circulating monocytes of cardiovascular disease patients. Atherosclerosis 2023; 384:117123. [PMID: 37127497 DOI: 10.1016/j.atherosclerosis.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/14/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS This study aims to identify sex-specific transcriptional differences and signaling pathways in circulating monocytes contributing to cardiovascular disease. METHODS AND RESULTS We generated sex-biased gene expression signatures by comparing male versus female monocytes of coronary artery disease (CAD) patients (n = 450) from the Center for Translational Molecular Medicine-Circulating Cells Cohort. Gene set enrichment analysis demonstrated that monocytes from female CAD patients carry stronger chemotaxis and migratory signature than those from males. We then inferred cytokine signaling activities based on CytoSig database of 51 cytokine and growth factor regulation profiles. Monocytes from females feature a higher activation level of EGF, IFN1, VEGF, GM-CSF, and CD40L pathways, whereas IL-4, INS, and HMGB1 signaling was seen to be more activated in males. These sex differences were not observed in healthy subjects, as shown for an independent monocyte cohort of healthy subjects (GSE56034, n = 485). More pronounced GM-CSF signaling in monocytes of female CAD patients was confirmed by the significant enrichment of GM-CSF-activated monocyte signature in females. As we show these effects were not due to increased plasma levels of the corresponding ligands, sex-intrinsic differences in monocyte signaling regulation are suggested. Consistently, regulatory network analysis revealed jun-B as a shared transcription factor activated in all female-specific pathways except IFN1 but suppressed in male-activated IL-4. CONCLUSIONS We observed overt CAD-specific sex differences in monocyte transcriptional profiles and cytokine- or growth factor-induced responses, which provide insights into underlying mechanisms of sex differences in CVD.
Collapse
Affiliation(s)
- Chang Lu
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht UMC+, Maastricht University, Maastricht, the Netherlands
| | - Marjo M P C Donners
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht UMC+, Maastricht University, Maastricht, the Netherlands.
| | - Joël Karel
- Department of Advanced Computing Sciences, Maastricht University, Maastricht, the Netherlands
| | - Hetty de Boer
- Department of Internal Medicine (Nephrology), Leiden UMC, Leiden, the Netherlands
| | | | - Hester den Ruijter
- Laboratory for Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands
| | - Adriaan Kraaijeveld
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | | | - Rachel Cavill
- Department of Advanced Computing Sciences, Maastricht University, Maastricht, the Netherlands
| | - Javier Perales-Patón
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany; Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany; Joint Research Centre for Computational Biomedicine (JRC COMBINE), Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Ele Ferrannini
- Consiglio Nazionale Delle Ricerche (CNR) Institute of Clinical Physiology, Pisa, Italy
| | - Pieter Goossens
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht UMC+, Maastricht University, Maastricht, the Netherlands
| | - Erik A L Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht UMC+, Maastricht University, Maastricht, the Netherlands; Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, 52074, Germany
| |
Collapse
|
6
|
Iside C, Affinito O, Punzo B, Salvatore M, Mirabelli P, Cavaliere C, Franzese M. Stratification of Patients with Coronary Artery Disease by Circulating Cytokines Profile: A Pilot Study. J Clin Med 2023; 12:6649. [PMID: 37892788 PMCID: PMC10607348 DOI: 10.3390/jcm12206649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Coronary artery disease (CAD) is a long-term inflammatory process, with atherosclerosis as its underlying pathophysiological mechanism. Endothelial dysfunction is the first step towards atherosclerosis, where damaged endothelial cells release large amounts of pro-inflammatory cytokines and mediators, thus promoting vascular inflammation and disease progression. However, the correlation between serum cytokines and CAD severity remains to be defined. Serum samples from patients performing cardiac computed tomography for suspected CAD (n = 75) were analyzed with a multiplex bead-based immunoassay panel for simultaneous assessment of the concentration of 11 cytokines using flow cytometric technology. The analysis showed statistically significant increases in sRAGE, CCL2_MCP1, FLT1, and IL6 levels in CAD patients compared with healthy subjects and a gradual increase trend towards a more severe form of the disease for most cytokines (e.g., sCD40L, FLT1, sRAGE, CCL2-MCP1, TNFα). Lastly, we explored the performance of cytokines in predicting the diagnosis of CAD and found that an increase in IL6 levels will increase the odds of being non-obstructive CAD-positive. In contrast, an increase in CCL2-MCP1 or FLT1 levels will increase the probability of being obstructive CAD-positive. These results suggest that the combination of serum cytokines may contribute to the not-invasive stratification risk for patients with suspected CAD.
Collapse
Affiliation(s)
- Concetta Iside
- IRCCS SYNLAB SDN, Via Emanuele Gianturco, 113, 80143 Naples, Italy
| | - Ornella Affinito
- IRCCS SYNLAB SDN, Via Emanuele Gianturco, 113, 80143 Naples, Italy
| | - Bruna Punzo
- IRCCS SYNLAB SDN, Via Emanuele Gianturco, 113, 80143 Naples, Italy
| | - Marco Salvatore
- IRCCS SYNLAB SDN, Via Emanuele Gianturco, 113, 80143 Naples, Italy
| | - Peppino Mirabelli
- Department of Pediatric Hemato-Oncology, Santobono-Pausilipon Children’s Hospital, AORN, 80122 Naples, Italy
| | - Carlo Cavaliere
- IRCCS SYNLAB SDN, Via Emanuele Gianturco, 113, 80143 Naples, Italy
| | - Monica Franzese
- IRCCS SYNLAB SDN, Via Emanuele Gianturco, 113, 80143 Naples, Italy
| |
Collapse
|
7
|
Li Y, Ma JQ, Wang CC, Zhou J, Sun YD, Wei XL, Zhao ZQ. Ferroptosis: A potential target of macrophages in plaque vulnerability. Open Life Sci 2023; 18:20220722. [PMID: 37791060 PMCID: PMC10543703 DOI: 10.1515/biol-2022-0722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 10/05/2023] Open
Abstract
Plaque vulnerability has been the subject of several recent studies aimed at reducing the risk of stroke and carotid artery stenosis. Atherosclerotic plaque development is a complex process involving inflammation mediated by macrophages. Plaques become more vulnerable when the equilibrium between macrophage recruitment and clearance is disturbed. Lipoperoxides, which are affected by iron levels in cells, are responsible for the cell death seen in ferroptosis. Ferroptosis results from lipoperoxide-induced mitochondrial membrane toxicity. Atherosclerosis in ApoE(-/-) mice is reduced when ferroptosis is inhibited and iron intake is limited. Single-cell sequencing revealed that a ferroptosis-related gene was substantially expressed in atherosclerosis-modeled macrophages. Since ferroptosis can be regulated, it offers hope as a non-invasive method of treating carotid plaque. In this study, we discuss the role of ferroptosis in atherosclerotic plaque vulnerability, including its mechanism, regulation, and potential future research directions.
Collapse
Affiliation(s)
- Yu Li
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| | - Ji-Qing Ma
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| | - Chao-Chen Wang
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| | - Jian Zhou
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| | - Yu-Dong Sun
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University,
Nanjing201411, China
| | - Xiao-Long Wei
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| | - Zhi-Qing Zhao
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| |
Collapse
|
8
|
Klersy A, Meyer S, Leuschner F, Kessler T, Hecker M, Wagner AH. Ectodomain Shedding by ADAM17 Increases the Release of Soluble CD40 from Human Endothelial Cells under Pro-Inflammatory Conditions. Cells 2023; 12:1926. [PMID: 37566005 PMCID: PMC10417149 DOI: 10.3390/cells12151926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Homozygosity for the C allele of the -1T>C single nucleotide polymorphism (SNP) of the CD40 gene (rs1883832) is associated with susceptibility to coronary heart disease (CHD), enhanced CD40 expression, and shedding. The disintegrin metalloprotease ADAM17 can cleave various cell surface proteins. This study investigates an association between ADAM17-mediated CD40 shedding and inflammation in CC genotype human endothelial cells. METHODS Human umbilical vein endothelial cells (HUVEC) carrying the CC genotype were stimulated with soluble CD40 ligand (sCD40L) or tumor necrosis factor-α (TNFα). Messenger RNA and protein expression were determined with standard methods. Levels of high sensitive c-reactive protein (hs-CRP), interleukin-6 (IL-6), and sCD40 in plasma samples from patients with CHD were assessed using ELISA. RESULTS ADAM17 surface abundance was elevated following stimulation with CD40L and TNFα just as its regulator iRhom2. Inhibition of ADAM17 prevented TNFα-induced sCD40 and soluble vascular cell adhesion molecule-1 release into the conditioned medium and reinforced CD40 surface abundance. Secondary to inhibition of ADAM17, stimulation with CD40L or TNFα upregulated monocyte chemoattractant protein-1 mRNA and protein. Levels of sCD40 and the inflammatory biomarkers hs-CRP and IL-6 were positively correlated in the plasma of patients with CHD. CONCLUSIONS We provide a mechanism by which membrane-bound CD40 is shed from the endothelial cell surface by ADAM17, boosting sCD40 formation and limiting downstream CD40 signaling. Soluble CD40 may represent a robust biomarker for CHD, especially in conjunction with homozygosity for the C allele of the -1T>C SNP of the CD40 gene.
Collapse
Affiliation(s)
- Anton Klersy
- Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Sören Meyer
- Department of Cardiology, Angiology and Pneumology, Heidelberg University, 69120 Heidelberg, Germany
| | - Florian Leuschner
- Department of Cardiology, Angiology and Pneumology, Heidelberg University, 69120 Heidelberg, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80636 Munich, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Andreas H. Wagner
- Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Lutgens E, Mulder WJM. CHECKPOINT ATHERO: developing immune checkpoint-based therapeutics for atherosclerosis. Eur Heart J 2023; 44:1010-1012. [PMID: 36691949 DOI: 10.1093/eurheartj/ehac793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Esther Lutgens
- Experimental CardioVascular Immunology Lab, Department of Cardiovascular Medicine, Mayo Clinic, 200 First St SW, 55905, Rochester, MN, USA
| | - Willem J M Mulder
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, the Netherlands
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | | |
Collapse
|
10
|
Chiorescu RM, Mocan M, Inceu AI, Buda AP, Blendea D, Vlaicu SI. Vulnerable Atherosclerotic Plaque: Is There a Molecular Signature? Int J Mol Sci 2022; 23:13638. [PMID: 36362423 PMCID: PMC9656166 DOI: 10.3390/ijms232113638] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 08/18/2023] Open
Abstract
Atherosclerosis and its clinical manifestations, coronary and cerebral artery diseases, are the most common cause of death worldwide. The main pathophysiological mechanism for these complications is the rupture of vulnerable atherosclerotic plaques and subsequent thrombosis. Pathological studies of the vulnerable lesions showed that more frequently, plaques rich in lipids and with a high level of inflammation, responsible for mild or moderate stenosis, are more prone to rupture, leading to acute events. Identifying the vulnerable plaques helps to stratify patients at risk of developing acute vascular events. Traditional imaging methods based on plaque appearance and size are not reliable in prediction the risk of rupture. Intravascular imaging is a novel technique able to identify vulnerable lesions, but it is invasive and an operator-dependent technique. This review aims to summarize the current data from literature regarding the main biomarkers involved in the attempt to diagnose vulnerable atherosclerotic lesions. These biomarkers could be the base for risk stratification and development of the new therapeutic drugs in the treatment of patients with vulnerable atherosclerotic plaques.
Collapse
Affiliation(s)
- Roxana Mihaela Chiorescu
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| | - Mihaela Mocan
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| | - Andreea Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine, 400349 Cluj-Napoca, Romania
- Department of Cardiology, Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania
| | - Andreea Paula Buda
- Department of Cardiology, Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania
| | - Dan Blendea
- Department of Cardiology, Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania
- Department of Cardiology, Iuliu Hațieganu University of Medicine and Pharmacy, 400437 Cluj-Napoca, Romania
| | - Sonia Irina Vlaicu
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| |
Collapse
|
11
|
Scolari FL, Abelson S, Brahmbhatt DH, Medeiros JJF, Fan CPS, Fung NL, Mihajlovic V, Anker MS, Otsuki M, Lawler PR, Ross HJ, Luk AC, Anker S, Dick JE, Billia F. Clonal haematopoiesis is associated with higher mortality in patients with cardiogenic shock. Eur J Heart Fail 2022; 24:1573-1582. [PMID: 35729851 DOI: 10.1002/ejhf.2588] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/27/2022] [Accepted: 06/19/2022] [Indexed: 11/05/2022] Open
Abstract
AIMS Cardiogenic shock (CS) with variable systemic inflammation may be responsible for the patient heterogeneity and the exceedingly high mortality rate. Cardiovascular events have been associated with clonal haematopoiesis (CH) where specific gene mutations in hematopoietic stem cells lead to clonal expansion and the development of inflammation. This study aims to assess the prevalence of CH and its association with survival in a population of CS patients in a quaternary center. METHODS We compared the frequency of CH mutations among 341 CS patients and 345 ambulatory heart failure (HF) matched for age, sex, ejection fraction, and HF aetiology. The association of CH with survival and levels of circulating inflammatory cytokines was analysed. RESULTS We detected 266 CH mutations in 149 of 686 (22%) patients. CS patients had a higher prevalence of CH-related mutations than HF patients (OR 1.5; 95% CI 1.0-2.1, P=0.02) and was associated with decreased survival (30-days: HR 2.7; 95% CI 1.3-5.7, P=0.006; 90-days: HR 2.2; 95% CI 1.3-3.9, P=0.003; and 3-years: HR 1.7; 95% CI 1.1-2.8, P=0.01). TET2 or ASXL1 mutations were associated with lower survival in CS patients at all-time points (P≤0.03). CS patients with TET2 mutations had higher circulating levels of SCD40L, IFNγ, IL-4, and TNFα (P≤0.04), while those with ASXL1 mutations had decreased levels of CCL7 (P=0.03). CONCLUSIONS CS patients have high frequency of CH, notably mutations in TET2 and ASXL1. This was associated with reduced survival and dysregulation of circulating inflammatory cytokines in those CS patients with CH. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fernando L Scolari
- Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.,Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Sagi Abelson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Darshan H Brahmbhatt
- Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.,Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Jessie J F Medeiros
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Chun-Po S Fan
- Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nicole L Fung
- Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Vesna Mihajlovic
- Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.,Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Markus S Anker
- Department of Cardiology (CBF), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Madison Otsuki
- Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Patrick R Lawler
- Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.,Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Heather J Ross
- Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.,Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Adriana C Luk
- Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Stefan Anker
- Department of Cardiology (CBF), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - John E Dick
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Filio Billia
- Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.,Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Bosmans LA, van Tiel CM, Aarts SABM, Willemsen L, Baardman J, van Os BW, den Toom M, Beckers L, Ahern DJ, Levels JHM, Jongejan A, Moerland PD, Verberk SGS, van den Bossche J, de Winther MMPJ, Weber C, Atzler D, Monaco C, Gerdes N, Shami A, Lutgens E. Myeloid CD40 deficiency reduces atherosclerosis by impairing macrophages' transition into a pro-inflammatory state. Cardiovasc Res 2022; 119:1146-1160. [PMID: 35587037 DOI: 10.1093/cvr/cvac084] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS CD40 and its ligand, CD40L, play a critical role in driving atherosclerotic plaque development. Disrupted CD40-signaling reduces experimental atherosclerosis and induces a favourable stable plaque phenotype. We recently showed that small molecule-based inhibition of CD40-TNF Receptor Associated Factor-6 interactions attenuates atherosclerosis in hyperlipidaemic mice via macrophage-driven mechanisms. The present study aims to detail the function of myeloid CD40 in atherosclerosis using myeloid-specific CD40-deficient mice. METHOD AND RESULTS Cd40flox/flox and LysM-cre Cd40flox/flox mice on an Apoe-/- background were generated (CD40wt and CD40mac-/-, respectively). Atherosclerotic lesion size, as well as plaque macrophage content, were reduced in CD40mac-/- compared to CD40wt mice and their plaques displayed a reduction in necrotic core size. Transcriptomics analysis of the CD40mac-/- atherosclerotic aorta revealed downregulated pathways of immune pathways and inflammatory responses.Loss of CD40 in macrophages changed the representation of aortic macrophage subsets. Mass cytometry analysis revealed a higher content of a subset of alternative or resident-like CD206 + CD209b- macrophages in the atherosclerotic aorta of CD40mac-/- compared to CD40wt mice. RNA-sequencing of bone marrow-derived macrophages (BMDMs) of CD40mac-/- mice demonstrated upregulation of genes associated with alternatively activated macrophages (including Folr2, Thbs1, Sdc1 and Tns1). CONCLUSIONS We here show that absence of CD40 signalling in myeloid cells reduces atherosclerosis and limits systemic inflammation by preventing a shift in macrophage polarization towards pro-inflammatory states. Our study confirms the merit of macrophage-targeted inhibition of CD40 as a valuable therapeutic strategy to combat atherosclerosis.
Collapse
Affiliation(s)
- Laura A Bosmans
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Claudia M van Tiel
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Suzanne A B M Aarts
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa Willemsen
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen Baardman
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Bram W van Os
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Myrthe den Toom
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Linda Beckers
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - David J Ahern
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK
| | - Johannes H M Levels
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Perry D Moerland
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sanne G S Verberk
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jan van den Bossche
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Menno M P J de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Christian Weber
- Institute of Cardiovascular Prevention (IPEK), Ludwig Maximilian's University, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, the Netherlands.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Dorothee Atzler
- Institute of Cardiovascular Prevention (IPEK), Ludwig Maximilian's University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Walter-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians Universität, München, Germany
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Germany
| | - Annelie Shami
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands.,Dept. of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö, Sweden
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands.,Institute of Cardiovascular Prevention (IPEK), Ludwig Maximilian's University, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Experimental Cardiovascular Immunology Laboratory, Dept of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|