1
|
Mohebbi A, Shahriyary F, Farrokhi V, Bandar B, Saki N. A systematic review of second-generation FLT3 inhibitors for treatment of patients with relapsed/refractory acute myeloid leukemia. Leuk Res 2024; 141:107505. [PMID: 38692232 DOI: 10.1016/j.leukres.2024.107505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a complex disease with diverse mutations, including prevalent mutations in the FMS-like receptor tyrosine kinase 3 (FLT3) gene that lead to poor prognosis. Recent advancements have introduced FLT3 inhibitors that have improved outcomes for FLT3-mutated AML patients, however, questions remain on their application in complex conditions such as relapsed/refractory (R/R) disease. Therefore, we aimed to evaluate the clinical effectiveness of second-generation FLT3 inhibitors in treating patients with R/R AML. METHODS A systematic literature search of PubMed, MEDLINE, SCOPUS and Google Scholar databases was made to identify relevant studies up to January 30, 2024. This study was conducted following the guidelines of the PRISMA. RESULTS The ADMIRAL trial revealed significantly improved overall survival and complete remission rates with gilteritinib compared to salvage chemotherapy, with manageable adverse effects. Ongoing research explores its potential in combination therapies, showing synergistic effects with venetoclax and promising outcomes in various clinical trials. The QuANTUM-R trial suggested longer overall survival with quizartinib compared to standard chemotherapy, although concerns were raised regarding trial design and cardiotoxicity. Ongoing research explores combination therapies involving quizartinib, such as doublet or triplet regimens with venetoclax, showing promising outcomes in FLT3-mutated AML patients. CONCLUSION These targeted therapies offer promise for managing this subgroup of AML patients, but further research is needed to optimize their use. This study underscores the importance of personalized treatment based on genetic mutations in AML, paving the way for more effective and tailored approaches to combat the disease.
Collapse
Affiliation(s)
- Alireza Mohebbi
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Shahriyary
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Vida Farrokhi
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Bita Bandar
- Department of Medical Laboratory, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Department of Medical Laboratory, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Bergeron J, Capo-Chichi JM, Tsui H, Mahe E, Berardi P, Minden MD, Brandwein JM, Schuh AC. The Clinical Utility of FLT3 Mutation Testing in Acute Leukemia: A Canadian Consensus. Curr Oncol 2023; 30:10410-10436. [PMID: 38132393 PMCID: PMC10742150 DOI: 10.3390/curroncol30120759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) mutations are detected in approximately 20-30% of patients with acute myeloid leukemia (AML), with the presence of a FLT3 internal tandem duplication (FLT3-ITD) mutation being associated with an inferior outcome. Assessment of FLT3 mutational status is now essential to define optimal upfront treatment in both newly diagnosed and relapsed AML, to support post-induction allogeneic hematopoietic stem cell transplantation (alloSCT) decision-making, and to evaluate treatment response via measurable (minimal) residual disease (MRD) evaluation. In view of its importance in AML diagnosis and management, the Canadian Leukemia Study Group/Groupe canadien d'étude sur la leucémie (CLSG/GCEL) undertook the development of a consensus statement on the clinical utility of FLT3 mutation testing, as members reported considerable inter-center variability across Canada with respect to testing availability and timing of use, methodology, and interpretation. The CLSG/GCEL panel identified key clinical and hematopathological questions, including: (1) which patients should be tested for FLT3 mutations, and when?; (2) which is the preferred method for FLT3 mutation testing?; (3) what is the clinical relevance of FLT3-ITD size, insertion site, and number of distinct FLT3-ITDs?; (4) is there a role for FLT3 analysis in MRD assessment?; (5) what is the clinical relevance of the FLT3-ITD allelic burden?; and (6) how should results of FLT3 mutation testing be reported? The panel followed an evidence-based approach, taken together with Canadian clinical and laboratory experience and expertise, to create a consensus document to facilitate a more uniform approach to AML diagnosis and treatment across Canada.
Collapse
Affiliation(s)
- Julie Bergeron
- CEMTL Installation Maisonneuve-Rosemont, Institut Universitaire d’Hématologie-Oncologie et de Thérapie Cellulaire, Université de Montréal, Montréal, QC H1T 2M4, Canada
| | - Jose-Mario Capo-Chichi
- Division of Clinical Laboratory Genetics, Department of Laboratory Medicine and Pathobiology, Laboratory Medicine Program, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada;
| | - Hubert Tsui
- Division of Hematological Pathology, Department of Laboratory Medicine and Molecular Diagnostics, Precision Diagnostics and Therapeutics Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada;
- Department of Laboratory Medicine and Pathobiology, Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Etienne Mahe
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Division of Hematology and Hematological Malignancies, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Philip Berardi
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital/Eastern Ontario Regional Laboratory Association, Ottawa, ON K1H 8M2, Canada;
- Department of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mark D. Minden
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.D.M.); (A.C.S.)
- Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Joseph M. Brandwein
- Division of Hematology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada;
| | - Andre C. Schuh
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.D.M.); (A.C.S.)
- Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
3
|
Real world molecular characterisation and clonal evolution of acute myeloid leukaemia reveals therapeutic opportunities and challenges. Pathology 2023; 55:64-70. [PMID: 36357248 DOI: 10.1016/j.pathol.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/16/2022] [Accepted: 07/28/2022] [Indexed: 11/06/2022]
Abstract
Acute myeloid leukaemia (AML) is an aggressive haematological malignancy with poor prognosis. Increasing understanding of the molecular mechanisms driving clonal proliferation has resulted in advancements in classification and available therapeutic targets. Fms-related tyrosine kinase 3 (FLT3) mutations are prognostically important and offer options for targeted inhibition, however they are not stable and can emerge or disappear at relapse. Our aim was to review diagnostic testing of consecutive cases of newly diagnosed and relapsed AML reported across Queensland in comparison to available literature. We conducted a retrospective review of 1531 samples from 1231 patients to identify patterns of molecular testing and AML subtypes in our cohort. Outcomes included World Health Organization (WHO) classification, European LeukaemiaNet (ELN) risk category and rates of missed FLT3 mutation testing. Patients aged <60 years had significantly more favourable risk AML (48% vs 25%, p<0.01), with favourable risk chromosomal translocations [t(8;21) and inv(16)] being more common. Thirteen patients (1%) did not have FLT3 mutation testing at diagnosis, with 103 relapse samples (39%) not being tested. Eighteen patients (10%) had FLT3 mutations lost at relapse, with five patients (3%) developing new FLT3 mutations at relapse. This study identifies the subtypes and risk stratification of a large cohort of AML patients over an extended period. The relatively high rate of absent FLT3 mutation testing at relapse as well as FLT3 loss or gain highlights the potential missed opportunities for salvage treatment strategies.
Collapse
|
4
|
FLT3-targeted treatment for acute myeloid leukemia. Int J Hematol 2022; 116:351-363. [DOI: 10.1007/s12185-022-03374-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 12/17/2022]
|
5
|
Duminuco A, Maugeri C, Parisi M, Mauro E, Fiumara PF, Randazzo V, Salemi D, Agueli C, Palumbo GA, Santoro A, Di Raimondo F, Vetro C. Target Therapy for Extramedullary Relapse of FLT3-ITD Acute Myeloid Leukemia: Emerging Data from the Field. Cancers (Basel) 2022; 14:cancers14092186. [PMID: 35565314 PMCID: PMC9105351 DOI: 10.3390/cancers14092186] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase family member. Mutations in FLT3, as well known, represent the most common genomic alteration in acute myeloid leukemia (AML), identified in approximately one-third of newly diagnosed adult patients. In recent years, this has represented an important therapeutic target. Drugs such as midostaurin, gilteritinib, and sorafenib, either alone in association with conventional chemotherapy, play a pivotal role in AML therapy with the mutated FLT3 gene. A current challenge lies in treating forms of AML with extramedullary localization. Here, we describe the general features of myeloid sarcoma and the ability of a targeted drug, i.e., gilteritinib, approved for relapsed or refractory disease, to induce remission of these extramedullary leukemic localizations in AML patients with FLT3 mutation, analyzing how in the literature, there is an important development of cases describing this promising potential for care.
Collapse
Affiliation(s)
- Andrea Duminuco
- Postgraduate School of Hematology, University of Catania, 95123 Catania, Italy; (A.D.); (G.A.P.)
| | - Cinzia Maugeri
- Division of Hematology, A.O.U. “Policlinico G.Rodolico-S.Marco”, 95123 Catania, Italy; (C.M.); (M.P.); (E.M.); (P.F.F.); (F.D.R.)
| | - Marina Parisi
- Division of Hematology, A.O.U. “Policlinico G.Rodolico-S.Marco”, 95123 Catania, Italy; (C.M.); (M.P.); (E.M.); (P.F.F.); (F.D.R.)
| | - Elisa Mauro
- Division of Hematology, A.O.U. “Policlinico G.Rodolico-S.Marco”, 95123 Catania, Italy; (C.M.); (M.P.); (E.M.); (P.F.F.); (F.D.R.)
| | - Paolo Fabio Fiumara
- Division of Hematology, A.O.U. “Policlinico G.Rodolico-S.Marco”, 95123 Catania, Italy; (C.M.); (M.P.); (E.M.); (P.F.F.); (F.D.R.)
| | - Valentina Randazzo
- Division of Hematology & Bone Marrow Transplantation, Ospedali Riuniti Villa Sofia-Cervello, 90146 Palermo, Italy; (V.R.); (D.S.); (C.A.); (A.S.)
| | - Domenico Salemi
- Division of Hematology & Bone Marrow Transplantation, Ospedali Riuniti Villa Sofia-Cervello, 90146 Palermo, Italy; (V.R.); (D.S.); (C.A.); (A.S.)
| | - Cecilia Agueli
- Division of Hematology & Bone Marrow Transplantation, Ospedali Riuniti Villa Sofia-Cervello, 90146 Palermo, Italy; (V.R.); (D.S.); (C.A.); (A.S.)
| | - Giuseppe Alberto Palumbo
- Postgraduate School of Hematology, University of Catania, 95123 Catania, Italy; (A.D.); (G.A.P.)
- Division of Hematology, A.O.U. “Policlinico G.Rodolico-S.Marco”, 95123 Catania, Italy; (C.M.); (M.P.); (E.M.); (P.F.F.); (F.D.R.)
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Alessandra Santoro
- Division of Hematology & Bone Marrow Transplantation, Ospedali Riuniti Villa Sofia-Cervello, 90146 Palermo, Italy; (V.R.); (D.S.); (C.A.); (A.S.)
| | - Francesco Di Raimondo
- Division of Hematology, A.O.U. “Policlinico G.Rodolico-S.Marco”, 95123 Catania, Italy; (C.M.); (M.P.); (E.M.); (P.F.F.); (F.D.R.)
- Department of Chirurgia Generale e Specialità Medico-Chirurgiche, University of Catania, 95123 Catania, Italy
| | - Calogero Vetro
- Division of Hematology, A.O.U. “Policlinico G.Rodolico-S.Marco”, 95123 Catania, Italy; (C.M.); (M.P.); (E.M.); (P.F.F.); (F.D.R.)
- Correspondence: ; Tel.: +39-0953781956
| |
Collapse
|
6
|
Kropp EM, Li Q. Mechanisms of Resistance to Targeted Therapies for Relapsed or Refractory Acute Myeloid Leukemia. Exp Hematol 2022; 111:13-24. [PMID: 35417742 PMCID: PMC10116852 DOI: 10.1016/j.exphem.2022.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 11/29/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive disease of clonal hematopoiesis with a high rate of relapse and refractory disease despite intensive therapy. Traditionally, relapsed or refractory AML has increased therapeutic resistance and poor long-term survival. In recent years, advancements in the mechanistic understanding of leukemogenesis have allowed for the development of targeted therapies. These therapies offer novel alternatives to intensive chemotherapy and have prolonged survival in relapsed or refractory AML. Unfortunately, a significant portion of patients do not respond to these therapies and relapse occurs in most patients who initially responded. This review focuses on the mechanisms of resistance to targeted therapies in relapsed or refractory AML.
Collapse
Affiliation(s)
- Erin M Kropp
- Department of Internal Medicine, University of Michigan-Ann Arbor, Ann Arbor, MI
| | - Qing Li
- Department of Internal Medicine, University of Michigan-Ann Arbor, Ann Arbor, MI.
| |
Collapse
|
7
|
Austin AE, Byrne M. Detecting and preventing post-hematopoietic cell transplant relapse in AML. Curr Opin Hematol 2021; 28:380-388. [PMID: 34534984 DOI: 10.1097/moh.0000000000000686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Relapsed disease is the primary cause of mortality for acute myeloid leukemia (AML) patients after allogeneic hematopoietic cell transplantation (HCT). This review outlines the most recent advances in the detection and prevention of AML relapse following allogeneic HCT. RECENT FINDINGS Conventional methods for predicting post-HCT relapse rely on the molecular and cytogenetics features present at diagnosis. These methods are slow to reflect a growing understanding of the molecular heterogeneity of AML and impact of new therapies on post-HCT outcomes. The use of measurable residual disease (MRD) techniques, including multiparameter flow cytometry and molecular testing, may improve the prognostic ability of these models and should be incorporated into post-HCT surveillance whenever possible.In the post-HCT setting, FLT3 inhibitor maintenance data indicate that effective therapies can improve post-HCT outcomes. Maintenance data with DNA methyltransferase inhibitor monotherapy is less compelling and outcomes may improve with combinations. Early interventions directed at preemptive management of MRD may further improve post-HCT outcomes. SUMMARY Post-HCT AML relapse prevention has evolved to include more sensitive measures of disease detection and novel therapies that may improve outcomes of poor-risk AML patients. Additional work is needed to maintain this progress.
Collapse
Affiliation(s)
| | - Michael Byrne
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Genomic Abnormalities as Biomarkers and Therapeutic Targets in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13205055. [PMID: 34680203 PMCID: PMC8533805 DOI: 10.3390/cancers13205055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary AML is a heterogenous malignancy with a variety of underlying genomic abnormalities. Some of the genetic aberrations in AML have led to the development of specific inhibitors which were approved by the Food and Drug Administration (FDA) and are currently used to treat eligible patients. In this review, we describe five gene mutations for which approved inhibitors have been developed, the response of AML patients to these inhibitors, and the known mechanism(s) of resistance. This review also highlights the significance of developing function-based screens for target discovery in the era of personalized medicine. Abstract Acute myeloid leukemia (AML) is a highly heterogeneous malignancy characterized by the clonal expansion of myeloid stem and progenitor cells in the bone marrow, peripheral blood, and other tissues. AML results from the acquisition of gene mutations or chromosomal abnormalities that induce proliferation or block differentiation of hematopoietic progenitors. A combination of cytogenetic profiling and gene mutation analyses are essential for the proper diagnosis, classification, prognosis, and treatment of AML. In the present review, we provide a summary of genomic abnormalities in AML that have emerged as both markers of disease and therapeutic targets. We discuss the abnormalities of RARA, FLT3, BCL2, IDH1, and IDH2, their significance as therapeutic targets in AML, and how various mechanisms cause resistance to the currently FDA-approved inhibitors. We also discuss the limitations of current genomic approaches for producing a comprehensive picture of the activated signaling pathways at diagnosis or at relapse in AML patients, and how innovative technologies combining genomic and functional methods will improve the discovery of novel therapeutic targets in AML. The ultimate goal is to optimize a personalized medicine approach for AML patients and possibly those with other types of cancers.
Collapse
|
9
|
Quantitative phosphoproteomics uncovers synergy between DNA-PK and FLT3 inhibitors in acute myeloid leukaemia. Leukemia 2020; 35:1782-1787. [PMID: 33067575 PMCID: PMC8179851 DOI: 10.1038/s41375-020-01050-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/23/2020] [Accepted: 09/29/2020] [Indexed: 12/25/2022]
|
10
|
Mosquera Orgueira A, Bao Pérez L, Mosquera Torre A, Peleteiro Raíndo A, Cid López M, Díaz Arias JÁ, Ferreiro Ferro R, Antelo Rodríguez B, González Pérez MS, Albors Ferreiro M, Alonso Vence N, Pérez Encinas MM, Bello López JL, Martinelli G, Cerchione C. FLT3 inhibitors in the treatment of acute myeloid leukemia: current status and future perspectives. Minerva Med 2020; 111:427-442. [PMID: 32955823 DOI: 10.23736/s0026-4806.20.06989-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mutations in the FMS-like tyrosine kinase 3 (FLT3) gene arise in 25-30% of all acute myeloid leukemia (AML) patients. These mutations lead to constitutive activation of the protein product and are divided in two broad types: internal tandem duplication (ITD) of the juxtamembrane domain (25% of cases) and point mutations in the tyrosine kinase domain (TKD). Patients with FLT3 ITD mutations have a high relapse risk and inferior cure rates, whereas the role of FLT3 TKD mutations still remains to be clarified. Additionally, growing research indicates that FLT3 status evolves through a disease continuum (clonal evolution), where AML cases can acquire FLT3 mutations at relapse - not present in the moment of diagnosis. Several FLT3 inhibitors have been tested in patients with FLT3-mutated AML. These drugs exhibit different kinase inhibitory profiles, pharmacokinetics and adverse events. First-generation multi-kinase inhibitors (sorafenib, midostaurin, lestaurtinib) are characterized by a broad-spectrum of drug targets, whereas second-generation inhibitors (quizartinib, crenolanib, gilteritinib) show more potent and specific FLT3 inhibition, and are thereby accompanied by less toxic effects. Notwithstanding, all FLT3 inhibitors face primary and acquired mechanisms of resistance, and therefore the combinations with other drugs (standard chemotherapy, hypomethylating agents, checkpoint inhibitors) and its application in different clinical settings (upfront therapy, maintenance, relapsed or refractory disease) are under study in a myriad of clinical trials. This review focuses on the role of FLT3 mutations in AML, pharmacological features of FLT3 inhibitors, known mechanisms of drug resistance and accumulated evidence for the use of FLT3 inhibitors in different clinical settings.
Collapse
Affiliation(s)
- Adrián Mosquera Orgueira
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain - .,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain - .,University of Santiago de Compostela, Santiago de Compostela, Spain -
| | - Laura Bao Pérez
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain
| | - Alicia Mosquera Torre
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain
| | - Andrés Peleteiro Raíndo
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain.,University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel Cid López
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain.,University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José Á Díaz Arias
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain
| | - Roi Ferreiro Ferro
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Beatriz Antelo Rodríguez
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain.,University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Marta S González Pérez
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain
| | - Manuel Albors Ferreiro
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain
| | - Natalia Alonso Vence
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain
| | - Manuel M Pérez Encinas
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain.,University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José L Bello López
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain.,University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Giovanni Martinelli
- Unit of Hematology, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Forlì-Cesena, Italy
| | - Claudio Cerchione
- Unit of Hematology, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Forlì-Cesena, Italy
| |
Collapse
|
11
|
Experiences with Next-Generation Sequencing in Relapsed Acute Myeloid Leukemia: A Patient Case Series. Mediterr J Hematol Infect Dis 2020; 12:e2020068. [PMID: 32952979 PMCID: PMC7485469 DOI: 10.4084/mjhid.2020.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/16/2020] [Indexed: 12/04/2022] Open
|
12
|
Molina Garay C, Carrillo Sánchez K, Flores Lagunes LL, Jiménez Olivares M, Muñoz Rivas A, Villegas Torres BE, Flores Aguilar H, Núñez Enríquez JC, Jiménez Hernández E, Bekker Méndez VC, Torres Nava JR, Flores Lujano J, Martín Trejo JA, Mata Rocha M, Medina Sansón A, Espinoza Hernández LE, Peñaloza Gonzalez JG, Espinosa Elizondo RM, Flores Villegas LV, Amador Sanchez R, Pérez Saldívar ML, Sepúlveda Robles OA, Rosas Vargas H, Rangel López A, Domínguez López ML, García Latorre EA, Reyes Maldonado E, Galindo Delgado P, Mejía Aranguré JM, Alaez Verson C. Profiling FLT3 Mutations in Mexican Acute Myeloid Leukemia Pediatric Patients: Impact on Overall Survival. Front Pediatr 2020; 8:586. [PMID: 33042924 PMCID: PMC7525023 DOI: 10.3389/fped.2020.00586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/07/2020] [Indexed: 01/09/2023] Open
Abstract
Background: Acute myeloid leukemia (AML) is the second most frequent leukemia in childhood. The FLT3 gene participates in hematopoietic stem cell proliferation. FLT3 mutations are recurrent in AML and influence prognosis. In Mexican pediatric AML patients, FLT3 mutational profile, and their clinical impact have not been evaluated. Aim of the study: This study aimed to identify the profile of FLT3 mutations in pediatric patients with de novo AML and to assess their possible influence on overall survival (OS) and other clinical features. Methods: Massive parallel target sequencing of FLT3 was performed in 80 patients. Results: FLT3 mutations [internal tandem duplication (ITD) or tyrosine kinase domain (TKD)] were identified in 24% of them. OS was significantly lower in FLT3 POS cases than in FLT3 NEG (p = 0.03). The average OS for FLT3 POS was 1.2 vs. 2.2 years in FLT3 NEG. There were no significant differences in the children's sex, age, percentage of blasts in bone marrow aspirate, or white blood cell count in peripheral blood at diagnosis between both groups. No differences were identified stratifying by the mutational load (high > 0.4) or type of mutation. The negative effect of FLT3 mutations was also observed in patients with acute promyelocytic leukemia (APL). Conclusions: FLT3 mutational profile is described in Mexican pediatric AML patients for the first time. Mutated FLT3 negatively impacts the outcome of AML patients, even considering the APL group. The clinical benefit from treatment with tyrosine kinase inhibitors in the FLT3 POS pediatric patients needs to be assessed in clinical trials. FLT3 testing may contribute to better risk stratification in our pediatric AML patients.
Collapse
Affiliation(s)
- Carolina Molina Garay
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (Inmegen), Mexico City, Mexico
| | - Karol Carrillo Sánchez
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (Inmegen), Mexico City, Mexico
| | | | - Marco Jiménez Olivares
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (Inmegen), Mexico City, Mexico
| | - Anallely Muñoz Rivas
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (Inmegen), Mexico City, Mexico
| | | | | | - Juan Carlos Núñez Enríquez
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Elva Jiménez Hernández
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Vilma Carolina Bekker Méndez
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología “Dr. Daniel Méndez Hernández”, “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - José Refugio Torres Nava
- Servicio de Oncología, Hospital Pediátrico de Moctezuma, Secretaria de Salud del D.F., Mexico City, Mexico
| | - Janet Flores Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jorge Alfonso Martín Trejo
- Servicio de Hematología Pediátrica, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Minerva Mata Rocha
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Aurora Medina Sansón
- Servicio de Hemato-Oncología, Hospital Infantil de México Federico Gómez, Secretaria de Salud (SSa), Mexico City, Mexico
| | - Laura Eugenia Espinoza Hernández
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | | | - Luz Victoria Flores Villegas
- Servicio de Hematología Pediátrica, Centro Médico Nacional (CMN) “20 de Noviembre”, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Raquel Amador Sanchez
- Hospital General Regional No. 1 “Carlos McGregor Sánchez Navarro”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Maria Luisa Pérez Saldívar
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Omar Alejandro Sepúlveda Robles
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Haydeé Rosas Vargas
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Angélica Rangel López
- Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | | | - Elba Reyes Maldonado
- Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | | | - Juan Manuel Mejía Aranguré
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
- Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Carmen Alaez Verson
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (Inmegen), Mexico City, Mexico
| |
Collapse
|
13
|
Practical Considerations for Treatment of Relapsed/Refractory FLT3-ITD Acute Myeloid Leukaemia with Quizartinib: Illustrative Case Reports. Clin Drug Investig 2020; 40:227-235. [PMID: 31912423 PMCID: PMC7035240 DOI: 10.1007/s40261-019-00881-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Quizartinib is a tyrosine kinase inhibitor selectively targeting the FMS-like tyrosine kinase 3 (FLT3) receptor that has been developed for the treatment of acute myeloid leukaemia (AML). The Phase 3 QuANTUM-R study investigated the efficacy of quizartinib monotherapy in patients with relapsed/refractory FLT3-ITD mutation-positive AML. The clinical course of four QuANTUM-R participants exemplifies issues specific to quizartinib treatment and is described here. Patient 1 was FLT3-ITD mutation-negative at AML diagnosis, but became FLT3-ITD mutation-positive during treatment that included several lines of chemotherapy and was therefore a suitable candidate for quizartinib. Because of the clonal shifts of AML during treatment, retesting genetic alterations at each relapse or resistance may help to identify candidates for targeted treatment options. Patient 2 developed QTc prolongation during quizartinib treatment, but the QTc interval normalised after dose reduction, allowing the patient to continue treatment and eventually resume the recommended dose. Patient 3 responded to quizartinib and was scheduled for haematopoietic stem cell transplant (HSCT), but developed febrile neutropenia and invasive aspergillosis during conditioning and subsequently died (to avoid drug-drug interactions, no azole antifungal was administered concomitantly). Care is required when selecting concomitant medications, and if there is potential for interactions (e.g. if prophylactic azole antifungals are required) the quizartinib dose should be reduced to minimise the risk of QTc prolongation. Patient 4 was able to undergo HSCT after responding to quizartinib and experienced a durable response after HSCT while on quizartinib maintenance therapy. Together, these cases illustrate the main issues to be addressed when managing patients under quizartinib, allowing for adequate scheduling and tolerability, bridging to HSCT, and durable remission on maintenance therapy in some patients.
Collapse
|
14
|
Hou HA, Tien HF. Genomic landscape in acute myeloid leukemia and its implications in risk classification and targeted therapies. J Biomed Sci 2020; 27:81. [PMID: 32690020 PMCID: PMC7372828 DOI: 10.1186/s12929-020-00674-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/14/2020] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy in terms of clinical features, underlying pathogenesis and treatment outcomes. Recent advances in genomic techniques have unraveled the molecular complexity of AML leukemogenesis, which in turn have led to refinement of risk stratification and personalized therapeutic strategies for patients with AML. Incorporation of prognostic and druggable genetic biomarkers into clinical practice to guide patient-specific treatment is going to be the mainstay in AML therapeutics. Since 2017 there has been an explosion of novel treatment options to tailor personalized therapy for AML patients. In the past 3 years, the U.S. Food and Drug Administration approved a total of eight drugs for the treatment of AML; most specifically target certain gene mutations, biological pathways, or surface antigen. These novel agents are especially beneficial for older patients or those with comorbidities, in whom the treatment choice is limited and the clinical outcome is very poor. How to balance efficacy and toxicity to further improve patient outcome is clinically relevant. In this review article, we give an overview of the most relevant genetic markers in AML with special focus on the therapeutic implications of these aberrations.
Collapse
Affiliation(s)
- Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
15
|
Kattner AS, Holler E, Herr W, Reichle A, Wolff D, Heudobler D. Successful Treatment of Early Relapsed High-Risk AML After Allogeneic Hematopoietic Stem Cell Transplantation With Biomodulatory Therapy. Front Oncol 2020; 10:443. [PMID: 32391254 PMCID: PMC7190808 DOI: 10.3389/fonc.2020.00443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/12/2020] [Indexed: 11/13/2022] Open
Abstract
Early relapse of acute myeloid leukemia (AML) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an often unsuccessful therapeutic challenge. Since treatment options are few and efficacy is low, new approaches such as de novo allo-HSCT, targeted therapies and biomodulatory drugs have been developed, albeit prognosis is very poor. In this manuscript we present an unusual case of a patient with high-risk AML with an unbalanced jumping translocation and FLT3-TKD (low) mutation who presented with early relapse (FLT3 negative) after allo-HSCT, refractory to one cycle of azacytidine and discontinuation of immunosuppression (IS). As salvage therapy, the patient received a biomodulatory therapy consisting of low-dose azacytidine 75 mg/day (given s.c. d1-7 of 28), pioglitazone 45 mg/day orally, and all-trans-retinoic acid (ATRA) 45 mg/m2/day orally achieving a complete remission after two cycles of therapy. Even after cessation of treatment after 5 cycles, the patient remained in complete remission with full chimerism in peripheral blood and bone marrow for another 7 months. In conclusion, we report about an unusual case of long-lasting complete remission of early relapsed high-risk AML after allo-HSCT treated with azacytidine, pioglitazone and ATRA after standard of care treatment with HMA and discontinuation of IS failed.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Internal Oncology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
16
|
Role of CYP3A4 in bone marrow microenvironment-mediated protection of FLT3/ITD AML from tyrosine kinase inhibitors. Blood Adv 2020; 3:908-916. [PMID: 30898762 DOI: 10.1182/bloodadvances.2018022921] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/29/2019] [Indexed: 11/20/2022] Open
Abstract
An intriguing aspect of the clinical activity of FMS-like tyrosine kinase 3 inhibitors (FLT3 TKIs) is their apparent higher activity against peripheral blasts from FLT3/internal tandem duplication (ITD) acute myeloid leukemia than marrow disease in the same patients. Accordingly, studies showed that the bone marrow microenvironment plays a role in FLT3 TKI resistance, although the underlying mechanisms are unclear. We recently identified a previously undescribed mechanism by which the bone marrow microenvironment can contribute to drug resistance: expression of cytochrome P450 enzymes (CYPs). In fact, bone marrow stromal cells (BMSCs) expressed most CYPs, including CYP3A4. Because hepatic CYP3A4 plays a role in the inactivation of several FLT3 TKIs, we explored the potential role of CYP3A4 in bone marrow microenvironment-mediated FLT3 TKI resistance. We found that CYP3A4 plays a major role in BMSC-mediated inhibition in the activity of 3 different FLT3 TKIs (sorafenib, quizartinib, and gilteritinib) against FLT3/ITD acute myeloid leukemia (AML). Furthermore, clarithromycin, a clinically active CYP3A4 inhibitor, significantly reversed the protective effects of BMSCs. We show, for the first time, that bone marrow stromal CYP3A4 contributes to FLT3 TKI resistance in the bone marrow. These results suggest that combining FLT3 TKIs with CYP3A4 inhibitors could be a promising strategy toward improving the activity of FLT3 TKIs.
Collapse
|
17
|
Durable remission of post-transplant relapsed FLT3-ITD AML in response to gilteritinib administration after a second transplant from the same donor. Int J Hematol 2020; 112:249-253. [PMID: 32185622 DOI: 10.1007/s12185-020-02858-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 01/02/2023]
Abstract
Patients with FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) acute myeloid leukemia (AML) respond to conventional induction chemotherapy, with remission rates similar to those seen in other subtypes; however, they are much more likely to relapse and relapse is rapid. For this reason, eligible patients receive consolidation therapy with early allogenic transplantation, but the recurrence rate remains high, even after transplantation. Moreover, the optimal therapy for patients with FLT3-ITD AML who relapse after allogeneic hematopoietic stem cell transplantation remains unclear. Here, we report a case in which graft-versus-leukemia (GVL) effects were induced by gilteritinib administration after a second transplant from the same donor, resulting in sustained remission of early FLT3-ITD AML relapse after allogeneic transplantation. Several studies suggest that the benefits of FLT3 tyrosine kinase inhibitors (FLT3-TKI) after allogeneic transplantation are attributable to GVL induction, as well as direct effects on FLT3 mutation-positive leukemia cells. With this in mind, we induced lymphodepletion using L-PAM to further enhance GVL induction by donor lymphocytes and FLT3-TKI. We believe that enhancement of GVL induction by lymphodepletion should be considered before FLT3-TKI use, if the prognosis is very poor, such as in patients with recurrence following allogeneic transplantation.
Collapse
|
18
|
Tallis E, Borthakur G. Novel treatments for relapsed/refractory acute myeloid leukemia with FLT3 mutations. Expert Rev Hematol 2019; 12:621-640. [PMID: 31232619 DOI: 10.1080/17474086.2019.1635882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: Mutations in the gene encoding for the FMS-like tyrosine kinase 3 (FLT3) are present in about 30% of adults with AML and are associated with shorter disease-free and overall survival after initial therapy. Prognosis of relapsed/refractory AML with FLT3 mutations is even more dismal with median overall survival of a few months only. Areas covered: This review will cover current and emerging treatments for relapsed/refractory AML with FLT3 mutations, preclinical rationale and clinical trials with new encouraging data for this particularly challenging population. The authors discuss mechanisms of resistance to FLT3 inhibitors and how these insights serve to identify current and future treatments. As allogeneic stem cell transplant in the first remission is the preferred therapy for newly diagnosed AML patients with FLT3 mutations, the authors discuss the role of maintenance after SCT for the prevention of relapse. Expert opinion: Relapsed/refractory AML with FLT3 mutations remains a therapeutic challenge with currently available treatments. However, the evolution of targeted therapies with next-generation FLT3 inhibitors and their combinations with chemotherapy is showing much promise. Moreover, growing understanding of the pathways of resistance to treatment has led to the identification of various targeted therapies currently being explored, which in time will improve outcomes.
Collapse
Affiliation(s)
- Eran Tallis
- a Department of Leukemia, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Gautam Borthakur
- a Department of Leukemia, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
19
|
Daver N, Schlenk RF, Russell NH, Levis MJ. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia 2019; 33:299-312. [PMID: 30651634 PMCID: PMC6365380 DOI: 10.1038/s41375-018-0357-9] [Citation(s) in RCA: 610] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/18/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023]
Abstract
Genomic investigations of acute myeloid leukemia (AML) have demonstrated that several genes are recurrently mutated, leading to new genomic classifications, predictive biomarkers, and new therapeutic targets. Mutations of the FMS-like tyrosine kinase 3 (FLT3) gene occur in approximately 30% of all AML cases, with the internal tandem duplication (ITD) representing the most common type of FLT3 mutation (FLT3-ITD; approximately 25% of all AML cases). FLT3-ITD is a common driver mutation that presents with a high leukemic burden and confers a poor prognosis in patients with AML. The prognostic value of a FLT3 mutation in the tyrosine kinase domain (FLT3-TKD), which has a lower incidence in AML (approximately 7-10% of all cases), is uncertain. Accumulating evidence demonstrates that FLT3 mutational status evolves throughout the disease continuum. This so-called clonal evolution, together with the identification of FLT3-ITD as a negative prognostic marker, serves to highlight the importance of FLT3-ITD testing at diagnosis and again at relapse. Earlier identification of FLT3 mutations will help provide a better understanding of the patient's disease and enable targeted treatment that may help patients achieve longer and more durable remissions. First-generation FLT3 inhibitors developed for clinical use are broad-spectrum, multikinase inhibitors; however, next-generation FLT3 inhibitors are more specific, more potent, and have fewer toxicities associated with off-target effects. Primary and secondary acquired resistance to FLT3 inhibitors remains a challenge and provides a rationale for combining FLT3 inhibitors with other therapies, both conventional and investigational. This review focuses on the pathological and prognostic role of FLT3 mutations in AML, clinical classification of the disease, recent progress with next-generation FLT3 inhibitors, and mechanisms of resistance to FLT3 inhibitors.
Collapse
Affiliation(s)
- Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard F Schlenk
- National Center of Tumor Diseases, German Cancer Research Center, Heidelberg, Germany
| | - Nigel H Russell
- Centre for Clinical Haematology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Mark J Levis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
20
|
Naganna N, Opoku-Temeng C, Choi EY, Larocque E, Chang ET, Carter-Cooper BA, Wang M, Torregrosa-Allen SE, Elzey BD, Lapidus RG, Sintim HO. Amino alkynylisoquinoline and alkynylnaphthyridine compounds potently inhibit acute myeloid leukemia proliferation in mice. EBioMedicine 2019; 40:231-239. [PMID: 30686755 PMCID: PMC6413339 DOI: 10.1016/j.ebiom.2019.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) remains one of the most lethal, rarely cured cancers, despite decades of active development of AML therapeutics. Currently, the 5-year survival of AML patients is about 30% and for elderly patients, the rate drops to <10%. About 30% of AML patients harbor an activating mutation in the tyrosine kinase domain (TKD) of Fms-Like Tyrosine kinase 3 (FLT3) or a FLT3 internal tandem duplication (FLT3-ITD). Inhibitors of FLT3, such as Rydapt that was recently approved by the FDA, have shown good initial response but patients often relapse due to secondary mutations in the FLT3 TKD, like D835Y and F691 L mutations. METHODS Alkynyl aminoisoquinoline and naphthyridine compounds were synthesized via Sonogashira coupling. The compounds were evaluated for their in vitro and in vivo effects on leukemia growth. FINDINGS The compounds inhibited FLT3 kinase activity at low nanomolar concentrations. The lead compound, HSN431, also inhibited Src kinase activity. The compounds potently inhibited the viability of MV4-11 and MOLM-14 AML cells with IC50 values <1 nM. Furthermore, the viability of drug-resistant AML cells harboring the D835Y and F691 L mutations were potently inhibited. In vivo efficacy studies in mice demonstrated that the compounds could drastically reduce AML proliferation in mice. INTERPRETATION Compounds that inhibit FLT3 and downstream targets like Src (for example HSN431) are good leads for development as anti-AML agents. FUND: Purdue University, Purdue Institute for Drug Discovery (PIDD), Purdue University Center for Cancer Research, Elks Foundation and NIH P30 CA023168.
Collapse
Affiliation(s)
- N Naganna
- Purdue Institute for Drug Discovery, West Lafayette, IN 47907, USA; Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Clement Opoku-Temeng
- Purdue Institute for Drug Discovery, West Lafayette, IN 47907, USA; Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA; Graduate Program in Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Eun Yong Choi
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elizabeth Larocque
- Purdue Institute for Drug Discovery, West Lafayette, IN 47907, USA; Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | | - Modi Wang
- Purdue Institute for Drug Discovery, West Lafayette, IN 47907, USA; Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | - Bennett D Elzey
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Rena G Lapidus
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Herman O Sintim
- Purdue Institute for Drug Discovery, West Lafayette, IN 47907, USA; Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
21
|
Rebechi MT, Pratz KW. Genomic instability is a principle pathologic feature of FLT3 ITD kinase activity in acute myeloid leukemia leading to clonal evolution and disease progression. Leuk Lymphoma 2017; 58:1-11. [PMID: 28278729 DOI: 10.1080/10428194.2017.1283031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Acute Myeloid Leukemia with FLT3 ITD mutations are associated with a poor prognosis characterized by a higher relapse rate, shorter relapse free survival, and decreased likelihood of response to therapy at relapse. FLT3 ITD signaling drives cell proliferation and survival. FLT3 ITD AML disease progression is associated with cytogenetic evolution and acquired tyrosine kinase inhibitor (TKI) resistance suggesting a potential role of genomic instability. There is growing evidence demonstrating a relationship between FLT3 signaling and increased DNA damage, specifically through increased reactive oxygen species (ROS) resulting in double-strand breaks (DSB), as well as impaired DNA repair, involving deficiencies in the non-homologous end joining (NHEJ), alternative non-homologous end joining (ALT NHEJ) and homologous recombination (HR) pathways. The role of genomic instability in the pathogenesis of FLT3 ITD AML warrants further examination as it offers potential therapeutic targets.
Collapse
Affiliation(s)
- Melanie T Rebechi
- a Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University , Baltimore , MD , USA
| | - Keith W Pratz
- a Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|
22
|
Relapse of AML after hematopoietic stem cell transplantation: methods of monitoring and preventive strategies. A review from the ALWP of the EBMT. Bone Marrow Transplant 2016; 51:1431-1438. [DOI: 10.1038/bmt.2016.167] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 02/07/2023]
|
23
|
Smith CC, Shah NP. The role of kinase inhibitors in the treatment of patients with acute myeloid leukemia. Am Soc Clin Oncol Educ Book 2016:313-8. [PMID: 23714533 DOI: 10.14694/edbook_am.2013.33.313] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Multiple small molecule kinase inhibitors are currently undergoing development for the treatment of acute myeloid leukemia (AML). Recently, selective and potent FLT3 inhibitors such as AC220 (quizartinib) have proven clinically effective in patients with AML with FLT3 internal tandem duplication (ITD) mutations, but inhibitors of other pathologically activated kinases in AML such as c-KIT and JAK2 have achieved less clinical success. Other classes of inhibitors currently undergoing clinical development target mediators of downstream signaling pathways such as mTOR and MEK or cell cycle machinery such as aurora kinases, PLK1, or cyclin-dependent kinases. Other than FLT3 inhibitors, most inhibitors have achieved only rare bone marrow responses, and kinase inhibitor therapy in AML remains investigational. Continuing efforts to develop kinase inhibitors for the treatment of AML will require careful selection of patients for clinical trials, translational studies to characterize responders, and investigation of combination therapy that may be capable of improving response rates and duration.
Collapse
Affiliation(s)
- Catherine C Smith
- From the Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | | |
Collapse
|
24
|
Gourdin TS, Zou Y, Ning Y, Emadi A, Duong VH, Tidwell ML, Chen C, Rassool FV, Baer MR. High frequency of rare structural chromosome abnormalities at relapse of cytogenetically normal acute myeloid leukemia with FLT3 internal tandem duplication. Cancer Genet 2014; 207:467-73. [PMID: 25441683 DOI: 10.1016/j.cancergen.2014.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/30/2014] [Accepted: 09/01/2014] [Indexed: 01/13/2023]
Abstract
FLT3 internal tandem duplication (ITD) mutations are present in acute myeloid leukemia (AML) in 30% of patients with acute myeloid leukemia (AML), most commonly in those with a normal karyotype, and are associated with short relapse-free survival. Both in vitro and in vivo studies of FLT3-ITD cell lines have demonstrated reactive oxygen species-mediated DNA double-strand breaks and associated error-prone DNA repair as a mechanism of genomic instability, and we hypothesized that genomic instability might be manifested by cytogenetic changes at relapse of FLT3-ITD AML. We retrospectively reviewed charts of patients with cytogenetically normal (CN) FLT3-ITD AML treated at the University of Maryland Greenebaum Cancer Center, with attention to metaphase analysis results at relapse. Cytogenetic data were available from first and, when applicable, subsequent relapses for 15 patients diagnosed with CN FLT3-ITD AML. Among 12 patients with documented FLT3-ITD at first and, when applicable, subsequent relapse, 10 had cytogenetic changes, including nine with rare structural abnormalities. The high frequency of rare structural chromosome abnormalities at relapse in our case series supports a role of genomic instability in the genesis of relapse, and suggests that reactive oxygen species-generating and DNA repair pathways might be therapeutic targets in FLT3-ITD AML.
Collapse
Affiliation(s)
- Theodore S Gourdin
- University of Maryland Greenebaum Cancer Center, Baltimore, MD; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Ying Zou
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - Yi Ning
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - Ashkan Emadi
- University of Maryland Greenebaum Cancer Center, Baltimore, MD; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Vu H Duong
- University of Maryland Greenebaum Cancer Center, Baltimore, MD; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Michael L Tidwell
- University of Maryland Greenebaum Cancer Center, Baltimore, MD; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Ching Chen
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - Feyruz V Rassool
- University of Maryland Greenebaum Cancer Center, Baltimore, MD; Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| | - Maria R Baer
- University of Maryland Greenebaum Cancer Center, Baltimore, MD; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
25
|
Abstract
Cytogenetic data suggest that acute myeloid leukemia (AML) develops through a process of branching evolution, especially during relapse and progression. Recent genomic data from AML cases using digital sequencing, temporal comparisons, xenograft cloning, and single-cell analysis indicate that most, if not all, AML cases emerge through branching evolution. According to a review of the current literature, the balanced translocations (t[15;17], t[8;21], and inv[16]) and nucleotide variants in DNMT3A and TET2 most commonly occur in the founding clone at diagnosis. These mutations are rarely gained or lost at relapse, and the latter 2 mutations are observed in elderly subjects with mosaic hematopoiesis antedating overt leukemia. In contrast, +8, +13, +22, -X, -Y, and nucleotide variants in FLT3, NRAS/KRAS, WT1, and KIT frequently occur in subclones and are observed either to emerge or to be lost at relapse. Because drugs that target mutations within a subclone are unlikely to eliminate all leukemic cells, it will be essential to understand not only which mutations a patient has but also how they organize within the leukemic subclonal architecture.
Collapse
Affiliation(s)
- John S Welch
- Washington University School of Medicine, Division of Oncology, Stem Cell Biology Section, St. Louis, MO.
| |
Collapse
|
26
|
Carluccio P, Mestice A, Pastore D, Delia M, Ricco A, Russo-Rossi A, Casieri P, Liso A, Martelli MP, Albano F, Specchia G. Immunophenotypic and molecular features of ‘cuplike’ acute myeloid leukemias. Eur J Haematol 2014; 92:121-6. [DOI: 10.1111/ejh.12217] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2013] [Indexed: 12/28/2022]
Affiliation(s)
- Paola Carluccio
- Department of Emergency - Section of Haematology; University of Bari; Bari Italy
| | - Anna Mestice
- Department of Emergency - Section of Haematology; University of Bari; Bari Italy
| | - Domenico Pastore
- Department of Emergency - Section of Haematology; University of Bari; Bari Italy
| | - Mario Delia
- Department of Emergency - Section of Haematology; University of Bari; Bari Italy
| | - Alessandra Ricco
- Department of Emergency - Section of Haematology; University of Bari; Bari Italy
| | | | - Paola Casieri
- Department of Emergency - Section of Haematology; University of Bari; Bari Italy
| | - Arcangelo Liso
- Department of Haematology; University of Foggia; Foggia Italy
| | | | - Francesco Albano
- Department of Emergency - Section of Haematology; University of Bari; Bari Italy
| | - Giorgina Specchia
- Department of Emergency - Section of Haematology; University of Bari; Bari Italy
| |
Collapse
|
27
|
Fontanelli G, Rocco M, Caracciolo F, Benedetti E, Buda G, Orciuolo E, Carulli G, Galimberti S, Azzarà A, Petrini M. Sorafenib as monotherapy or in association with cytarabine and clofarabine for the treatment of relapsed/refractory FLT3 ITD-positive advanced acute myeloid leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2013; 14:e13-7. [PMID: 24144836 DOI: 10.1016/j.clml.2013.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 02/04/2023]
Affiliation(s)
- Giulia Fontanelli
- U.O. Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Melania Rocco
- U.O. Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Caracciolo
- U.O. Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Edoardo Benedetti
- U.O. Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Buda
- U.O. Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Enrico Orciuolo
- U.O. Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanni Carulli
- U.O. Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sara Galimberti
- U.O. Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonio Azzarà
- U.O. Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Mario Petrini
- U.O. Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
28
|
Abstract
Mutations in the nucleophosmin 1 (NPM1) gene are considered a founder event in the pathogenesis of acute myeloid leukemia (AML). To address the role of clonal evolution in relapsed NPM1-mutated (NPM1mut) AML, we applied high-resolution, genome-wide, single-nucleotide polymorphism array profiling to detect copy number alterations (CNAs) and uniparental disomies (UPDs) and performed comprehensive gene mutation screening in 53 paired bone marrow/peripheral blood samples obtained at diagnosis and relapse. At diagnosis, 15 aberrations (CNAs, n = 10; UPDs, n = 5) were identified in 13 patients (25%), whereas at relapse, 56 genomic alterations (CNAs, n = 46; UPDs, n = 10) were detected in 29 patients (55%) indicating an increase in genomic complexity. Recurrent aberrations acquired at relapse included deletions affecting tumor suppressor genes (ETV6 [n = 3], TP53 [n = 2], NF1 [n = 2], WT1 [n = 3], FHIT [n = 2]) and homozygous FLT3 mutations acquired via UPD13q (n = 7). DNMT3A mutations (DNMT3Amut) showed the highest stability (97%). Persistence of DNMT3Amut in 5 patients who lost NPM1mut at relapse suggests that DNMT3Amut may precede NPM1mut in AML pathogenesis. Of note, all relapse samples shared at least 1 genetic aberration with the matched primary AML sample, implying common ancestral clones. In conclusion, our study reveals novel insights into clonal evolution in NPM1mut AML.
Collapse
|
29
|
Association of cup-like nuclei in blasts with FLT3 and NPM1 mutations in acute myeloid leukemia. Ann Hematol 2012; 92:451-7. [DOI: 10.1007/s00277-012-1645-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 11/25/2012] [Indexed: 02/05/2023]
|
30
|
Warren M, Luthra R, Yin CC, Ravandi F, Cortes JE, Kantarjian HM, Medeiros LJ, Zuo Z. Clinical impact of change of FLT3 mutation status in acute myeloid leukemia patients. Mod Pathol 2012; 25:1405-12. [PMID: 22684224 DOI: 10.1038/modpathol.2012.88] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
FMS-like tyrosine kinase 3 (FLT3) is one of the most frequently mutated genes in acute myeloid leukemia and is associated with worse clinical outcome. Changes in FLT3 mutation status can occur during the course of disease, but the clinical impact of a change is unclear. We retrospectively reviewed 3555 acute myeloid leukemia patients, who have been assessed for FLT3 mutation at our institution between May 2002 and January 2011. We found that 42 (6.2%) out of 680 patients with FLT3 mutation experienced a change of FLT3 mutation status. In all, 36 patients with wild-type FLT3 at the time of initial diagnosis gained mutation (Negative/Positive) and six initially FLT3-mutated patients became wild type during their following relapses (Positive/Negative). The 5-year survival of these patients was similar to that of patients with persistently wild-type FLT3 (Negative/Negative; P=0.464), and significantly better than patients who had stable FLT3 mutation during their disease course (Positive/Positive; P<0.001). However, after mutations became detectable in the Negative/Positive group, the forward survival of these patients tracked that of the Positive/Positive group after relapse (P=0.761). In addition, we did not find a significant difference in survival between patients with internal tandem duplications and those with point mutations in the tyrosine kinase domain of the FLT3 gene. These results suggest that FLT3 mutations are unstable and that there is potential clinical value in continuously monitoring FLT3 mutation status.
Collapse
Affiliation(s)
- Mikako Warren
- Department of Pathology and Immunology, Baylor Collage of Medicine, Texas Children's Hospital, Houston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, Wartman LD, Lamprecht TL, Liu F, Xia J, Kandoth C, Fulton RS, McLellan MD, Dooling DJ, Wallis JW, Chen K, Harris CC, Schmidt HK, Kalicki-Veizer JM, Lu C, Zhang Q, Lin L, O'Laughlin MD, McMichael JF, Delehaunty KD, Fulton LA, Magrini VJ, McGrath SD, Demeter RT, Vickery TL, Hundal J, Cook LL, Swift GW, Reed JP, Alldredge PA, Wylie TN, Walker JR, Watson MA, Heath SE, Shannon WD, Varghese N, Nagarajan R, Payton JE, Baty JD, Kulkarni S, Klco JM, Tomasson MH, Westervelt P, Walter MJ, Graubert TA, DiPersio JF, Ding L, Mardis ER, Wilson RK. The origin and evolution of mutations in acute myeloid leukemia. Cell 2012; 150:264-78. [PMID: 22817890 DOI: 10.1016/j.cell.2012.06.023] [Citation(s) in RCA: 1215] [Impact Index Per Article: 101.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/27/2012] [Accepted: 06/24/2012] [Indexed: 10/28/2022]
Abstract
Most mutations in cancer genomes are thought to be acquired after the initiating event, which may cause genomic instability and drive clonal evolution. However, for acute myeloid leukemia (AML), normal karyotypes are common, and genomic instability is unusual. To better understand clonal evolution in AML, we sequenced the genomes of M3-AML samples with a known initiating event (PML-RARA) versus the genomes of normal karyotype M1-AML samples and the exomes of hematopoietic stem/progenitor cells (HSPCs) from healthy people. Collectively, the data suggest that most of the mutations found in AML genomes are actually random events that occurred in HSPCs before they acquired the initiating mutation; the mutational history of that cell is "captured" as the clone expands. In many cases, only one or two additional, cooperating mutations are needed to generate the malignant founding clone. Cells from the founding clone can acquire additional cooperating mutations, yielding subclones that can contribute to disease progression and/or relapse.
Collapse
Affiliation(s)
- John S Welch
- Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Blau O, Berenstein R, Sindram A, Blau IW. Molecular analysis of different FLT3-ITD mutations in acute myeloid leukemia. Leuk Lymphoma 2012; 54:145-52. [PMID: 22721497 DOI: 10.3109/10428194.2012.704999] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mutation of the FMS-like tyrosine kinase-3 (FLT3) gene occurs with a frequency of 20-25% in acute myeloid leukemia (AML). Different studies have reported conflicting results, stating the importance of the length, position and number of internal tandem duplications (ITDs) for prognostic significance. In the present study, FLT3-ITD mutations were found in 51 (23%) of 218 patients with AML. Using sequence analysis we categorized ITD integration sites according to functional regions of the FLT3 receptor. Median ITD size was 61 bp. The insertion site was strongly correlated with ITD size: more C-terminal located inserted fragments were significantly bigger. Our data confirm that FLT3-ITD mutations identify a subset of young patients with AML with normal cytogenetics but with inferior outcome. Patients with AML with mutation localization outside the juxtamembrane domain showed no correlation with worse prognosis. A high mutant/wild-type ratio appears to have a major impact on the prognostic relevance.
Collapse
Affiliation(s)
- Olga Blau
- Department of Hematology and Oncology, Charité University School of Medicine, Berlin, Germany.
| | | | | | | |
Collapse
|
33
|
Smith CC, Shah NP. Mechanisms of resistance to targeted therapies in acute myeloid leukemia and chronic myeloid leukemia. Am Soc Clin Oncol Educ Book 2012:685-689. [PMID: 24451819 DOI: 10.14694/edbook_am.2012.32.103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Small molecule kinase inhibitors of BCR-ABL in chronic myeloid leukemia (CML) and of FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) in acute myeloid leukemia (AML) have been successful at achieving remissions in these diseases as monotherapy, but these leukemias do not initially respond in a subset of patients (primary resistance) and they progress in an additional group of patients after an initial response (secondary resistance). Resistance to these agents can be divided into mechanisms that allow reactivation kinase activity and those that bypass reliance on oncogenic signaling mediated by the target kinase. Elucidation of clinical resistance mechanisms to targeted therapies for patients can provide important insights into disease pathogenesis and signaling.
Collapse
Affiliation(s)
- Catherine C Smith
- From the Division of Hematology/Oncology, University of California, San Francisco, CA
| | - Neil P Shah
- From the Division of Hematology/Oncology, University of California, San Francisco, CA
| |
Collapse
|
34
|
Stone RM. Should the presence of minimal residual disease (MRD) in morphologic complete remission alter post-remission strategy in AML? Best Pract Res Clin Haematol 2011; 24:509-14. [PMID: 22127313 DOI: 10.1016/j.beha.2011.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Minimal residual disease (MRD) monitoring, particularly via multiparameter flow (MPF) cytometry assessed after chemotherapy, has been very useful in the prognostic and therapeutic approach for children with acute lymphoblastic leukemia. While many studies suggest that MRD monitoring (using MPF or other techniques that are more sensitive than morphologic examination) might be able to accurately predict patient outcome, there is very little data suggesting that treatment decisions should be altered based on such measurements. Proving that MPF-defined MRD should prompt a change in treatment plan optimally requires a contemporaneous control group or at least a historical control treated in standard fashion.
Collapse
MESH Headings
- Anthracyclines/administration & dosage
- Anthracyclines/therapeutic use
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/genetics
- Child
- Cytarabine/administration & dosage
- Cytarabine/therapeutic use
- Disease Management
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Neoplasm, Residual/diagnosis
- Neoplasm, Residual/genetics
- Neoplasm, Residual/pathology
- Neoplasm, Residual/therapy
- Polymerase Chain Reaction
- Remission Induction/methods
- Stem Cell Transplantation
- Transplantation, Homologous
- Treatment Outcome
Collapse
|
35
|
Malhas A, Goulbourne C, Vaux DJ. The nucleoplasmic reticulum: form and function. Trends Cell Biol 2011; 21:362-73. [DOI: 10.1016/j.tcb.2011.03.008] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/17/2011] [Accepted: 03/23/2011] [Indexed: 11/29/2022]
|
36
|
Tiribelli M, Geromin A, Michelutti A, Cavallin M, Pianta A, Fabbro D, Russo D, Damante G, Fanin R, Damiani D. Concomitant ABCG2 overexpression and FLT3-ITD mutation identify a subset of acute myeloid leukemia patients at high risk of relapse. Cancer 2010; 117:2156-62. [DOI: 10.1002/cncr.25753] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 08/31/2010] [Accepted: 10/04/2010] [Indexed: 01/18/2023]
|