1
|
MicroRNA-132 attenuated cardiac fibrosis in myocardial infarction-induced heart failure rats. Biosci Rep 2021; 40:226310. [PMID: 32885809 PMCID: PMC7494995 DOI: 10.1042/bsr20201696] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/22/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to determine the effect of microRNA (miR)-132 on cardiac fibrosis in myocardial infarction (MI)-induced heart failure and angiotensin (Ang) II-treated cardiac fibroblasts (CFs). Experiments were carried out in Sprague-Dawley rat treatment with ligation of left coronary artery to induce heart failure, and in CFs administration of Ang II to induce fibrosis. The level of miR-132 was increased in the heart of rats with MI-induced heart failure and the Ang II-treated CFs. In MI rats, left ventricle (LV) ejection fraction, fractional shortening, the maximum of the first differentiation of LV pressure (LV +dp/dtmax) and decline (LV -dp/dtmax) and LV systolic pressure (LVSP) were reduced, and LV end-systolic diameter (LVESD), LV end-diastolic diameter (LVEDD), LV volumes in systole (LVVS) and LV volumes in diastole (LVVD) were increased, which were reversed by miR-132 agomiR but deteriorated by miR-132 antagomiR. The expression levels of collagen I, collagen III, transforming growth factor-β (TGF-β), and α-smooth muscle actin (α-SMA) were increased in the heart of rat with MI-induced heart failure and CFs administration of Ang II. These increases were inhibited by miR-132 agomiR but enhanced by miR-132 antagomiR treatment. MiR-132 inhibited PTEN expression, and attenuated PI3K/Akt signal pathway in CFs. These results indicated that the up-regulation of miR-132 improved the cardiac dysfunction, attenuated cardiac fibrosis in heart failure via inhibiting PTEN expression, and attenuating PI3K/Akt signal pathway. Up-regulation of miR-132 may be a strategy for the treatment of heart failure and cardiac fibrosis.
Collapse
|
2
|
Martins Matias A, Murucci Coelho P, Bermond Marques V, dos Santos L, Monteiro de Assis ALE, Valentim Nogueira B, Lima-Leopoldo AP, Soares Leopoldo A. Hypercaloric diet models do not develop heart failure, but the excess sucrose promotes contractility dysfunction. PLoS One 2020; 15:e0228860. [PMID: 32032383 PMCID: PMC7006916 DOI: 10.1371/journal.pone.0228860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/25/2020] [Indexed: 12/04/2022] Open
Abstract
Several diseases are associated with excess of adipose tissue, and obesity is considered an independent risk factor for the development of cardiac remodeling and heart failure. Dietary aspects have been studied to elucidate the mechanisms involved in these processes. Thus, the purpose was the development and characterization of an obesity experimental model from hypercaloric diets, which resulted in cardiac remodeling and predisposition to heart failure. Thirty- day-old male Wistar rats (n = 52) were randomized into four groups: control (C), high sucrose (HS), high-fat (HF) and high-fat and sucrose (HFHS) for 20 weeks. General characteristics, comorbidities, weights of the heart, left (LV) and right ventricles, atrium, and relationships with the tibia length were evaluated. The LV myocyte cross sectional area and fraction of interstitial collagen were assayed. Cardiac function was determined by hemodynamic analysis and the contractility by cardiomyocyte contractile function. Heart failure was analyzed by pulmonary congestion, right ventricular hypertrophy, and hemodynamic parameters. HF and HFHS models led to obesity by increase in adiposity index (C = 8.3 ± 0.2% vs. HF = 10.9 ± 0.5%, HFHS = 10.2 ± 0.3%). There was no change in the morphological parameters and heart failure signals. HF and HFHS caused a reduction in times to 50% relaxation without cardiomyocyte contractile damage. The HS model presented cardiomyocyte contractile dysfunction visualized by lower shortening (C: 8.34 ± 0.32% vs. HS: 6.91 ± 0.28), as well as the Ca2+ transient amplitude was also increased when compared to HFHS. In conclusion, the experimental diets based on high amounts of sugar, lard or a combination of both did not promote cardiac remodeling with predisposition to heart failure under conditions of obesity or excess sucrose. Nevertheless, excess sucrose causes cardiomyocyte contractility dysfunction associated with alterations in the myocyte sensitivity to intracellular Ca2+.
Collapse
Affiliation(s)
- Amanda Martins Matias
- Postgraduate Program in Nutrition and Health, Center of Health Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Priscila Murucci Coelho
- Postgraduate Program in Nutrition and Health, Center of Health Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Vinícius Bermond Marques
- Center of Health Sciences, Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Leonardo dos Santos
- Center of Health Sciences, Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | | | - Breno Valentim Nogueira
- Center of Health Sciences, Department of Morphology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Ana Paula Lima-Leopoldo
- Postgraduate Program in Nutrition and Health, Center of Health Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Department of Sports, Center of Physical Education and Sports, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - André Soares Leopoldo
- Postgraduate Program in Nutrition and Health, Center of Health Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Department of Sports, Center of Physical Education and Sports, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
3
|
Murino Rafacho BP, Portugal dos Santos P, Gonçalves ADF, Fernandes AAH, Okoshi K, Chiuso-Minicucci F, Azevedo PS, Mamede Zornoff LA, Minicucci MF, Wang XD, Rupp de Paiva SA. Rosemary supplementation (Rosmarinus oficinallis L.) attenuates cardiac remodeling after myocardial infarction in rats. PLoS One 2017; 12:e0177521. [PMID: 28494028 PMCID: PMC5426768 DOI: 10.1371/journal.pone.0177521] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/29/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Myocardial infarction (MI) is one of the leading causes of morbidity and mortality worldwide. Dietary intervention on adverse cardiac remodeling after MI has significant clinical relevance. Rosemary leaves are a natural product with antioxidant/anti-inflammatory properties, but its effect on morphology and ventricular function after MI is unknown. METHODS AND RESULTS To determine the effect of the dietary supplementation of rosemary leaves on cardiac remodeling after MI, male Wistar rats were divided into 6 groups after sham procedure or experimental induced MI: 1) Sham group fed standard chow (SR0, n = 23); 2) Sham group fed standard chow supplemented with 0.02% rosemary (R002) (SR002, n = 23); 3) Sham group fed standard chow supplemented with 0.2% rosemary (R02) (SR02, n = 22); 4) group submitted to MI and fed standard chow (IR0, n = 13); 5) group submitted to MI and fed standard chow supplemented with R002 (IR002, n = 8); and 6) group submitted to MI and fed standard chow supplemented with R02 (IR02, n = 9). After 3 months of the treatment, systolic pressure evaluation, echocardiography and euthanasia were performed. Left ventricular samples were evaluated for: fibrosis, cytokine levels, apoptosis, energy metabolism enzymes, and oxidative stress. Rosemary dietary supplementation attenuated cardiac remodeling by improving energy metabolism and decreasing oxidative stress. Rosemary supplementation of 0.02% improved diastolic function and reduced hypertrophy after MI. Regarding rosemary dose, 0.02% and 0.2% for rats are equivalent to 11 mg and 110 mg for humans, respectively. CONCLUSION Our findings support further investigations of the rosemary use as adjuvant therapy in adverse cardiac remodeling.
Collapse
Affiliation(s)
| | | | | | | | - Katashi Okoshi
- Internal Medicine Department, Botucatu Medical School–UNESP, Botucatu/SP, Brazil
| | - Fernanda Chiuso-Minicucci
- Department of Microbiology and Immunology, Botucatu Biosciences Institute–UNESP, Botucatu/SP, Brazil
| | - Paula S. Azevedo
- Internal Medicine Department, Botucatu Medical School–UNESP, Botucatu/SP, Brazil
| | | | | | - Xiang-Dong Wang
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston/MA, United States of America
| | | |
Collapse
|