1
|
Taufer NP, Santos-Souza C, Larentis LT, Santos CND, Creuzet SE, Garcez RC. Integrative analysis of molecular pathways and morphological anomalies associated with congenital Zika syndrome. J Neurol Sci 2024; 465:123190. [PMID: 39182423 DOI: 10.1016/j.jns.2024.123190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Congenital Zika syndrome (CZS) comprises a set of clinical manifestations that can be presented by neonates born to mothers infected by the Zika virus (ZIKV). CZS-associated phenotypes include neurological, skeletal, and systemic alterations and long-term developmental sequelae. One of the most frequently reported clinical conditions is microcephaly characterized by a reduction in head circumference and cognitive complications. Nevertheless, the associations among the diverse signaling pathways underlying CZS phenotypes remain to be elucidated. To shed light on CZS, we have extensively reviewed the morphological anomalies resulting from ZIKV infection, as well as genes and proteins of interest obtained from the published literature. With this list of genes or proteins, we performed computational analyses to explore the cellular processes, molecular mechanisms, and molecular pathways related to ZIKV infection. Therefore, in this review, we comprehensively describe the morphological abnormalities caused by congenital ZIKV infection and, through the analysis noted above, propose common molecular pathways altered by ZIKV that could explain both central nervous system and craniofacial skeletal alterations.
Collapse
Affiliation(s)
- Nathali Parise Taufer
- Graduate Program in Cell and Developmental Biology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Células-Tronco e Regeneração Tecidual (LACERT), Department of Cell Biology, Embryology, and Genetics, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Camila Santos-Souza
- Graduate Program in Cell and Developmental Biology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Células-Tronco e Regeneração Tecidual (LACERT), Department of Cell Biology, Embryology, and Genetics, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Lucas Trentin Larentis
- Graduate Program in Cell and Developmental Biology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Células-Tronco e Regeneração Tecidual (LACERT), Department of Cell Biology, Embryology, and Genetics, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Sophie Emmanuelle Creuzet
- Institut des Neurosciences Paris-Saclay (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique UMR 9197, Saclay, France.
| | - Ricardo Castilho Garcez
- Graduate Program in Cell and Developmental Biology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Células-Tronco e Regeneração Tecidual (LACERT), Department of Cell Biology, Embryology, and Genetics, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
2
|
Moura LM, Ferreira VLDR, Loureiro RM, de Paiva JPQ, Rosa-Ribeiro R, Amaro E, Soares MBP, Machado BS. The Neurobiology of Zika Virus: New Models, New Challenges. Front Neurosci 2021; 15:654078. [PMID: 33897363 PMCID: PMC8059436 DOI: 10.3389/fnins.2021.654078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
The Zika virus (ZIKV) attracted attention due to one striking characteristic: the ability to cross the placental barrier and infect the fetus, possibly causing severe neurodevelopmental disruptions included in the Congenital Zika Syndrome (CZS). Few years after the epidemic, the CZS incidence has begun to decline. However, how ZIKV causes a diversity of outcomes is far from being understood. This is probably driven by a chain of complex events that relies on the interaction between ZIKV and environmental and physiological variables. In this review, we address open questions that might lead to an ill-defined diagnosis of CZS. This inaccuracy underestimates a large spectrum of apparent normocephalic cases that remain underdiagnosed, comprising several subtle brain abnormalities frequently masked by a normal head circumference. Therefore, new models using neuroimaging and artificial intelligence are needed to improve our understanding of the neurobiology of ZIKV and its true impact in neurodevelopment.
Collapse
Affiliation(s)
| | | | | | | | | | - Edson Amaro
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ), Bahia, Brazil.,University Center SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Advanced Health Systems (CIMATEC ISI SAS), National Service of Industrial Learning - SENAI, Bahia, Brazil
| | | |
Collapse
|
3
|
Ornelas Pereira I, Santelli ACFS, Leite PL, Attell J, Bertolli J, Kotzky K, Araújo WN, Peacock G. Parental Stress in Primary Caregivers of Children with Evidence of Congenital Zika Virus Infection in Northeastern Brazil. Matern Child Health J 2020; 25:360-367. [PMID: 33245528 DOI: 10.1007/s10995-020-03053-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Despite the well-known role of parents as caregivers, few studies have addressed their health outcomes related to the Zika virus epidemic. METHODS A cross-sectional study was carried out with 146 primary caregivers of children 15-26 months of age, with laboratory and/or clinical evidence of Zika infection between August and October 2017 in three Brazilian municipalities: João Pessoa and Campina Grande in the state of Paraíba and Fortaleza in the state of Ceará. Caregivers reported on their child's life and health, family circumstances and underwent screening for stress using the Parenting Stress Index-Short Form. Children were evaluated for developmental delays and clinical outcomes. Differences in the prevalence of risk factors between caregivers with high or clinically relevant stress and those with normal stress were evaluated. RESULTS Of the 146 participants, 13% (n = 19) were classified as having high or clinically relevant stress, all of them mothers. The two risk factors significantly and independently associated with high levels of stress, compared with individuals with normal stress levels, were "reporting difficulty in covering basic expenses" (adjusted OR 3.6 (95% CI 1.1-11.8; p = 0.034)) and "having a child with sleep problems" (adjusted OR 10.4 (95% CI 1.3-81.7; p = 0.026)). CONCLUSIONS Some factors seem to contribute significantly more than others to the level of stress experienced by caregivers of children with evidence of Zika virus congenital infection. Interventions and preventive strategies should also target caregivers, who in turn will be able to respond to the unique characteristics of their child.
Collapse
Affiliation(s)
- Isabela Ornelas Pereira
- Secretariat of Health Surveillance (SVS), Ministry of Health of Brazil, SRTVN Quadra 701, Lote D, Ed. PO700, 5º andar, Brasília, DF, 70719-040, Brazil.
| | - Ana C F S Santelli
- Center for Global Health (CGH), Centers for Disease Control and Prevention (CDC), Country Office in Brazil, Brasília, 70719-040, Brazil
| | - Priscila L Leite
- Foundation for Scientific and Technological Development in Health (FIOTEC), Rio de Janeiro, 21040-361, Brazil
| | - Jacob Attell
- Eagle Global Scientific, LLC, Atlanta, GA, 30341, USA.,Booz Allen Hamilton, 8283 Greensboro Drive, Hamilton Building, McLean, VA, 22102, USA
| | - Jeanne Bertolli
- National Center on Birth Defects and Developmental Disability (NCBDDD), Centers for Disease Control and Prevention (CDC), Atlanta, GA, 30329, USA
| | - Kim Kotzky
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA
| | - Wildo N Araújo
- Faculty of Ceilandia (FCE) & Health Collective Post Graduation Program, University of Brasília (UnB), Brasília, 72220-275, Brazil
| | - Georgina Peacock
- National Center on Birth Defects and Developmental Disability (NCBDDD), Centers for Disease Control and Prevention (CDC), Atlanta, GA, 30329, USA
| |
Collapse
|
4
|
Jayatilake P, Oyegunle V, Waechter R, Landon B, Fernandes M, Cudjoe N, Evans R, Noël T, Macpherson C, Donald T, Abdelbaki SG, Mandalaneni K, Dlugos D, Chari G, Patel AA, Grossi-Soyster EN, Desiree LaBeaud A, Blackmon K. Focal epilepsy features in a child with Congenital Zika Syndrome. Epilepsy Behav Rep 2020; 14:100411. [PMID: 33313503 PMCID: PMC7720018 DOI: 10.1016/j.ebr.2020.100411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 11/30/2022] Open
Abstract
Congenital Zika Syndrome with microcephaly can present with focal seizures. TeleEEG can augment epilepsy care in Zika-endemic resource limited settings. A seizure questionnaire can prompt caregiver report of relevant seizure features.
Zika virus (ZIKV) is a mosquito-borne, single-stranded DNA flavivirus that is teratogenic and neurotropic. Similar to the teratogenic effects of other TORCH infections, ZIKV infection during pregnancy can have an adverse impact on fetal and neonatal development. Epilepsy is detected in 48–96% of children with Congenital Zika Syndrome (CZS) and microcephaly. Early epilepsy surveillance is needed in children with prenatal ZIKV exposure; yet, most ZIKV-endemic regions do not have specialist epilepsy care. Here, we describe the demographic, clinical, imaging, and EEG characteristics of a 2-year-old child with CZS and microcephaly who presented with focal epileptiform activity, suboptimal growth, and severe neurodevelopmental delays. Administration of a brief seizure questionnaire by allied health professionals to the patient’s caregiver helped to characterize the child’s seizure semiology and differentiate focal from generalized seizure features. A telemedicine EEG interpretation platform provided valuable diagnostic information for the patient’s local pediatrician to integrate into her treatment plan. This case illustrates that CZS can present with focal epilepsy features and that a telemedicine approach can be used to bridge the gap between epilepsy specialists and local care providers in resource limited ZIKV-endemic regions to achieve better seizure control in children with CZS.
Collapse
Affiliation(s)
| | | | - Randall Waechter
- St. George's University, St. George's, West Indies, Grenada.,Windward Islands Research and Education Foundation, St George's University, West Indies, Grenada
| | - Barbara Landon
- Windward Islands Research and Education Foundation, St George's University, West Indies, Grenada
| | - Michelle Fernandes
- Faculty of Medicine, Department of Paediatrics, University of Southampton, Southampton, UK
| | - Nikita Cudjoe
- Windward Islands Research and Education Foundation, St George's University, West Indies, Grenada
| | - Roberta Evans
- Windward Islands Research and Education Foundation, St George's University, West Indies, Grenada
| | - Trevor Noël
- Windward Islands Research and Education Foundation, St George's University, West Indies, Grenada
| | - Calum Macpherson
- Windward Islands Research and Education Foundation, St George's University, West Indies, Grenada
| | - Tyhiesia Donald
- Ministry of Health, Government of Grenada, West Indies, Grenada
| | | | | | - Dennis Dlugos
- Children's Hospital of Pennsylvania, Philadelphia, PA, USA
| | - Geetha Chari
- SUNY Downstate Health Sciences University, New York, NY, USA
| | - Archana A Patel
- Boston Children's Hospital, Division of Epilepsy and Clinical Neurophysiology, Boston, MA, USA
| | | | - A Desiree LaBeaud
- Stanford University School of Medicine, Department of Pediatrics, CA, USA
| | - Karen Blackmon
- Windward Islands Research and Education Foundation, St George's University, West Indies, Grenada.,Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
5
|
International consensus recommendations on the diagnostic work-up for malformations of cortical development. Nat Rev Neurol 2020; 16:618-635. [PMID: 32895508 PMCID: PMC7790753 DOI: 10.1038/s41582-020-0395-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2020] [Indexed: 12/22/2022]
Abstract
Malformations of cortical development (MCDs) are neurodevelopmental disorders that result from abnormal development of the cerebral cortex in utero. MCDs place a substantial burden on affected individuals, their families and societies worldwide, as these individuals can experience lifelong drug-resistant epilepsy, cerebral palsy, feeding difficulties, intellectual disability and other neurological and behavioural anomalies. The diagnostic pathway for MCDs is complex owing to wide variations in presentation and aetiology, thereby hampering timely and adequate management. In this article, the international MCD network Neuro-MIG provides consensus recommendations to aid both expert and non-expert clinicians in the diagnostic work-up of MCDs with the aim of improving patient management worldwide. We reviewed the literature on clinical presentation, aetiology and diagnostic approaches for the main MCD subtypes and collected data on current practices and recommendations from clinicians and diagnostic laboratories within Neuro-MIG. We reached consensus by 42 professionals from 20 countries, using expert discussions and a Delphi consensus process. We present a diagnostic workflow that can be applied to any individual with MCD and a comprehensive list of MCD-related genes with their associated phenotypes. The workflow is designed to maximize the diagnostic yield and increase the number of patients receiving personalized care and counselling on prognosis and recurrence risk.
Collapse
|
6
|
Sousa IBAD, Souza C, Barbosa MDS, Croda JHR, Gonçalves CCM, Bernardes SS, Marchioro SB. Gestational outcomes in women infected by Zika virus during pregnancy in Mato Grosso do Sul, Brazil: A cross-sectional study. Int J Infect Dis 2020; 98:359-365. [PMID: 32619757 DOI: 10.1016/j.ijid.2020.06.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES This study aimed to describe the demographic and clinical parameters of women infected by Zika virus who had infants with stigmata of Congenital Zika Syndrome (CZS) versus those who had normal-appearing infants at birth, thereby providing further details on the clinical caveats of neonatal ZIKV infection. METHODOLOGY This cross-sectional study was performed in the state of Mato Grosso do Sul, Central-West region of Brazil, and included 117 mother-infant pairs who were interviewed and 120 gestational outcomes. All mothers had laboratory confirmation by qRT-PCR of ZIKV infection during pregnancy. RESULTS The prevalence of congenital abnormalities related to ZIKV was 2.69 cases per 10,000 live births during this period. Exanthem was the main clinical finding, observed in 92.5% of the mothers in this study. Regarding the timing of ZIKV infection, the first trimester was the most frequent time of infection among mothers of infants with CZS (54.55%) (p=0.0007). The case fatality rate was 5% (n=6). Among the 23 children who were classified as having CZS, 13 (56.52%) of them presented with microcephaly. Only 13 (56.52%) children with CZS were tested by qRT-PCR for ZIKV infection at birth, five (38%) were positive. CONCLUSIONS This study highlights the congenital alterations of ZIKV infection during pregnancy in an epidemic burst, demonstrating that the alterations found in other studies are similar to the present research.
Collapse
Affiliation(s)
| | - Cristina Souza
- Faculty of Health Sciences, School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Julio Henrique Rosa Croda
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil; Faculty of Health Sciences, School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil; Oswaldo Cruz Foundation, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Sara Santos Bernardes
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil; Laboratory of Tissue Microenviroment, Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Silvana Beutinger Marchioro
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil; Institute of Health Sciences, Immunology Laboratory Federal University of Bahia, Salvador, Bahia, Brazil.
| |
Collapse
|
7
|
Wang Y, Ren K, Li S, Yang C, Chen L. Interferon stimulated gene 15 promotes Zika virus replication through regulating Jak/STAT and ISGylation pathways. Virus Res 2020; 287:198087. [PMID: 32738280 DOI: 10.1016/j.virusres.2020.198087] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 11/17/2022]
Abstract
Zika virus is an emergent arbovirus that has caused a public health emergency in South America. Zika virus infection is known to cause microcephaly and other congenital defects and Guillain-Barré syndrome. Unfortunately no direct antiviral treatments are available at present. IFN-stimulated gene 15 (ISG15) is one of the most upregulated host genes following type I interferon treatment or virus infections. ISG15 has been shown to have antiviral effect on a wide variety of viruses although pro-HCV replication was observed. However, the effect of ISG15 on ZIKV infection is not well defined. In this study, we try to clarify the effect of ISG15 on ZIKV replication and to further dissect the underlying mechanism. Our results indicated that ZIKV infection led to the increased expression of ISG15 in A549, 2fTGH, U5A cells. Overexpression of ISG15 stimulated ZIKV replication although ISG15 did not affect the viral entry. Further studies showed that this proviral effect was mediated through Jak/STAT signaling pathway and was ISGylation-dependent. Taken together, our work demonstrates that ISG15 is an important host factor exploited by ZIKV to facilitate its replication and might serve as a potential target for the development of novel antiviral agents.
Collapse
Affiliation(s)
- Yancui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Kai Ren
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Shilin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Chunhui Yang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China.
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China; Toronto General Research Institute, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Rational Design of Zika Virus Subunit Vaccine with Enhanced Efficacy. J Virol 2019; 93:JVI.02187-18. [PMID: 31189716 PMCID: PMC6694833 DOI: 10.1128/jvi.02187-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 06/10/2019] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) infection in pregnant women can lead to fetal deaths and malformations. We have previously reported that ZIKV envelope protein domain III (EDIII) is a subunit vaccine candidate with cross-neutralization activity; however, like many other subunit vaccines, its efficacy is limited. To improve the efficacy of this subunit vaccine, we identified a nonneutralizing epitope on ZIKV EDIII surrounding residue 375, which is buried in the full-length envelope protein but becomes exposed in recombinant EDIII. We then shielded this epitope with an engineered glycan probe. Compared to the wild-type EDIII, the mutant EDIII induced significantly stronger neutralizing antibodies in three mouse strains and also demonstrated significantly improved efficacy by fully protecting mice, particularly pregnant mice and their fetuses, against high-dose lethal ZIKV challenge. Moreover, the mutant EDIII immune sera significantly enhanced the passive protective efficacy by fully protecting mice against lethal ZIKV challenge; this passive protection was positively associated with neutralizing antibody titers. We further showed that the enhanced efficacy of the mutant EDIII was due to the shielding of the immunodominant nonneutralizing epitope surrounding residue 375, which led to immune refocusing on the neutralizing epitopes. Taken together, the results of this study reveal that an intrinsic limitation of subunit vaccines is their artificially exposed immunodominant nonneutralizing epitopes, which can be overcome through glycan shielding. Additionally, the mutant ZIKV protein generated in this study is a promising subunit vaccine candidate with high efficacy in preventing ZIKV infections in mice.IMPORTANCE Viral subunit vaccines generally show low efficacy. In this study, we revealed an intrinsic limitation of subunit vaccine designs: artificially exposed surfaces of subunit vaccines contain epitopes unfavorable for vaccine efficacy. More specifically, we identified an epitope on Zika virus (ZIKV) envelope protein domain III (EDIII) that is buried in the full-length envelope protein but becomes exposed in recombinant EDIII. We further shielded this epitope with a glycan, and the resulting mutant EDIII vaccine demonstrated significantly enhanced efficacy over the wild-type EDIII vaccine in protecting animal models from ZIKV infections. Therefore, the intrinsic limitation of subunit vaccines can be overcome through shielding these artificially exposed unfavorable epitopes. The engineered EDIII vaccine generated in this study is a promising vaccine candidate that can be further developed to battle ZIKV infections.
Collapse
|
9
|
Bustamante FA, Miró MP, VelÁsquez ZD, Molina L, Ehrenfeld P, Rivera FJ, BÁtiz LF. Role of adherens junctions and apical-basal polarity of neural stem/progenitor cells in the pathogenesis of neurodevelopmental disorders: a novel perspective on congenital Zika syndrome. Transl Res 2019; 210:57-79. [PMID: 30904442 DOI: 10.1016/j.trsl.2019.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/08/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022]
Abstract
Radial glial cells (RGCs) are the neural stem/progenitor cells (NSPCs) that give rise to most of neurons and glial cells that constitute the adult central nervous system. A hallmark of RGCs is their polarization along the apical-basal axis. They extend a long basal process that contacts the pial surface and a short apical process to the ventricular surface. Adherens junctions (AJs) are organized as belt-like structures at the most-apical lateral plasma membrane of the apical processes. These junctional complexes anchor RGCs to each other and allow the recruitment of cytoplasmic proteins that act as apical-basal determinants. It has been proposed that disruption of AJs underlies the onset of different neurodevelopmental disorders. In fact, studies performed in different animal models indicate that loss of function of AJs-related proteins in NSPCs can disrupt cell polarity, imbalance proliferation and/or differentiation rates and increase cell death, which, in turn, lead to disruption of the cytoarchitecture of the ventricular zone, protrusion of non-polarized cells into the ventricles, cortical thinning, and ventriculomegaly/hydrocephalus, among other neuropathological findings. Recent Zika virus (ZIKV) outbreaks and the high comorbidity of ZIKV infection with congenital neurodevelopmental defects have led to the World Health Organization to declare a public emergency of international concern. Thus, noteworthy advances have been made in clinical and experimental ZIKV research. This review summarizes the current knowledge regarding the function of AJs in normal and pathological corticogenesis and focuses on the neuropathological and cellular mechanisms involved in congenital ZIKV syndrome, highlighting the potential role of cell-to-cell junctions between NSPCs in the etiopathogenesis of such syndrome.
Collapse
Affiliation(s)
- Felipe A Bustamante
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile
| | - MarÍa Paz Miró
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile
| | - Zahady D VelÁsquez
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Institute für Parasitologie, Biomedizinisches Forschungszentrum Seltersberg, Justus Liebig Universität, Gießen, Germany
| | - Luis Molina
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Departamento de Ciencias Biológicas y Químicas, Facultad de Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Pamela Ehrenfeld
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Rivera
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile; Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Luis Federico BÁtiz
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Centro de Investigación Biomédica (CIB), Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
| |
Collapse
|
10
|
Chukwurah E, Osmundsen A, Davis SW, Lizarraga SB. All Together Now: Modeling the Interaction of Neural With Non-neural Systems Using Organoid Models. Front Neurosci 2019; 13:582. [PMID: 31293366 PMCID: PMC6598414 DOI: 10.3389/fnins.2019.00582] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/22/2019] [Indexed: 12/27/2022] Open
Abstract
The complex development of the human nervous system has been traditionally studied using a combination of animal models, human post-mortem brain tissue, and human genetics studies. However, there has been a lack of experimental human cellular models that would allow for a more precise elucidation of the intricate dynamics of early human brain development. The development of stem cell technologies, both embryonic and induced pluripotent stem cells (iPSCs), has given neuroscientists access to the previously inaccessible early stages of human brain development. In particular, the recent development of three-dimensional culturing methodologies provides a platform to study the differentiation of stem cells in both normal development and disease states in a more in vivo like context. Three-dimensional neural models or cerebral organoids possess an innate advantage over two-dimensional neural cultures as they can recapitulate tissue organization and cell type diversity that resemble the developing brain. Brain organoids also provide the exciting opportunity to model the integration of different brain regions in vitro. Furthermore, recent advances in the differentiation of non-neuronal tissue from stem cells provides the opportunity to study the interaction between the developing nervous system and other non-neuronal systems that impact neuronal function. In this review, we discuss the potential and limitations of the organoid system to study in vitro neurological diseases that arise in the neuroendocrine and the enteric nervous system or from interactions with the immune system.
Collapse
Affiliation(s)
- Evelyn Chukwurah
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States
| | - Allison Osmundsen
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States
| | - Shannon W. Davis
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States
| | - Sofia B. Lizarraga
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
11
|
Updated Imaging Findings in Congenital Zika Syndrome: A Disease Story That is Still Being Written. Top Magn Reson Imaging 2019; 28:1-14. [PMID: 30817674 DOI: 10.1097/rmr.0000000000000193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In congenital Zika virus syndrome (CZS), the most frequent radiological findings are calcifications in the cortical-white matter junction and malformations of cortical development (pachygyria or polymicrogyria, which occur predominantly in the frontal lobes, or a simplified gyral pattern), ventriculomegaly, enlargement of the cisterna magna and the extra-axial subarachnoid space, corpus callosum abnormalities, and reduced brain volume. This syndrome can also result in a decrease in the brainstem and cerebellum volumes and delayed myelination. Infants with CZS may show venous thrombosis and lenticulostriate vasculopathies. Over a 3-year follow-up period, many infants with CZS showed hydrocephalus, reduction in brain calcifications, and greater reduction in brain thickness.
Collapse
|
12
|
Congenital Zika Syndrome: The Main Cause of Death and Correspondence Between Brain CT and Postmortem Histological Section Findings From the Same Individuals. Top Magn Reson Imaging 2019; 28:29-33. [PMID: 30817678 DOI: 10.1097/rmr.0000000000000194] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the present case series, the cause of death of infants diagnosed with congenital Zika syndrome (CZS) was lung disease (pneumonia and sepsis with massive pulmonary aspiration), probably secondary to dysphagia and reflux. The main findings in infants with a confirmed diagnosis of CZS who died were as follows: (1) calcification and hypoplasia of the lentiform nuclei, hypoplasia of the caudate nuclei, and calcification at the cortical-subcortical junction was noted in all cases (100%) and calcification of the caudate nuclei was noted in 66.7% of cases; (2) calcification in the brainstem and along the lateral wall of the lateral ventricles was noted in only the case with arthrogryposis (33.3%); and (3) lesions in the posterior fossa (hypoplasia of the brainstem and cerebellum) were noted in two cases (66.7%), including the case with arthrogryposis. The findings concerning calcifications and brain malformations obtained from non-contrast computed tomography (CT) demonstrated good agreement with findings obtained from the postmortem pathological analysis; however, CT failed to detect discontinuity of the pia mater with heterotopia, invasion of the cerebral tissue into the subarachnoid space, and discontinuity of the ependyma in the lateral ventricles with gliosis; this last feature was only imaged in the most severe case of extreme microcephaly with a simplified gyral pattern. Only histopathology showed grouped calcifications associated with scattered calcifications suggestive of the neuron morphology.
Collapse
|
13
|
Mulkey SB, Bulas DI, Vezina G, Fourzali Y, Morales A, Arroyave-Wessel M, Swisher CB, Cristante C, Russo SM, Encinales L, Pacheco N, Kousa YA, Lanciotti RS, Cure C, DeBiasi RL, du Plessis AJ. Sequential Neuroimaging of the Fetus and Newborn With In Utero Zika Virus Exposure. JAMA Pediatr 2019; 173:52-59. [PMID: 30476967 PMCID: PMC6583436 DOI: 10.1001/jamapediatrics.2018.4138] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE The evolution of fetal brain injury by Zika virus (ZIKV) infection is not well described. OBJECTIVES To perform longitudinal neuroimaging of fetuses and infants exposed to in utero maternal ZIKV infection using concomitant magnetic resonance imaging (MRI) and ultrasonography (US), as well as to determine the duration of viremia in pregnant women with ZIKV infection and whether the duration of viremia correlated with fetal and/or infant brain abnormalities. DESIGN, SETTING, AND PARTICIPANTS A cohort of 82 pregnant women with clinical criteria for probable ZIKV infection in Barranquilla, Colombia, and Washington, DC, were enrolled from June 15, 2016, through June 27, 2017, with Colombian women identified by community recruitment and physician referral and travel-related cases of American women recruited from a Congenital Zika Program. INTERVENTIONS AND EXPOSURES Women received 1 or more MRI and US examinations during the second and/or third trimesters. Postnatally, infants underwent brain MRI and cranial US. Blood samples were tested for ZIKV. MAIN OUTCOMES AND MEASURES The neuroimaging studies were evaluated for brain injury and cerebral biometry. RESULTS Of the 82 women, 80 were from Colombia and 2 were from the United States. In 3 of 82 cases (4%), fetal MRI demonstrated abnormalities consistent with congenital ZIKV infection. Two cases had heterotopias and malformations in cortical development and 1 case had a parietal encephalocele, Chiari II malformation, and microcephaly. In 1 case, US results remained normal despite fetal abnormalities detected on MRI. Prolonged maternal polymerase chain reaction positivity was present in 1 case. Of the remaining 79 cases with normal results of prenatal imaging, postnatal brain MRI was acquired in 53 infants and demonstrated mild abnormalities in 7 (13%). Fifty-seven infants underwent postnatal cranial US, which detected changes of lenticulostriate vasculopathy, choroid plexus cysts, germinolytic/subependymal cysts, and/or calcification in 21 infants (37%). CONCLUSIONS AND RELEVANCE In a cohort of pregnant women with ZIKV infection, prenatal US examination appeared to detect all but 1 abnormal fetal case. Postnatal neuroimaging in infants who had normal prenatal imaging revealed new mild abnormalities. For most patients, prenatal and postnatal US may identify ZIKV-related brain injury.
Collapse
Affiliation(s)
- Sarah B. Mulkey
- Division of Fetal and Transitional Medicine, Children’s National Health System, Washington, DC,Department of Pediatrics, School of Medicine and Health Sciences, The George Washington University, Washington, DC,Department of Neurology, School of Medicine and Health Sciences, The George Washington University, Washington, DC
| | - Dorothy I. Bulas
- Division of Radiology, Children’s National Health System, Washington, DC
| | - Gilbert Vezina
- Division of Radiology, Children’s National Health System, Washington, DC
| | | | | | | | - Christopher B. Swisher
- Division of Fetal and Transitional Medicine, Children’s National Health System, Washington, DC
| | - Caitlin Cristante
- Division of Fetal and Transitional Medicine, Children’s National Health System, Washington, DC
| | - Stephanie M. Russo
- Division of Fetal and Transitional Medicine, Children’s National Health System, Washington, DC
| | | | | | - Youssef A. Kousa
- Division of Neurology, Children’s National Health System, Washington, DC
| | - Robert S. Lanciotti
- Arbovirus Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | | | - Roberta L. DeBiasi
- Department of Pediatrics, School of Medicine and Health Sciences, The George Washington University, Washington, DC,Division of Infectious Diseases, Children’s National Health System, Washington, DC,Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC
| | - Adre J. du Plessis
- Division of Fetal and Transitional Medicine, Children’s National Health System, Washington, DC,Department of Pediatrics, School of Medicine and Health Sciences, The George Washington University, Washington, DC,Department of Neurology, School of Medicine and Health Sciences, The George Washington University, Washington, DC
| |
Collapse
|
14
|
Heerema-McKenney A. Defense and infection of the human placenta. APMIS 2018; 126:570-588. [PMID: 30129129 DOI: 10.1111/apm.12847] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/22/2018] [Indexed: 12/14/2022]
Abstract
The placenta functions as a shield against infection of the fetus. The innate and adaptive immune defenses of the developing fetus are poorly equipped to fight infections. Infection by bacteria, viruses, and protozoa may cause infertility, spontaneous abortion, stillbirth, growth retardation, anomalies of development, premature delivery, neonatal morbidity, and mortality. However, appreciation of the human microbiome and host cell-microbe interactions must be taken into consideration as we try to determine what interactions are pathologic. Infection is typically recognized histologically by the presence of inflammation. Yet, several factors make comparison of the placenta to other human organs difficult. The placenta comprises tissues from two persons, complicating the role of the immune system. The placenta is a temporary organ. It must be eventually expelled; the processes leading to partuition involve maternal inflammation. What is normal or pathologic may be a function of timing or extent of the process. We now must consider whether bacteria, and even some viruses, are useful commensals or pathogens. Still, recognizing infection of the placenta is one of the most important contributions placental pathologic examination can give to care of the mother and neonate. This review provides a brief overview of placental defense against infection, consideration of the placental microbiome, routes of infection, and the histopathology of amniotic fluid infection and TORCH infections.
Collapse
Affiliation(s)
- Amy Heerema-McKenney
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
15
|
Kaptein SJF, Vincetti P, Crespan E, Rivera JIA, Costantino G, Maga G, Neyts J, Radi M. Identification of Broad-Spectrum Dengue/Zika Virus Replication Inhibitors by Functionalization of Quinoline and 2,6-Diaminopurine Scaffolds. ChemMedChem 2018; 13:1371-1376. [DOI: 10.1002/cmdc.201800178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/04/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Suzanne J. F. Kaptein
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy; KU Leuven; B-3000 Leuven Belgium
| | - Paolo Vincetti
- Dipartimento di Scienze degli Alimenti e del Farmaco; Università degli Studi di Parma; Viale delle Scienze, 27/A 43124 Parma Italy
| | - Emmanuele Crespan
- National Research Council; Institute of Molecular Genetics IGM-CNR; Via Abbiategrasso 207 27100 Pavia Italy
| | - Jorge I. Armijos Rivera
- National Research Council; Institute of Molecular Genetics IGM-CNR; Via Abbiategrasso 207 27100 Pavia Italy
| | - Gabriele Costantino
- Dipartimento di Scienze degli Alimenti e del Farmaco; Università degli Studi di Parma; Viale delle Scienze, 27/A 43124 Parma Italy
| | - Giovanni Maga
- National Research Council; Institute of Molecular Genetics IGM-CNR; Via Abbiategrasso 207 27100 Pavia Italy
| | - Johan Neyts
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy; KU Leuven; B-3000 Leuven Belgium
| | - Marco Radi
- Dipartimento di Scienze degli Alimenti e del Farmaco; Università degli Studi di Parma; Viale delle Scienze, 27/A 43124 Parma Italy
| |
Collapse
|
16
|
Acosta-Ampudia Y, Monsalve DM, Castillo-Medina LF, Rodríguez Y, Pacheco Y, Halstead S, Willison HJ, Anaya JM, Ramírez-Santana C. Autoimmune Neurological Conditions Associated With Zika Virus Infection. Front Mol Neurosci 2018; 11:116. [PMID: 29695953 PMCID: PMC5904274 DOI: 10.3389/fnmol.2018.00116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022] Open
Abstract
Zika virus (ZIKV) is an emerging flavivirus rapidly spreading throughout the tropical Americas. Aedes mosquitoes is the principal way of transmission of the virus to humans. ZIKV can be spread by transplacental, perinatal, and body fluids. ZIKV infection is often asymptomatic and those with symptoms present minor illness after 3 to 12 days of incubation, characterized by a mild and self-limiting disease with low-grade fever, conjunctivitis, widespread pruritic maculopapular rash, arthralgia and myalgia. ZIKV has been linked to a number of central and peripheral nervous system injuries such as Guillain-Barré syndrome (GBS), transverse myelitis (TM), meningoencephalitis, ophthalmological manifestations, and other neurological complications. Nevertheless, mechanisms of host-pathogen neuro-immune interactions remain incompletely elucidated. This review provides a critical discussion about the possible mechanisms underlying the development of autoimmune neurological conditions associated with Zika virus infection.
Collapse
Affiliation(s)
- Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Luis F Castillo-Medina
- Center for Autoimmune Diseases Research, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Yhojan Rodríguez
- Center for Autoimmune Diseases Research, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Yovana Pacheco
- Center for Autoimmune Diseases Research, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Susan Halstead
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Hugh J Willison
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| |
Collapse
|
17
|
Martinot AJ, Abbink P, Afacan O, Prohl AK, Bronson R, Hecht JL, Borducchi EN, Larocca RA, Peterson RL, Rinaldi W, Ferguson M, Didier PJ, Weiss D, Lewis MG, De La Barrera RA, Yang E, Warfield SK, Barouch DH. Fetal Neuropathology in Zika Virus-Infected Pregnant Female Rhesus Monkeys. Cell 2018; 173:1111-1122.e10. [PMID: 29606355 DOI: 10.1016/j.cell.2018.03.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/02/2018] [Accepted: 03/07/2018] [Indexed: 01/13/2023]
Abstract
The development of interventions to prevent congenital Zika syndrome (CZS) has been limited by the lack of an established nonhuman primate model. Here we show that infection of female rhesus monkeys early in pregnancy with Zika virus (ZIKV) recapitulates many features of CZS in humans. We infected 9 pregnant monkeys with ZIKV, 6 early in pregnancy (weeks 6-7 of gestation) and 3 later in pregnancy (weeks 12-14 of gestation), and compared findings with uninfected controls. 100% (6 of 6) of monkeys infected early in pregnancy exhibited prolonged maternal viremia and fetal neuropathology, including fetal loss, smaller brain size, and histopathologic brain lesions, including microcalcifications, hemorrhage, necrosis, vasculitis, gliosis, and apoptosis of neuroprogenitor cells. High-resolution MRI demonstrated concordant lesions indicative of deep gray matter injury. We also observed spinal, ocular, and neuromuscular pathology. Our data show that vascular compromise and neuroprogenitor cell dysfunction are hallmarks of CZS pathogenesis, suggesting novel strategies to prevent and to treat this disease.
Collapse
Affiliation(s)
- Amanda J Martinot
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Onur Afacan
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anna K Prohl
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Jonathan L Hecht
- Division of Anatomic Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Erica N Borducchi
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rafael A Larocca
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rebecca L Peterson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | - Peter J Didier
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA
| | | | | | | | - Edward Yang
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
18
|
Counotte MJ, Egli-Gany D, Riesen M, Abraha M, Porgo TV, Wang J, Low N. Zika virus infection as a cause of congenital brain abnormalities and Guillain-Barré syndrome: From systematic review to living systematic review. F1000Res 2018; 7:196. [PMID: 30631437 PMCID: PMC6290976 DOI: 10.12688/f1000research.13704.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/25/2018] [Indexed: 01/16/2023] Open
Abstract
Background. The Zika virus (ZIKV) outbreak in the Americas has caused international concern due to neurological sequelae linked to the infection, such as microcephaly and Guillain-Barré syndrome (GBS). The World Health Organization stated that there is “sufficient evidence to conclude that Zika virus is a cause of congenital abnormalities and is a trigger of GBS”. This conclusion was based on a systematic review of the evidence published until 30.05.2016. Since then, the body of evidence has grown substantially, leading to this update of that systematic review with new evidence published from 30.05.2016 – 18.01.2017, update 1. Methods. We review evidence on the causal link between ZIKV infection and adverse congenital outcomes and the causal link between ZIKV infection and GBS or immune-mediated thrombocytopaenia purpura. We also describe the transition of the review into a living systematic review, a review that is continually updated. Results. Between 30.05.2016 and 18.01.2017, we identified 2413 publications, of which 101 publications were included. The evidence added in this update confirms the conclusion of a causal association between ZIKV and adverse congenital outcomes. New findings expand the evidence base in the dimensions of biological plausibility, strength of association, animal experiments and specificity. For GBS, the body of evidence has grown during the search period for update 1, but only for dimensions that were already populated in the previous version. There is still a limited understanding of the biological pathways that potentially cause the occurrence of autoimmune disease following ZIKV infection. Conclusions. This systematic review confirms previous conclusions that ZIKV is a cause of congenital abnormalities, including microcephaly, and is a trigger of GBS. The transition to living systematic review techniques and methodology provides a proof of concept for the use of these methods to synthesise evidence about an emerging pathogen such as ZIKV.
Collapse
Affiliation(s)
| | - Dianne Egli-Gany
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Maurane Riesen
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Million Abraha
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | | | - Jingying Wang
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Nicola Low
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Marques Abramov D, Saad T, Gomes-Junior SC, de Souza E Silva D, Araújo I, Lopes Moreira ME, Lazarev VV. Auditory brainstem function in microcephaly related to Zika virus infection. Neurology 2018; 90:e606-e614. [PMID: 29352094 DOI: 10.1212/wnl.0000000000004974] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 11/06/2017] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To study the effect of prenatal Zika virus (ZV) infection on brainstem function reflected in brainstem auditory evoked potentials (BAEPs). METHODS In a cross-sectional study in 19 children (12 girls) with microcephaly related to ZV infection, aged between 12 and 62 weeks, the brainstem function was examined through BAEPs. The latencies of wave peaks I, III, and V of the left and right ears (n = 37) were standardized according to normative data, and compared between them by 2-tailed t test. The confounding variables (cephalic perimeter at the born and chronological age) were correlated with the normalized latencies using Pearson test. RESULTS All patients showed, in general, clear waveforms, with latencies within 3 SDs of the normative values. However, statistically increased latencies of waves I and III (I > III, p = 0.031) were observed, relative to wave V (p < 0.001), the latter being closer to respective normative value. The latency of wave I was observed to increase with age (r = 0.45, p = 0.005). The waves, in turn, did not depend on cephalic perimeter. CONCLUSIONS These results are consistent with the functional normality of the brainstem structure and its lack of correlation with microcephaly, suggesting that the disruption produced by the ZV infection does not act in the cell proliferation phase, but mostly in the processes of neuronal migration and differentiation in the telencephalon.
Collapse
Affiliation(s)
- Dimitri Marques Abramov
- From the Laboratory of Neurobiology and Clinical Neurophysiology (D.M.A., T.S., D.d.S.e.S., I.A., V.V.L.) and Unit of Clinical Research (S.-C.G.-J., M.E.L.M.), National Institute of Women, Children and Adolescents, Health Fernandes Figueira, Oswaldo Cruz Foundation (FIOCRUZ), Ministry of Health, Rio de Janeiro, Brazil
| | - Tania Saad
- From the Laboratory of Neurobiology and Clinical Neurophysiology (D.M.A., T.S., D.d.S.e.S., I.A., V.V.L.) and Unit of Clinical Research (S.-C.G.-J., M.E.L.M.), National Institute of Women, Children and Adolescents, Health Fernandes Figueira, Oswaldo Cruz Foundation (FIOCRUZ), Ministry of Health, Rio de Janeiro, Brazil
| | - Saint-Clair Gomes-Junior
- From the Laboratory of Neurobiology and Clinical Neurophysiology (D.M.A., T.S., D.d.S.e.S., I.A., V.V.L.) and Unit of Clinical Research (S.-C.G.-J., M.E.L.M.), National Institute of Women, Children and Adolescents, Health Fernandes Figueira, Oswaldo Cruz Foundation (FIOCRUZ), Ministry of Health, Rio de Janeiro, Brazil
| | - Daniel de Souza E Silva
- From the Laboratory of Neurobiology and Clinical Neurophysiology (D.M.A., T.S., D.d.S.e.S., I.A., V.V.L.) and Unit of Clinical Research (S.-C.G.-J., M.E.L.M.), National Institute of Women, Children and Adolescents, Health Fernandes Figueira, Oswaldo Cruz Foundation (FIOCRUZ), Ministry of Health, Rio de Janeiro, Brazil
| | - Izabel Araújo
- From the Laboratory of Neurobiology and Clinical Neurophysiology (D.M.A., T.S., D.d.S.e.S., I.A., V.V.L.) and Unit of Clinical Research (S.-C.G.-J., M.E.L.M.), National Institute of Women, Children and Adolescents, Health Fernandes Figueira, Oswaldo Cruz Foundation (FIOCRUZ), Ministry of Health, Rio de Janeiro, Brazil
| | - Maria Elizabeth Lopes Moreira
- From the Laboratory of Neurobiology and Clinical Neurophysiology (D.M.A., T.S., D.d.S.e.S., I.A., V.V.L.) and Unit of Clinical Research (S.-C.G.-J., M.E.L.M.), National Institute of Women, Children and Adolescents, Health Fernandes Figueira, Oswaldo Cruz Foundation (FIOCRUZ), Ministry of Health, Rio de Janeiro, Brazil
| | - Vladimir V Lazarev
- From the Laboratory of Neurobiology and Clinical Neurophysiology (D.M.A., T.S., D.d.S.e.S., I.A., V.V.L.) and Unit of Clinical Research (S.-C.G.-J., M.E.L.M.), National Institute of Women, Children and Adolescents, Health Fernandes Figueira, Oswaldo Cruz Foundation (FIOCRUZ), Ministry of Health, Rio de Janeiro, Brazil.
| |
Collapse
|
20
|
de Souza AS, de Oliveira-Szjenfeld PS, de Oliveira Melo AS, de Souza LAM, Batista AGM, Tovar-Moll F. Imaging findings in congenital Zika virus infection syndrome: an update. Childs Nerv Syst 2018; 34:85-93. [PMID: 29181810 DOI: 10.1007/s00381-017-3637-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND Zika virus (ZIKV) is a neurotropic and neurotoxic RNA Flavivirus prompt to cause severe fetal brain dysmorphisms during pregnancy, a period of rapid and critical central nervous system development. A wide range of clinico-radiological findings of congenital ZIKV infections were reported in the literature, such as microcephaly, overlapping sutures, cortical migrational and corpus callosum abnormalities, intracranial calcifications, ventriculomegaly, brain stem and cerebellar malformations, spinal cord involvement, and joint contractures. ZIKV is also related to other severe neurological manifestations in grown-up individuals such as Guillain-Barré syndrome and encephalomyelitis. PURPOSE Our purpose is to review the radiological central nervous system abnormalities of congenital ZIKV infection syndrome on different imaging modalities.
Collapse
Affiliation(s)
- Andrea Silveira de Souza
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30, Botafogo, Rio de Janeiro, 22281-100, Brazil
| | - Patrícia Soares de Oliveira-Szjenfeld
- Department of Diagnostic Imaging, Federal University of São Paulo, São Paulo, Brazil
- Foundation Institute for Education and Research in Diagnostic Imaging (FIDI), Federal University of São Paulo, São Paulo, Brazil
| | | | - Luis Alberto Moreira de Souza
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30, Botafogo, Rio de Janeiro, 22281-100, Brazil
| | - Alba Gean Medeiros Batista
- Research Institute Professor Amorim Neto (IPESQ), Campina Grande, PB, Brazil
- Hospital Pedro I, Campina Grande, PB, Brazil
| | - Fernanda Tovar-Moll
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30, Botafogo, Rio de Janeiro, 22281-100, Brazil.
- Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
21
|
Ximenes ASFC, Pires P, Werner H, Jungmann PM, Rolim Filho EL, Andrade EP, Lemos RS, Peixoto AB, Zare Mehrjardi M, Tonni G, Araujo Júnior E. Neuroimaging findings using transfontanellar ultrasound in newborns with microcephaly: a possible association with congenital Zika virus infection. J Matern Fetal Neonatal Med 2017; 32:493-501. [PMID: 28942698 DOI: 10.1080/14767058.2017.1384459] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The objective of this study is to determine the main neuroimaging findings of microcephalic newborns with possible Zika virus (ZIKV) intrauterine infection using transfontanellar cranial ultrasound. METHODS We performed a retrospective study to describe the main neuroimaging findings in newborns with microcephaly and possible association with congenital ZIKV infection. Microcephaly was defined in the postnatal period using transfontanellar cranial examination which was performed using both two- (2D) and three-dimensional (3D) ultrasound. RESULTS One hundred and fifty newborns with microcephaly were identified during the study period. The mean ± (standard deviation - SD) of cephalic perimeter was 28.5 ± 4.2 cm (range, 25-38 cm). Transfontanellar neuroimaging patterns detected cerebral calcifications, neuronal migrational abnormalities, dysgenesis of the corpus callosum, and cerebellar atrophy in 34.9%, 31.1%, 26%, and 16.2%, respectively. Hydrocephalus was seen in 28% of overall newborns. A history of maculopapular rash was present in almost half of the mothers (46.1%). CONCLUSION Neuroimaging patterns by means of transfontanellar ultrasound are accurate and diagnostic investigations of brain pathology in newborns affected by microcephaly and possible intrauterine ZIKV infection.
Collapse
Affiliation(s)
| | - Pedro Pires
- b Department of Maternal and Child , Pernambuco University (UPE) , Recife , Brazil
| | - Heron Werner
- c Department of Radiology , Clínica de Diagnóstico por Imagem (CDPI) , Rio de Janeiro , Brazil
| | | | | | | | | | | | - Mohammad Zare Mehrjardi
- h Department of Radiology, Shohada Tajrish Hospital, School of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran.,i Section of Pediatric Imaging, Division of Clinical Research , Climax Radiology Education Foundation , Tehran , Iran
| | - Gabriele Tonni
- j Department of Obstetrics and Gynecology , Guastalla Civil Hospital, AUSL Reggio Emilia , Italy
| | - Edward Araujo Júnior
- k Department of Obstetrics, Paulista School of Medicine , Federal University of São Paulo (EPM-UNIFESP) , São Paulo , Brazil
| |
Collapse
|
22
|
The pathogenesis of microcephaly resulting from congenital infections: why is my baby’s head so small? Eur J Clin Microbiol Infect Dis 2017; 37:209-226. [DOI: 10.1007/s10096-017-3111-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/17/2017] [Indexed: 02/07/2023]
|
23
|
Polonio CM, de Freitas CL, Zanluqui NG, Peron JPS. Zika virus congenital syndrome: experimental models and clinical aspects. J Venom Anim Toxins Incl Trop Dis 2017; 23:41. [PMID: 28932235 PMCID: PMC5602956 DOI: 10.1186/s40409-017-0131-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 09/01/2017] [Indexed: 12/24/2022] Open
Abstract
Viral infections have long been the cause of severe diseases to humans, increasing morbidity and mortality rates worldwide, either in rich or poor countries. Yellow fever virus, H1N1 virus, HIV, dengue virus, hepatitis B and C are well known threats to human health, being responsible for many million deaths annually, associated to a huge economic and social cost. In this context, a recently introduced flavivirus in South America, called Zika virus (ZIKV), led the WHO to declare in February 1st 2016 a warning on Public Health Emergency of International Concern (PHEIC). ZIKV is an arbovirus of the Flaviviridae family firstly isolated from sentinels Rhesus sp. monkeys at the Ziika forest in Uganda, Africa, in 1947. Lately, the virus has well adapted to the worldwide spread Aedes aegypti mosquito, the vector for DENV, CHIKV, YFV and many others. At first, it was not considered a threat to human health, but everything changed when a skyrocketing number of babies born with microcephaly and adults with Guillain-Barré syndrome were reported, mainly in northeastern Brazil. It is now well established that the virus is responsible for the so called congenital Zika syndrome (CZS), whose most dramatic features are microcephaly, arthrogryposis and ocular damage. Thus, in this review, we provide a brief discussion of these main clinical aspects of the CZS, correlating them with the experimental animal models described so far.
Collapse
Affiliation(s)
- Carolina Manganeli Polonio
- Neuroimmune Interactions Laboratory, Immunology Department – ICB IV, University of São Paulo (USP), Av. Prof. Lineu Prestes, 1730, Cidade Universitária, São Paulo, SP CEP 05508-900 Brazil
| | - Carla Longo de Freitas
- Neuroimmune Interactions Laboratory, Immunology Department – ICB IV, University of São Paulo (USP), Av. Prof. Lineu Prestes, 1730, Cidade Universitária, São Paulo, SP CEP 05508-900 Brazil
| | - Nagela Ghabdan Zanluqui
- Neuroimmune Interactions Laboratory, Immunology Department – ICB IV, University of São Paulo (USP), Av. Prof. Lineu Prestes, 1730, Cidade Universitária, São Paulo, SP CEP 05508-900 Brazil
| | - Jean Pierre Schatzmann Peron
- Neuroimmune Interactions Laboratory, Immunology Department – ICB IV, University of São Paulo (USP), Av. Prof. Lineu Prestes, 1730, Cidade Universitária, São Paulo, SP CEP 05508-900 Brazil
| |
Collapse
|
24
|
Aliota MT, Bassit L, Bradrick SS, Cox B, Garcia-Blanco MA, Gavegnano C, Friedrich TC, Golos TG, Griffin DE, Haddow AD, Kallas EG, Kitron U, Lecuit M, Magnani DM, Marrs C, Mercer N, McSweegan E, Ng LFP, O'Connor DH, Osorio JE, Ribeiro GS, Ricciardi M, Rossi SL, Saade G, Schinazi RF, Schott-Lerner GO, Shan C, Shi PY, Watkins DI, Vasilakis N, Weaver SC. Zika in the Americas, year 2: What have we learned? What gaps remain? A report from the Global Virus Network. Antiviral Res 2017; 144:223-246. [PMID: 28595824 PMCID: PMC5920658 DOI: 10.1016/j.antiviral.2017.06.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 12/25/2022]
Abstract
In response to the outbreak of Zika virus (ZIKV) infection in the Western Hemisphere and the recognition of a causal association with fetal malformations, the Global Virus Network (GVN) assembled an international taskforce of virologists to promote basic research, recommend public health measures and encourage the rapid development of vaccines, antiviral therapies and new diagnostic tests. In this article, taskforce members and other experts review what has been learned about ZIKV-induced disease in humans, its modes of transmission and the cause and nature of associated congenital manifestations. After describing the make-up of the taskforce, we summarize the emergence of ZIKV in the Americas, Africa and Asia, its spread by mosquitoes, and current control measures. We then review the spectrum of primary ZIKV-induced disease in adults and children, sites of persistent infection and sexual transmission, then examine what has been learned about maternal-fetal transmission and the congenital Zika syndrome, including knowledge obtained from studies in laboratory animals. Subsequent sections focus on vaccine development, antiviral therapeutics and new diagnostic tests. After reviewing current understanding of the mechanisms of emergence of Zika virus, we consider the likely future of the pandemic.
Collapse
Affiliation(s)
- Matthew T Aliota
- Department of Pathobiological Sciences, University of Wisconsin-Madison, USA
| | - Leda Bassit
- Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Shelton S Bradrick
- Department of Biochemistry and Molecular Biology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Bryan Cox
- Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Christina Gavegnano
- Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, USA; Department of Comparative Biosciences, University of Wisconsin-Madison, USA; Department of Obstetrics and Gynecology, University of Wisconsin-Madison, USA
| | - Diane E Griffin
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Andrew D Haddow
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Virology Division, United States Army Medical Research Institute of Infectious Diseases, Ft. Detrick, MD, 21702, USA
| | - Esper G Kallas
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, Brazil
| | - Uriel Kitron
- Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| | - Marc Lecuit
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Institut Pasteur, Biology of Infection Unit and INSERM Unit 1117, France; Paris Descartes University, Sorbonne Paris Cité, Division of Infectious Diseases and Tropical Medicine, Necker- Enfants Malades University Hospital, Institut Imagine, Paris, France
| | - Diogo M Magnani
- Department of Pathology, University of Miami, Miami, FL, USA
| | - Caroline Marrs
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Natalia Mercer
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA
| | | | - Lisa F P Ng
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - David H O'Connor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, USA
| | - Jorge E Osorio
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Department of Pathobiological Sciences, University of Wisconsin-Madison, USA
| | - Guilherme S Ribeiro
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz and Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | | | - Shannan L Rossi
- Department of Microbiology & Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - George Saade
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Raymond F Schinazi
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Geraldine O Schott-Lerner
- Department of Biochemistry and Molecular Biology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Chao Shan
- Department of Biochemistry and Molecular Biology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - David I Watkins
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Department of Pathology, University of Miami, Miami, FL, USA
| | - Nikos Vasilakis
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Department of Microbiology & Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
25
|
Stephen P, Lin SX. RNA-dependent RNA polymerase: Addressing Zika outbreak by a phylogeny-based drug target study. Chem Biol Drug Des 2017. [PMID: 28636772 DOI: 10.1111/cbdd.13054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Since the first major outbreak of Zika virus (ZIKV) in 2007, ZIKV is spreading explosively through South and Central America, and recent reports in highly populated developing countries alarm the possibility of a more catastrophic outbreak. ZIKV infection in pregnant women leads to embryonic microcephaly and Guillain-Barré syndrome in adults. At present, there is limited understanding of the infectious mechanism, and no approved therapy has been reported. Despite the withdrawal of public health emergency, the WHO still considers the ZIKV as a highly significant and long-term public health challenge that the situation has to be addressed rapidly. Non-structural protein 5 is essential for capping and replication of viral RNA and comprises a methyltransferase and RNA-dependent RNA polymerase (RdRp) domain. We used molecular modeling to obtain the structure of ZIKV RdRp, and by molecular docking and phylogeny analysis, we here demonstrate the potential sites for drug screening. Two metal binding sites and an NS3-interacting region in ZIKV RdRp are demonstrated as potential drug screening sites. The docked structures reveal a remarkable degree of conservation at the substrate binding site and the potential drug screening sites. A phylogeny-based approach is provided for an emergency preparedness, where similar class of ligands could target phylogenetically related proteins.
Collapse
Affiliation(s)
- Preyesh Stephen
- Laboratory of Molecular Endocrinology, CHU Research Center, Laval University, Québec, Canada
| | - Sheng-Xiang Lin
- Laboratory of Molecular Endocrinology, CHU Research Center, Laval University, Québec, Canada
| |
Collapse
|
26
|
Cicuto Ferreira Rocha NA, de Campos AC, Cicuto Ferreira Rocha F, Pereira Dos Santos Silva F. Microcephaly and Zika virus: Neuroradiological aspects, clinical findings and a proposed framework for early evaluation of child development. Infant Behav Dev 2017; 49:70-82. [PMID: 28755567 DOI: 10.1016/j.infbeh.2017.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 05/30/2017] [Accepted: 07/14/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND AIMS As the recent outbreak of microcephaly cases caused by Zika virus has been declared a global health emergency, providing assessment guidelines for multidisciplinary teams providing early developmental screening and stimulation to infants with microcephaly is much needed. Thus, the aim of this manuscript is to provide an overview on what is known about neuroradiological aspects and clinical findings in infants with microcephaly caused by Zika virus and to propose a framework for early evaluation of child development. METHODS The keywords "Zika virus" and "microcephaly" were searched in PubMed database for articles published from incept to May 2017. These texts were reviewed, and the ones addressing neuroradiological and clinical findings in infants were selected. Recommendations for early assessment were made based on the International Classification of Functionality Disability and Health (ICF) model. OUTCOMES AND RESULTS The database search yielded 599 publications and 36 were selected. The studies detected microcephaly with diffuse brain malformations and calcifications, ventriculomegaly, optic nerve hypoplasia, macular atrophy, cataracts, impaired visual and hearing function, arthrogryposis, spasticity, hyperreflexia, irritability, tremors, and seizures, but very little is known about early development. Early assessments were described based on the ICF domains (Body Function and Structures, Activities and Participation and Contextual factors). CONCLUSION AND IMPLICATIONS Studies published showed abnormal brain, optic, neurologic and orthopedic findings, but very little is known about other aspects of functioning in infants with microcephaly caused by Zika virus. The biopsychosocial model based on the ICF paradigm provides an adequate framework to describe the condition of the infant with microcephaly receiving rehabilitative efforts to minimize disability. Efforts towards early identification of developmental delays should be taken within the first six months of life.
Collapse
Affiliation(s)
- Nelci Adriana Cicuto Ferreira Rocha
- Department of Physical Therapy, Child Development Analysis Laboratory (LADI), Federal University of São Carlos (UFSCar), Rodovia Washington Luis, km 235, São Carlos, SP, 13565-905, Brazil.
| | - Ana Carolina de Campos
- Department of Physical Therapy, Child Development Analysis Laboratory (LADI), Federal University of São Carlos (UFSCar), Rodovia Washington Luis, km 235, São Carlos, SP, 13565-905, Brazil
| | - Fellipe Cicuto Ferreira Rocha
- Medical School, Pontifical Catholic University of Campinas (PUC-Campinas), Av. John Boyd Dunlop, s/n - Jardim Ipaussurama, Campinas, SP, 13060-904, Brazil
| | - Fernanda Pereira Dos Santos Silva
- Department of Physical Therapy, Child Development Analysis Laboratory (LADI), Federal University of São Carlos (UFSCar), Rodovia Washington Luis, km 235, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
27
|
De novo RNA synthesis catalyzed by the Zika Virus RNA polymerase domain. Sci Rep 2017; 7:2697. [PMID: 28577343 PMCID: PMC5457451 DOI: 10.1038/s41598-017-03038-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/21/2017] [Indexed: 11/18/2022] Open
Abstract
Mosquito- and tick-borne pathogens including Chikungunya, Dengue, Japanese encephalitis, West Nile, Yellow fever and Zika virus, represent a new economic and public health challenge. In the absence of effective vaccines and specific therapies, only supportive regimens are administrated for most of these infections. Thus, the development of a targeted therapy is mandatory to stop the rapid progression of these pathogens and preoccupant associated burdens such as Guillain-Barre syndrome, microcephaly. For this, it is essential to develop biochemical tools to help study and target key viral enzymes involved in replication such as helicase complexes, methyl-transferases and RNA-dependent RNA polymerases. Here, we show that a highly purified ZIKV polymerase domain is active in vitro. Importantly, we show that this isolated domain is capable of de novo synthesis of the viral genome and efficient elongation without terminal nucleotide transferase activity. Altogether, this isolated polymerase domain will be a precious tool to screen and optimize specific nucleoside and non-nucleoside inhibitors to fight against Zika infections.
Collapse
|
28
|
Singh MV, Weber EA, Singh VB, Stirpe NE, Maggirwar SB. Preventive and therapeutic challenges in combating Zika virus infection: are we getting any closer? J Neurovirol 2017; 23:347-357. [PMID: 28116673 PMCID: PMC5440476 DOI: 10.1007/s13365-017-0513-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/10/2017] [Indexed: 01/26/2023]
Abstract
The neuroteratogenic nature of Zika Virus (ZIKV) infection has converted what would have been a tropical disease into a global threat. Zika is transmitted vertically via infected placental cells especially in the first and second trimesters. In the developing central nervous system (CNS), ZIKV can infect and induce apoptosis of neural progenitor cells subsequently causing microcephaly as well as other neuronal complications in infants. Its ability to infect multiple cell types (placental, dermal, and neural) and increased environmental stability as compared to other flaviviruses (FVs) has broadened the transmission routes for ZIKV infection from vector-mediated to transmitted via body fluids. To further complicate the matters, it is genetically similar (about 40%) with the four serotypes of dengue virus (DENV), so much so that it can almost be called a fifth DENV serotype. This homology poses the risk of causing cross-reactive immune responses and subsequent antibody-dependent enhancement (ADE) of infection in case of secondary infections or for immunized individuals. All of these factors complicate the development of a single preventive vaccine candidate or a pharmacological intervention that will completely eliminate or cure ZIKV infection. We discuss all of these factors in detail in this review and conclude that a combinatorial approach including immunization and treatment might prove to be the winning strategy.
Collapse
Affiliation(s)
- Meera V Singh
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | - Emily A Weber
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Vir B Singh
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Nicole E Stirpe
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Sanjay B Maggirwar
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| |
Collapse
|
29
|
Chimelli L, Melo ASO, Avvad-Portari E, Wiley CA, Camacho AHS, Lopes VS, Machado HN, Andrade CV, Dock DCA, Moreira ME, Tovar-Moll F, Oliveira-Szejnfeld PS, Carvalho ACG, Ugarte ON, Batista AGM, Amorim MMR, Melo FO, Ferreira TA, Marinho JRL, Azevedo GS, Leal JIBF, da Costa RFM, Rehen S, Arruda MB, Brindeiro RM, Delvechio R, Aguiar RS, Tanuri A. The spectrum of neuropathological changes associated with congenital Zika virus infection. Acta Neuropathol 2017; 133:983-999. [PMID: 28332092 DOI: 10.1007/s00401-017-1699-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 01/04/2023]
Abstract
A major concern associated with ZIKV infection is the increased incidence of microcephaly with frequent calcifications in infants born from infected mothers. To date, postmortem analysis of the central nervous system (CNS) in congenital infection is limited to individual reports or small series. We report a comprehensive neuropathological study in ten newborn babies infected with ZIKV during pregnancy, including the spinal cords and dorsal root ganglia (DRG), and also muscle, pituitaries, eye, systemic organs, and placentas. Using in situ hybridization (ISH) and electron microscopy, we investigated the role of direct viral infection in the pathogenesis of the lesions. Nine women had Zika symptoms between the 4th and 18th and one in the 28th gestational week. Two babies were born at 32, one at 34 and 36 weeks each and six at term. The cephalic perimeter was reduced in four, and normal or enlarged in six patients, although the brain weights were lower than expected. All had arthrogryposis, except the patient infected at 28 weeks gestation. We defined three patterns of CNS lesions, with different patterns of destructive, calcification, hypoplasia, and migration disturbances. Ventriculomegaly was severe in the first pattern due to midbrain damage with aqueduct stenosis/distortion. The second pattern had small brains and mild/moderate (ex-vacuo) ventriculomegaly. The third pattern, a well-formed brain with mild calcification, coincided with late infection. The absence of descending fibres resulted in hypoplastic basis pontis, pyramids, and cortico-spinal tracts. Spinal motor cell loss explained the intrauterine akinesia, arthrogryposis, and neurogenic muscle atrophy. DRG, dorsal nerve roots, and columns were normal. Lympho-histiocytic inflammation was mild. ISH showed meningeal, germinal matrix, and neocortical infection, consistent with neural progenitors death leading to proliferation and migration disorders. A secondary ischemic process may explain the destructive lesions. In conclusion, we characterized the destructive and malformative consequences of ZIKV in the nervous system, as reflected in the topography and severity of lesions, anatomic localization of the virus, and timing of infection during gestation. Our findings indicate a developmental vulnerability of the immature CNS, and shed light on possible mechanisms of brain injury of this newly recognized public health threat.
Collapse
|
30
|
Viral infection, proliferation, and hyperplasia of Hofbauer cells and absence of inflammation characterize the placental pathology of fetuses with congenital Zika virus infection. Arch Gynecol Obstet 2017; 295:1361-1368. [PMID: 28396992 PMCID: PMC5429341 DOI: 10.1007/s00404-017-4361-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/22/2017] [Indexed: 01/09/2023]
Abstract
PURPOSE Attention is increasingly focused on the potential mechanism(s) for Zika virus infection to be transmitted from an infected mother to her fetus. This communication addresses current evidence for the role of the placenta in vertical transmission of the Zika virus. METHODS Placentas from second and third trimester fetuses with confirmed intrauterine Zika virus infection were examined with routine staining to determine the spectrum of pathologic changes. In addition, immunohistochemical staining for macrophages and nuclear proliferation antigens was performed. Viral localization was identified using RNA hybridization. These observations were combined with the recent published results of placental pathology to increase the strength of the pathology data. Results were correlated with published data from experimental studies of Zika virus infection in placental cells and chorionic villous explants. RESULTS Placentas from fetuses with congenital Zika virus infection are concordant in not having viral-induced placental inflammation. Special stains reveal proliferation and prominent hyperplasia of placental stromal macrophages, termed Hofbauer cells, in the chorionic villi of infected placentas. Zika virus infection is present in Hofbauer cells from second and third trimester placentas. Experimental studies and placentae from infected fetuses reveal that the spectrum of placental cell types infected with the Zika virus is broader during the first trimester than later in gestation. CONCLUSIONS Inflammatory abnormalities of the placenta are not a component of vertical transmission of the Zika virus. The major placental response in second and third trimester transplacental Zika virus infection is proliferation and hyperplasia of Hofbauer cells, which also demonstrate viral infection.
Collapse
|