1
|
Maeda Y, Mitsuhara T, Takeda M, Okamoto M, Otsuka T, Hara T, Kuwabara M, Horie N. Repeated human cranial bone-derived mesenchymal stem cell transplantation improved electrophysiological recovery in a spinal cord injury rat model. Neurosci Lett 2025; 844:138031. [PMID: 39521116 DOI: 10.1016/j.neulet.2024.138031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Mesenchymal stem cell (MSC)-based therapy has been applied in several clinical trials of spinal cord injury (SCI). We have successfully established MSCs from human cranial bone and developed a longitudinal neuromonitoring technique for rodents. In addition to single transplantation, the potential of multiple transplantations has been suggested as a new therapeutic strategy. However, there are no reports on the electrophysiological effects of multiple MSC transplantations in SCI using transcranial electrical stimulation motor-evoked potentials (tcMEPs). Here, we aimed to elucidate the efficacy and mechanism of action of multiple MSC transplantations using tcMEPs. After establishing a weight-drop-induced SCI rat model, we performed repeated intravenous transplantation of human cranial bone-derived MSCs (hcMSCs) on days 1 and 3 post-SCI. Motor function and tcMEP recovery were evaluated 6 weeks post-transplantation. Tissue repair post-SCI was assessed using immunostaining for myelin and neurons in the injured posterior cord. Repeated hcMSC transplantation significantly improved motor function and electrophysiological recovery compared to single transplantation and control treatment. Repeated hcMSC transplantation promoted electrophysiological functional recovery by exerting a protective effect on the functional structure of pyramidal tract axons. Thus, acute-phase repeated transplantation could be a novel and effective therapeutic strategy for the clinical application of MSCs in SCI.
Collapse
Affiliation(s)
- Yuyo Maeda
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Takafumi Mitsuhara
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masaaki Takeda
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Misaki Okamoto
- Division of Rehabilitation, Rehabilitation Reiwa Clinic Hiroshima, Hiroshima, Japan
| | - Takashi Otsuka
- Division of Rehabilitation, Rehabilitation Reiwa Clinic Hiroshima, Hiroshima, Japan
| | - Takeshi Hara
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masashi Kuwabara
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Ma Y, Guo T, Ding J, Dong Z, Ren Y, Lu C, Zhao Y, Guo X, Cao G, Li B, Gao P. RNA-seq analysis of small intestine transcriptional changes induced by starvation stress in piglets. Anim Biotechnol 2024; 35:2295931. [PMID: 38147885 DOI: 10.1080/10495398.2023.2295931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Piglets may experience a variety of stress injuries, but the molecular regulatory mechanisms underlying these injuries are not well understood. In this study, we analysed the ileum of Large White (LW) and Mashen (MS) piglets at different times of starvation using chemical staining and transcriptome analysis. The intestinal barrier of piglets was damaged after starvation stress, but the intestinal antistress ability of MS piglets was stronger than LW piglets. A total of 8021 differentially expressed genes (DEGs) were identified in two breeds. Interestingly, the immune capacity (CHUK, TLR3) of MS piglets increased significantly after short-term starvation stress, while energy metabolism (NAGS, PLA2G12B, AGCG8) was predominant in LW piglets. After long-term starvation stress, the level of energy metabolism (PLIN5, PLA2G12B) was significantly increased in MS piglets. The expression of immune (HLA-DQB1, IGHG4, COL3A1, CD28, LAT) and disease (HSPA1B, MINPPI, ADH1C, GAL3ST1) related genes were significantly increased in two breeds of piglets. These results suggest that short-term stress mainly enhances immunity and energy metabolism in piglets, while long-term starvation produces greater stress on piglets, making it difficult for them to compensate for the damage to their bodies through self-regulation. This information can help improve the stress resistance of piglets through molecular breeding.
Collapse
Affiliation(s)
- Yijia Ma
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Tong Guo
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jianqin Ding
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zhiling Dong
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yifei Ren
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Chang Lu
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yan Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiaohong Guo
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Pengfei Gao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
3
|
Tamarat R, Satyamitra MM, Benderitter M, DiCarlo AL. Radiation-induced gastrointestinal and cutaneous injuries: understanding models, pathologies, assessments, and clinically accepted practices. Int J Radiat Biol 2024; 100:969-981. [PMID: 38787685 PMCID: PMC11494497 DOI: 10.1080/09553002.2024.2356544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/02/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024]
Abstract
PURPOSE A U. S. and European joint effort fostering the development of medical countermeasures (MCMs) operable in case of radiological or nuclear emergencies. METHODS Based on the joint engagement between the U.S. National Institute of Allergy and Infectious Diseases (NIAID) and the French Institut de Radioprotection et de Sûreté Nucléaire (IRSN), a Statement of Intent to Collaborate was signed in 2014 and a series of working group meeting were established. In December 2022, the NIAID and IRSN hosted a five-day, U.S./European meeting titled 'Radiation-Induced Cutaneous and Gastrointestinal Injuries: Advances in Understanding Pathologies, Assessment, and Clinically Accepted Practices' in Paris, France. The goals of the meeting were to bring together U.S. and European investigators to explore new research avenues for the medical management of skin and gastrointestinal injuries, including specific diagnostics for each organ system, animal models, and promising medical countermeasures (MCMs) to mitigate radiation damage. There was also an emphasis on exploring additional areas of medicine and response to understand best practices from other emergency scenarios, which could be leveraged to improve radiation preparedness, and the importance of accurate dosimetry in preclinical work. RESULTS Subsequent to the workshop, seven collaborative projects, funded by both organizations, were established on topics ranging from MCMs and predictive biomarkers, and using physical methods to assess cutaneous radiation injuries, to mechanistic studies to understand radiation-induced damage in multiple organ systems. The importance of accurate dosimetry in preclinical works was highlighted and two recently published U.S./European commentaries that focus on the need for dosimetry standardization in the reported literature had their origins in this meeting. This commentary summarizes the workshop and open discussions among academic investigators, industry researchers, and U.S. and IRSN program representatives. CONCLUSIONS Given the substantive progress made due to these interactions, both groups plan to expand out these meetings by incorporating high-level investigators from across the globe, while endeavoring to maintain the informal setting that was conducive to in-depth scientific discussion and enhanced the state of the science in radiation research.
Collapse
Affiliation(s)
- Radia Tamarat
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Marc Benderitter
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| |
Collapse
|
4
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
5
|
Kim WH, Yoo JH, Yoo IK, Kwon CI, Hong SP. Effects of Mesenchymal Stem Cells Treatment on Radiation-Induced Proctitis in Rats. Yonsei Med J 2023; 64:167-174. [PMID: 36825342 PMCID: PMC9971437 DOI: 10.3349/ymj.2022.0342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 02/25/2023] Open
Abstract
PURPOSE There are no effective treatment methods with which to control complications of radiation proctitis with fistula or recurrent bleeding following radiation treatment for prostate, cervical, or rectal cancer. Mesenchymal stem cells (MSCs) can induce immune modification, resulting in tissue repair and regeneration. Therefore, we used a rat model of radiation-induced proctitis and observed the effects of using human placenta-derived (PD) and adipose tissue-derived (AD) MSCs. MATERIALS AND METHODS Female Sprague Dawley rats were irradiated at the pelvic area with 25 Gy. We injected 1×106 cells of human PD-MSCs, human AD-MSCs, human foreskin fibroblasts, and control media into the rectal submucosa following irradiation. We sacrificed rats for pathologic evaluation. RESULTS Fibrosis on the rectum was reduced in both MSC groups, compared to the control group. Mucosal Ki-67 indices of both MSC injected groups were higher than those in the control group. Although caspase-3 positive cells in the mucosa gradually increased and decreased in the control group, those in both MSC injected groups increased rapidly and decreased thereafter. CONCLUSION We demonstrated the effects of regional MSC injection treatment for radiation-induced proctitis in rats. MSC injection reduced fibrosis and increased proliferation in rat mucosa. Human AD-MSCs and PD-MSCs had similar effectiveness.
Collapse
Affiliation(s)
- Won Hee Kim
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Jun Hwan Yoo
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - In Kyung Yoo
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Chang Il Kwon
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Sung Pyo Hong
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam, Korea.
| |
Collapse
|
6
|
Circulating microvesicles correlate with radiation proctitis complication after radiotherapy. Sci Rep 2023; 13:2033. [PMID: 36739457 PMCID: PMC9899237 DOI: 10.1038/s41598-022-21726-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/30/2022] [Indexed: 02/05/2023] Open
Abstract
In a large retrospective study, we assessed the putative use of circulating microvesicles (MVs), as innovative biomarkers of radiation toxicity in a cohort of 208 patients with prostate adenocarcinoma overexposed to radiation. The level of platelet (P)-, monocyte (M)- and endothelial (E)-derived MVs were assessed by flow cytometry. Rectal bleeding toxicity scores were collected at the time of blood sampling and during the routine follow-up and were tested for association with MVs using a multivariate logistic regression. MVs dosimetric correlation was investigated using dose volume histograms information available for a subset of 36 patients. The number of PMVs was significantly increased in patients with highest toxicity grades compared to lower grades. Risk prediction analysis revealed that increased numbers of PMVs, and an increased amount of MMVs relative to EMVs, were associated with worst rectal bleeding grade compared to the time of blood sampling. Moreover, a significant correlation was found between PMV and MMV numbers, with the range of doses up to the median exposure (40 Gy) of bladder/rectum and anterior rectal wall, respectively. MVs could be considered as new biomarkers to improve the identification of patients with high toxicity grade and may be instrumental for the prognosis of radiation therapy complications.
Collapse
|
7
|
Brossard C, Pouliet AL, Lefranc A, Benadjaoud M, Dos Santos M, Demarquay C, Buard V, Benderitter M, Simon JM, Milliat F, Chapel A. Mesenchymal stem cells limit vascular and epithelial damage and restore the impermeability of the urothelium in chronic radiation cystitis. Stem Cell Res Ther 2023; 14:5. [PMID: 36627674 PMCID: PMC9832809 DOI: 10.1186/s13287-022-03230-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/25/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Cellular therapy seems to be an innovative therapeutic alternative for which mesenchymal stem cells (MSCs) have been shown to be effective for interstitial and hemorrhagic cystitis. However, the action of MSCs on chronic radiation cystitis (CRC) remains to be demonstrated. The aim of this study was to set up a rat model of CRC and to evaluate the efficacy of MSCs and their mode of action. METHODS CRC was induced by single-dose localized irradiation of the whole bladder using two beams guided by tomography in female Sprague-Dawley rat. A dose range of 20-80 Gy with follow-up 3-12 months after irradiation was used to characterize the dose effect and the kinetics of radiation cystitis in rats. For the treatment, the dose of 40 Gy was retained, and in order to potentiate the effect of the MSCs, MSCs were isolated from adipose tissue. After expansion, they were injected intravenously during the pre-chronic phase. Three injections of 5 million MSCs were administered every fortnight. Follow-up was performed for 12 months after irradiation. RESULTS We observed that the intensity and frequency of hematuria are proportional to the irradiation dose, with a threshold at 40 Gy and the appearance of bleeding from 100 days post-irradiation. The MSCs reduced vascular damage as well as damage to the bladder epithelium. CONCLUSIONS These results are in favor of MSCs acting to limit progression of the chronic phase of radiation cystitis. MSC treatment may afford real hope for all patients suffering from chronic radiation cystitis resistant to conventional treatments.
Collapse
Affiliation(s)
- Clément Brossard
- grid.418735.c0000 0001 1414 6236Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMed/LRMed, 92260 Fontenay-aux-Roses, France
| | - Anne-Laure Pouliet
- grid.418735.c0000 0001 1414 6236Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMed/LRMed, 92260 Fontenay-aux-Roses, France
| | - Anne‐Charlotte Lefranc
- grid.418735.c0000 0001 1414 6236Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMed/LRMed, 92260 Fontenay-aux-Roses, France
| | - Mohamedamine Benadjaoud
- grid.418735.c0000 0001 1414 6236Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMed, 92260 Fontenay-aux-Roses, France
| | - Morgane Dos Santos
- grid.418735.c0000 0001 1414 6236Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMed/LRAcc, 92260 Fontenay-aux-Roses, France
| | - Christelle Demarquay
- grid.418735.c0000 0001 1414 6236Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMed/LRMed, 92260 Fontenay-aux-Roses, France
| | - Valerie Buard
- grid.418735.c0000 0001 1414 6236Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMed/LRMed, 92260 Fontenay-aux-Roses, France
| | - Marc Benderitter
- grid.418735.c0000 0001 1414 6236Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMed, 92260 Fontenay-aux-Roses, France
| | - Jean-Marc Simon
- grid.411439.a0000 0001 2150 9058Département de Radiothérapie Oncologie, APHP, Hôpital Universitaire Pitié-Salpêtrière, 47-83 Boulevard de l’Hôpital, 75651 Paris Cedex 13, France
| | - Fabien Milliat
- grid.418735.c0000 0001 1414 6236Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMed/LRMed, 92260 Fontenay-aux-Roses, France
| | - Alain Chapel
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMed/LRMed, 92260, Fontenay-aux-Roses, France.
| |
Collapse
|
8
|
Li Y, Ding Q, Gao J, Li C, Hou P, Xu J, Cao K, Hu M, Cheng L, Wang X, Yang X. Novel mechanisms underlying inhibition of inflammation-induced angiogenesis by dexamethasone and gentamicin via PI3K/AKT/NF-κB/VEGF pathways in acute radiation proctitis. Sci Rep 2022; 12:14116. [PMID: 35982137 PMCID: PMC9388498 DOI: 10.1038/s41598-022-17981-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 08/03/2022] [Indexed: 11/09/2022] Open
Abstract
Acute radiation proctitis (ARP) is one of the most common complications of pelvic radiotherapy attributed to radiation exposure. The mechanisms of ARP are related to inflammation, angiogenesis, and so on. In this study we evaluated the effect of dexamethasone (DXM) combined with gentamicin (GM) enema on ARP mice, and explored its possible mechanisms by transcriptome sequencing, western blot and immunohistochemistry. C57BL/6 mice were randomly divided into 3 groups: healthy control group, ARP model group, and DXM + GM enema treatment group. ARP mice were established by using a single 6 MV X-ray dose of 27 Gy pelvic local irradiation. Transcriptome sequencing results showed that 979 genes were co-upregulated and 445 genes were co-downregulated in ARP mice compared to healthy mice. According to gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis, we firstly found that PI3K/AKT/NF-κB/VEGF pathways were mostly correlated with the inflammation-induced angiogenesis in ARP mice. PI3K/AKT pathway leads to the activation of NF-κB, which promotes the transcription of VEGF and Bcl-2. Interestingly, symptoms and pathological changes of ARP mice were ameliorated by DXM + GM enema treatment. DXM + GM enema inhibited inflammation by downregulating NF-κB and upregulating AQP3, as well as inhibited angiogenesis by downregulating VEGF and AQP1 in ARP mice. Moreover, DXM + GM enema induced apoptosis by increasing Bax and suppressing Bcl-2. The novel mechanisms may be related to the downregulation of PI3K/AKT/NF-κB/VEGF pathways.
Collapse
Affiliation(s)
- Yousong Li
- Department of Traditional Chinese Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Qin Ding
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Jinsheng Gao
- Department of Oncology, Shanxi Province Research Institute of Traditional Chinese Medicine, Taiyuan, 030012, China.,Ping An Healthcare and Technology Company Limited, Shanghai, 200032, China
| | - Chunxia Li
- Department of Geriatrics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Pengxiao Hou
- Department of Oncology, Shanxi Province Research Institute of Traditional Chinese Medicine, Taiyuan, 030012, China
| | - Jie Xu
- Department of Oncology, Shanxi Province Research Institute of Traditional Chinese Medicine, Taiyuan, 030012, China
| | - Kaiqi Cao
- Department of Oncology, Shanxi Province Research Institute of Traditional Chinese Medicine, Taiyuan, 030012, China
| | - Min Hu
- Department of Oncology, Shanxi Province Research Institute of Traditional Chinese Medicine, Taiyuan, 030012, China
| | - Lin Cheng
- Department of Oncology, Shanxi Province Research Institute of Traditional Chinese Medicine, Taiyuan, 030012, China
| | - Xixing Wang
- Department of Oncology, Shanxi Province Research Institute of Traditional Chinese Medicine, Taiyuan, 030012, China.
| | - Xiaoling Yang
- Department of Thoracic Oncology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| |
Collapse
|
9
|
Demarquay C, Moussa L, Réthoré G, Milliat F, Weiss P, Mathieu N. Embedding MSCs in Si-HPMC hydrogel decreased MSC-directed host immune response and increased the regenerative potential of macrophages. Regen Biomater 2022; 9:rbac022. [PMID: 35784096 PMCID: PMC9245650 DOI: 10.1093/rb/rbac022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/22/2022] [Accepted: 04/10/2022] [Indexed: 11/14/2022] Open
Abstract
Embedding mesenchymal stromal cells (MSCs) in biomaterial is a subject of increasing interest in the field of Regenerative Medicine. Speeding up the clinical use of MSCs is dependent on the use of non-syngeneic models in accordance with Good Manufacturing Practices (GMP) requirements and on costs. To this end, in this study, we analyzed the in vivo host immune response following local injection of silanized hydroxypropyl methylcellulose (Si-HPMC)-embedded human MSCs in a rat model developing colorectal damage induced by ionizing radiation. Plasma and lymphocytes from mesenteric lymph nodes were harvested in addition to colonic tissue. We set up tests, using flow cytometry and a live imaging system, to highlight the response to specific antibodies and measure the cytotoxicity of lymphocytes against injected MSCs. We demonstrated that Si-HPMC protects MSCs from specific antibodies production and from apoptosis by lymphocytes. We also observed that Si-HPMC does not modify innate immune response infiltrate in vivo, and that in vitro co-culture of Si-HPMC-embedded MSCs impacts macrophage inflammatory response depending on the microenvironment but, more importantly, increases the macrophage regenerative response through Wnt-family and VEGF gene expression. This study furthers our understanding of the mechanisms involved, with a view to improving the therapeutic benefits of biomaterial-assisted cell therapy by modulating the host immune response. The decrease in specific immune response against injected MSCs protected by Si-HPMC also opens up new possibilities for allogeneic clinical use.
Collapse
Affiliation(s)
- Christelle Demarquay
- Human Health Department, IRSN, French Institute for Radiological Protection and Nuclear Safety, SERAMED, LRMed, Fontenay-aux-Roses 92262, France
| | - Lara Moussa
- Human Health Department, IRSN, French Institute for Radiological Protection and Nuclear Safety, SERAMED, LRMed, Fontenay-aux-Roses 92262, France
| | - Gildas Réthoré
- Faculté de Chirurgie Dentaire, Regenerative Medicine and Skeleton (RMeS) Laboratory, Université de Nantes, Nantes 44042, France
| | - Fabien Milliat
- Human Health Department, IRSN, French Institute for Radiological Protection and Nuclear Safety, SERAMED, LRMed, Fontenay-aux-Roses 92262, France
| | - Pierre Weiss
- Faculté de Chirurgie Dentaire, Regenerative Medicine and Skeleton (RMeS) Laboratory, Université de Nantes, Nantes 44042, France
| | | |
Collapse
|
10
|
Leite CHB, Lopes CDH, Leite CAVG, Terceiro DA, Lima GS, Freitas JA, Cunha FQ, Almeida PRC, Wong DVT, Lima-Júnior RCP. A Novel Murine Model of a High Dose Brachytherapy-Induced Actinic Proctitis. Front Oncol 2022; 12:802621. [PMID: 35280725 PMCID: PMC8909144 DOI: 10.3389/fonc.2022.802621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/28/2022] [Indexed: 12/19/2022] Open
Abstract
Background Radiation proctitis affects 1-20% of cancer patients undergoing radiation exposure due to pelvic malignancies, including prostate, gynecological and rectum cancers. The patients manifest rectal discomfort, pain, discharge, and bleeding. Notably, the efficacy of prophylactic measures remains controversial due to the lack of adequate animal models that mimic this condition. Objective The present study then aimed to develop a murine model of high-dose-rate (HDR) brachytherapy-induced proctitis. Material/Methods C57BL/6 male mice were subjected to HDR (radiation source: iridium-192 [Ir-192]) through a cylindrical propylene tube inserted 2 cm far from the anal verge into the rectum. The animals received radiation doses once a day for three consecutive days (fractions of 9.5 Grays [Gy]), 3.0 mm far from the applicator surface. The sham group received only the applicator with no radiation source. The survival rate was recorded, and a colonoscopy was performed to confirm the tissue lesion development. Following euthanasia, samples of the rectum were collected for histopathology, cytokines dosage (IL-6 and KC), and immunohistochemical analysis (TNF-α and COX-2). Results HDR significantly reduced animals’ survival ten days post first radiation exposure (14% survival vs. 100% in the non-irradiated group). Day seven was then used for further investigation. Mice exposed to radiation presented with rectum injury confirmed by colonoscopy and histopathology (P < 0.05 vs. the control group). The tissue damage was accompanied by an inflammatory response, marked by increased KC and IL-6 tissue levels, and immunostaining for TNF-α and COX-2 (P < 0.05 vs. control group). Conclusions We established a novel animal model of actinic proctitis induced by HDR brachytherapy, marked by inflammatory damage and low animal mortality.
Collapse
Affiliation(s)
- Carlos Heli Bezerra Leite
- Radiation Oncology Service, Haroldo Juaçaba Hospital, Cancer Institute of Ceara (ICC), Fortaleza, Brazil
| | - Carlos Diego Holanda Lopes
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Caio Abner Vitorino Gonçalves Leite
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Dulce Andrade Terceiro
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Gabriel Silva Lima
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Jéssica Andrade Freitas
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Fernando Queiroz Cunha
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Deysi Viviana Tenazoa Wong
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Roberto César Pereira Lima-Júnior
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
11
|
Human mesenchymal stromal cells maintain their stem cell traits after high-LET particle irradiation - Potential implications for particle radiotherapy and manned space missions. Cancer Lett 2022; 524:172-181. [PMID: 34688844 DOI: 10.1016/j.canlet.2021.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/19/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022]
Abstract
The influence of high-linear energy transfer (LET) particle radiation on the functionalities of mesenchymal stromal cells (MSCs) is largely unknown. Here, we analyzed the effects of proton (1H), helium (4He), carbon (12C) and oxygen (16O) ions on human bone marrow-MSCs. Cell cycle distribution and apoptosis induction were examined by flow cytometry, and DNA damage was quantified using γH2AX immunofluorescence and Western blots. Relative biological effectiveness values of MSCs amounted to 1.0-1.1 for 1H, 1.7-2.3 for 4He, 2.9-3.4 for 12C and 2.6-3.3 for 16O. Particle radiation did not alter the MSCs' characteristic surface marker pattern, and MSCs maintained their multi-lineage differentiation capabilities. Apoptosis rates ranged low for all radiation modalities. At 24 h after irradiation, particle radiation-induced ATM and CHK2 phosphorylation as well as γH2AX foci numbers returned to baseline levels. The resistance of human MSCs to high-LET irradiation suggests that MSCs remain functional after exposure to moderate doses of particle radiation as seen in normal tissues after particle radiotherapy or during manned space flights. In the future, in vivo models focusing on long-term consequences of particle irradiation on the bone marrow niche and MSCs are needed.
Collapse
|
12
|
Chen G, Han Y, Zhang H, Tu W, Zhang S. Radiotherapy-Induced Digestive Injury: Diagnosis, Treatment and Mechanisms. Front Oncol 2021; 11:757973. [PMID: 34804953 PMCID: PMC8604098 DOI: 10.3389/fonc.2021.757973] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy is one of the main therapeutic methods for treating cancer. The digestive system consists of the gastrointestinal tract and the accessory organs of digestion (the tongue, salivary glands, pancreas, liver and gallbladder). The digestive system is easily impaired during radiotherapy, especially in thoracic and abdominal radiotherapy. In this review, we introduce the physical classification, basic pathogenesis, clinical characteristics, predictive/diagnostic factors, and possible treatment targets of radiotherapy-induced digestive injury. Radiotherapy-induced digestive injury complies with the dose-volume effect and has a radiation-based organ correlation. Computed tomography (CT), MRI (magnetic resonance imaging), ultrasound (US) and endoscopy can help diagnose and evaluate the radiation-induced lesion level. The latest treatment approaches include improvement in radiotherapy (such as shielding, hydrogel spacers and dose distribution), stem cell transplantation and drug administration. Gut microbiota modulation may become a novel approach to relieving radiogenic gastrointestinal syndrome. Finally, we summarized the possible mechanisms involved in treatment, but they remain varied. Radionuclide-labeled targeting molecules (RLTMs) are promising for more precise radiotherapy. These advances contribute to our understanding of the assessment and treatment of radiation-induced digestive injury.
Collapse
Affiliation(s)
- Guangxia Chen
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Yi Han
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Haihan Zhang
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Wenling Tu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Shuyu Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China.,West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Park JM, Han YM, Hwang SJ, Kim SJ, Hahm KB. Therapeutic effects of placenta derived-, umbilical cord derived-, and adipose tissue derived-mesenchymal stem cells in chronic Helicobacter pylori infection: comparison and novel mechanisms. J Clin Biochem Nutr 2021; 69:188-202. [PMID: 34616110 PMCID: PMC8482378 DOI: 10.3164/jcbn.20-151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/13/2020] [Indexed: 12/13/2022] Open
Abstract
Supported with significant rejuvenating and regenerating actions of mesenchymal stem cells (MSCs) in various gastrointestinal diseases including Helicobacter pylori (H. pylori)-associated gastric diseases, we have compared these actions among placenta derived-MSCs (PD-MSCs), umbilical cord derived-MSCs (UC-MSCs), and adipose tissue derived-MSCs (AD-MSCs) and explored contributing genes implicated in rejuvenation of H. pylori-chronic atrophic gastritis (CAG) and tumorigenesis. In this study adopting H. pylori-initiated, high salt diet-promoted gastric carcinogenesis model, we have administered three kinds of MSCs around 15-18 weeks in H. pylori infected C57BL/6 mice and sacrificed at 24 and 48 weeks, respectively, in order to either assess the rejuvenating capability or anti-tumorigenesis. At 24 weeks, MSCs all led to significantly mitigated atrophic gastritis, for which significant inductions of autophagy, preservation of tumor suppressive 15-PGDH, attenuated apoptosis, and efficient efferocytosis was imposed with MSCs administration during atrophic gastritis. At 48 weeks, MSCs administered during H. pylori-associated atrophic gastritis afforded significant blocking the progression of CAG, as evidenced with statistically significant reduction in H. pylori-associated gastric tumor (p<0.05) accompanied with significant decreases in IL-1β, COX-2, STAT3, and NF-κB. Combined together with the changes of stanniocalcin-1 (STC-1), thrombospondin-1 (TSP-1), and IL-10 known as biomarkers reflecting stem cell activities at 48 weeks after H. pylori, PD-MSCs among MSCs afforded the best rejuvenating action against H. pylori-associated CAG via additional actions of efferocytosis, autophagy, and anti-apoptosis at 24 weeks. In conclusion, MSCs, especially PD-MSCs, exerted rejuvenating actions against H. pylori-associated CAG via anti-mutagenesis of IL-10, CD-36, ATG5 and cancer suppressive influences of STC-1, TSP-1, and 15-PGDH.
Collapse
Affiliation(s)
- Jong Min Park
- College of Oriental Medicine, Daejeon University, Daehak-ro 62, Dong-gu, Daejeon 34520, Korea
| | - Young Min Han
- Western Seoul Center, Korea Basic Science Institute, University-Industry Cooperate Building, 150 Bugahyeon-ro, Seodaemun-gu, Seoul 03759, Korea
| | - Sun Jin Hwang
- Medpacto Research Institute, Medpacto, Myungdal-ro 92, Seocho-gu, Seoul 06668, Korea
| | - Seong Jin Kim
- Medpacto Research Institute, Medpacto, Myungdal-ro 92, Seocho-gu, Seoul 06668, Korea
| | - Ki Baik Hahm
- Medpacto Research Institute, Medpacto, Myungdal-ro 92, Seocho-gu, Seoul 06668, Korea.,CHA Cancer Preventive Research Center, CHA Bio Complex, CHA University, 330 Pangyo-dong, Bundang-gu, Seongnam 13497, Korea
| |
Collapse
|
14
|
Moussa L, Lapière A, Squiban C, Demarquay C, Milliat F, Mathieu N. BMP Antagonists Secreted by Mesenchymal Stromal Cells Improve Colonic Organoid Formation: Application for the Treatment of Radiation-induced Injury. Cell Transplant 2021; 29:963689720929683. [PMID: 33108903 PMCID: PMC7784604 DOI: 10.1177/0963689720929683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Radiation therapy is crucial in the therapeutic arsenal to cure cancers; however, non-neoplastic tissues around an abdominopelvic tumor can be damaged by ionizing radiation. In particular, the radio-induced death of highly proliferative stem/progenitor cells of the colonic mucosa could induce severe ulcers. The importance of sequelae for patients with gastrointestinal complications after radiotherapy and the absence of satisfactory management has opened the field to the testing of innovative treatments. The aim of this study was to use adult epithelial cells from the colon, to reduce colonic injuries in an animal model reproducing radiation damage observed in patients. We demonstrated that transplanted in vitro-amplified epithelial cells from colonic organoids (ECO) of C57/Bl6 mice expressing green fluorescent protein implant, proliferate, and differentiate in irradiated mucosa and reduce ulcer size. To improve the therapeutic benefit of ECO-based treatment with clinical translatability, we performed co-injection of ECO with mesenchymal stromal cells (MSCs), cells involved in niche function and widely used in clinical trials. We observed in vivo an improvement of the therapeutic benefit and in vitro analysis highlighted that co-culture of MSCs with ECO increases the number, proliferation, and size of colonic organoids. We also demonstrated, using gene expression analysis and siRNA inhibition, the involvement of bone morphogenetic protein antagonists in MSC-induced organoid formation. This study provides evidence of the potential of ECO to limit late radiation effects on the colon and opens perspectives on combined strategies to improve their amplification abilities and therapeutic effects.
Collapse
Affiliation(s)
- Lara Moussa
- Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed, Fontenay-aux-Roses, France
| | - Alexia Lapière
- Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed, Fontenay-aux-Roses, France
| | - Claire Squiban
- Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed, Fontenay-aux-Roses, France
| | - Christelle Demarquay
- Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed, Fontenay-aux-Roses, France
| | - Fabien Milliat
- Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed, Fontenay-aux-Roses, France
| | - Noëlle Mathieu
- Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed, Fontenay-aux-Roses, France
| |
Collapse
|
15
|
Bensemmane L, Squiban C, Demarquay C, Mathieu N, Benderitter M, Le Guen B, Milliat F, Linard C. The stromal vascular fraction mitigates radiation-induced gastrointestinal syndrome in mice. Stem Cell Res Ther 2021; 12:309. [PMID: 34051871 PMCID: PMC8164266 DOI: 10.1186/s13287-021-02373-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/09/2021] [Indexed: 01/21/2023] Open
Abstract
Background The intestine is particularly sensitive to moderate-high radiation dose and the development of gastrointestinal syndrome (GIS) leads to the rapid loss of intestinal mucosal integrity, resulting in bacterial infiltration, sepsis that comprise patient survival. There is an urgent need for effective and rapid therapeutic countermeasures. The stromal vascular fraction (SVF) derived from adipose tissue is an easily accessible source of cells with angiogenic, anti-inflammatory and regenerative properties. We studied the therapeutic impact of SVF and its action on the intestinal stem cell compartment. Methods Mice exposed to the abdominal radiation (18 Gy) received a single intravenous injection of stromal vascular fraction (SVF) (2.5 × 106 cells), obtained by enzymatic digestion of inguinal fat tissue, on the day of irradiation. Mortality was evaluated as well as intestinal regeneration by histological analyses and absorption function. Results The SVF treatment limited the weight loss of the mice and inhibited the intestinal permeability and mortality after abdominal irradiation. Histological analyses showed that SVF treatment stimulated the regeneration of the epithelium by promoting numerous enlarged hyperproliferative zones. SVF restored CD24+/lysozyme− and Paneth cell populations in the ISC compartment with the presence of Paneth Ki67+ cells. SVF has an anti-inflammatory effect by repressing pro-inflammatory cytokines, increasing M2 macrophages in the ileum and anti-inflammatory monocyte subtypes CD11b+Ly6clowCX3CR1high in the spleen. Conclusions Through the pleiotropic effects that contribute to limiting radiation-induced lethality, SVF opens up attractive prospects for the treatment of emergency GIS. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02373-y.
Collapse
Affiliation(s)
- Lydia Bensemmane
- Institute of Radiological Protection and Nuclear Safety, Laboratory of Medical Radiobiology, Fontenay-aux-Roses, France
| | - Claire Squiban
- Institute of Radiological Protection and Nuclear Safety, Laboratory of Medical Radiobiology, Fontenay-aux-Roses, France
| | - Christelle Demarquay
- Institute of Radiological Protection and Nuclear Safety, Laboratory of Medical Radiobiology, Fontenay-aux-Roses, France
| | - Noëlle Mathieu
- Institute of Radiological Protection and Nuclear Safety, Laboratory of Medical Radiobiology, Fontenay-aux-Roses, France
| | - Marc Benderitter
- Institute of Radiological Protection and Nuclear Safety, Laboratory of Medical Radiobiology, Fontenay-aux-Roses, France
| | | | - Fabien Milliat
- Institute of Radiological Protection and Nuclear Safety, Laboratory of Medical Radiobiology, Fontenay-aux-Roses, France
| | - Christine Linard
- Institute of Radiological Protection and Nuclear Safety, Laboratory of Medical Radiobiology, Fontenay-aux-Roses, France.
| |
Collapse
|
16
|
Proktitis (ohne chronisch-entzündliche Darmerkrankung). COLOPROCTOLOGY 2021. [DOI: 10.1007/s00053-021-00526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ZusammenfassungVermehrter Stuhldrang, Schleim‑/Blutabgänge sowie Läsionen an der Mukosa und ödematöse Veränderungen sind typische Beschwerden von Patienten mit Proktitis. Die Symptomatik und häufig auch die klinische Präsentation der Proktitiden sind nicht selten unspezifisch bzw. ähnlich und bedürfen aufgrund der drohenden Komplikationen mit Lebensqualitätseinschränkung einer guten Anamnese und des Wissens um die vielfältigen Ursachen. Man muss die Differenzialdiagnosen kennen, um sie auch erkennen zu können. Unser Fallbeispiel zeigt die Tücken einer vermeintlich leichten Diagnostik. Im vorliegenden Beitrag werden fast alle Proktitiden außer jener der chronisch-entzündlichen Darmerkrankungen beschrieben.
Collapse
|
17
|
Li S, Shao L, Xu T, Jiang X, Yang G, Dong L. An indispensable tool: Exosomes play a role in therapy for radiation damage. Biomed Pharmacother 2021; 137:111401. [PMID: 33761615 DOI: 10.1016/j.biopha.2021.111401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy is one of the three main treatments for tumors. Almost 70% of tumor patients undergo radiotherapy at different periods. Although radiotherapy can enhance the local control rate of tumors and patients' quality of life, normal tissues often show radiation damage following radiotherapy. In recent years, several studies have shown that exosomes could be biomarkers for diseases and be involved in the treatment of radiation damage. Exosomes are nanoscale vesicles containing complex miRNAs and proteins. They can regulate the inflammatory response, enhance the regeneration effect of damaged tissue, and promote the repair of damaged tissues and cells, extending their survival time. In addition, their functions are achieved by paracrine signaling. In this review, we discuss the potential of exosomes as biomarkers and introduce the impact of exosomes on radiation damage in different organs and the hematopoietic system in detail.
Collapse
Affiliation(s)
- Sijia Li
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China.
| | - Lihong Shao
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Tiankai Xu
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China.
| | - Xin Jiang
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China.
| | - Guozi Yang
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China.
| | - Lihua Dong
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
18
|
Therapeutic Potential of Mesenchymal Stromal Cells and Extracellular Vesicles in the Treatment of Radiation Lesions-A Review. Cells 2021; 10:cells10020427. [PMID: 33670501 PMCID: PMC7922519 DOI: 10.3390/cells10020427] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 12/14/2022] Open
Abstract
Ionising radiation-induced normal tissue damage is a major concern in clinic and public health. It is the most limiting factor in radiotherapy treatment of malignant diseases. It can also cause a serious harm to populations exposed to accidental radiation exposure or nuclear warfare. With regard to the clinical use of radiation, there has been a number of modalities used in the field of radiotherapy. These includes physical modalities such modified collimators or fractionation schedules in radiotherapy. In addition, there are a number of pharmacological agents such as essential fatty acids, vasoactive drugs, enzyme inhibitors, antioxidants, and growth factors for the prevention or treatment of radiation lesions in general. However, at present, there is no standard procedure for the treatment of radiation-induced normal tissue lesions. Stem cells and their role in tissue regeneration have been known to biologists, in particular to radiobiologists, for many years. It was only recently that the potential of stem cells was studied in the treatment of radiation lesions. Stem cells, immediately after their successful isolation from a variety of animal and human tissues, demonstrated their likely application in the treatment of various diseases. This paper describes the types and origin of stem cells, their characteristics, current research, and reviews their potential in the treatment and regeneration of radiation induced normal tissue lesions. Adult stem cells, among those mesenchymal stem cells (MSCs), are the most extensively studied of stem cells. This review focuses on the effects of MSCs in the treatment of radiation lesions.
Collapse
|
19
|
Usunier B, Brossard C, L’Homme B, Linard C, Benderitter M, Milliat F, Chapel A. HGF and TSG-6 Released by Mesenchymal Stem Cells Attenuate Colon Radiation-Induced Fibrosis. Int J Mol Sci 2021; 22:ijms22041790. [PMID: 33670243 PMCID: PMC7916908 DOI: 10.3390/ijms22041790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
Fibrosis is a leading cause of death in occidental states. The increasing number of patients with fibrosis requires innovative approaches. Despite the proven beneficial effects of mesenchymal stem cell (MSC) therapy on fibrosis, there is little evidence of their anti-fibrotic effects in colorectal fibrosis. The ability of MSCs to reduce radiation-induced colorectal fibrosis has been studied in vivo in Sprague–Dawley rats. After local radiation exposure, rats were injected with MSCs before an initiation of fibrosis. MSCs mediated a downregulation of fibrogenesis by a control of extra cellular matrix (ECM) turnover. For a better understanding of the mechanisms, we used an in vitro model of irradiated cocultured colorectal fibrosis in the presence of human MSCs. Pro-fibrotic cells in the colon are mainly intestinal fibroblasts and smooth muscle cells. Intestinal fibroblasts and smooth muscle cells were irradiated and cocultured in the presence of unirradiated MSCs. MSCs mediated a decrease in profibrotic gene expression and proteins secretion. Silencing hepatocyte growth factor (HGF) and tumor necrosis factor-stimulated gene 6 (TSG-6) in MSCs confirmed the complementary effects of these two genes. HGF and TSG-6 limited the progression of fibrosis by reducing activation of the smooth muscle cells and myofibroblast. To settle in vivo the contribution of HGF and TSG-6 in MSC-antifibrotic effects, rats were treated with MSCs silenced for HGF or TSG-6. HGF and TSG-6 silencing in transplanted MSCs resulted in a significant increase in ECM deposition in colon. These results emphasize the potential of MSCs to influence the pathophysiology of fibrosis-related diseases, which represent a challenging area for innovative treatments.
Collapse
|
20
|
Regenerative Medicine for Equine Musculoskeletal Diseases. Animals (Basel) 2021; 11:ani11010234. [PMID: 33477808 PMCID: PMC7832834 DOI: 10.3390/ani11010234] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Lameness due to musculoskeletal disease is the most common diagnosis in equine veterinary practice. Many of these orthopaedic disorders are chronic problems, for which no clinically satisfactory treatment exists. Thus, high hopes are pinned on regenerative medicine, which aims to replace or regenerate cells, tissues, or organs to restore or establish normal function. Some regenerative medicine therapies have already made their way into equine clinical practice mainly to treat tendon injures, tendinopathies, cartilage injuries and degenerative joint disorders with promising but diverse results. This review summarises the current knowledge of commonly used regenerative medicine treatments and critically discusses their use. Abstract Musculoskeletal injuries and chronic degenerative diseases commonly affect both athletic and sedentary horses and can entail the end of their athletic careers. The ensuing repair processes frequently do not yield fully functional regeneration of the injured tissues but biomechanically inferior scar or replacement tissue, causing high reinjury rates, degenerative disease progression and chronic morbidity. Regenerative medicine is an emerging, rapidly evolving branch of translational medicine that aims to replace or regenerate cells, tissues, or organs to restore or establish normal function. It includes tissue engineering but also cell-based and cell-free stimulation of endogenous self-repair mechanisms. Some regenerative medicine therapies have made their way into equine clinical practice mainly to treat tendon injures, tendinopathies, cartilage injuries and degenerative joint disorders with promising results. However, the qualitative and quantitative spatiotemporal requirements for specific bioactive factors to trigger tissue regeneration in the injury response are still unknown, and consequently, therapeutic approaches and treatment results are diverse. To exploit the full potential of this burgeoning field of medicine, further research will be required and is ongoing. This review summarises the current knowledge of commonly used regenerative medicine treatments in equine patients and critically discusses their use.
Collapse
|
21
|
Helissey C, Cavallero S, Brossard C, Dusaud M, Chargari C, François S. Chronic Inflammation and Radiation-Induced Cystitis: Molecular Background and Therapeutic Perspectives. Cells 2020; 10:E21. [PMID: 33374374 PMCID: PMC7823735 DOI: 10.3390/cells10010021] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Radiation cystitis is a potential complication following the therapeutic irradiation of pelvic cancers. Its clinical management remains unclear, and few preclinical data are available on its underlying pathophysiology. The therapeutic strategy is difficult to establish because few prospective and randomized trials are available. In this review, we report on the clinical presentation and pathophysiology of radiation cystitis. Then we discuss potential therapeutic approaches, with a focus on the immunopathological processes underlying the onset of radiation cystitis, including the fibrotic process. Potential therapeutic avenues for therapeutic modulation will be highlighted, with a focus on the interaction between mesenchymal stromal cells and macrophages for the prevention and treatment of radiation cystitis.
Collapse
Affiliation(s)
- Carole Helissey
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, 91220 Brétigny-sur-Orge, France; (C.H.); (S.C.); (C.C.)
- Clinical Unit Research, HIA Bégin, 94160 Saint-Mandé, France
| | - Sophie Cavallero
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, 91220 Brétigny-sur-Orge, France; (C.H.); (S.C.); (C.C.)
| | - Clément Brossard
- Radiobiology of Medical Exposure Laboratory (LRMed), Institute for Radiological Protection and Nuclear Safety (IRSN), 92260 Fontenay-aux-Roses, France;
| | - Marie Dusaud
- Department of Urology, HIA Bégin, 94160 Saint-Mand, France;
| | - Cyrus Chargari
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, 91220 Brétigny-sur-Orge, France; (C.H.); (S.C.); (C.C.)
- Gustave Roussy Comprehensive Cancer Center, Department of Radiation Oncology, 94805 Villejuif, France
- French Military Health Academy, Ecole du Val-de-Grâce (EVDG), 75005 Paris, France
| | - Sabine François
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, 91220 Brétigny-sur-Orge, France; (C.H.); (S.C.); (C.C.)
| |
Collapse
|
22
|
Chargari C, Supiot S, Hennequin C, Chapel A, Simon JM. [Treatment of radiation-induced late effects: What's new?]. Cancer Radiother 2020; 24:602-611. [PMID: 32855027 DOI: 10.1016/j.canrad.2020.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/29/2020] [Accepted: 06/07/2020] [Indexed: 02/06/2023]
Abstract
Mechanisms of late radio-induced lesions are the result of multiple and complex phenomena, with many entangled cellular and tissue factors. The biological continuum between acute and late radio-induced effects will be described, with firstly a break in homeostasis that leads to cellular redistributions. New insights into late toxicity will finally be addressed. Individual radiosensitivity is a primary factor for the development of late toxicity, and clinicians urgently need predictive tests to offer truly personalized radiation therapy. An update will be made on the various functional and genetic tests currently being validated. The management of radio-induced side effects remains a frequent issue for radiation oncologists, and an update will be made for certain specific clinical situations. Finally, an innovative management for patients with significant side effects after pelvic radiotherapy will be developed, involved mesenchymal stem cell transplantation, with the presentation of the "PRISME" protocol currently open to patients recruitment.
Collapse
Affiliation(s)
- C Chargari
- Département de radiothérapie, Gustave-Roussy Cancer Campus, 114, rue Édouard-Vaillant, 94800 Villejuif France
| | - S Supiot
- Département d'oncologie radiothérapie, institut de cancérologie de l'ouest - centre René-Gauducheau, boulevard Jacques-Monod, 44805 Saint-Herblain cedex, France; Institut de recherche en santé de l'université de Nantes, université de Nantes, 8, quai Moncousu, BP 70721, 44007 Nantes cedex 1, France; Inserm, U1232 Centre de recherche en cancérologie et immunologie de Nantes - Angers (CRCINA), 8, quai Moncousu, BP 70721, 44007 Nantes cedex 1, France; CNRS, ERL 6001, 8, quai Moncousu, BP 70721, 44007 Nantes cedex 1, France
| | - C Hennequin
- Service de cancérologie-radiothérapie, hôpital Saint-Louis, 1, avenue Claude-Vellefeaux, 75475 Paris, France
| | - A Chapel
- Service de recherche en radiobiologie et en médecine régénérative, laboratoire de radiobiologie des expositions médicales, Institut de radioprotection et de sûreté nucléaire (IRSN), 31, avenue de la Division-Leclerc, 92260 Fontenay-aux-Roses, France
| | - J-M Simon
- Sorbonne université, 21, rue de l'École-de-Médecine, 75006 Paris, France; Service d'oncologie radiothérapie, hôpital Pitié-Salpêtrière, AP-HP, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France.
| |
Collapse
|
23
|
Hematopoietic Stem Cells and Mesenchymal Stromal Cells in Acute Radiation Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8340756. [PMID: 32855768 PMCID: PMC7443042 DOI: 10.1155/2020/8340756] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/02/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023]
Abstract
With the extensive utilization of radioactive materials for medical, industrial, agricultural, military, and research purposes, medical researchers are trying to identify new methods to treat acute radiation syndrome (ARS). Radiation may cause injury to different tissues and organs, but no single drug has been proven to be effective in all circumstances. Radioprotective agents are always effective if given before irradiation, but many nuclear accidents are unpredictable. Medical countermeasures that can be beneficial to different organ and tissue injuries caused by radiation are urgently needed. Cellular therapy, especially stem cell therapy, has been a promising approach in ARS. Hematopoietic stem cells (HSCs) and mesenchymal stromal cells (MSCs) are the two main kinds of stem cells which show good efficacy in ARS and have attracted great attention from researchers. There are also some limitations that need to be investigated in future studies. In recent years, there are also some novel methods of stem cells that could possibly be applied on ARS, like "drug" stem cell banks obtained from clinical grade human induced pluripotent stem cells (hiPSCs), MSC-derived products, and infusion of HSCs without preconditioning treatment, which make us confident in the future treatment of ARS. This review focuses on major scientific and clinical advances of hematopoietic stem cells and mesenchymal stromal cells on ARS.
Collapse
|
24
|
Gao J, Li Y, Yang X, Hu M, Xu J, Cheng L, Cao K, Liu L, Wang X. Changrui enema inhibits inflammation-induced angiogenesis in acute radiation proctitis by regulating NF-κB and VEGF. Acta Cir Bras 2020; 35:e202000502. [PMID: 32638843 PMCID: PMC7341993 DOI: 10.1590/s0102-865020200050000002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/22/2020] [Indexed: 02/25/2023] Open
Abstract
Purpose Changrui enema, a traditional Chinese medicine prescription, is used as a supplementary treatment for acute radiation proctitis (ARP). Herein we explored the inhibition effects of Changrui enema on NF-κB and VEGF in ARP mice. Methods A total of 120 C57BL/6 mice were divided randomly into normal mice group, ARP mice group, western medicine enema group (dexamethasone combined with gentamicin), and Changrui enema group. ARP mice were established by pelvic local irradiation. The expression of IL-1β, NF-κB, VEGF, AQP1, AQP3, p-ERK1/2 and p-JNK was determined by immunohistochemistry or western blot. Results The study firstly found that Changrui enema alleviated ARP mice. The expression of IL-1β, NF-κB, VEGF, AQP1 and p-ERK1/2 was increased in ARP mice, and was reserved by Changrui enema. However, the expression of AQP3 and p-JNK was decreased in ARP mice, and was up-regulated by Changrui enema. Conclusions Changrui enema is an effective treatment with fewer side effects for ARP. The mechanism of Changrui enema may be related to the inhibition of inflammation-induced angiogenesis. Changrui enema inhibits IL-1β and NF-κB expression as well as VEGF expression. Interestingly, AQP1 promotes angiogenesis, while AQP3 inhibits inflammation. Changrui enema probably inhibits AQP1 expression by down-regulating p-ERK1/2, and improves AQP3 expression by up-regulating p-JNK.
Collapse
Affiliation(s)
- Jinsheng Gao
- Shanxi Province Research Institute of Traditional Chinese Medicine, China
| | | | - Xi Yang
- Shanghai University of Traditional Chinese Medicine, China
| | - Min Hu
- Shanxi Province Research Institute of Traditional Chinese Medicine, China
| | - Jie Xu
- Shanxi Province Research Institute of Traditional Chinese Medicine, China
| | - Lin Cheng
- Shanxi Province Research Institute of Traditional Chinese Medicine, China
| | - Kaiqi Cao
- Shanxi Province Research Institute of Traditional Chinese Medicine, China
| | - Likun Liu
- Shanxi Province Research Institute of Traditional Chinese Medicine, China
| | - Xixing Wang
- Shanxi Province Research Institute of Traditional Chinese Medicine, China
| |
Collapse
|
25
|
Mesenchymal and Induced Pluripotent Stem Cells-Derived Extracellular Vesicles: The New Frontier for Regenerative Medicine? Cells 2020; 9:cells9051163. [PMID: 32397132 PMCID: PMC7290733 DOI: 10.3390/cells9051163] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine aims to repair damaged, tissues or organs for the treatment of various diseases, which have been poorly managed with conventional drugs and medical procedures. To date, multimodal regenerative methods include transplant of healthy organs, tissues, or cells, body stimulation to activate a self-healing response in damaged tissues, as well as the combined use of cells and bio-degradable scaffold to obtain functional tissues. Certainly, stem cells are promising tools in regenerative medicine due to their ability to induce de novo tissue formation and/or promote organ repair and regeneration. Currently, several studies have shown that the beneficial stem cell effects, especially for mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs) in damaged tissue restore are not dependent on their engraftment and differentiation on the injury site, but rather to their paracrine activity. It is now well known that paracrine action of stem cells is due to their ability to release extracellular vesicles (EVs). EVs play a fundamental role in cell-to-cell communication and are directly involved in tissue regeneration. In the present review, we tried to summarize the molecular mechanisms through which MSCs and iPSCs-derived EVs carry out their therapeutic action and their possible application for the treatment of several diseases.
Collapse
|
26
|
Rizza S, Mistrangelo M, Ribaldone DG, Morino M, Astegiano M, Saracco GM, Pellicano R. Proctitis: a glance beyond inflammatory bowel diseases. MINERVA GASTROENTERO 2020; 66:252-266. [PMID: 32218425 DOI: 10.23736/s1121-421x.20.02670-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proctitis is an inflammation involving the anus and the distal part of the rectum, frequently diagnosed in the context of inflammatory bowel diseases (IBD). Nevertheless, when the standard therapy for IBD is ineffective, it becomes necessary for the clinician to review alternative etiologies, beginning from the broad chapter of infectious causes up to rare causes such as radiation, ischemia, diversion and traumatisms. While it is possible to find infectious proctitides caused by pathogens generally inducing extensive colitis, the growing incidence of both sexually transmitted infections and isolated proctitis reported in the recent years require a lot of attention. The risk appears to be higher in individuals participating in anal intercourse, especially men having sex with men (MSM) or subjects who use sex toys and participate to sex parties, dark rooms and so on. The commonest implicated pathogens are Neysseria gonorrhoeae, Chlamydia trachomatis, Herpes Simplex virus and Treponema pallidum. Herpes and Chlamydia infections mainly occur in HIV-positive MSM patients. Since symptoms and signs are common independently from etiology, performing a differential diagnosis based on clinical manifestations is complicated. Therefore, the diagnosis is supported by the combination of clinical history and physical examination and, secondly, by endoscopic, serologic and microbiologic findings. Particular emphasis should be given to simultaneous infections by multiple organisms. The involvement of experts in infectious diseases and in sexual health is crucial for the diagnostic and therapeutic management. The available therapies, empirically initiated or specific, in many cases are able to guarantee a good prognosis and to prevent relapses.
Collapse
Affiliation(s)
- Stefano Rizza
- Unit of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Davide G Ribaldone
- Unit of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Mario Morino
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Marco Astegiano
- Unit of Gastroenterology, Molinette Hospital, Città della Salute e della Scienza, Turin, Italy
| | - Giorgio M Saracco
- Unit of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy.,Unit of Gastroenterology, Molinette Hospital, Città della Salute e della Scienza, Turin, Italy
| | - Rinaldo Pellicano
- Unit of Gastroenterology, Molinette Hospital, Città della Salute e della Scienza, Turin, Italy -
| |
Collapse
|
27
|
Qi D, Shi W, Black AR, Kuss MA, Pang X, He Y, Liu B, Duan B. Repair and regeneration of small intestine: A review of current engineering approaches. Biomaterials 2020; 240:119832. [PMID: 32113114 DOI: 10.1016/j.biomaterials.2020.119832] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 02/06/2023]
Abstract
The small intestine (SI) is difficult to regenerate or reconstruct due to its complex structure and functions. Recent developments in stem cell research, advanced engineering technologies, and regenerative medicine strategies bring new hope of solving clinical problems of the SI. This review will first summarize the structure, function, development, cell types, and matrix components of the SI. Then, the major cell sources for SI regeneration are introduced, and state-of-the-art biofabrication technologies for generating engineered SI tissues or models are overviewed. Furthermore, in vitro models and in vivo transplantation, based on intestinal organoids and tissue engineering, are highlighted. Finally, current challenges and future perspectives are discussed to help direct future applications for SI repair and regeneration.
Collapse
Affiliation(s)
- Dianjun Qi
- Department of General Practice, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xining Pang
- Department of General Practice, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; Department of Academician Expert Workstation and Liaoning Province Human Amniotic Membrane Dressings Stem Cells and Regenerative Medicine Engineering Research Center, Shenyang Amnion Biological Engineering Technology Research and Development Center Co., Ltd, Shenyang, Liaoning, China
| | - Yini He
- Department of General Practice, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bing Liu
- Department of Anorectal Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA; Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
28
|
Advances in pathogenic mechanisms and management of radiation-induced fibrosis. Biomed Pharmacother 2020; 121:109560. [DOI: 10.1016/j.biopha.2019.109560] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/04/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022] Open
|
29
|
Conrad S, Weber K, Walliser U, Geburek F, Skutella T. Stem Cell Therapy for Tendon Regeneration: Current Status and Future Directions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1084:61-93. [PMID: 30043235 DOI: 10.1007/5584_2018_194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In adults the healing tendon generates fibrovascular scar tissue and recovers never histologically, mechanically, and functionally which leads to chronic and to degenerative diseases. In this review, the processes and mechanisms of tendon development and fetal regeneration in comparison to adult defect repair and degeneration are discussed in relation to regenerative therapeutic options. We focused on the application of stem cells, growth factors, transcription factors, and gene therapy in tendon injury therapies in order to intervene the scarring process and to induce functional regeneration of the lesioned tissue. Outlines for future therapeutic approaches for tendon injuries will be provided.
Collapse
Affiliation(s)
| | - Kathrin Weber
- Tierärztliches Zentrum für Pferde in Kirchheim Altano GmbH, Kirchheim unter Teck, Germany
| | - Ulrich Walliser
- Tierärztliches Zentrum für Pferde in Kirchheim Altano GmbH, Kirchheim unter Teck, Germany
| | - Florian Geburek
- Justus-Liebig-University Giessen, Faculty of Veterinary Medicine, Clinic for Horses - Department of Surgery, Giessen, Germany
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
30
|
Khalifa J, François S, Rancoule C, Riccobono D, Magné N, Drouet M, Chargari C. Gene therapy and cell therapy for the management of radiation damages to healthy tissues: Rationale and early results. Cancer Radiother 2019; 23:449-465. [PMID: 31400956 DOI: 10.1016/j.canrad.2019.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022]
Abstract
Nowadays, ionizing radiations have numerous applications, especially in medicine for diagnosis and therapy. Pharmacological radioprotection aims at increasing detoxification of free radicals. Radiomitigation aims at improving survival and proliferation of damaged cells. Both strategies are essential research area, as non-contained radiation can lead to harmful effects. Some advances allowing the comprehension of normal tissue injury mechanisms, and the discovery of related predictive biomarkers, have led to developing several highly promising radioprotector or radiomitigator drugs. Next to these drugs, a growing interest does exist for biotherapy in this field, including gene therapy and cell therapy through mesenchymal stem cells. In this review article, we provide an overview of the management of radiation damages to healthy tissues via gene or cell therapy in the context of radiotherapy. The early management aims at preventing the occurrence of these damages before exposure or just after exposure. The late management offers promises in the reversion of constituted late damages following irradiation.
Collapse
Affiliation(s)
- J Khalifa
- Départment de radiothérapie, institut Claudius-Regaud, institut universitaire du cancer de Toulouse - Oncopole, 1, avenue Irène-Joliot-Curie, 31100 Toulouse, France.
| | - S François
- Institut de recherche biomédicale des armées, BP73, 91223 Brétigny-sur-Orge cedex, France
| | - C Rancoule
- Département de radiothérapie, institut de cancérologie de la Loire Lucien-Neuwirth, 108 bis, avenue Albert-Raimond, 42270 Saint-Priest-en-Jarez, France; Laboratoire de radiobiologie cellulaire et moléculaire, UMR 5822, institut de physique nucléaire de Lyon (IPNL), 69622 Villeurbanne, France; UMR 5822, CNRS, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France; UMR 5822, université Lyon 1, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France; UMR 5822, université de Lyon, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France
| | - D Riccobono
- Institut de recherche biomédicale des armées, BP73, 91223 Brétigny-sur-Orge cedex, France
| | - N Magné
- Département de radiothérapie, institut de cancérologie de la Loire Lucien-Neuwirth, 108 bis, avenue Albert-Raimond, 42270 Saint-Priest-en-Jarez, France; Laboratoire de radiobiologie cellulaire et moléculaire, UMR 5822, institut de physique nucléaire de Lyon (IPNL), 69622 Villeurbanne, France; UMR 5822, CNRS, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France; UMR 5822, université Lyon 1, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France; UMR 5822, université de Lyon, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France
| | - M Drouet
- Institut de recherche biomédicale des armées, BP73, 91223 Brétigny-sur-Orge cedex, France
| | - C Chargari
- Institut de recherche biomédicale des armées, BP73, 91223 Brétigny-sur-Orge cedex, France; Service de santé des armées, école du Val-de-Grâce, 74, boulevard de Port-Royal, 75005 Paris, France; Département de radiothérapie, Gustave-Roussy Cancer Campus, 114, rue Édouard-Vailant, 94805 Villejuif, France
| |
Collapse
|
31
|
The pathogenesis of mucositis: updated perspectives and emerging targets. Support Care Cancer 2019; 27:4023-4033. [PMID: 31286231 DOI: 10.1007/s00520-019-04893-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022]
Abstract
Mucositis research and treatment are a rapidly evolving field providing constant new avenues of research and potential therapies. The MASCC/ISOO Mucositis Study Group regularly assesses available literature relating to pathogenesis, mechanisms, and novel therapeutic approaches and distils this to summary perspectives and recommendations. Reviewers assessed 164 articles published between January 2011 and June 2016 to identify progress made since the last review and highlight new targets for further investigation. Findings were organized into sections including established and emerging mediators of toxicity, potential insights from technological advances in mucositis research, and perspective. Research momentum is accelerating for mucositis pathogenesis, and with this has come utilization of new models and interventions that target specific mechanisms of injury. Technological advances have the potential to revolutionize the field of mucositis research, although focused effort is needed to move rationally targeted interventions to the clinical setting.
Collapse
|
32
|
Treatments for Crohn's Disease-Associated Bowel Damage: A Systematic Review. Clin Gastroenterol Hepatol 2019; 17:847-856. [PMID: 30012430 DOI: 10.1016/j.cgh.2018.06.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Despite significant advances in the treatment of Crohn's disease (CD), most patients still develop stricturing or penetrating complications that require surgical resections. We performed a systematic review of mechanisms and potential treatments for tissue damage lesions in CD patients. METHODS We searched the PubMed, MBASE, and Cochrane databases from January 1960 to July 2017 for full-length articles on CD, fibrosis, damage lesions, mesenchymal stem cells, and/or treatment. We also searched published conference abstracts and performed manual searches of all reference lists of relevant articles. RESULTS Mechanisms of intestinal damage in patients with CD include fibroblast proliferation and migration, activation of stellate cells, recruitment of intestinal or extra-intestinal fibroblast, and cell trans-differentiation. An altered balance of metalloproteinases and tissue inhibitors of metalloproteinases might contribute to fistula formation. Treatment approaches that reduce excessive transforming growth factor beta (TGFB) activation might be effective in treating established intestinal damage. Stem cell therapies have been effective in tissue damage lesions in CD. Particularly, randomized controlled trials have shown local injections of mesenchymal stem cells to heal perianal fistulas. CONCLUSION In a systematic review of mechanisms and treatments of bowel wall damage in patients with CD, we found a need to test drugs that reduce TGFB and increase healing of transmural damage lesions and to pursue research on local injection of mesenchymal stem cells.
Collapse
|
33
|
Prasanphanich AF, Johnson CT, Krasnopeyev A, Cantara S, Roach C, Gumber S, Chinnadurai R, Galipeau J, Brewster L, Prologo JD. Image-Guided Transarterial Directed Delivery of Human Mesenchymal Stem Cells for Targeted Gastrointestinal Therapies in a Swine Model. J Vasc Interv Radiol 2019; 30:1128-1134.e5. [PMID: 30852052 DOI: 10.1016/j.jvir.2018.09.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/18/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To evaluate the feasibility of catheter-directed intra-arterial stem cell delivery of human mesenchymal stem cells (MSCs) to the small bowel in a porcine model. MATERIALS AND METHODS The cranial mesenteric artery of 6 Yucatan minipigs was selectively catheterized under fluoroscopic guidance following cut-down and carotid artery access. A proximal jejunal branch artery was selectively catheterized for directed delivery of embolic microspheres (100-300 μm) or MSCs (0.1-10 million cells). The pigs were euthanized after 4 hours and specimens collected from the proximal duodenum and the targeted segment of the jejunum. The Chiu/Park system for scoring intestinal ischemia was used to compare hematoxylin and eosin-stained sections of jejunum and duodenum. RESULTS Successful delivery of microspheres or MSCs in a proximal jejunal branch artery of the cranial mesenteric artery was achieved in all subjects. Radiopaque microspheres and post-delivery angiographic evidence of stasis in the targeted vessels were observed on fluoroscopy after delivery of embolics. Preserved blood flow was observed after MSC delivery in the targeted vessel. The Chiu/Park score for intestinal ischemia in the targeted proximal jejunal segments were similar for microspheres (4, 4; n = 2) and MSCs (4, 4, 4, 3; n = 4), indicating moderate ischemic effects that were greater than for control duodenal tissue (3, 1; 0, 0, 3, 3). CONCLUSIONS Selective arteriographic deployment of MSCs in swine is feasible for study of directed intestinal stem cell delivery. In this study, directed therapy resulted in intestinal ischemia.
Collapse
Affiliation(s)
- Adam F Prasanphanich
- Department of Radiology and Imaging Sciences, Emory University, 201 Dowman Drive, Atlanta, GA 30322
| | - Christopher T Johnson
- Department of Radiology and Imaging Sciences, Emory University, 201 Dowman Drive, Atlanta, GA 30322
| | - Andrey Krasnopeyev
- Division of Animal Resources, Emory University, 201 Dowman Drive, Atlanta, GA 30322
| | - Shraddha Cantara
- Division of Animal Resources, Emory University, 201 Dowman Drive, Atlanta, GA 30322
| | - Cristin Roach
- Division of Animal Resources, Emory University, 201 Dowman Drive, Atlanta, GA 30322
| | - Sanjeev Gumber
- Department of Pathology and Laboratory Medicine, Emory University, 201 Dowman Drive, Atlanta, GA 30322
| | | | - Jacques Galipeau
- Department of Medicine, University of Wisconsin, Madison, Wisconsin
| | - Luke Brewster
- Department of Surgery, Emory University, 201 Dowman Drive, Atlanta, GA 30322
| | - J David Prologo
- Department of Radiology and Imaging Sciences, Emory University, 201 Dowman Drive, Atlanta, GA 30322.
| |
Collapse
|
34
|
Moussa L, Demarquay C, Réthoré G, Benadjaoud MA, Siñeriz F, Pattapa G, Guicheux J, Weiss P, Barritault D, Mathieu N. Heparan Sulfate Mimetics: A New Way to Optimize Therapeutic Effects of Hydrogel-Embedded Mesenchymal Stromal Cells in Colonic Radiation-Induced Damage. Sci Rep 2019; 9:164. [PMID: 30655576 PMCID: PMC6336771 DOI: 10.1038/s41598-018-36631-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/25/2018] [Indexed: 12/18/2022] Open
Abstract
Clinical expression of gastrointestinal radiation toxicity on non-cancerous tissue could be very life threatening and clinicians must deal increasingly with the management of late side effects of radiotherapy. Cell therapy, in particular mesenchymal stromal cell (MSC) therapy, has shown promising results in numerous preclinical animal studies and thus has emerged as a new hope for patient refractory to current treatments. However, many stem cell clinical trials do not confer any beneficial effect suggesting a real need to accelerate research towards the successful clinical application of stem cell therapy. In this study, we propose a new concept to improve the procedure of MSC-based treatment for greater efficacy and clinical translatability. We demonstrated that heparan sulfate mimetic (HS-m) injections that restore the extracellular matrix network and enhance the biological activity of growth factors, associated with local injection of MSC protected in a hydrogel, that increase cell engraftment and cell survival, improve the therapeutic benefit of MSC treatment in two animal models relevant of the human pathology. For the first time, a decrease of the injury score in the ulcerated area was observed with this combined treatment. We also demonstrated that the combined treatment favored the epithelial regenerative process. In this study, we identified a new way, clinically applicable, to optimize stem-cell therapy and could be proposed to patients suffering from severe colonic defect after radiotherapy.
Collapse
Affiliation(s)
- Lara Moussa
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, PSE-SANTE, SERAMED, LRMed, 31 avenue de la division Leclerc, 92262, Fontenay-aux-Roses, France.,INSERM, Institut National de la Santé et de la Recherche Médicale, U1229, Regenerative Medicine and Skeleton (RMeS), Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042, Nantes, France.,Université de Nantes, Regenerative Medicine and Squeleton (RMeS), Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042, Nantes, France
| | - Christelle Demarquay
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, PSE-SANTE, SERAMED, LRMed, 31 avenue de la division Leclerc, 92262, Fontenay-aux-Roses, France
| | - Gildas Réthoré
- INSERM, Institut National de la Santé et de la Recherche Médicale, U1229, Regenerative Medicine and Skeleton (RMeS), Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042, Nantes, France.,Université de Nantes, Regenerative Medicine and Squeleton (RMeS), Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042, Nantes, France.,Centre Hospitalier Universitaire de Nantes, Pôle Hospitalo-Universitaire 4 (OTONN), 1 Place Alexis Ricordeau, 44042, Nantes, France
| | - Mohamed Amine Benadjaoud
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, PSE-SANTE, SERAMED, LRMed, 31 avenue de la division Leclerc, 92262, Fontenay-aux-Roses, France
| | - Fernando Siñeriz
- Société OTR3 (Organes, Tissus, Régénération, Réparation, Remplacement), 4 Rue Française, 75001, Paris, France
| | - Girish Pattapa
- INSERM, Institut National de la Santé et de la Recherche Médicale, U1229, Regenerative Medicine and Skeleton (RMeS), Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042, Nantes, France.,Université de Nantes, Regenerative Medicine and Squeleton (RMeS), Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042, Nantes, France
| | - Jérôme Guicheux
- INSERM, Institut National de la Santé et de la Recherche Médicale, U1229, Regenerative Medicine and Skeleton (RMeS), Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042, Nantes, France.,Université de Nantes, Regenerative Medicine and Squeleton (RMeS), Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042, Nantes, France.,Centre Hospitalier Universitaire de Nantes, Pôle Hospitalo-Universitaire 4 (OTONN), 1 Place Alexis Ricordeau, 44042, Nantes, France
| | - Pierre Weiss
- INSERM, Institut National de la Santé et de la Recherche Médicale, U1229, Regenerative Medicine and Skeleton (RMeS), Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042, Nantes, France.,Université de Nantes, Regenerative Medicine and Squeleton (RMeS), Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042, Nantes, France.,Centre Hospitalier Universitaire de Nantes, Pôle Hospitalo-Universitaire 4 (OTONN), 1 Place Alexis Ricordeau, 44042, Nantes, France
| | - Denis Barritault
- Société OTR3 (Organes, Tissus, Régénération, Réparation, Remplacement), 4 Rue Française, 75001, Paris, France.,Université Paris-Est Créteil, Laboratoire de recherche sur la Croissance Cellulaire, Réparation, et Régénération Tissulaire, Faculté des Sciences, Université Paris-Est Créteil, 61 Ave du Gal de Gaulle, 94000, Créteil, France
| | - Noëlle Mathieu
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, PSE-SANTE, SERAMED, LRMed, 31 avenue de la division Leclerc, 92262, Fontenay-aux-Roses, France.
| |
Collapse
|
35
|
Abstract
The occurrence of chronic proctitis as a side effect among radiotherapy patients is about 5%. Radiation proctitis and consequent development of chronic proctitis are not associated to each other. However, a lot of samples of proctitis that are limited easily could be treated by typical remedial techniques. Improvements in radiotherapy techniques that make possible the delivery of superior doses of radiation could easily reduce both chronic and acute proctitis. The step-by-step remedial procedure for treatment of this disorder starts with conservative remedial management and includes iron substitution as a second-line therapy. For patients who did not receive initial therapies, sucralfate injection, topical corticosteroids, and antidiarrhea therapy were provided as a means of aggressive care. In cases of continuous rectal bleeding, remedial laser techniques and formaldehyde administration should be attempted before surgical therapy. When surgical therapy is required, a descending or transverse colostomy must be carried out. Advanced methods such as intraperitoneal injections of formalin or novel methods of cold therapy and radiofrequency ablation (RFA) provide a wider remedial field. Exceptionally, unanticipated conclusion of neosquamous wound healing via RFA may have additional preponderances in stopping symptoms and may require better assessment through accurate randomized examination. Since aggressive treatments like coloanal anastomosis and colorectal surgery are correlated with remarkable mortality and morbidity, they must be considered as the final course of remedial treatment.
Collapse
Affiliation(s)
- Pejman Porouhan
- Department of Radiation Oncology, Sabzevar University of Medical Sciences, Kermanshah, Iran
| | - Negin Farshchian
- Department of Radiation Oncology, Imam Reza Hospital of Kermanshah, Kermanshah, Iran
| | - Malihe Dayani
- Department of Radiation Oncology, Imam Reza Hospital of Kermanshah, Kermanshah, Iran
| |
Collapse
|
36
|
Van de Putte D, Demarquay C, Van Daele E, Moussa L, Vanhove C, Benderitter M, Ceelen W, Pattyn P, Mathieu N. Adipose-Derived Mesenchymal Stromal Cells Improve the Healing of Colonic Anastomoses Following High Dose of Irradiation Through Anti-Inflammatory and Angiogenic Processes. Cell Transplant 2018; 26:1919-1930. [PMID: 29390877 PMCID: PMC5802630 DOI: 10.1177/0963689717721515] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer patients treated with radiotherapy (RT) could develop severe late side effects that affect their quality of life. Long-term bowel complications after RT are mainly characterized by a transmural fibrosis that could lead to intestinal obstruction. Today, surgical resection is the only effective treatment. However, preoperative RT increases the risk of anastomotic leakage. In this study, we attempted to use mesenchymal stromal cells from adipose tissue (Ad-MSCs) to improve colonic anastomosis after high-dose irradiation. MSCs were isolated from the subcutaneous fat of rats, amplified in vitro, and characterized by flow cytometry. An animal model of late radiation side effects was induced by local irradiation of the colon. Colonic anastomosis was performed 4 wk after irradiation. It was analyzed another 4 wk later (i.e., 8 wk after irradiation). The Ad-MSC-treated group received injections several times before and after the surgical procedure. The therapeutic benefit of the Ad-MSC treatment was determined by colonoscopy and histology. The inflammatory process was investigated using Fluorine-182-Fluoro-2-Deoxy-d-Glucose Positron Emission Tomography and Computed Tomography (18F-FDG-PET/CT) imaging and macrophage infiltrate analyses. Vascular density was assessed using immunohistochemistry. Results show that Ad-MSC treatment reduces ulcer size, increases mucosal vascular density, and limits hemorrhage. We also determined that 1 Ad-MSC injection limits the inflammatory process, as evaluated through 18F-FDG-PET-CT (at 4 wk), with a greater proportion of type 2 macrophages after iterative cell injections (8 wk). In conclusion, Ad-MSC injections promote anastomotic healing in an irradiated colon through enhanced vessel formation and reduced inflammation. This study also determined parameters that could be improved in further investigations.
Collapse
Affiliation(s)
- Dirk Van de Putte
- 1 Department of Pediatric and Gastrointestinal Surgery, Ghent University Hospital, Ghent, Belgium
| | - Christelle Demarquay
- 2 Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Elke Van Daele
- 1 Department of Pediatric and Gastrointestinal Surgery, Ghent University Hospital, Ghent, Belgium
| | - Lara Moussa
- 2 Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | | | - Marc Benderitter
- 2 Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Wim Ceelen
- 1 Department of Pediatric and Gastrointestinal Surgery, Ghent University Hospital, Ghent, Belgium.,4 Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Piet Pattyn
- 1 Department of Pediatric and Gastrointestinal Surgery, Ghent University Hospital, Ghent, Belgium
| | - Noëlle Mathieu
- 2 Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| |
Collapse
|
37
|
François S, Usunier B, Forgue-Lafitte ME, L'Homme B, Benderitter M, Douay L, Gorin NC, Larsen AK, Chapel A. Mesenchymal Stem Cell Administration Attenuates Colon Cancer Progression by Modulating the Immune Component within the Colorectal Tumor Microenvironment. Stem Cells Transl Med 2018; 8:285-300. [PMID: 3045139 PMCID: PMC6392393 DOI: 10.1002/sctm.18-0117] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/07/2018] [Indexed: 12/17/2022] Open
Abstract
We here determine the influence of mesenchymal stem cell (MSC) therapy on the progression of solid tumors. The influence of MSCs was investigated in human colorectal cancer cells as well as in an immunocompetent rat model of colorectal carcinogenesis representative of the human pathology. Treatment with bone marrow (BM)‐derived MSCs significantly reduced both cancer initiation and cancer progression by increasing the number of tumor‐free animals as well as decreasing the number and the size of the tumors by half, thereby extending their lifespan. The attenuation of cancer progression was mediated by the capacity of the MSCs to modulate the immune component. Specifically, in the adenocarcinomas (ADKs) of MSC‐treated rats, the infiltration of CD68+ monocytes/macrophages was 50% less while the presence of CD3+ lymphocytes increased almost twofold. The MSCs reprogrammed the macrophages to become regulatory cells involved in phagocytosis thereby inhibiting the production of proinflammatory cytokines. Furthermore, the MSCs decreased NK (Natural Killer) and rTh17 cell activities, Treg recruitment, the presence of CD8+ lymphocytes and endothelial cells while restoring Th17 cell activity. The expression of miR‐150 and miR‐7 increased up to fivefold indicating a likely role for these miRNAs in the modulation of tumor growth. Importantly, MSC administration limited the damage of healthy tissues and attenuated tumor growth following radiotherapy. Taken together, we here show that that MSCs have durable action on colon cancer development by modulating the immune component of the tumor microenvironment. In addition, we identify two miRNAs associated with the capacity of MSCs to attenuate cancer growth. stem cells translational medicine2019;8:285&300
Collapse
Affiliation(s)
- Sabine François
- Radiobiology of Medical Exposure Laboratory (LRMed), Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France.,Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, F-75012 Paris, France
| | - Benoit Usunier
- Radiobiology of Medical Exposure Laboratory (LRMed), Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Marie-Elisabeth Forgue-Lafitte
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Paris, France.,Institut Universitaire de Cancérologie (IUC), Faculté de Médecine, Sorbonne Université, Paris, France
| | - Bruno L'Homme
- Radiobiology of Medical Exposure Laboratory (LRMed), Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Marc Benderitter
- Radiobiology of Medical Exposure Laboratory (LRMed), Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Luc Douay
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, F-75012 Paris, France.,Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France.,Service d'Hématologie Biologique, Hôpital Saint-Antoine/Armand Trousseau, AP-HP, Paris, France.,Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Norbert-Claude Gorin
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, F-75012 Paris, France.,Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France.,Service d'Hématologie Biologique, Hôpital Saint-Antoine/Armand Trousseau, AP-HP, Paris, France.,Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Annette K Larsen
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Paris, France.,Institut Universitaire de Cancérologie (IUC), Faculté de Médecine, Sorbonne Université, Paris, France
| | - Alain Chapel
- Radiobiology of Medical Exposure Laboratory (LRMed), Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France.,Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, F-75012 Paris, France.,Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France
| |
Collapse
|
38
|
Abstract
Radiation proctitis is radiation-induced rectal mucositis, occurring as a result of radiation therapy for various pelvic malignancies. The management of radiation proctitis is challenging as guidelines are not currently available, and studies of the various treatment modalities are limited. There are various medical, endoscopic, and surgical measures for treating chronic radiation proctitis. Medical options such as anti-inflammatory agents, antioxidants, formalin application, and hyperbaric oxygen may improve bleeding related to chronic radiation proctitis. Endoscopic measures such as argon plasma coagulation are effective and safe. Surgery is considered for refractory or severe cases. A review and discussion of the different treatment modalities is presented.
Collapse
Affiliation(s)
- Lameese Tabaja
- Department of Colon and Rectal Surgery, Digestive Disease Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates. .,Lerner School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Shafik M Sidani
- Department of Colon and Rectal Surgery, Digestive Disease Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates.,Lerner School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
39
|
Soontararak S, Chow L, Johnson V, Coy J, Wheat W, Regan D, Dow S. Mesenchymal Stem Cells (MSC) Derived from Induced Pluripotent Stem Cells (iPSC) Equivalent to Adipose-Derived MSC in Promoting Intestinal Healing and Microbiome Normalization in Mouse Inflammatory Bowel Disease Model. Stem Cells Transl Med 2018; 7:456-467. [PMID: 29635868 PMCID: PMC5980202 DOI: 10.1002/sctm.17-0305] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/19/2018] [Indexed: 02/06/2023] Open
Abstract
Cellular therapy with allogeneic or autologous mesenchymal stem cells (MSC) has emerged as a promising new therapeutic strategy for managing inflammatory bowel disease (IBD). However, MSC therapy ideally requires a convenient and relatively homogenous cell source (typically bone marrow or adipose tissues) and the ability to generate cells with stable phenotype and function. An alternative means of generating allogeneic MSC is to derive them from induced pluripotent stem cells (iPSC), which could in theory provide an indefinite supply of MSC with well-defined phenotype and function. Therefore, we compared the effectiveness of iPSC-derived MSC (iMSC) and adipose-derived MSC (adMSC) in a mouse model of IBD (dextran sodium sulfate-induced colitis), and investigated mechanisms of intestinal protection. We found that iMSC were equivalent to adMSC in terms of significantly improving clinical abnormalities in treated mice and reducing lesion scores and inflammation in the gut. Administration of iMSC also stimulated significant intestinal epithelial cell proliferation, increased in the numbers of Lgr5+ intestinal stem cells, and increased intestinal angiogenesis. In addition, the microbiome alterations present in mice with colitis were partially restored to resemble those of healthy mice following treatment with iMSC or adMSC. Thus, iMSC administration improved overall intestinal health and healing with equivalent potency to treatment with adMSC. This therefore is the first report of the effectiveness of iMSC in the treatment of IBD, along with a description of unique mechanisms of action with respect to intestinal healing and microbiome restoration. Stem Cells Translational Medicine 2018;7:456-467.
Collapse
Affiliation(s)
- Sirikul Soontararak
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Lyndah Chow
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Valerie Johnson
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Jonathan Coy
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - William Wheat
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Daniel Regan
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Steven Dow
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
40
|
Linard C, Brachet M, Strup-Perrot C, L'homme B, Busson E, Squiban C, Holler V, Bonneau M, Lataillade JJ, Bey E, Benderitter M. Autologous Bone Marrow Mesenchymal Stem Cells Improve the Quality and Stability of Vascularized Flap Surgery of Irradiated Skin in Pigs. Stem Cells Transl Med 2018; 7:569-582. [PMID: 29777577 PMCID: PMC6090511 DOI: 10.1002/sctm.17-0267] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/30/2018] [Indexed: 12/21/2022] Open
Abstract
Cutaneous radiation syndrome has severe long-term health consequences. Because it causes an unpredictable course of inflammatory waves, conventional surgical treatment is ineffective and often leads to a fibronecrotic process. Data about the long-term stability of healed wounds, with neither inflammation nor resumption of fibrosis, are lacking. In this study, we investigated the effect of injections of local autologous bone marrow-derived mesenchymal stromal cells (BM-MSCs), combined with plastic surgery for skin necrosis, in a large-animal model. Three months after irradiation overexposure to the rump, minipigs were divided into three groups: one group treated by simple excision of the necrotic tissue, the second by vascularized-flap surgery, and the third by vascularized-flap surgery and local autologous BM-MSC injections. Three additional injections of the BM-MSCs were performed weekly for 3 weeks. The quality of cutaneous wound healing was examined 1 year post-treatment. The necrotic tissue excision induced a pathologic scar characterized by myofibroblasts, excessive collagen-1 deposits, and inadequate vascular density. The vascularized-flap surgery alone was accompanied by inadequate production of extracellular matrix (ECM) proteins (decorin, fibronectin); the low col1/col3 ratio, associated with persistent inflammatory nodules, and the loss of vascularization both attested to continued immaturity of the ECM. BM-MSC therapy combined with vascularized-flap surgery provided mature wound healing characterized by a col1/col3 ratio and decorin and fibronectin expression that were all similar to that of nonirradiated skin, with no inflammation, and vascular stability. In this preclinical model, vascularized flap surgery successfully and lastingly remodeled irradiated skin only when combined with BM-MSC therapy. Stem Cells Translational Medicine 2018:569-582.
Collapse
Affiliation(s)
- Christine Linard
- Institute of Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | - Michel Brachet
- Department of Plastic Surgery, Military Hospital of Percy, Clamart, France
| | - Carine Strup-Perrot
- Institute of Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | - Bruno L'homme
- Institute of Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | - Elodie Busson
- Research and Cell Therapy Department, Military Blood Transfusion Center, Percy Military Hospital, Clamart, France
| | - Claire Squiban
- Institute of Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | - Valerie Holler
- Institute of Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | - Michel Bonneau
- Centre of Research in Interventional Imaging, National Institut of Agronomic Research, Jouy-en-Josas, France
| | - Jean-Jacques Lataillade
- Research and Cell Therapy Department, Military Blood Transfusion Center, Percy Military Hospital, Clamart, France
| | - Eric Bey
- Department of Plastic Surgery, Military Hospital of Percy, Clamart, France
| | - Marc Benderitter
- Institute of Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| |
Collapse
|
41
|
Yang C, Wang G, Ma F, Yu B, Chen F, Yang J, Feng J, Wang Q. Repeated injections of human umbilical cord blood-derived mesenchymal stem cells significantly promotes functional recovery in rabbits with spinal cord injury of two noncontinuous segments. Stem Cell Res Ther 2018; 9:136. [PMID: 29751769 PMCID: PMC5948759 DOI: 10.1186/s13287-018-0879-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/08/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022] Open
Abstract
Background Spinal cord injuries (SCIs) are sustained by an increasing number of patients each year worldwide. The treatment of SCIs has long been a hard nut to crack for doctors around the world. Mesenchymal stem cells (MSCs) have shown benefits for the repair of SCI and recovery of function. Our present study aims to investigate the effects of intravenously infused human umbilical cord blood-derived MSCs (hUCB-MSCs) on functional recovery after subacute spinal cord compression injury of two noncontinuous segments. In addition, we compared the effects of single infusion and repeated intravenous (i.v.) injections on the recovery of spinal cord function. Methods A total of 43 adult rabbits were randomly divided into four groups: control, single injection (SI), repeated injection at a 3-day (3RI) or repeated injection at a 7-day interval (7RI) groups. Non-immunosuppressed rabbits in the transplantation groups were infused with either a single complete dose or three divided doses of 2 × 106 hUCB-MSCs (3-day or 7-day intervals) on the first day post decompression. Behavioural scores and somatosensory evoked potentials (SEPs) were used to evaluate hindlimb functional recovery. The survival and differentiation of the transplanted human cells and the activation of the host glial and inflammatory reaction in the injured spinal cord were studied by immunohistochemical staining. Results Our results showed that hUCB-MSCs survived, proliferated, and primarily differentiated into oligodendrocytes in the injured area. Treatment with hUCB-MSCs reduced the extent of astrocytic activation, increased axonal preservation, potentially promoted axonal regeneration, decreased the number of Iba-1+ and TUNEL+ cells, increased the amplitude and decreased the onset latency of SEPs and significantly promoted functional improvement. However, these effects were more pronounced in the 3RI group compared with the SI and 7RI groups. Conclusions Our results suggest that treatment with i.v. injected hUCB-MSCs after subacute spinal cord compression injury of two noncontinuous segments can promote functional recovery through the differentiation of hUCB-MSCs into specific cell types and the enhancement of anti-inflammatory, anti-astrogliosis, anti-apoptotic and axonal preservation effects. Furthermore, the recovery was more pronounced in the rabbits repeatedly injected with cells at 3-day intervals. The results of this study may provide a novel and useful treatment strategy for the transplantation treatment of SCI. Electronic supplementary material The online version of this article (10.1186/s13287-018-0879-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chaohua Yang
- Department of Spine Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang Area, Luzhou, 646000, Sichuan, China
| | - Gaoju Wang
- Department of Spine Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang Area, Luzhou, 646000, Sichuan, China
| | - Fenfen Ma
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China
| | - Baoqing Yu
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong New Area, Shanghai, 201399, China
| | - Fancheng Chen
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong New Area, Shanghai, 201399, China
| | - Jin Yang
- Department of Spine Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang Area, Luzhou, 646000, Sichuan, China
| | - Jianjun Feng
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong New Area, Shanghai, 201399, China.
| | - Qing Wang
- Department of Spine Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang Area, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
42
|
Mesenchymal Stromal Cell Therapy for Pancreatitis: A Systematic Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3250864. [PMID: 29743979 PMCID: PMC5878867 DOI: 10.1155/2018/3250864] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/31/2017] [Indexed: 12/19/2022]
Abstract
Background Based on animal studies, adult mesenchymal stromal cells (MSCs) are promising for the treatment of pancreatitis. However, the best type of this form of cell therapy and its mechanism of action remain unclear. Methods We searched the PubMed, Web of Science, Scopus, Google Scholar, and Clinical Trials.gov websites for studies using MSCs as a therapy for both acute and chronic pancreatitis published until September 2017. Results We identified 276 publications; of these publications, 18 met our inclusion criteria. In animal studies, stem cell therapy was applied more frequently for acute pancreatitis than for chronic pancreatitis. No clinical trials were identified. MSC therapy ameliorated pancreatic inflammation in acute pancreatitis and pancreatic fibrosis in chronic pancreatitis. Bone marrow and umbilical cord MSCs were the most frequently administered cell types. Due to the substantial heterogeneity among the studies regarding the type, source, and dose of MSCs used, conducting a meta-analysis was not feasible to determine the best type of MSCs. Conclusion The available data were insufficient for determining the best type of MSCs for the treatment of acute or chronic pancreatitis; therefore, clinical trials investigating the use of MSCs as therapy for pancreatitis are not warranted.
Collapse
|
43
|
Abstract
Unwanted radiological or nuclear exposure remains a public health risk for which effective therapeutic countermeasures are lacking. Here, we evaluated the efficacy of fibroblast growth factor-2 (FGF2) in treating radiation-induced gastrointestinal syndrome (RIGS) incurred by lethal whole-body irradiation (WBI) when administered in conjunction with bone marrow transplantation (BMT). In vitro experiments indicated FGF2 treatment increased proliferation, reduced apoptosis, and upregulated AKT–GSK3β/β–catenin signaling in irradiated IEC-6 cells. We next established and analyzed mice cohorts consisting of sham irradiation (Group Sh); 12 Gy WBI (Group A); WBI with BMT (Group B); WBI with FGF2 treatment (Group F); and WBI with BMT and FGF2 treatment (Group BF). At 2 weeks post-irradiation, Group BF showed a dramatic increase in survival over all other groups. Intestinal epithelium of Group BF, but not Group B or F, showed augmented proliferation, decreased apoptosis, and preserved crypt numbers and morphology. Furthermore, Group BF maintained intestinal barrier function with minimal inflammatory disturbances in a manner comparable to Group Sh. In accordance, transcriptomic analyses showed significant upregulation of intestinal barrier and stem cell markers in Group BF relative to Groups A and B. Taken together, parenteral FGF2 synergizes with BMT to confer potent mitigation against RIGS.
Collapse
|
44
|
Transplantation of Bone Marrow Mesenchymal Stem Cells Prevents Radiation-Induced Artery Injury by Suppressing Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5942916. [PMID: 29682160 PMCID: PMC5851295 DOI: 10.1155/2018/5942916] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/16/2017] [Accepted: 12/16/2017] [Indexed: 12/26/2022]
Abstract
The present study aims to explore the protective effect of human bone marrow mesenchymal stem cells (hBMSCs) on radiation-induced aortic injury (RIAI). hBMSCs were isolated and cultured from human bone marrow. Male C57/BL mice were irradiated with a dose of 18-Gy 6MV X-ray and randomly treated with either vehicle or hBMSCs through tail vein injection with a dose of 103 or 104 cells/g of body weight (low or high dose of hBMSCs) within 24 h. Aortic inflammation, oxidative stress, and vascular remodeling were assessed by immunohistochemical staining at 3, 7, 14, 28, and 84 days after irradiation. The results revealed irradiation caused aortic cell apoptosis and fibrotic remodeling indicated by aortic thickening, collagen accumulation, and increased expression of profibrotic cytokines (CTGF and TGF-β). Further investigation showed that irradiation resulted in elevated expression of inflammation-related molecules (TNF-α and ICAM-1) and oxidative stress indicators (4-HNE and 3-NT). Both of the low and high doses of hBMSCs alleviated the above irradiation-induced pathological changes and elevated the antioxidant enzyme expression of HO-1 and catalase in the aorta. The high dose even showed a better protective effect. In conclusion, hBMSCs provide significant protection against RIAI possibly through inhibition of aortic oxidative stress and inflammation. Therefore, hBMSCs can be used as a potential therapy to treat RIAI.
Collapse
|
45
|
Moussa L, Usunier B, Demarquay C, Benderitter M, Tamarat R, Sémont A, Mathieu N. Bowel Radiation Injury: Complexity of the Pathophysiology and Promises of Cell and Tissue Engineering. Cell Transplant 2018; 25:1723-1746. [PMID: 27197023 DOI: 10.3727/096368916x691664] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ionizing radiation is effective to treat malignant pelvic cancers, but the toxicity to surrounding healthy tissue remains a substantial limitation. Early and late side effects not only limit the escalation of the radiation dose to the tumor but may also be life-threatening in some patients. Numerous preclinical studies determined specific mechanisms induced after irradiation in different compartments of the intestine. This review outlines the complexity of the pathogenesis, highlighting the roles of the epithelial barrier in the vascular network, and the inflammatory microenvironment, which together lead to chronic fibrosis. Despite the large number of pharmacological molecules available, the studies presented in this review provide encouraging proof of concept regarding the use of mesenchymal stromal cell (MSC) therapy to treat radiation-induced intestinal damage. The therapeutic efficacy of MSCs has been demonstrated in animal models and in patients, but an enormous number of cells and multiple injections are needed due to their poor engraftment capacity. Moreover, it has been observed that although MSCs have pleiotropic effects, some intestinal compartments are less restored after a high dose of irradiation. Future research should seek to optimize the efficacy of the injected cells, particularly with regard to extending their life span in the irradiated tissue. Moreover, improving the host microenvironment, combining MSCs with other specific regenerative cells, or introducing new tissue engineering strategies could be tested as methods to treat the severe side effects of pelvic radiotherapy.
Collapse
Affiliation(s)
- Lara Moussa
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Benoît Usunier
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Christelle Demarquay
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Marc Benderitter
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Radia Tamarat
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Alexandra Sémont
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Noëlle Mathieu
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| |
Collapse
|
46
|
Han YM, Park JM, Choi YS, Jin H, Lee YS, Han NY, Lee H, Hahm KB. The efficacy of human placenta-derived mesenchymal stem cells on radiation enteropathy along with proteomic biomarkers predicting a favorable response. Stem Cell Res Ther 2017; 8:105. [PMID: 28464953 PMCID: PMC5414323 DOI: 10.1186/s13287-017-0559-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/22/2017] [Accepted: 04/08/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Radiation enteropathy is a common complication in patients with abdominopelvic cancer, but no treatment has yet been established. Stem cell therapy may be a viable therapeutic option because intestinal stem cells are highly vulnerable to ionizing radiation (IR) and stem cell loss explains its intractability to general treatment. Here, we investigated either prophylactic or therapeutic efficacy of human placenta-derived mesenchymal stem cells (hPDSCs) against radiation enteropathy and could identify biomarkers predicting a favorable response to stem cell therapy. METHODS We challenged a radiation-induced enteropathy model with hPDSCs. After sacrifice, we checked the gross anatomy of small intestine, histology gross, and analyzed that, accompanied with molecular changes implicated in this model. RESULTS hPDSCs significantly improved the outcome of mice induced with either radiation enteropathy or lethal radiation syndrome (P < 0.01). hPDSCs exerted inhibitory actions on inflammatory cytokines, the re-establishment of epithelium homeostasis was completed with increasing endogenous restorative processes as assessed with increased levels of proliferative markers in the hPDSCs group, and a significant inhibition of IR-induced apoptosis. The preservation of cells expressing lysozyme, and Musashi-1 were significantly increased in the hPDSC treatment group. Both preventive and therapeutic efficacies of hPDSCs were noted against IR-induced enteropathy. Label-free quantification was used to identify biomarkers which predict favorable responses after hPDSC treatment, and finally glutathione S-transferase-mu type, interleukin-10, and peroxiredoxin-2 were validated as proteomic biomarkers predicting a favorable response to hPDSCs in radiation enteropathy. CONCLUSIONS hPDSCs may be a useful prophylactic and therapeutic cell therapy for radiation enteropathy.
Collapse
Affiliation(s)
- Young-Min Han
- CHA Cancer Prevention Research Center, CHA University, CHA Bio Complex, 335 Pangyo-ro, Bundang-ku, Seongnam, Kyunggi-do, 463-712, South Korea
| | - Jong-Min Park
- CHA Cancer Prevention Research Center, CHA University, CHA Bio Complex, 335 Pangyo-ro, Bundang-ku, Seongnam, Kyunggi-do, 463-712, South Korea
| | - Yong Soo Choi
- Department of Applied Bioscience, CHA University, Seongnam, South Korea
| | - Hee Jin
- Graduated School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Yun-Sil Lee
- Graduated School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Na-Young Han
- Lee Gil Ya Cancer and Diabetes Institute, College of Pharmacy, Gachon University, Incheon, South Korea
| | - Hookeun Lee
- Lee Gil Ya Cancer and Diabetes Institute, College of Pharmacy, Gachon University, Incheon, South Korea
| | - Ki Baik Hahm
- CHA Cancer Prevention Research Center, CHA University, CHA Bio Complex, 335 Pangyo-ro, Bundang-ku, Seongnam, Kyunggi-do, 463-712, South Korea. .,Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam, South Korea.
| |
Collapse
|
47
|
Moussa L, Pattappa G, Doix B, Benselama SL, Demarquay C, Benderitter M, Sémont A, Tamarat R, Guicheux J, Weiss P, Réthoré G, Mathieu N. A biomaterial-assisted mesenchymal stromal cell therapy alleviates colonic radiation-induced damage. Biomaterials 2016; 115:40-52. [PMID: 27886554 DOI: 10.1016/j.biomaterials.2016.11.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 01/06/2023]
Abstract
Healthy tissues surrounding abdomino-pelvic tumours can be impaired by radiotherapy, leading to chronic gastrointestinal complications with substantial mortality. Adipose-derived Mesenchymal Stromal Cells (Ad-MSCs) represent a promising strategy to reduce intestinal lesions. However, systemic administration of Ad-MSCs results in low cell engraftment within the injured tissue. Biomaterials, able to encapsulate and withstand Ad-MSCs, can overcome these limitations. A silanized hydroxypropylmethyl cellulose (Si-HPMC) hydrogel has been designed and characterized for injectable cell delivery using the operative catheter of a colonoscope. We demonstrated that hydrogel loaded-Ad-MSCs were viable, able to secrete trophic factors and responsive to the inflammatory environment. In a rat model of radiation-induced severe colonic damage, Ad-MSC + Si-HPMC improve colonic epithelial structure and hyperpermeability compared with Ad-MSCs injected intravenously or locally. This therapeutic benefit is associated with greater engraftment of Si-HPMC-embedded Ad-MSCs in the irradiated colonic mucosa. Moreover, macrophage infiltration near the injection site was less pronounced when Ad-MSCs were embedded in the hydrogel. Si-HPMC induces modulation of chemoattractant secretion by Ad-MSCs that could contribute to the decrease in macrophage infiltrate. Si-HPMC is suitable for cell delivery by colonoscopy and induces protection of Ad-MSCs in the tissue potentiating their therapeutic effect and could be proposed to patients suffering from colon diseases.
Collapse
Affiliation(s)
- Lara Moussa
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Recherche en Régénération des tissus sains Irradiés (LR2I), 31 Avenue de la Division Leclerc, 92262 Fontenay-aux-Roses, France; INSERM, Institut National de la Santé et de la Recherche Médicale, UMRS 791, Laboratoire d'Ingénierie Ostéo-Articulaire et Dentaire (LIOAD), Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes, France; Université de Nantes, Laboratoire d'Ingénierie Ostéo-Articulaire et Dentaire (LIOAD), Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes, France
| | - Girish Pattappa
- INSERM, Institut National de la Santé et de la Recherche Médicale, UMRS 791, Laboratoire d'Ingénierie Ostéo-Articulaire et Dentaire (LIOAD), Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes, France; Université de Nantes, Laboratoire d'Ingénierie Ostéo-Articulaire et Dentaire (LIOAD), Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes, France
| | - Bastien Doix
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Recherche en Régénération des tissus sains Irradiés (LR2I), 31 Avenue de la Division Leclerc, 92262 Fontenay-aux-Roses, France
| | - Sarra-Louiza Benselama
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Recherche en Régénération des tissus sains Irradiés (LR2I), 31 Avenue de la Division Leclerc, 92262 Fontenay-aux-Roses, France
| | - Christelle Demarquay
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Recherche en Régénération des tissus sains Irradiés (LR2I), 31 Avenue de la Division Leclerc, 92262 Fontenay-aux-Roses, France
| | - Marc Benderitter
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Recherche en Régénération des tissus sains Irradiés (LR2I), 31 Avenue de la Division Leclerc, 92262 Fontenay-aux-Roses, France
| | - Alexandra Sémont
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Recherche en Régénération des tissus sains Irradiés (LR2I), 31 Avenue de la Division Leclerc, 92262 Fontenay-aux-Roses, France
| | - Radia Tamarat
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Recherche en Régénération des tissus sains Irradiés (LR2I), 31 Avenue de la Division Leclerc, 92262 Fontenay-aux-Roses, France
| | - Jérôme Guicheux
- INSERM, Institut National de la Santé et de la Recherche Médicale, UMRS 791, Laboratoire d'Ingénierie Ostéo-Articulaire et Dentaire (LIOAD), Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes, France; Université de Nantes, Laboratoire d'Ingénierie Ostéo-Articulaire et Dentaire (LIOAD), Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes, France; Centre Hospitalier Universitaire de Nantes, Pôle Hospitalo-Universitaire 4 (OTONN), 1 Place Alexis Ricordeau, 44042 Nantes, France
| | - Pierre Weiss
- INSERM, Institut National de la Santé et de la Recherche Médicale, UMRS 791, Laboratoire d'Ingénierie Ostéo-Articulaire et Dentaire (LIOAD), Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes, France; Université de Nantes, Laboratoire d'Ingénierie Ostéo-Articulaire et Dentaire (LIOAD), Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes, France; Centre Hospitalier Universitaire de Nantes, Pôle Hospitalo-Universitaire 4 (OTONN), 1 Place Alexis Ricordeau, 44042 Nantes, France
| | - Gildas Réthoré
- INSERM, Institut National de la Santé et de la Recherche Médicale, UMRS 791, Laboratoire d'Ingénierie Ostéo-Articulaire et Dentaire (LIOAD), Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes, France; Université de Nantes, Laboratoire d'Ingénierie Ostéo-Articulaire et Dentaire (LIOAD), Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes, France; Centre Hospitalier Universitaire de Nantes, Pôle Hospitalo-Universitaire 4 (OTONN), 1 Place Alexis Ricordeau, 44042 Nantes, France
| | - Noëlle Mathieu
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Recherche en Régénération des tissus sains Irradiés (LR2I), 31 Avenue de la Division Leclerc, 92262 Fontenay-aux-Roses, France.
| |
Collapse
|
48
|
Kulkarni S, Wang TC, Guha C. Stromal Progenitor Cells in Mitigation of Non-Hematopoietic Radiation Injuries. CURRENT PATHOBIOLOGY REPORTS 2016; 4:221-230. [PMID: 28462013 DOI: 10.1007/s40139-016-0114-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Therapeutic exposure to high doses of radiation can severely impair organ function due to ablation of stem cells. Normal tissue injury is a dose-limiting toxicity for radiation therapy (RT). Although advances in the delivery of high precision conformal RT has increased normal tissue sparing, mitigating and therapeutic strategies that could alleviate early and chronic radiation effects are urgently needed in order to deliver curative doses of RT, especially in abdominal, pelvic and thoracic malignancies. Radiation-induced gastrointestinal injury is also a major cause of lethality from accidental or intentional exposure to whole body irradiation in the case of nuclear accidents or terrorism. This review examines the therapeutic options for mitigation of non-hematopoietic radiation injuries. RECENT FINDINGS We have developed stem cell based therapies for the mitigation of acute radiation syndrome (ARS) and radiation-induced gastrointestinal syndrome (RIGS). This is a promising option because of the robustness of standardized isolation and transplantation of stromal cells protocols, and their ability to support and replace radiation-damaged stem cells and stem cell niche. Stromal progenitor cells (SPC) represent a unique multipotent and heterogeneous cell population with regenerative, immunosuppressive, anti-inflammatory, and wound healing properties. SPC are also known to secrete various key cytokines and growth factors such as platelet derived growth factors (PDGF), keratinocyte growth factor (KGF), R-spondins (Rspo), and may consequently exert their regenerative effects via paracrine function. Additionally, secretory vesicles such as exosomes or microparticles can potentially be a cell-free alternative replacing the cell transplant in some cases. SUMMARY This review highlights the beneficial effects of SPC on tissue regeneration with their ability to (a) target the irradiated tissues, (b) recruit host stromal cells, (c) regenerate endothelium and epithelium, (d) and secrete regenerative and immunomodulatory paracrine signals to control inflammation, ulceration, wound healing and fibrosis.
Collapse
Affiliation(s)
- Shilpa Kulkarni
- Department of Radiation Oncology, Albert Einstein College of Medicine, NY
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Irving Cancer Research Center, Columbia University, New York, NY 10032, USA
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, NY
| |
Collapse
|
49
|
Maria OM, Shalaby M, Syme A, Eliopoulos N, Muanza T. Adipose mesenchymal stromal cells minimize and repair radiation-induced oral mucositis. Cytotherapy 2016; 18:1129-45. [PMID: 27424150 DOI: 10.1016/j.jcyt.2016.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/18/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) have been used to minimize and repair radiation-induced normal tissue injury in the intestine, salivary gland, liver, skin, lungs and cardiac muscle. This study investigated the ability of adipose tissue-derived MSCs (aMSCs) to minimize and/or repair single dose radiation-induced oral mucositis (RIOM). METHODS Syngenic phenotypically and functionally characterized BALB/c mouse aMSCs were implanted intraperitoneally in a RIOM mouse model with different dosing protocols. Response was quantified macroscopically, microscopically and by using different histological and clinically relevant parameters. RESULTS Irradiation at 18 Gy generated a self-resolved single-dose RIOM BALB/c mouse model with 5.6 ± 0.3 days mean duration (95% confidence interval (CI) 4.233-7.1 days) and 100% survival rate. Intraperitoneal implantation of 5 doses of 2.5 million freshly cultured syngenic aMSCs significantly and reproducibly reduced RIOM ulcer duration to 1.6 ± 0.3 days (95% CI 0.0233-3.1 days, a 72% reduction in RIOM ulcer duration), ulcer size and ulcer floor epithelial height. The therapeutic benefits were significantly dependent on dose size and frequency, number of doses, and therapy onset time. aMSCs therapy significantly minimized the RIOM-related weight loss, accelerated the weight gain and improved irradiated animals' hydration and nutritional status. aMSCs therapy did not potentiate head and neck cancer in vitro. CONCLUSIONS Syngenic freshly cultured aMSCs significantly minimized and repaired radiation-induced oral mucositis with a 72% reduction in ulcer duration. aMSCs dose size and frequency, number of doses and therapy onset time are the main keys for optimized therapeutic outcome. aMSCs therapy did not stimulate Head and Neck cancer cell growth in-vitro.
Collapse
Affiliation(s)
- Osama Muhammad Maria
- Experimental Medicine Department, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Surgery Department, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Radiation Oncology Department, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | - Alasdair Syme
- Radiation Oncology Department, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Medical Physics Unit, Montreal, Quebec, Canada; Oncology Department, McGill University, Montreal, Quebec, Canada
| | - Nicoletta Eliopoulos
- Surgery Department, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Thierry Muanza
- Experimental Medicine Department, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Radiation Oncology Department, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Oncology Department, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
| |
Collapse
|
50
|
Li Q, Zhang C, Fu X. Will stem cells bring hope to pathological skin scar treatment? Cytotherapy 2016; 18:943-956. [PMID: 27293205 DOI: 10.1016/j.jcyt.2016.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/19/2016] [Accepted: 05/10/2016] [Indexed: 12/12/2022]
Abstract
Pathological skin scars, such as keloids, aesthetically and psychosocially affect patients. The quest for scar reduction and the increasing recognition of patient satisfaction has led to the continued exploration of scar treatment. Stem cells are a promising source for tissue repair and regeneration. The multi-potency and secretory functions of these cells could offer possible treatments for pathological scars and have been examined in recent studies. Here, we analyze the factors that influence the formation of pathological skin scars, summarize recent research on pathological scar treatment with stem cells and elaborate on the possible mechanisms of this treatment. Additionally, other effects of stem cell treatments are also presented while evaluating potential side effects of stem cell-based pathological scar treatments. Thus, this review may provide meaningful guidance in the clinic for scar treatments with stem cells.
Collapse
Affiliation(s)
- Qiankun Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
| | - Cuiping Zhang
- Stem Cell and Tissue Regeneration Laboratory, The First Affiliated Hospital, General Hospital of PLA, Beijing, China.
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China; Stem Cell and Tissue Regeneration Laboratory, The First Affiliated Hospital, General Hospital of PLA, Beijing, China.
| |
Collapse
|