1
|
Yadav PS, Prasad BVS, Chandra MS, Maddela NR, Prasad R. Leaching Approach for β-Glucosidase Extraction from Fermented Rice Husk in Solid State Cultivation by Aspergillus protuberus. Curr Microbiol 2024; 81:140. [PMID: 38622481 DOI: 10.1007/s00284-024-03641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/16/2024] [Indexed: 04/17/2024]
Abstract
Environmental problems are caused by the disposal of agrowastes in developing countries. It is imperative to convert such wastes into useful products, which require enzymes such as β-glucosidase. β-Glucosidase has variety of applications in biotechnology including food, textile, detergents, pulp and paper, pharmaceutical and biofuel industries. β-Glucosidase production was performed using the locally isolated Aspergillus protuberus using best growth circumstances on rice husk in solid-state fermentation (SSF). Leaching of β-glucosidase from fermented rice husk with number of solvents to evaluate their extraction efficacy. Among the different solvents examined, acetate buffer (0.02 M, pH 5.0) proved to be the best solvent. The subsequent parameters were optimized with acetate buffer. Two washes with acetate buffer each by shaking (30 min) in a ratio of 1 g of rice husk: 5 ml of acetate buffer together attained maximum recovery of β-glucosidase with 41.95 U/g of rice husk.
Collapse
Affiliation(s)
- P Suresh Yadav
- Department of Microbiology, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - B V Siva Prasad
- Department of Microbiology, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - M Subhosh Chandra
- Department of Microbiology, Yogi Vemana University, Kadapa, Andhra Pradesh, India.
| | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| |
Collapse
|
2
|
Cavalheiro GF, Costa ACDA, Garbin ADEP, Silva GADA, Garcia NFL, Paz MFDA, Fonseca GG, Leite RSR. Catalytic properties of amylases produced by Cunninghamella echinulata and Rhizopus microsporus. AN ACAD BRAS CIENC 2023; 95:e20230187. [PMID: 37909570 DOI: 10.1590/0001-3765202320230187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/02/2023] [Indexed: 11/03/2023] Open
Abstract
The present work aimed to characterize and compare the catalytic properties of amylases from Cunninghamella echinulata and Rhizopus microsporus. The highest production of amylase by C. echinulata, 234.94 U g-1 of dry substrate (or 23.49 U mL-1), was obtained using wheat bran as a substrate, with 50-55% initial moisture and kept at 28 °C for 48 h. The highest production of amylases by R. microsporus, 224.85 U g-1 of dry substrate (or 22.48 U mL-1), was obtained cultivating wheat bran with 65% initial moisture at 45 °C for 24 h. The optimal activity of the amylases was observed at pH 5.0 at 60 °C for C. echinulata enzymes and at pH 4.5 at 65 °C for R. microsporus. The amylases produced by C. echinulata were stable at pH 4.0-8.0, while the R. microsporus enzymes were stable at pH 4.0-10.0. The amylases produced by C. echinulata remained stable for 1 h at 50 °C and the R. microsporus amylases maintained catalytic activity for 1 h at 55 °C. The enzymatic extracts of both fungi hydrolyzed starches from different plant sources and showed potential for liquefaction of starch, however the amylolytic complex of C. echinulata exhibited greater saccharifying potential.
Collapse
Affiliation(s)
- Gabriela F Cavalheiro
- Universidade Federal da Grande Dourados (UFGD), Faculdade de Ciências Biológicas e Ambientais (FCBA), Laboratório de Enzimologia e Processos Fermentativos (FEPFER), Rodovia Dourados/Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Ana Carolina DA Costa
- Universidade Federal da Grande Dourados (UFGD), Faculdade de Ciências Biológicas e Ambientais (FCBA), Laboratório de Enzimologia e Processos Fermentativos (FEPFER), Rodovia Dourados/Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Andreza DE Paula Garbin
- Universidade Federal da Grande Dourados (UFGD), Faculdade de Ciências Biológicas e Ambientais (FCBA), Laboratório de Enzimologia e Processos Fermentativos (FEPFER), Rodovia Dourados/Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Geisa A DA Silva
- Universidade Federal da Grande Dourados (UFGD), Faculdade de Ciências Biológicas e Ambientais (FCBA), Laboratório de Enzimologia e Processos Fermentativos (FEPFER), Rodovia Dourados/Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Nayara Fernanda L Garcia
- Universidade Federal da Grande Dourados (UFGD), Faculdade de Ciências Biológicas e Ambientais (FCBA), Laboratório de Enzimologia e Processos Fermentativos (FEPFER), Rodovia Dourados/Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Marcelo F DA Paz
- Universidade Federal da Grande Dourados (UFGD), Faculdade de Ciências Biológicas e Ambientais (FCBA), Laboratório de Enzimologia e Processos Fermentativos (FEPFER), Rodovia Dourados/Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Gustavo G Fonseca
- University of Akureyri, Faculty of Natural Resource Sciences, School of Business and Science, Borgir v. Norðurslóð, 600 Akureyri, Iceland
| | - Rodrigo S R Leite
- Universidade Federal da Grande Dourados (UFGD), Faculdade de Ciências Biológicas e Ambientais (FCBA), Laboratório de Enzimologia e Processos Fermentativos (FEPFER), Rodovia Dourados/Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| |
Collapse
|
3
|
Valsalan R, Mathew D, Devaki G. Draft genome of Gongronella butleri reveals the genes contributing to its biodegradation potential. J Genet Eng Biotechnol 2022; 20:74. [PMID: 35583842 PMCID: PMC9117579 DOI: 10.1186/s43141-022-00351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/02/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Gongronella butleri is a fungus with many industrial applications including the composting of solid biowaste. Kerala Agricultural University, India, has developed a microbial consortium of which GbKAU strain of G. butleri is a major component. Even with great industrial significance, genome of this fungus is not published, and the genes and pathways contributing to the applications are not understood. This study had the objective to demonstrate the solid biowaste decomposing capability of the strain, to sequence and annotate the genome, and to reveal the genes and pathways contributing to its biodegradation potential. RESULTS Strain GbKAU of G. butleri isolated and purified from the organic compost was found to produce higher levels of laccase and amylase, compared to Bacillus subtilis which is being widely used in biosolid waste management. Both were shown to be equally efficient in the in vivo composting capabilities. Whole genome sequencing has given ~11 million paired-end good quality reads. De novo assembly using dual-fold approach has yielded 44,639 scaffolds with draft genome size of 29.8 Mb. A total of 11,428 genes were predicted and classified into 359 groups involved in diverse pathways, of which 14 belonged to the enzymes involved in the degradation of macromolecules. Seven previously sequenced strains of the fungus were assembled and annotated. A direct comparison showed that the number of genes present in those strains was comparable to our strain, while all the important biodegrading genes were conserved across the genomes. Gene Ontology analysis had classified the genes according to their molecular function, biological process, and cellular component. A total of 104,718 SSRs were mined and classified to mono- to hexa-nucleotide repeats. The variant analysis in comparison with the closely related genus Cunninghamella has revealed 1156 variants. CONCLUSIONS Apart from demonstrating the biodegradation capabilities of the GbKAU strain of G. butleri, the genome of this industrially important fungus was sequenced, de novo assembled, and annotated. GO analysis has classified the genes based on their functions, and the genes involved in biodegradation were revealed. Biodegradation potential, genome features in comparison with other strains, and the functions of the identified genes are discussed.
Collapse
Affiliation(s)
- Ravisankar Valsalan
- Bioinformatics Centre, Kerala Agricultural University, Thrissur, 680656, India
| | - Deepu Mathew
- Bioinformatics Centre, Kerala Agricultural University, Thrissur, 680656, India.
| | - Girija Devaki
- Department of Agricultural Microbiology, College of Agriculture, Kerala Agricultural University, Thrissur, 680656, India
| |
Collapse
|
4
|
Ratuchne A, Knob A. A new and unusual β-glucosidase from Aspergillus fumigatus: Catalytic activity at high temperatures and glucose tolerance. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Industrially Important Fungal Enzymes: Productions and Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
GARBIN ANDREZAP, GARCIA NAYARAF, CAVALHEIRO GABRIELAF, SILVESTRE MARIAALICE, RODRIGUES ANDRÉ, PAZ MARCELOFDA, FONSECA GUSTAVOG, LEITE RODRIGOS. β-glucosidase from thermophilic fungus Thermoascus crustaceus: production and industrial potential. ACTA ACUST UNITED AC 2021; 93:e20191349. [DOI: 10.1590/0001-3765202120191349] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/12/2020] [Indexed: 12/15/2022]
|
7
|
Changes in biochemical composition of cassava and beet residues during solid state bioprocess with Pleurotus ostreatus. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Mlaik N, Sayadi S, Hamza M, Khoufi S. Production and characterization of β-glucosidase from Aspergillus niger fermentation: Application for organic fraction of municipal solid waste hydrolysis and methane enhancement. Biotechnol Prog 2019; 36:e2902. [PMID: 31469516 DOI: 10.1002/btpr.2902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 08/06/2019] [Accepted: 08/27/2019] [Indexed: 11/11/2022]
Abstract
The anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) is currently an attractive treatment process with energy production in the form of biogas. Hydrolysis is the rate-limiting step for the anaerobic digestion of solid wastes. Thus, in the present study fungal enzymatic pretreatment of OFMSW was applied to enhance biogas production. Two enzyme cocktails rich on β-glucosidase were produced from submerged fermentation of Aspergillus niger on basal medium using OFMSW as carbon source and urea (Urea cocktail) and Ulva rigida as nitrogen source (Ulva cocktail). Ulva cocktail displayed an important effect on OFMSW solubilization. Therefore, an increase of reducing sugar concentration about 60% was obtained which was in correlation with chemical oxygen demand (COD) increase. The performance of enzymatic pretreatment on anaerobic digestion of OFMSW was studied by conducting biochemical methane potential tests. Results showed that the enzymatic pretreatment improved methane yield of OFMSW even at high solid concentration. High methane yield about 500 ml/g total volatile solid was obtained, which corresponds up to 68% enhancement over the control.
Collapse
Affiliation(s)
- Najoua Mlaik
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, Sfax, Tunisia
| | - Sami Sayadi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Manel Hamza
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, Sfax, Tunisia
| | - Sonia Khoufi
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, Sfax, Tunisia
| |
Collapse
|
9
|
Ezeilo UR, Lee CT, Huyop F, Zakaria II, Wahab RA. Raw oil palm frond leaves as cost-effective substrate for cellulase and xylanase productions by Trichoderma asperellum UC1 under solid-state fermentation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 243:206-217. [PMID: 31096173 DOI: 10.1016/j.jenvman.2019.04.113] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
Production of cellulases and xylanase by a novel Trichoderma asperellum UC1 (GenBank accession no. MF774876) under solid state fermentation (SSF) of raw oil palm frond leaves (OPFL) was optimized. Under optimum fermentation parameters (30 °C, 60-80% moisture content, 2.5 × 106 spores/g inoculum size) maximum CMCase, FPase, β-glucosidase and xylanase activity were recorded at 136.16 IU/g, 26.03 U/g, 130.09 IU/g and 255.01 U/g, respectively. Cellulases and xylanase were produced between a broad pH range of pH 6.0-12.0. The enzyme complex that comprised of four endo-β-1,4-xylanases and endoglucanases, alongside exoglucanase and β-glucosidase showed thermophilic and acidophilic characteristics at 50-60 °C and pH 3.0-4.0, respectively. Glucose (16.87 mg/g) and fructose (18.09 mg/g) were among the dominant sugar products from the in situ hydrolysis of OPFL, aside from cellobiose (105.92 mg/g) and xylose (1.08 mg/g). Thermal and pH stability tests revealed that enzymes CMCase, FPase, β-glucosidase and xylanase retained 50% residual activities for up to 15.18, 4.06, 17.47 and 15.16 h of incubation at 60 °C, as well as 64.59, 25.14, 68.59 and 19.20 h at pH 4.0, respectively. Based on the findings, it appeared that the unique polymeric structure of raw OPFL favored cellulases and xylanase productions.
Collapse
Affiliation(s)
- Uchenna R Ezeilo
- Faculty of Bioscience and Medical Engineering, Department of Biotechnology and Medical Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Malaysia; Department of Chemistry/Biochemistry, Federal University Ndufu-Alike Ikwo, PMB, 1010, Ebonyi State, Nigeria; Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Malaysia
| | - Chew Tin Lee
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia; Innovation Centre in Agritechnology for Advanced Bioprocessing, UTM Pagoh, Hub Pendidikan Tinggi Pagoh, 84600, Pagoh, Johor. Malaysia
| | - Fahrul Huyop
- Faculty of Bioscience and Medical Engineering, Department of Biotechnology and Medical Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Malaysia; Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Malaysia
| | - Iffah Izzati Zakaria
- Natural Products and Drug Discovery Center, Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institute of Biotechnology Malaysia, Ministry of Science, Technology and Innovation, Block 5-A, Halaman Bukit Gambir, 11700, Pulau Pinang, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Malaysia; Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Malaysia.
| |
Collapse
|
10
|
Martins EDS, Gomes E, da Silva R, Junior RB. Production of cellulases by Thermomucor indicae-seudaticae: characterization of a thermophilic β-glucosidase. Prep Biochem Biotechnol 2019; 49:830-836. [DOI: 10.1080/10826068.2019.1625060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Eleni Gomes
- Laboratório de Bioquímica e Microbiologia Aplicada, Universidade Estadual Paulista, São José do Rio Preto, Brasil
| | - Roberto da Silva
- Laboratório de Bioquímica e Microbiologia Aplicada, Universidade Estadual Paulista, São José do Rio Preto, Brasil
| | - Rodolfo Bizarria Junior
- Laboratório de Ecologia e Sistemática de Fungos, Universidade Estadual Paulista, Rio Claro, Brasil
| |
Collapse
|
11
|
Srivastava N, Rathour R, Jha S, Pandey K, Srivastava M, Thakur VK, Sengar RS, Gupta VK, Mazumder PB, Khan AF, Mishra PK. Microbial Beta Glucosidase Enzymes: Recent Advances in Biomass Conversation for Biofuels Application. Biomolecules 2019; 9:E220. [PMID: 31174354 PMCID: PMC6627771 DOI: 10.3390/biom9060220] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 01/10/2023] Open
Abstract
The biomass to biofuels production process is green, sustainable, and an advanced technique to resolve the current environmental issues generated from fossil fuels. The production of biofuels from biomass is an enzyme mediated process, wherein β-glucosidase (BGL) enzymes play a key role in biomass hydrolysis by producing monomeric sugars from cellulose-based oligosaccharides. However, the production and availability of these enzymes realize their major role to increase the overall production cost of biomass to biofuels production technology. Therefore, the present review is focused on evaluating the production and efficiency of β-glucosidase enzymes in the bioconversion of cellulosic biomass for biofuel production at an industrial scale, providing its mechanism and classification. The application of BGL enzymes in the biomass conversion process has been discussed along with the recent developments and existing issues. Moreover, the production and development of microbial BGL enzymes have been explained in detail, along with the recent advancements made in the field. Finally, current hurdles and future suggestions have been provided for the future developments. This review is likely to set a benchmark in the area of cost effective BGL enzyme production, specifically in the biorefinery area.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
| | - Rishabh Rathour
- Department of Bioengineering, Integral University, Lucknow 226026, India.
| | - Sonam Jha
- Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| | - Karan Pandey
- Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
| | - Manish Srivastava
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India.
| | - Vijay Kumar Thakur
- Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK.
| | - Rakesh Singh Sengar
- Department of Agriculture Biotechnology, College of Agriculture, Sardar Vallabhbhai Patel, University of Agriculture and Technology, Meerut 250110, U.P., India.
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia.
| | | | - Ahamad Faiz Khan
- Department of Bioengineering, Integral University, Lucknow 226026, India.
| | - Pradeep Kumar Mishra
- Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
| |
Collapse
|
12
|
Morais TPD, Barbosa PMG, Garcia NFL, Rosa-Garzon NGD, Fonseca GG, Paz MFD, Cabral H, Leite RSR. Catalytic and thermodynamic properties of β-glucosidases produced by Lichtheimia corymbifera and Byssochlamys spectabilis. Prep Biochem Biotechnol 2018; 48:777-786. [DOI: 10.1080/10826068.2018.1509083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Tobias Pereira de Morais
- Laboratory of Enzymology and Fermentation Processes, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (FCBA/UFGD), Dourados, MS, Brazil
| | - Paula Mirella Gomes Barbosa
- Laboratory of Enzymology and Fermentation Processes, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (FCBA/UFGD), Dourados, MS, Brazil
| | - Nayara Fernanda Lisboa Garcia
- Laboratory of Enzymology and Fermentation Processes, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (FCBA/UFGD), Dourados, MS, Brazil
| | - Nathália Gonsales da Rosa-Garzon
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Gustavo Graciano Fonseca
- Laboratory of Bioengineering, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (FCBA/UFGD), Dourados, MS, Brazil
| | - Marcelo Fossa da Paz
- Laboratory of Enzymology and Fermentation Processes, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (FCBA/UFGD), Dourados, MS, Brazil
| | - Hamilton Cabral
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Rodrigo Simões Ribeiro Leite
- Laboratory of Enzymology and Fermentation Processes, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (FCBA/UFGD), Dourados, MS, Brazil
| |
Collapse
|
13
|
Wijayawardene NN, Pawłowska J, Letcher PM, Kirk PM, Humber RA, Schüßler A, Wrzosek M, Muszewska A, Okrasińska A, Istel Ł, Gęsiorska A, Mungai P, Lateef AA, Rajeshkumar KC, Singh RV, Radek R, Walther G, Wagner L, Walker C, Wijesundara DSA, Papizadeh M, Dolatabadi S, Shenoy BD, Tokarev YS, Lumyong S, Hyde KD. Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota). FUNGAL DIVERS 2018. [DOI: 10.1007/s13225-018-0409-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Paramjeet S, Manasa P, Korrapati N. Biofuels: Production of fungal-mediated ligninolytic enzymes and the modes of bioprocesses utilizing agro-based residues. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Catalytic Properties of Amylolytic Enzymes Produced by Gongronella butleri Using Agroindustrial Residues on Solid-State Fermentation. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7507523. [PMID: 29376074 PMCID: PMC5742443 DOI: 10.1155/2017/7507523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/09/2017] [Indexed: 11/18/2022]
Abstract
Amylases catalyze the hydrolysis of starch, a vegetable polysaccharide abundant in nature. These enzymes can be utilized in the production of syrups, alcohol, detergent, pharmaceutical products, and animal feed formulations. The aim of this study was to optimize the production of amylases by the filamentous fungus Gongronella butleri by solid-state fermentation and to evaluate the catalytic properties of the obtained enzymatic extract. The highest amylase production, 63.25 U g-1 (or 6.32 U mL-1), was obtained by culturing the fungus in wheat bran with 55% of initial moisture, cultivated for 96 h at 25°C. The enzyme presented optimum activity at pH 5.0 and 55°C. The amylase produced was stable in a wide pH range (3.5-9.5) and maintained its catalytic activity for 1 h at 40°C. Furthermore, the enzymatic extract hydrolyzed starches from different vegetable sources, presenting predominant dextrinizing activity for all substrates evaluated. However, the presence of glucose was observed in a higher concentration during hydrolysis of corn starch, indicating the synergistic action of endo- and exoamylases, which enables the application of this enzymatic extract to produce syrups from different starch sources.
Collapse
|
16
|
Alarid-García C, Escamilla-Silva EM. Comparative study of the production of extracellular β-glucosidase by four different strains of Aspergillus using submerged fermentation. Prep Biochem Biotechnol 2017. [DOI: 10.1080/10826068.2017.1286598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Cristian Alarid-García
- Chemical Engineering Department, Technological Institute of Celaya, Celaya, Guanajuato, México
| | | |
Collapse
|
17
|
Production of β-glucosidase from wheat bran and glycerol by Aspergillus niger in stirred tank and rotating fibrous bed bioreactors. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|