1
|
Luo Q, Li X, Xie K. Plakophilin 1 in carcinogenesis. Mol Carcinog 2024; 63:1855-1865. [PMID: 38888207 DOI: 10.1002/mc.23779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/11/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Plakophilin 1 (PKP1) belongs to the desmosome family as an anchoring junction protein in cellular junctions. It localizes at the interface of the cell membrane and cytoplasm. Although PKP1 is a non-transmembrane protein, it may become associated with the cell membrane via transmembrane proteins such as desmocollins and desmogleins. Homozygous deletion of PKP1 results in ectodermal dysplasia-skin fragility syndrome (EDSF) and complete knockout of PKP1 in mice produces comparable symptoms to EDSF in humans, although mice do not survive more than 24 h. PKP1 is not limited to expression in desmosomal structures, but is rather widely expressed in cytoplasm and nucleus, where it assumes important cellular functions. This review will summarize distinct roles of PKP1 in the cell membrane, cytoplasm, and nucleus with an overview of relevant studies on its function in diverse types of cancer.
Collapse
Affiliation(s)
- Qiang Luo
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong, China
| | - Xiaojia Li
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong, China
- The Second Affiliated Hospital and Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangzhou, Guangdong, China
- The South China University of Technology Comprehensive Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Zhao FY, Chen X, Wang JM, Yuan Y, Li C, Sun J, Wang HQ. O-GlcNAcylation of TRIM29 and OGT translation forms a feedback loop to promote adaptive response of PDAC cells to glucose deficiency. Cell Oncol (Dordr) 2024; 47:1025-1041. [PMID: 38345749 DOI: 10.1007/s13402-023-00915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 07/04/2024] Open
Abstract
PURPOSE Glucose not only provides energy for tumor cells, but also provides various biomolecules that are essential for their survival, proliferation and invasion. Therefore, it is of great clinical significance to understand the mechanism of how tumor cells adapt to metabolic stress and maintain their survival. The aim of this research was to study the critical role of OGT and TRIM29 O-GlcNAc modification driven adaptability of PDAC cells to low glucose stress, which might have important medical implications for PDAC therapy. METHODS Western blotting, mass spectrometry and WGA-immunoprecipitation were used to examined the levels of OGT and O-GlcNAc glycosylated proteins in BxPC3 and SW1990 cells in normal culture and under glucose deprivation conditions. Crystal violet assay, flow cytometry, RIP, RT-qPCR, protein stability assay, biotin pull down were used to investigate the mechanism of OGT and TRIM29-mediated adaptive response to glucose deficiency in PDAC cells. RESULTS The current study found that under the condition of low glucose culture, the levels of OGT and O-GlcNAc glycosylation in PDAC cells were significantly higher than those in normal culture. Moreover, the high expression of OGT has a protective effect on PDAC cells under low glucose stress. This study confirmed that there was no significant change in mRNA level and protein degradation of OGT under low glucose stress, which was mainly reflected in the increase of protein synthesis. In addition, O-GlcNAc modification at T120 site plays a critical role in the metabolic adaptive responses mediated by TRIM29. CONCLUSIONS Taken together, our study indicated that O-GlcNAcylation of TRIM29 at T120 site and OGT translation forms a loop feedback to facilitate survival of PDAC under glucose deficiency.
Collapse
Affiliation(s)
- Fu-Ying Zhao
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China
| | - Xue Chen
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China
| | - Jia-Mei Wang
- Department of Laboratory Medicine, The 1st Affiliated Hospital, China Medical University, Shenyang, 110001, China
| | - Ye Yuan
- Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, China
| | - Chao Li
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China
| | - Jia Sun
- Department of Biochemistry and Molecular Biology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Hua-Qin Wang
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
3
|
Gu J, Chen J, Xiang S, Zhou X, Li J. Intricate confrontation: Research progress and application potential of TRIM family proteins in tumor immune escape. J Adv Res 2023; 54:147-179. [PMID: 36736694 DOI: 10.1016/j.jare.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tripartite motif (TRIM) family proteins have more than 80 members and are widely found in various eukaryotic cells. Most TRIM family proteins participate in the ubiquitin-proteasome degradation system as E3-ubiquitin ligases; therefore, they play pivotal regulatory roles in the occurrence and development of tumors, including tumor immune escape. Due to the diversity of functional domains of TRIM family proteins, they can extensively participate in multiple signaling pathways of tumor immune escape through different substrates. In current research and clinical contexts, immune escape has become an urgent problem. The extensive participation of TRIM family proteins in curing tumors or preventing postoperative recurrence and metastasis makes them promising targets. AIM OF REVIEW The aim of the review is to make up for the gap in the current research on TRIM family proteins and tumor immune escape and propose future development directions according to the current progress and problems. KEY SCIENTIFIC CONCEPTS OF REVIEW This up-to-date review summarizes the characteristics and biological functions of TRIM family proteins, discusses the mechanisms of TRIM family proteins involved in tumor immune escape, and highlights the specific mechanism from the level of structure-function-molecule-pathway-phenotype, including mechanisms at the level of protein domains and functions, at the level of molecules and signaling pathways, and at the level of cells and microenvironments. We also discuss the application potential of TRIM family proteins in tumor immunotherapy, such as possible treatment strategies for combination targeting TRIM family protein drugs and checkpoint inhibitors for improving cancer treatment.
Collapse
Affiliation(s)
- Junjie Gu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingyi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
Caruntu C, Tsatsakis AM, Tampa M, Georgescu SR, Gonzalez S. Editorial: Recent advances in keratinocyte carcinomas: From molecular mechanisms to clinical perspectives. Front Med (Lausanne) 2022; 9:1078020. [DOI: 10.3389/fmed.2022.1078020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
|
5
|
Molecular Mechanisms Leading from Periodontal Disease to Cancer. Int J Mol Sci 2022; 23:ijms23020970. [PMID: 35055157 PMCID: PMC8778447 DOI: 10.3390/ijms23020970] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Periodontitis is prevalent in half of the adult population and raises critical health concerns as it has been recently associated with an increased risk of cancer. While information about the topic remains somewhat scarce, a deeper understanding of the underlying mechanistic pathways promoting neoplasia in periodontitis patients is of fundamental importance. This manuscript presents the literature as well as a panel of tables and figures on the molecular mechanisms of Porphyromonas gingivalis and Fusobacterium nucleatum, two main oral pathogens in periodontitis pathology, involved in instigating tumorigenesis. We also present evidence for potential links between the RANKL–RANK signaling axis as well as circulating cytokines/leukocytes and carcinogenesis. Due to the nonconclusive data associating periodontitis and cancer reported in the case and cohort studies, we examine clinical trials relevant to the topic and summarize their outcome.
Collapse
|
6
|
Hsu CY, Yanagi T, Ujiie H. TRIM29 in Cutaneous Squamous Cell Carcinoma. Front Med (Lausanne) 2022; 8:804166. [PMID: 34988104 PMCID: PMC8720877 DOI: 10.3389/fmed.2021.804166] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Tripartite motif (TRIM) proteins play important roles in a wide range of cell physiological processes, such as signal transduction, transcriptional regulation, innate immunity, and programmed cell death. TRIM29 protein, encoded by the ATDC gene, belongs to the RING-less group of TRIM protein family members. It consists of four zinc finger motifs in a B-box domain and a coiled-coil domain, and makes use of the B-box domain as E3 ubiquitin ligase in place of the RING. TRIM29 was found to be involved in the formation of homodimers and heterodimers in relation to DNA binding; additional studies have also demonstrated its role in carcinogenesis, DNA damage signaling, and the suppression of radiosensitivity. Recently, we reported that TRIM29 interacts with keratins and FAM83H to regulate keratin distribution. Further, in cutaneous SCC, the expression of TRIM29 is silenced by DNA methylation, leading to the loss of TRIM29 and promotion of keratinocyte migration. This paper reviews the role of TRIM family proteins in malignant tumors, especially the role of TRIM29 in cutaneous SCC.
Collapse
Affiliation(s)
- Che-Yuan Hsu
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Teruki Yanagi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Liu YQ, Zou HY, Xie JJ, Fang WK. Paradoxical Roles of Desmosomal Components in Head and Neck Cancer. Biomolecules 2021; 11:914. [PMID: 34203070 PMCID: PMC8234459 DOI: 10.3390/biom11060914] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 02/05/2023] Open
Abstract
Desmosomes are intercellular adhesion complexes involved in various aspects of epithelial pathophysiology, including tissue homeostasis, morphogenesis, and disease development. Recent studies have reported that the abnormal expression of various desmosomal components correlates with tumor progression and poor survival. In addition, desmosomes have been shown to act as a signaling platform to regulate the proliferation, invasion, migration, morphogenesis, and apoptosis of cancer cells. The occurrence and progression of head and neck cancer (HNC) is accompanied by abnormal expression of desmosomal components and loss of desmosome structure. However, the role of desmosomal components in the progression of HNC remains controversial. This review aims to provide an overview of recent developments showing the paradoxical roles of desmosomal components in tumor suppression and promotion. It offers valuable insights for HNC diagnosis and therapeutics development.
Collapse
Affiliation(s)
- Yin-Qiao Liu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (Y.-Q.L.); (H.-Y.Z.)
| | - Hai-Ying Zou
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (Y.-Q.L.); (H.-Y.Z.)
| | - Jian-Jun Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (Y.-Q.L.); (H.-Y.Z.)
- Precision Medicine Research Center, Shantou University Medical College, Shantou 515041, China
| | - Wang-Kai Fang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (Y.-Q.L.); (H.-Y.Z.)
- Precision Medicine Research Center, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
8
|
Hao L, Zhang Q, Qiao HY, Zhao FY, Jiang JY, Huyan LY, Liu BQ, Yan J, Li C, Wang HQ. TRIM29 alters bioenergetics of pancreatic cancer cells via cooperation of miR-2355-3p and DDX3X recruitment to AK4 transcript. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:579-590. [PMID: 33898107 PMCID: PMC8054099 DOI: 10.1016/j.omtn.2021.01.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/22/2021] [Indexed: 12/28/2022]
Abstract
TRIM29 is dysregulated in pancreatic cancer and implicated in maintenance of stem-cell-like characters of pancreatic cancer cells. However, the exact mechanisms underlying oncogenic function of TRIM29 in pancreatic cancer cells remain largely unclarified. Using a global screening procedure, the current study found that adenylate kinase 4 (AK4) was profoundly reduced by TRIM29 knockdown. In addition, our data demonstrated that TRIM29 knockdown altered bioenergetics and suppressed proliferation and invasion of pancreatic cancer cells via downregulation of AK4 at the posttranscriptional level. The current study demonstrated that upregulation of microRNA-2355-3p (miR-2355-3p) upregulated AK4 expression via facilitating DDX3X recruitment to the AK4 transcript, and TRIM29 knockdown thereby destabilized the AK4 transcript via miR-2355-3p downregulation. Collectively, our study uncovers posttranscriptional stabilization of the AK4 transcript by miR-2355-3p interaction to facilitate DDX3X recruitment. Regulation of AK4 by TRIM29 via miR-2355-3p thereby provides additional information for further identification of attractive targets for therapy with pancreatic cancer.
Collapse
Affiliation(s)
- Liang Hao
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110026, China.,Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110026, China.,Department of Chemistry, China Medical University, Shenyang 110126, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110026, China.,Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110026, China.,Criminal Investigation Police University of China, Shenyang 110854, China
| | - Huai-Yu Qiao
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110026, China
| | - Fu-Ying Zhao
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110026, China
| | - Jing-Yi Jiang
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110026, China
| | - Ling-Yue Huyan
- 5+3 integrated clinical medicine 103K, China Medical University, Shenyang 110026, China
| | - Bao-Qin Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110026, China
| | - Jing Yan
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110026, China
| | - Chao Li
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110026, China
| | - Hua-Qin Wang
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110026, China.,Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110026, China
| |
Collapse
|
9
|
Guo AJ, Wang FJ, Ji Q, Geng HW, Yan X, Wang LQ, Tie WW, Liu XY, Thorne RF, Liu G, Xu AM. Proteome Analyses Reveal S100A11, S100P, and RBM25 Are Tumor Biomarkers in Colorectal Cancer. Proteomics Clin Appl 2021; 15:e2000056. [PMID: 33098374 DOI: 10.1002/prca.202000056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/03/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE The prognosis for colorectal cancer (CRC) patients is drastically impacted by the presence of lymph node or liver metastases at diagnosis or resection. On this basis it is sought to identify novel proteins as biomarkers and determinants of CRC metastasis. EXPERIMENTAL DESIGN Proteomic analyses are undertaken using primary tissues from ten Chinese CRC patients presenting with or without liver metastases and immunohistochemistry used to validate selected proteins in an independent patient cohort. RESULTS Comparing CRC against paired normal adjacent tissues identifies 1559 differentially expressed proteins (DEPs) with 974 upregulated and 585 downregulated proteins, respectively. The highest number of DEPs is selectively associated with metastatic tumors (519 upregulated and 267 downregulated proteins, respectively) with a smaller number of unique DEPs identified only in non-metastatic CRC cases (116 upregulated and 29 downregulated proteins, respectively). The remaining DEPs are commonly expressed in both non-metastatic and metastatic tumors. The upregulation of three representative DEPs (S100A11, S100P, and RBM25) is confirmed using immunohistochemistry against 154 CRC tissues embedded in a tissue microarray. CONCLUSIONS AND CLINICAL RELEVANCE The data reveal both previously identified CRC biomarkers along with novel candidates which provide a ready resource of DEPs in CRC for further investigation.
Collapse
Affiliation(s)
- Ai-Jun Guo
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Feng-Jie Wang
- Biology Department, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Qiang Ji
- Biology Department, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Hui-Wu Geng
- Biology Department, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xu Yan
- Biology Department, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Lin-Qi Wang
- Biology Department, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Wei-Wei Tie
- Department of Gynaecology, Ningbo Medical Center Lihuili Hospital, Ningbo, 315040, China
| | - Xiao-Ying Liu
- Biology Department, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Rick F Thorne
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, and Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China
| | - Gang Liu
- Biology Department, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - A-Man Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| |
Collapse
|
10
|
Ribeiro IP, Esteves L, Anjo SI, Marques F, Barroso L, Manadas B, Carreira IM, Melo JB. Proteomics-based Predictive Model for the Early Detection of Metastasis and Recurrence in Head and Neck Cancer. Cancer Genomics Proteomics 2020; 17:259-269. [PMID: 32345667 DOI: 10.21873/cgp.20186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND/AIM Head and neck squamous cell carcinoma (HNSCC) presents high morbidity, an overall poor prognosis and survival, and a compromised quality of life of the survivors. Early tumor detection, prediction of its behavior and prognosis as well as the development of novel therapeutic strategies are urgently needed for a more successful HNSCC management. MATERIALS AND METHODS In this study, a proteomics analysis of HNSCC tumor and non-tumor samples was performed and a model to predict the risk of recurrence and metastasis development was built. RESULTS This predictive model presented good accuracy (>80%) and comprises as variables the tumor staging along with DHB12, HMGB3 and COBA1 proteins. Differences at the intensity levels of these proteins were correlated with the development of metastasis and recurrence as well as with patient's survival. CONCLUSION The translation of proteomic predictive models to routine clinical practice may contribute to a more precise and individualized clinical management of the HNSCC patients, reducing recurrences and improving patients' quality of life. The capability of generalization of this proteomic model to predict the recurrence and metastases development should be evaluated and validated in other HNSCC populations.
Collapse
Affiliation(s)
- Ilda Patrícia Ribeiro
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,iCBR-CIMAGO - Center of Investigation on Environment, Genetics and Oncobiology - Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Luísa Esteves
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sandra Isabel Anjo
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Francisco Marques
- iCBR-CIMAGO - Center of Investigation on Environment, Genetics and Oncobiology - Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Stomatology Unit, Coimbra Hospital and University Centre, CHUC, EPE, Coimbra, Portugal.,Department of Dentistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Leonor Barroso
- Maxillofacial Surgery Department, Coimbra Hospital and University Centre, CHUC, EPE, Coimbra, Portugal
| | - Bruno Manadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Isabel Marques Carreira
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,iCBR-CIMAGO - Center of Investigation on Environment, Genetics and Oncobiology - Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, Group of Aging and Brain Diseases: Advanced Diagnosis and Biomarkers, Coimbra, Portugal
| | - Joana Barbosa Melo
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Coimbra, Portugal .,iCBR-CIMAGO - Center of Investigation on Environment, Genetics and Oncobiology - Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, Group of Aging and Brain Diseases: Advanced Diagnosis and Biomarkers, Coimbra, Portugal
| |
Collapse
|
11
|
Gao L, Li X, Guo Q, Nie X, Hao Y, Liu Q, Liu J, Zhu L, Yan L, Lin B. Identification of PKP 2/3 as potential biomarkers of ovarian cancer based on bioinformatics and experiments. Cancer Cell Int 2020; 20:509. [PMID: 33088217 PMCID: PMC7568375 DOI: 10.1186/s12935-020-01602-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/12/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Plakophilins (PKPs) are widely involved in gene transcription, translation, and signal transduction, playing a crucial role in tumorigenesis and progression. However, the function and potential mechanism of PKP1/2/3 in ovarian cancer (OC) remains unclear. It's of great value to explore the expression and prognostic values of PKP1/2/3 and their potential mechanisms, immune infiltration in OC. METHODS The expression levels, prognostic values and genetic variations of PKP1/2/3 in OC were explored by various bioinformatics tools and databases, and PKP2/3 were selected for further analyzing their regulation network and immune infiltration. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) enrichment were also conducted. Finally, the expression and prognosis of PKP2 were validated by immunohistochemistry. RESULTS The expression level and prognosis of PKP1 showed little significance in ovarian cancer, and the expression of PKP2/3 mRNA and protein were upregulated in OC, showing significant correlations with poor prognosis of OC. Functional enrichment analysis showed that PKP2/3 and their correlated genes were significantly enriched in adaptive immune response, cytokine receptor activity, organization of cell-cell junction and extracellular matrix; KEGG analysis showed that PKP2/3 and their significantly correlated genes were involved in signaling pathways including cytokine-mediated signaling pathway, receptor signaling pathway and pathways in cancer. Moreover, PKP2/3 were correlated with lymphocytes and immunomodulators. We confirmed that high expression of PKP2 was significantly associated with advanced stage, poor differentiation and poor prognosis of OC patients. CONCLUSION Members of plakophilins family showed various degrees of abnormal expressions and prognostic values in ovarian cancer. PKP2/3 played crucial roles in tumorigenesis, aggressiveness, malignant biological behavior and immune infiltration of OC, and can be regarded as potential biomarker for early diagnosis and prognosis evaluation in OC.
Collapse
Affiliation(s)
- Lingling Gao
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, Liaoning China
| | - Xiao Li
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, Liaoning China
| | - Qian Guo
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, Liaoning China
| | - Xin Nie
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, Liaoning China
| | - Yingying Hao
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, Liaoning China
| | - Qing Liu
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, Liaoning China
| | - Juanjuan Liu
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, Liaoning China
| | - Liancheng Zhu
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, Liaoning China
| | - Limei Yan
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, Liaoning China
| | - Bei Lin
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, Liaoning China
| |
Collapse
|
12
|
Hao L, Wang JM, Liu BQ, Yan J, Li C, Jiang JY, Zhao FY, Qiao HY, Wang HQ. m6A-YTHDF1-mediated TRIM29 upregulation facilitates the stem cell-like phenotype of cisplatin-resistant ovarian cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118878. [PMID: 33011193 DOI: 10.1016/j.bbamcr.2020.118878] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/05/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
Ovarian cancer is the deadliest gynaecologic malignancy, and the five-year survival rate of patients is less than 35% worldwide. Cancer stem cells (CSCs) are a population of cells with stem-like characteristics that are thought to cause chemoresistance and recurrence. TRIM29 is aberrantly expressed in various cancers and associated with cancer development and progression. Previous studies showed that the upregulation of TRIM29 expression in pancreatic cancer is related to stem-like characteristics. However, the role of TRIM29 in ovarian cancer is poorly understood. In this study, we found that TRIM29 expression was increased at the translational level in both the cisplatin-resistant ovarian cancer cells and clinical tissues. Increased TRIM29 expression was associated with a poor prognosis of patients with ovarian cancer. In addition, TRIM29 could enhance the CSC-like characteristics of the cisplatin-resistant ovarian cancer cells. Recruitment of YTHDF1 to m6A-modified TRIM29 was involved in promoting TRIM29 translation in the cisplatin-resistant ovarian cancer cells. Knockdown of YTHDF1 suppressed the CSC-like characteristics of the cisplatin-resistant ovarian cancer cells, which could be rescued by ectopic expression of TRIM29. This study suggests TRIM29 may act as an oncogene to promote the CSC-like features of cisplatin-resistant ovarian cancer in an m6A-YTHDF1-dependent manner. Due to the roles of TRIM29 and YTHDF1 in the promotion of CSC-like features, they may become potential therapeutic targets to combat the recurrence of ovarian cancer.
Collapse
Affiliation(s)
- Liang Hao
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China; Department of Chemistry, China Medical University, Shenyang 110122, China
| | - Jia-Mei Wang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110122, China
| | - Bao-Qin Liu
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110122, China
| | - Jing Yan
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110122, China
| | - Chao Li
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110122, China
| | - Jing-Yi Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110122, China
| | - Fu-Ying Zhao
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110122, China
| | - Huai-Yu Qiao
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110122, China
| | - Hua-Qin Wang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China.
| |
Collapse
|
13
|
Schmidt J, Kajtár B, Juhász K, Péter M, Járai T, Burián A, Kereskai L, Gerlinger I, Tornóczki T, Balogh G, Vígh L, Márk L, Balogi Z. Lipid and protein tumor markers for head and neck squamous cell carcinoma identified by imaging mass spectrometry. Oncotarget 2020; 11:2702-2717. [PMID: 32733643 PMCID: PMC7367650 DOI: 10.18632/oncotarget.27649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. To improve pre- and post-operative diagnosis and prognosis novel molecular markers are desirable. Here we used MALDI imaging mass spectrometry (IMS) and immunohistochemistry (IHC) to seek tumor specific expression of proteins and lipids in HNSCC samples. Among low molecular weight proteins visualized, S100A8 and S100A9 were found to be expressed in the regions of tumor tissue but not in the surrounding healthy stroma of a post-operative microdissected tissue. Marker potential of S100A8 and S100A9 was confirmed by immunohistochemistry of paraffin-embedded pathological samples. Imaging lipids showed a remarkable depletion of lysophosphatidylcholine species LPC[16:0], LPC[18:2] and, in parallel, accumulation of major glycerophospholipid species PE-P[36:4], PC[32:1], PC[34:1] in neoplastic areas. This was confirmed by shotgun lipidomics of dissected healthy and tumor tissue sections. A combination of the negative (LPC[16:0]) and positive (PC[32:1], PC[34:1]) markers was also applicable to uncover tumorous character of a pre-operative biopsy. Furthermore, marker potential of lysophospholipids was supported by elevated expression levels of the lysophospholipid degrading enzyme lysophospholipase A1 (LYPLA1) in the tumor regions of paraffin-embedded HNSCC samples. Finally, experimental evidence of 3D cell spheroid tests showed that LPC[16:0] facilitates HNSCC invasion, implying that HNSCC progression in vivo may be dependent on lysophospholipid supply. Altogether, a series of novel proteins and lipid species were identified by IMS and IHC screening, which may serve as potential molecular markers for tumor diagnosis, prognosis, and may pave the way to better understand HNSCC pathophyisiology.
Collapse
Affiliation(s)
- Janos Schmidt
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Béla Kajtár
- Department of Pathology, Medical School, University of Pécs, Pécs, Hungary
| | - Kata Juhász
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Mária Péter
- Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Tamás Járai
- Department of Oto-Rhino-Laryngology, Medical School, University of Pécs, Pécs, Hungary
| | - András Burián
- Department of Oto-Rhino-Laryngology, Medical School, University of Pécs, Pécs, Hungary
| | - László Kereskai
- Department of Pathology, Medical School, University of Pécs, Pécs, Hungary
| | - Imre Gerlinger
- Department of Oto-Rhino-Laryngology, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Tornóczki
- Department of Pathology, Medical School, University of Pécs, Pécs, Hungary
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - László Vígh
- Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Lászó Márk
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary.,MTA-PTE Human Reproduction Group, Medical School, University of Pécs, Pécs, Hungary.,Imaging Center for Life and Material Sciences, Medical School, University of Pécs, Pécs, Hungary
| | - Zsolt Balogi
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
14
|
Mandell MA, Saha B, Thompson TA. The Tripartite Nexus: Autophagy, Cancer, and Tripartite Motif-Containing Protein Family Members. Front Pharmacol 2020; 11:308. [PMID: 32226386 PMCID: PMC7081753 DOI: 10.3389/fphar.2020.00308] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a cellular degradative process that has multiple important actions in cancer. Autophagy modulation is under consideration as a promising new approach to cancer therapy. However, complete autophagy dysregulation is likely to have substantial undesirable side effects. Thus, more targeted approaches to autophagy modulation may prove clinically beneficial. One potential avenue to achieving this goal is to focus on the actions of tripartite motif-containing protein family members (TRIMs). TRIMs have key roles in an array of cellular processes, and their dysregulation has been extensively linked to cancer risk and prognosis. As detailed here, emerging data shows that TRIMs can play important yet context-dependent roles in controlling autophagy and in the selective targeting of autophagic substrates. This review covers how the autophagy-related actions of TRIM proteins contribute to cancer and the possibility of targeting TRIM-directed autophagy in cancer therapy.
Collapse
Affiliation(s)
- Michael A Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Bhaskar Saha
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Todd A Thompson
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, United States
| |
Collapse
|
15
|
Lan X, Lin W, Xu Y, Xu Y, Lv Z, Chen W. The detection and analysis of differential regulatory communities in lung cancer. Genomics 2020; 112:2535-2540. [PMID: 32045668 DOI: 10.1016/j.ygeno.2020.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/06/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023]
Abstract
The tumorgenesis process of lung cancer involves the regulatory dysfunctions of multiple pathways. Although many signaling pathways have been identified to be associated with lung cancer, there are little quantitative models of how inactions between genes change during the process from normal to cancer. These changes belong to different dynamic co-expressions patterns. We quantitatively analyzed differential co-expression of gene pairs in four datasets. Each dataset included a large number of lung cancer and normal samples. By overlapping their results, we got 14 highly confident gene pairs with consistent co-expression change patterns. Some of they, such as ARHGAP30 and GIMAP4, had been recorded in STRING network database while some of them were novel discoveries, such as C9orf135 and MORN5, TEKT1 and TSPAN1 were positively correlated in both normal and cancer but more correlated in normal than cancer. These gene pairs revealed the underlying mechanisms of lung cancer occurrence.
Collapse
Affiliation(s)
- Xiu Lan
- Department of Respiratory Medicine, Lishui Central Hospital, Lishui, China
| | - Weilong Lin
- Department of Orthopedics, Lishui Traditional Chinese Medicine Hospital, Lishui, China
| | - Yufen Xu
- Department of Oncology, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing, China; Department of Respiratory Medicine, Lishui Central Hospital, Lishui, China
| | - Yanyan Xu
- Department of Pharmacy, Lishui Central Hospital, Lishui, China
| | - Zhuqing Lv
- Department of Respiratory Medicine, Lishui Central Hospital, Lishui, China
| | - Wenyu Chen
- Department of Respiration, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing, China.
| |
Collapse
|
16
|
|
17
|
Argyris PP, Slama Z, Malz C, Koutlas IG, Pakzad B, Patel K, Kademani D, Khammanivong A, Herzberg MC. Intracellular calprotectin (S100A8/A9) controls epithelial differentiation and caspase-mediated cleavage of EGFR in head and neck squamous cell carcinoma. Oral Oncol 2019; 95:1-10. [PMID: 31345374 PMCID: PMC6662626 DOI: 10.1016/j.oraloncology.2019.05.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Calprotectin (S100A8/A9) appears to function as a tumor suppressor in head and neck squamous cell carcinoma (HNSCC) and expression in the carcinoma cells and patient survival rates are directly related. We seek to characterize the suppressive role of calprotectin in HNSCC. AIMS (1) Investigate changes in S100A8/A9 expression as oral carcinogenesis progresses and (2) determine whether intracellular calprotectin can regulate epidermal growth factor receptor (EGFR), a negative prognostic factor, in HNSCC. MATERIALS AND METHODS Using immunohistochemistry (IHC), S100A8/A9 was analyzed in HNSCC specimens (N = 46), including well-differentiated (WD, N = 19), moderately-differentiated (MD, N = 14), poorly-differentiated (PD, N = 5) and non-keratinizing/basaloid (NK/BAS, N = 8), and premalignant epithelial dysplasias (PED, N = 16). Similarly, EGFR was analyzed in HNSCCs (N = 21). To determine whether calprotectin and EGFR expression are mechanistically linked, TR146 HNSCC cells that are S100A8/A9-expressing or silenced (shRNA) were compared for EGFR levels and caspase-3/7 activity using western blotting and immunofluorescence microscopy. RESULTS In normal oral mucosal epithelium, S100A8/A9 stained strongly in the cytoplasm and nucleus of suprabasal cells; basal cells were consistently S100A8/A9 negative. In PED and HNSCC, S100A8/A9 expression was lower than in adjacent normal epithelial tissues (NAT) and declined progressively in WD, MD, PD and NK/BAS HNSCCs. S100A8/A9 and EGFR levels appeared inversely related, which was simulated in vitro when S100A8/A9 was silenced in TR146 cells. Silencing S100A8/A9 significantly reduced caspase-3/7 activity, whereas EGFR levels increased. CONCLUSIONS In HNSCC, S100A8/A9 is directly associated with cellular differentiation and appears to promote caspase-3/7-mediated cleavage of EGFR, which could explain why patients with S100A8/A9-high tumors survive longer.
Collapse
Affiliation(s)
- Prokopios P Argyris
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zachary Slama
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chris Malz
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ioannis G Koutlas
- Division of Oral and Maxillofacial Pathology, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Betty Pakzad
- Anatomic Clinical Pathology, North Memorial Health Hospital, Minneapolis, MN 55422, USA
| | - Ketan Patel
- Oral and Maxillofacial Surgery Clinic, North Memorial Health Hospital, Minneapolis, MN 55422, USA
| | - Deepak Kademani
- Oral and Maxillofacial Surgery Clinic, North Memorial Health Hospital, Minneapolis, MN 55422, USA
| | - Ali Khammanivong
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark C Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
18
|
S100 Proteins as Biomarkers in Risk Estimations for Malignant Transformation in Oral Lesions. Methods Mol Biol 2019; 1929:763-771. [PMID: 30710310 DOI: 10.1007/978-1-4939-9030-6_48] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Oncologic relevant members of S100 proteins are described as promising biomarkers in molecular pathology for risk estimation in oral neoplasia exhibiting different stages of malignancy: gingiva as healthy tissue, irritation fibroma as benign, leukoplakia as precancerous, and oral squamous cell carcinoma as malignant entity. Gene expression levels of S100A4 (metastasin), S100A7 (psoriasin), S100A8 (calgranulin A), and S100A9 (calgranulin B) were analyzed using quantitative RT-PCR. In addition, immunohistochemistry-based microscopy was used to examine cellular localization and distribution of these biomarkers in tissue sections. The results indicate that S100 proteins represent promising biomarkers for early-stage diagnosis in oral lesions. The inclusion of expression profiles and ratios for each entity even improves their diagnostic validity.
Collapse
|
19
|
Wang L, Yang H, Zamperone A, Diolaiti D, Palmbos PL, Abel EV, Purohit V, Dolgalev I, Rhim AD, Ljungman M, Hadju CH, Halbrook CJ, Bar-Sagi D, di Magliano MP, Crawford HC, Simeone DM. ATDC is required for the initiation of KRAS-induced pancreatic tumorigenesis. Genes Dev 2019; 33:641-655. [PMID: 31048544 PMCID: PMC6546061 DOI: 10.1101/gad.323303.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/08/2019] [Indexed: 12/15/2022]
Abstract
Pancreatic adenocarcinoma (PDA) is an aggressive disease driven by oncogenic KRAS and characterized by late diagnosis and therapeutic resistance. Here we show that deletion of the ataxia-telangiectasia group D-complementing (Atdc) gene, whose human homolog is up-regulated in the majority of pancreatic adenocarcinoma, completely prevents PDA development in the context of oncogenic KRAS. ATDC is required for KRAS-driven acinar-ductal metaplasia (ADM) and its progression to pancreatic intraepithelial neoplasia (PanIN). As a result, mice lacking ATDC are protected from developing PDA. Mechanistically, we show ATDC promotes ADM progression to PanIN through activation of β-catenin signaling and subsequent SOX9 up-regulation. These results provide new insight into PDA initiation and reveal ATDC as a potential target for preventing early tumor-initiating events.
Collapse
Affiliation(s)
- Lidong Wang
- Department of Surgery, New York University School of Medicine, New York, New York 10016, USA.,Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, New York 10016, USA
| | - Huibin Yang
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Andrea Zamperone
- Department of Surgery, New York University School of Medicine, New York, New York 10016, USA.,Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, New York 10016, USA
| | - Daniel Diolaiti
- Department of Surgery, New York University School of Medicine, New York, New York 10016, USA.,Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, New York 10016, USA
| | - Phillip L Palmbos
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ethan V Abel
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Vinee Purohit
- Department of Surgery, New York University School of Medicine, New York, New York 10016, USA.,Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, New York 10016, USA
| | - Igor Dolgalev
- Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, New York 10016, USA
| | - Andrew D Rhim
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Christina H Hadju
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | - Christopher J Halbrook
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Dafna Bar-Sagi
- Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, New York 10016, USA.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA.,Department of Medicine, New York University School of Medicine, New York, New York 10016, USA
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Howard C Crawford
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Diane M Simeone
- Department of Surgery, New York University School of Medicine, New York, New York 10016, USA.,Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, New York 10016, USA.,Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
20
|
Adeola HA, Papagerakis S, Papagerakis P. Systems Biology Approaches and Precision Oral Health: A Circadian Clock Perspective. Front Physiol 2019; 10:399. [PMID: 31040792 PMCID: PMC6476986 DOI: 10.3389/fphys.2019.00399] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/22/2019] [Indexed: 12/20/2022] Open
Abstract
A vast majority of the pathophysiological and metabolic processes in humans are temporally controlled by a master circadian clock located centrally in the hypothalamic suprachiasmatic nucleus of the brain, as well as by specialized peripheral oscillators located in other body tissues. This circadian clock system generates a rhythmical diurnal transcriptional-translational cycle in clock genes and protein expression and activities regulating numerous downstream target genes. Clock genes as key regulators of physiological function and dysfunction of the circadian clock have been linked to various diseases and multiple morbidities. Emerging omics technologies permits largescale multi-dimensional investigations of the molecular landscape of a given disease and the comprehensive characterization of its underlying cellular components (e.g., proteins, genes, lipids, metabolites), their mechanism of actions, functional networks and regulatory systems. Ultimately, they can be used to better understand disease and interpatient heterogeneity, individual profile, identify personalized targetable key molecules and pathways, discover novel biomarkers and genetic alterations, which collectively can allow for a better patient stratification into clinically relevant subgroups to improve disease prediction and prevention, early diagnostic, clinical outcomes, therapeutic benefits, patient's quality of life and survival. The use of “omics” technologies has allowed for recent breakthroughs in several scientific domains, including in the field of circadian clock biology. Although studies have explored the role of clock genes using circadiOmics (which integrates circadian omics, such as genomics, transcriptomics, proteomics and metabolomics) in human disease, no such studies have investigated the implications of circadian disruption in oral, head and neck pathologies using multi-omics approaches and linking the omics data to patient-specific circadian profiles. There is a burgeoning body of evidence that circadian clock controls the development and homeostasis of oral and maxillofacial structures, such as salivary glands, teeth and oral epithelium. Hence, in the current era of precision medicine and dentistry and patient-centered health care, it is becoming evident that a multi-omics approach is needed to improve our understanding of the role of circadian clock-controlled key players in the regulation of head and neck pathologies. This review discusses current knowledge on the role of the circadian clock and the contribution of omics-based approaches toward a novel precision health era for diagnosing and treating head and neck pathologies, with an emphasis on oral, head and neck cancer and Sjögren's syndrome.
Collapse
Affiliation(s)
- Henry A Adeola
- Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, University of the Western Cape and Tygerberg Hospital, Cape Town, South Africa
| | - Silvana Papagerakis
- Laboratory of Oral, Head & Neck Cancer-Personalized Diagnostics and Therapeutics, Division of Head and Neck Surgery, Department of Surgery, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
21
|
Wang HZ, Wang F, Chen PF, Zhang M, Yu MX, Wang HL, Zhao Q, Liu J. Coexpression network analysis identified that plakophilin 1 is associated with the metastasis in human melanoma. Biomed Pharmacother 2019; 111:1234-1242. [PMID: 30841437 DOI: 10.1016/j.biopha.2018.12.135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/25/2018] [Accepted: 12/30/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND AIMS Malignant melanoma is a fatal cancer with high metastatic characteristics. Approximately 80% of skin cancer deaths are caused by metastatic melanoma. It has been established that the metastatic ability of melanoma is regulated by an intricate gene interconnection network. Thus, the aim of this study was to identify and validate hub genes associated with metastatic melanoma and to further illustrate its potential mechanisms. METHODS The method of weighted gene coexpression network analysis (WGCNA) was applied to explore potential regulatory targets and investigate the relationship between the key module and hub genes associated with the metastasis ability of melanoma. RESULTS In the turquoise module, 26 hub genes were initially selected, and 6 of them were identified as "real" hub genes with high connectivity in the protein-protein interaction network. In terms of validation, PKP1 had the highest correlation with metastasis among all the "real" hub genes. Data obtained from the GEPIA database and the Gene Expression Omnibus database showed a lower expression of PKP1 in melanoma tissues compared to normal skin tissues. The results also showed that PKP1 was downregulated in metastatic melanomas (n = 367) compared with primary melanomas (n = 103) in The Cancer Genome Atlas (TCGA) database (n = 470). Furthermore, an ROC curve showed that PKP1 expression had good power in the diagnostics of both primary melanoma (p = 5.30e-06, AUC = 0.8) and metastatic melanoma (p = 1.13e-10, AUC = 0.925). We also found that PKP1 could distinguish low- and high-grade of metastatic melanomas and was associated with inflammatory melanoma. Moreover, in a tumor-bearing mouse model, melanoma tissues also showed lower mRNA expression of PKP1 than the adjacent normal skin. Finally, Gene Set Enrichment Analysis indicated that the calcium signaling was significantly enriched in metastatic melanoma with highly expressed PKP1. CONCLUSIONS PKP1 was identified as a new potential tumor suppressor in human melanoma, likely through regulating calcium signaling pathways.
Collapse
Affiliation(s)
- Hai-Zhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Fan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Peng-Fei Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Meng Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Ming-Xia Yu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Hong-Ling Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China.
| |
Collapse
|
22
|
Safadi RA, Abdullah NI, Alaaraj RF, Bader DH, Divakar DD, Hamasha AA, Sughayer MA. Clinical and histopathologic prognostic implications of the expression of cytokeratins 8, 10, 13, 14, 16, 18 and 19 in oral and oropharyngeal squamous cell carcinoma. Arch Oral Biol 2019; 99:1-8. [PMID: 30579132 DOI: 10.1016/j.archoralbio.2018.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Rima A Safadi
- Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan; In sabbatical leave to College of Dentistry, King Saud Bin Abdul Aziz University for Health Sciences Riyadh, Saudi Arabia.
| | | | | | | | - Darshan D Divakar
- College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Abed A Hamasha
- Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan; In sabbatical leave to College of Dentistry, King Saud Bin Abdul Aziz University for Health Sciences Riyadh, Saudi Arabia
| | | |
Collapse
|
23
|
Mascini NE, Teunissen J, Noorlag R, Willems SM, Heeren RM. Tumor classification with MALDI-MSI data of tissue microarrays: A case study. Methods 2018; 151:21-27. [DOI: 10.1016/j.ymeth.2018.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/04/2018] [Accepted: 04/09/2018] [Indexed: 11/25/2022] Open
|
24
|
Combining discovery and targeted proteomics reveals a prognostic signature in oral cancer. Nat Commun 2018; 9:3598. [PMID: 30185791 PMCID: PMC6125363 DOI: 10.1038/s41467-018-05696-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 07/13/2018] [Indexed: 01/13/2023] Open
Abstract
Different regions of oral squamous cell carcinoma (OSCC) have particular histopathological and molecular characteristics limiting the standard tumor−node−metastasis prognosis classification. Therefore, defining biological signatures that allow assessing the prognostic outcomes for OSCC patients would be of great clinical significance. Using histopathology-guided discovery proteomics, we analyze neoplastic islands and stroma from the invasive tumor front (ITF) and inner tumor to identify differentially expressed proteins. Potential signature proteins are prioritized and further investigated by immunohistochemistry (IHC) and targeted proteomics. IHC indicates low expression of cystatin-B in neoplastic islands from the ITF as an independent marker for local recurrence. Targeted proteomics analysis of the prioritized proteins in saliva, combined with machine-learning methods, highlights a peptide-based signature as the most powerful predictor to distinguish patients with and without lymph node metastasis. In summary, we identify a robust signature, which may enhance prognostic decisions in OSCC and better guide treatment to reduce tumor recurrence or lymph node metastasis. Oral cancer has region-specific histopathological and molecular characteristics, complicating its classification by the standard tumor-node-metastasis system. Here, the authors combine discovery and targeted proteomics with IHC to identify region-specific and saliva biomarkers for oral cancer prognosis.
Collapse
|
25
|
TRIM14 promotes chemoresistance in gliomas by activating Wnt/β-catenin signaling via stabilizing Dvl2. Oncogene 2018; 37:5403-5415. [DOI: 10.1038/s41388-018-0344-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/29/2018] [Accepted: 05/11/2018] [Indexed: 01/16/2023]
|
26
|
Argyris PP, Slama ZM, Ross KF, Khammanivong A, Herzberg MC. Calprotectin and the Initiation and Progression of Head and Neck Cancer. J Dent Res 2018; 97:674-682. [PMID: 29443623 DOI: 10.1177/0022034518756330] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calprotectin (S100A8/A9), a heterodimeric complex of calcium-binding proteins S100A8 and S100A9, is encoded by genes mapping to the chromosomal locus 1q21.3 of the epidermal differentiation complex. Whereas extracellular calprotectin shows proinflammatory and antimicrobial properties by signaling through RAGE and TLR4, intracytoplasmic S100A8/A9 appears to be important for cellular development, maintenance, and survival. S100A8/A9 is constitutively expressed in myeloid cells and the stratified mucosal epithelia lining the oropharyngeal and genitourinary mucosae. While upregulated in adenocarcinomas and other cancers, calprotectin mRNA and protein levels decline in head and neck squamous cell carcinoma (HNSCC). S100A8/A9 is also lost during head and neck preneoplasia (dysplasia). Calprotectin decrease does not correlate with the clinical stage (TNM) of HNSCC. When expressed in carcinoma cells, S100A8/A9 downregulates matrix metalloproteinase 2 expression and inhibits invasion and migration in vitro. S100A8/A9 regulates cell cycle progression and decelerates cancer cell proliferation by arresting at the G2/M checkpoint in a protein phosphatase 2α-dependent manner. In HNSCC, S100A8 and S100A9 coregulate with gene networks controlling cellular development and differentiation, cell-to-cell signaling, and cell morphology, while S100A8/A9 appears to downregulate expression of invasion- and tumorigenesis-associated genes. Indeed, tumor formation capacity is attenuated in S100A8/A9-expressing carcinoma cells in vivo. Hence, intracellular calprotectin appears to function as a tumor suppressor in head and neck carcinogenesis. When compared with S100A8/A9-low HNSCC based on analysis of TCGA, S100A8/A9-high HNSCC shows significant upregulation of apoptosis-related genes, including multiple caspases. Accordingly, S100A8/A9 facilitates DNA damage responses in HNSCC, promotes apoptotic cell death, and confers sensitivity to cisplatin and X-radiation in vitro. In the tumor milieu, loss of S100A8/A9 strongly associates with poor squamous differentiation and higher tumor grading, EGFR upregulation, increased DNA methylation, and, finally, poorer overall survival for patients with HNSCC. Hence, intracellular calprotectin shows a multifaceted protective role against the development of HNSCC.
Collapse
Affiliation(s)
- P P Argyris
- 1 Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Z M Slama
- 1 Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - K F Ross
- 1 Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - A Khammanivong
- 2 Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA.,3 Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - M C Herzberg
- 1 Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
27
|
Affiliation(s)
- Nicole A. Najor
- Department of Biology, University of Detroit Mercy, Detroit, Michigan 48221
| |
Collapse
|
28
|
Liang C, Dong H, Miao C, Zhu J, Wang J, Li P, Li J, Wang Z. TRIM29 as a prognostic predictor for multiple human malignant neoplasms: a systematic review and meta-analysis. Oncotarget 2017; 9:12323-12332. [PMID: 29552313 PMCID: PMC5844749 DOI: 10.18632/oncotarget.23617] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/28/2017] [Indexed: 12/20/2022] Open
Abstract
Recent studies have shown that tripartite motif-containing protein 29 (TRIM29) had prognostic values in several cancers. However, different studies have been inconsistent. We conducted a meta-analysis to elucidate the precise predictive value of TRIM29 in various human malignant disease. Eleven eligible studies with 2046 patients were ultimately enrolled in this meta-analysis. Heterogeneity between studies was assessed using I2 statistics. Pooled Hazard ratios (HRs) with 95% confidence intervals (CIs) for patient survival and disease recurrence were calculated to investigate the correlation between TRIM29 expression and cancer prognosis. The results identified an important link between upregulated TRIM29 expression and poor prognosis in patients with multiple human malignant neoplasms in terms of recurrence-free survival (RFS)/disease-free survival (DFS) (HR = 1.66, 95% CI 1.36–2.04) but favorable progression-free survival (PFS)/metastasis-free survival (MFS) (HR = 0.37, 95% CI 0.16–0.85). We found that high TRIM29 expression predicted no significant impact on overall survival (OS) (HR = 1.32, 95% CI 0.90–1.93). Subgroup analyses showed that high TRIM29 expression predicted poor OS in Asians (HR = 2.21, 95% CI 1.78–2.74) but favorable OS in Caucasian (HR = 0.47, 95% CI 0.25–0.89). TRIM29 might play an essential role in carcinogenesis of multiple human malignant neoplasms and could serve as a biomarker for the prediction of patients’ prognosis.
Collapse
Affiliation(s)
- Chao Liang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiyu Dong
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenkui Miao
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jundong Zhu
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Wang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pu Li
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Li
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
29
|
Khammanivong A, Sorenson BS, Ross KF, Dickerson EB, Hasina R, Lingen MW, Herzberg MC. Involvement of calprotectin (S100A8/A9) in molecular pathways associated with HNSCC. Oncotarget 2017; 7:14029-47. [PMID: 26883112 PMCID: PMC4924696 DOI: 10.18632/oncotarget.7373] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/29/2016] [Indexed: 02/07/2023] Open
Abstract
Calprotectin (S100A8/A9), a heterodimeric protein complex of calcium-binding proteins S100A8 and S100A9, plays key roles in cell cycle regulation and inflammation, with potential functions in squamous cell differentiation. While upregulated in many cancers, S100A8/A9 is downregulated in squamous cell carcinomas of the cervix, esophagus, and the head and neck (HNSCC). We previously reported that ectopic S100A8/A9 expression inhibits cell cycle progression in carcinoma cells. Here, we show that declining expression of S100A8/A9 in patients with HNSCC is associated with increased DNA methylation, less differentiated tumors, and reduced overall survival. Upon ectopic over-expression of S100A8/A9, the cancer phenotype of S100A8/A9-negative carcinoma cells was suppressed in vitro and tumor growth in vivo was significantly decreased. MMP1, INHBA, FST, LAMC2, CCL3, SULF1, and SLC16A1 were significantly upregulated in HNSCC but were downregulated by S100A8/A9 expression. Our findings strongly suggest that downregulation of S100A8/A9 through epigenetic mechanisms may contribute to increased proliferation, malignant transformation, and disease progression in HNSCC.
Collapse
Affiliation(s)
- Ali Khammanivong
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, USA.,Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Brent S Sorenson
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Karen F Ross
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, USA.,Mucosal and Vaccine Research Center, Minneapolis VA Medical Center, Minneapolis, MN, USA
| | - Erin B Dickerson
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Rifat Hasina
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Mark W Lingen
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Mark C Herzberg
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, USA.,Mucosal and Vaccine Research Center, Minneapolis VA Medical Center, Minneapolis, MN, USA
| |
Collapse
|
30
|
Two different protein expression profiles of oral squamous cell carcinoma analyzed by immunoprecipitation high-performance liquid chromatography. World J Surg Oncol 2017; 15:151. [PMID: 28789700 PMCID: PMC5549376 DOI: 10.1186/s12957-017-1213-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/22/2017] [Indexed: 11/27/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is one of the most dangerous cancers in the body, producing serious complications with individual behaviors. Many different pathogenetic factors are involved in the carcinogenesis of OSCC. Cancer cells derived from oral keratinocytes can produce different carcinogenic signaling pathways through differences in protein expression, but their protein expression profiles cannot be easily explored with ordinary detection methods. Methods The present study compared the protein expression profiles between two different types of OSCCs, which were analyzed through immunoprecipitation high-performance liquid chromatography (IP-HPLC). Results Two types of squamous cell carcinoma (SCC) occurred in a mandibular (SCC-1) and maxillary gingiva (SCC-2), but their clinical features and progression were quite different from each other. SCC-1 showed a large gingival ulceration with severe halitosis and extensive bony destruction, while SCC-2 showed a relatively small papillary gingival swelling but rapidly grew to form a large submucosal mass, followed by early cervical lymph node metastasis. In the histological observation, SCC-1 was relatively well differentiated with a severe inflammatory reaction, while SCC-2 showed severely infiltrative growth of each cancer islets accompanied with a mild inflammatory reaction. IP-HPLC analysis revealed contrary protein expression profiles analyzed by 72 different oncogenic proteins. SCC-1 showed more cellular apoptosis and invasive growth than SCC-2 through increased expression of caspases, MMPs, p53 signaling, FAS signaling, TGF-β1 signaling, and angiogenesis factors, while SCC-2 showed more cellular growth and survival than SCC-1 through the increased expression of proliferating factors, RAS signaling, eIF5A signaling, WNT signaling, and survivin. Conclusions The increased trends of cellular apoptosis and invasiveness in the protein expression profiles of SCC-1 were implicative of its extensive gingival ulceration and bony destruction, while the increased trends of cellular proliferation and survival in the protein profile of SCC-2 were implicative of its rapid growing tumor mass and early lymph node metastasis. These analyses of the essential oncogenic protein expression profiles in OSCC provide important information for genetic counseling or customized gene therapy in cancer treatment. Therefore, protein expression profile analysis through IP-HPLC is helpful not only for the molecular genetic diagnosis of cancer but also in identifying target molecules for customized gene therapy in near future.
Collapse
|
31
|
Geng F, Liu J, Guo Y, Li C, Wang H, Wang H, Zhao H, Pan Y. Persistent Exposure to Porphyromonas gingivalis Promotes Proliferative and Invasion Capabilities, and Tumorigenic Properties of Human Immortalized Oral Epithelial Cells. Front Cell Infect Microbiol 2017; 7:57. [PMID: 28286742 PMCID: PMC5323389 DOI: 10.3389/fcimb.2017.00057] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 02/13/2017] [Indexed: 01/17/2023] Open
Abstract
Recent epidemiological studies revealed a significant association between oral squamous cell carcinoma (OSCC) and Porphyromonas gingivalis, a major pathogen of periodontal disease. As a keystone pathogen of periodontitis, P. gingivalis is known not only to damage local periodontal tissues, but also to evade the host immune system and eventually affect systemic health. However, its role in OSCC has yet to be defined. To explore the underlying effect of chronic P. gingivalis infection on OSCC and to identify relevant biomarkers as promising targets for therapy and prevention, we established a novel model by exposing human immortalized oral epithelial cells (HIOECs) to P. gingivalis at a low multiplicity of infection (MOI) for 5–23 weeks. The P. gingivalis infected HIOECs were monitored for tumor biological alteration by proliferation, wound healing, transwell invasion, and gelatin zymography assays. Microarray and proteomic analyses were performed on HIOECs infected with P. gingivalis for 15 weeks, and some selected data were validated by quantitative real-time PCR and (or) western blot on cells infected for 15 and 23 weeks. Persistent exposure to P. gingivalis caused cell morphological changes, increased proliferation ability with higher S phase fraction in the cell cycle, and promoted cell migratory and invasive properties. In combining results of bioinformatics analyses and validation assays, tumor-related genes such as NNMT, FLI1, GAS6, lncRNA CCAT1, PDCD1LG2, and CD274 may be considered as the key regulators in tumor-like transformation in response to long-time exposure of P. gingivalis. In addition, some useful clinical biomarkers and novel proteins were also presented. In conclusion, P. gingivalis could promote tumorigenic properties of HIOECs, indicating that chronic P. gingivalis infection may be considered as a potential risk factor for oral cancer. The key regulators detected from the present model might be used in monitoring the development of OSCC with chronic periodontal infection.
Collapse
Affiliation(s)
- Fengxue Geng
- Department of Periodontics, School of Stomatology, China Medical University Shenyang, China
| | - Junchao Liu
- Department of Periodontics, School of Stomatology, China Medical University Shenyang, China
| | - Yan Guo
- Key laboratory of Liaoning Province Oral Disease, School of Stomatology, China Medical UniversityShenyang, China; Department of Oral Biology, School of Stomatology, China Medical UniversityShenyang, China
| | - Chen Li
- Department of Periodontics, School of Stomatology, China Medical University Shenyang, China
| | - Hongyang Wang
- Department of Medicine, the Center for Immunity, Inflammation & Regenerative Medicine, University of Virginia Charlottesville, VA, USA
| | - Hongyan Wang
- Department of Periodontics, School of Stomatology, China Medical University Shenyang, China
| | - Haijiao Zhao
- Department of Periodontics, School of Stomatology, China Medical University Shenyang, China
| | - Yaping Pan
- Department of Periodontics, School of Stomatology, China Medical UniversityShenyang, China; Department of Oral Biology, School of Stomatology, China Medical UniversityShenyang, China
| |
Collapse
|
32
|
Ucal Y, Durer ZA, Atak H, Kadioglu E, Sahin B, Coskun A, Baykal AT, Ozpinar A. Clinical applications of MALDI imaging technologies in cancer and neurodegenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:795-816. [PMID: 28087424 DOI: 10.1016/j.bbapap.2017.01.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 12/08/2016] [Accepted: 01/06/2017] [Indexed: 12/25/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) imaging mass spectrometry (IMS) enables localization of analytes of interest along with histology. More specifically, MALDI-IMS identifies the distributions of proteins, peptides, small molecules, lipids, and drugs and their metabolites in tissues, with high spatial resolution. This unique capacity to directly analyze tissue samples without the need for lengthy sample preparation reduces technical variability and renders MALDI-IMS ideal for the identification of potential diagnostic and prognostic biomarkers and disease gradation. MALDI-IMS has evolved rapidly over the last decade and has been successfully used in both medical and basic research by scientists worldwide. In this review, we explore the clinical applications of MALDI-IMS, focusing on the major cancer types and neurodegenerative diseases. In particular, we re-emphasize the diagnostic potential of IMS and the challenges that must be confronted when conducting MALDI-IMS in clinical settings. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Yasemin Ucal
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey
| | - Zeynep Aslıhan Durer
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey
| | - Hakan Atak
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey
| | - Elif Kadioglu
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey
| | - Betul Sahin
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey
| | - Abdurrahman Coskun
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey
| | - Ahmet Tarık Baykal
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey
| | - Aysel Ozpinar
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey.
| |
Collapse
|
33
|
Quanico J, Franck J, Wisztorski M, Salzet M, Fournier I. Progress and Potential of Imaging Mass Spectrometry Applied to Biomarker Discovery. Methods Mol Biol 2017; 1598:21-43. [PMID: 28508356 DOI: 10.1007/978-1-4939-6952-4_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mapping provides a direct means to assess the impact of protein biomarkers and puts into context their relevance in the type of cancer being examined. To this end, mass spectrometry imaging (MSI) was developed to provide the needed spatial information which is missing in traditional liquid-based mass spectrometric proteomics approaches. Aptly described as a "molecular histology" technique, MSI gives an additional dimension in characterizing tumor biopsies, allowing for mapping of hundreds of molecules in a single analysis. A decade of developments focused on improving and standardizing MSI so that the technique can be translated into the clinical setting. This review describes the progress made in addressing the technological development that allows to bridge local protein detection by MSI to its identification and to illustrate its potential in studying various aspects of cancer biomarker discovery.
Collapse
Affiliation(s)
- Jusal Quanico
- Université de Lille 1, INSERM, U1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000, Lille, France
| | - Julien Franck
- Université de Lille 1, INSERM, U1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000, Lille, France
| | - Maxence Wisztorski
- Université de Lille 1, INSERM, U1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000, Lille, France
| | - Michel Salzet
- Université de Lille 1, INSERM, U1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000, Lille, France
| | - Isabelle Fournier
- Université de Lille 1, INSERM, U1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000, Lille, France.
| |
Collapse
|
34
|
Reckenbeil J, Kraus D, Probstmeier R, Allam JP, Novak N, Frentzen M, Martini M, Wenghoefer M, Winter J. Cellular Distribution and Gene Expression Pattern of Metastasin (S100A4), Calgranulin A (S100A8), and Calgranulin B (S100A9) in Oral Lesions as Markers for Molecular Pathology. Cancer Invest 2016; 34:246-54. [PMID: 27294692 DOI: 10.1080/07357907.2016.1186172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The objective of this study was to analyze cellular localization and expression levels of oncologic relevant members of the S100 family in common oral lesions.Biopsies of various oral lesions were analyzed. S100A4 showed a higher expression rate in leukoplakias and oral squamous cell carcinomas. Transcript levels of S100A8 and S100A9 were significantly decreased in malignant OSCCs. A correlation could be drawn between the expression levels of these genes and the pathological characteristics of the investigated lesions. S100A4, A8, and A9 proteins represent promising marker genes to evaluate the risk potential of suspicious oral lesions in molecular pathology.
Collapse
Affiliation(s)
- Jan Reckenbeil
- a Department of Periodontology, Operative and Preventive Dentistry , University of Bonn , Bonn , Germany
| | - Dominik Kraus
- b Department of Prosthodontics, Preclinical Education, and Material Science , University of Bonn , Bonn , Germany
| | - Rainer Probstmeier
- c Neuro- and Tumor Cell Biology Group, Department of Nuclear Medicine , University of Bonn , Bonn , Germany
| | - Jean-Pierre Allam
- d Department of Dermatology and Allergy , University of Bonn , Bonn , Germany
| | - Natalija Novak
- d Department of Dermatology and Allergy , University of Bonn , Bonn , Germany
| | - Matthias Frentzen
- a Department of Periodontology, Operative and Preventive Dentistry , University of Bonn , Bonn , Germany
| | - Markus Martini
- e Department of Oral & Maxillofacial Plastic Surgery , University of Bonn , Bonn , Germany
| | - Matthias Wenghoefer
- e Department of Oral & Maxillofacial Plastic Surgery , University of Bonn , Bonn , Germany
| | - Jochen Winter
- a Department of Periodontology, Operative and Preventive Dentistry , University of Bonn , Bonn , Germany
| |
Collapse
|