1
|
Moghassemi S, Nikanfar S, Dadashzadeh A, Sousa MJ, Wan Y, Sun F, Colson A, De Windt S, Kwaspen L, Kanbar M, Sobhani K, Yang J, Vlieghe H, Li Y, Debiève F, Wyns C, Amorim CA. The revolutionary role of placental derivatives in biomedical research. Bioact Mater 2025; 49:456-485. [PMID: 40177109 PMCID: PMC11964572 DOI: 10.1016/j.bioactmat.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
The human placenta is a transient yet crucial organ that plays a key role in sustaining the relationship between the maternal and fetal organisms. Despite its historical classification as "biowaste," placental tissues have garnered increasing attention since the early 1900s for their significant medical potential, particularly in wound repair and surgical application. As ethical considerations regarding human placental derivatives have largely been assuaged in many countries, they have gained significant attention due to their versatile applications in various biomedical fields, such as biomedical engineering, regenerative medicine, and pharmacology. Moreover, there is a substantial trend toward various animal product substitutions in laboratory research with human placental derivatives, reflecting a broader commitment to advancing ethical and sustainable research methodologies. This review provides a comprehensive examination of the current applications of human placental derivatives, explores the mechanisms behind their therapeutic effects, and outlines the future potential and directions of this rapidly advancing field.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Saba Nikanfar
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maria João Sousa
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Yuting Wan
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Fengxuan Sun
- Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Arthur Colson
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Sven De Windt
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Lena Kwaspen
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Marc Kanbar
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Keyvan Sobhani
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jie Yang
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Yongqian Li
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Frédéric Debiève
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Christine Wyns
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
2
|
Barbosa IM, Rabelo ALG, Cardoso EJR, Couto DS. Placenta as a source of autologous graft in postnatal correction of myelomeningocele. Childs Nerv Syst 2024; 40:4115-4121. [PMID: 39343858 DOI: 10.1007/s00381-024-06635-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
OBJECTIVE This integrative literature review aims to discuss the benefits and limitations of postnatal surgery to correct myelomeningocele using the placenta as an autologous graft used on the lesion; in addition, it seeks to highlight the placental properties and the benefits and indications of surgery. METHODS For this production, the PRISMA criteria were used. PubMed was used as a database on October 19, 2023, and three searches were made, all using the words "myelomeningocele" and "surgery" varying only between "amnion," "placenta," and "chorion" as the third word. A total of 91 articles were found, and after analysis of duplicates and inclusion and exclusion criteria, only 11 articles were used in this systematic review. RESULTS Properties of the amniotic membrane were observed, such as anti-inflammatory, stimulation of native tissue growth, regenerating action by the secretion of neutrophil factors, promotion of epithelialization, inhibition of fibrosis and healing, and antibacterial effect. It is observed that there are benefits in using the placenta as an autograft and there are contradictions between the periods of surgery. CONCLUSION Due to its properties that accelerate healing, the absence of the possibility of rejection, and its easy access make this choice more frequently adopted. We are confident in saying that the effectiveness of the amniotic membrane is widely reliable.
Collapse
|
3
|
Athiel Y, Cariot L, Jouannic JM, Maillet C, Mauffré V, Adam C, Huet H, Larghero J, Nasone J, Guilbaud L. Safety and efficacy of human umbilical cord-derived mesenchymal stromal cells in fetal ovine myelomeningocele repair. Stem Cell Res Ther 2024; 15:444. [PMID: 39568021 PMCID: PMC11580231 DOI: 10.1186/s13287-024-03991-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/09/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND The aim of this study was to assess the safety and efficacy of human umbilical cord mesenchymal stromal cells (hUC-MSCs) patch used as an adjuvant therapy in fetal myelomeningocele (MMC) surgery in the ovine model. METHODS hUC-MSCs were isolated from human umbilical cords (UC) using the explant method, cultured and characterized. hUC-MSCs were then embedded in a fibrin patch. MMC were surgically created at 75 days of gestation and repaired at 89 days of gestation in sheep fetuses. Two groups were compared: the hUC-MSCs group in which MMC was repaired using a cellular patch and the control group, in which MMC was repaired using an acellular patch. Safety was evaluated by clinical ewes' monitoring during gestation, and clinical and histological examinations of lambs after birth. Efficacy was assessed by clinical neurological evaluation at 2 and 24 h of life using the sheep locomotor rating scale and by histological analyses. RESULTS Among the 17 operated lambs, nine were born alive: six in the hUC-MSCs group and three in the control group. Overall fetal loss was 47% (8/17) without differences between the two groups. No fever was reported in ewes. No tumors were detected in clinical and histological examinations in the lambs. At 24 h of life, mean Sheep Locomotor Rating score was higher in the hUC-MSCs group than in the control group: 15.0 versus 2.0 (p = 0.07). Histological analyses showed a higher large neurons density in the hUC-MSCs group in comparison with the control group: 9.9 versus 6.3/mm2 of gray matter (p = 0.04). Lambs in the hUC-MSCs group had lower fibrosis around the spinal cord and at the level of the MMC scar: 70.9 versus 253.7 μm (p = 0.10) and 691.3 versus 1684.4 μm (p = 0,18), respectively. CONCLUSIONS Ovine fetal repair of MMC using human UC-MSCs seems to be an effective and safe procedure.
Collapse
Affiliation(s)
- Yoann Athiel
- Service de médecine foetale, DMU ORIGYN, APHP, Hôpital Trousseau, Sorbonne Université, Paris, France
- Unité de Thérapie Cellulaire, Université Paris Cité, AP-HP, Hôpital Saint-Louis, U976 et CIC de Biothérapies, INSERM, Paris, France
| | - Laura Cariot
- Service de médecine foetale, DMU ORIGYN, APHP, Hôpital Trousseau, Sorbonne Université, Paris, France
- Unité de Thérapie Cellulaire, Université Paris Cité, AP-HP, Hôpital Saint-Louis, U976 et CIC de Biothérapies, INSERM, Paris, France
| | - Jean-Marie Jouannic
- Service de médecine foetale, DMU ORIGYN, APHP, Hôpital Trousseau, Sorbonne Université, Paris, France
- Working Group Spina Bifida and Other Dysraphisms, European Reference Network ITHACA, Paris, France
| | - Corentin Maillet
- Service de médecine foetale, DMU ORIGYN, APHP, Hôpital Trousseau, Sorbonne Université, Paris, France
- Unité de Thérapie Cellulaire, Université Paris Cité, AP-HP, Hôpital Saint-Louis, U976 et CIC de Biothérapies, INSERM, Paris, France
| | - Vincent Mauffré
- École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Clovis Adam
- Service d'anatomopathologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Hélène Huet
- École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Jérôme Larghero
- Unité de Thérapie Cellulaire, Université Paris Cité, AP-HP, Hôpital Saint-Louis, U976 et CIC de Biothérapies, INSERM, Paris, France
| | - Justine Nasone
- Unité de Thérapie Cellulaire, Université Paris Cité, AP-HP, Hôpital Saint-Louis, U976 et CIC de Biothérapies, INSERM, Paris, France
| | - Lucie Guilbaud
- Service de médecine foetale, DMU ORIGYN, APHP, Hôpital Trousseau, Sorbonne Université, Paris, France.
- Unité de Thérapie Cellulaire, Université Paris Cité, AP-HP, Hôpital Saint-Louis, U976 et CIC de Biothérapies, INSERM, Paris, France.
- Working Group Spina Bifida and Other Dysraphisms, European Reference Network ITHACA, Paris, France.
| |
Collapse
|
4
|
Eivazi Zadeh Z, Nour S, Kianersi S, Jonidi Shariatzadeh F, Williams RJ, Nisbet DR, Bruggeman KF. Mining human clinical waste as a rich source of stem cells for neural regeneration. iScience 2024; 27:110307. [PMID: 39156636 PMCID: PMC11326931 DOI: 10.1016/j.isci.2024.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Neural diseases are challenging to treat and are regarded as one of the major causes of disability and morbidity in the world. Stem cells can provide a solution, by offering a mechanism to replace damaged circuitry. However, obtaining sufficient cell sources for neural regeneration remains a significant challenge. In recent years, waste-derived stem(-like) cells (WDS-lCs) extracted from both prenatal and adult clinical waste tissues/products, have gained increasing attention for application in neural tissue repair and remodeling. This often-overlooked pool of cells possesses favorable characteristics; including self-renewal, neural differentiation, secretion of neurogenic factors, cost-effectiveness, and low ethical concerns. Here, we offer a perspective regarding the biological properties, extraction protocols, and preclinical and clinical treatments where prenatal and adult WDS-lCs have been utilized for cell replacement therapy in neural applications, and the challenges involved in optimizing these approaches toward patient led therapies.
Collapse
Affiliation(s)
- Zahra Eivazi Zadeh
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Shirin Nour
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- Polymer Science Group, Department of Chemical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sogol Kianersi
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences, University of Galway, Galway, Ireland
| | | | - Richard J. Williams
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- iMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - David R. Nisbet
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU College of Health & Medicine, Canberra, ACT, Australia
- Research School of Chemistry, ANU College of Science, Canberra, ACT, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia
- Founder and Scientific Advisory of Nano Status, Building 137, Sullivans Creek Rd, ANU, Acton, Canberra, ACT, Australia
| | - Kiara F. Bruggeman
- Laboratory of Advanced Biomaterials Research, School of Engineering, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
5
|
Dallatana A, Cremonesi L, Pezzini F, Fontana G, Innamorati G, Giacomello L. The Placenta as a Source of Human Material for Neuronal Repair. Biomedicines 2024; 12:1567. [PMID: 39062139 PMCID: PMC11275125 DOI: 10.3390/biomedicines12071567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Stem cell therapy has the potential to meet unsolved problems in tissue repair and regeneration, particularly in the neural tissues. However, an optimal source has not yet been found. Growing evidence indicates that positive effects produced in vivo by mesenchymal stem cells (MSCs) can be due not only to their plasticity but also to secreted molecules including extracellular vesicles (EVs) and the extracellular matrix (ECM). Trophic effects produced by MSCs may reveal the key to developing effective tissue-repair strategies, including approaches based on brain implants or other implantable neural electrodes. In this sense, MSCs will become increasingly valuable and needed in the future. The placenta is a temporary organ devoted to protecting and supporting the fetus. At the same time, the placenta represents an abundant and extremely convenient source of MSCs. Nonetheless, placenta-derived MSCs (P-MSCs) remain understudied as compared to MSCs isolated from other sources. This review outlines the limited literature describing the neuroregenerative effects of P-MSC-derived biomaterials and advocates for exploiting the potential of this untapped source for human regenerative therapies.
Collapse
Affiliation(s)
| | | | | | | | - Giulio Innamorati
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy; (A.D.); (L.C.); (F.P.); (G.F.); (L.G.)
| | | |
Collapse
|
6
|
Farmer DL. The Joy of Discovery: The Birth of Fetal Surgery and the Path to In Utero Stem Cell Therapy. Ann Surg 2023; 278:301-309. [PMID: 37325918 DOI: 10.1097/sla.0000000000005967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
7
|
Lee SY, Du Y, Hassan AES, Brown E, Saadai P, Hirose S, Wang A, Farmer DL. Evolution and Variations of the Ovine Model of Spina Bifida. Fetal Diagn Ther 2023; 50:491-500. [PMID: 37393899 PMCID: PMC10757987 DOI: 10.1159/000531750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023]
Abstract
Spina bifida is the most common congenital anomaly of the central nervous system and the first non-fatal fetal lesions to be addressed by fetal intervention. While research in spina bifida has been performed in rodent, nonhuman primate, and canine models, sheep have been a model organism for the disease. This review summarizes the history of development of the ovine model of spina bifida, previous applications, and translation into clinical studies. Initially used by Meuli et al. [Nat Med. 1995;1(4):342-7], fetal myelomeningocele defect creation and in utero repair demonstrated motor function preservation. The addition of myelotomy in this model can reproduce hindbrain herniation malformations, which is the leading cause of mortality and morbidity in humans. Since inception, the ovine models have been validated numerous times as the ideal large animal model for fetal repair, with both locomotive scoring and spina bifida defect scoring adding to the rigor of this model. The ovine model has been used to study different methods of myelomeningocele defect repair, the application of various tissue engineering techniques for neuroprotection and bowel and bladder function. The results of these large animal studies have been translated into human clinical trials including Management of Meningocele Study (MOMS) trial that established current standard of care for prenatal repair of spina bifida defects, and the ongoing trials including the Cellular Therapy for In Utero Repair of Myelomeningocele (CuRe) trial using a stem cell patch for repair. The advancement of these life savings and life-altering therapies began in sheep models, and this notable model continues to be used to further the field including current work with stem cell therapy.
Collapse
Affiliation(s)
- Su Yeon Lee
- Division of Pediatric General, Thoracic and Fetal Surgery, University of California Davis Medical Center, Sacramento, California, USA,
- Center for Surgical Bioengineering, University of California Davis, Sacramento, California, USA,
| | - Yimeng Du
- University of California Davis School of Medicine, Sacramento, California, USA
| | - Abd-Elrahman Said Hassan
- Division of Pediatric General, Thoracic and Fetal Surgery, University of California Davis Medical Center, Sacramento, California, USA
- Center for Surgical Bioengineering, University of California Davis, Sacramento, California, USA
| | - Erin Brown
- Division of Pediatric General, Thoracic and Fetal Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Payam Saadai
- Division of Pediatric General, Thoracic and Fetal Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Shinjiro Hirose
- Division of Pediatric General, Thoracic and Fetal Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Aijun Wang
- Center for Surgical Bioengineering, University of California Davis, Sacramento, California, USA
| | - Diana L Farmer
- Division of Pediatric General, Thoracic and Fetal Surgery, University of California Davis Medical Center, Sacramento, California, USA
- Center for Surgical Bioengineering, University of California Davis, Sacramento, California, USA
| |
Collapse
|
8
|
Damianos A, Sammour I. Barriers in translating stem cell therapies for neonatal diseases. Semin Perinatol 2023; 47:151731. [PMID: 36990922 DOI: 10.1016/j.semperi.2023.151731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Over the last 20 years, stem cells of varying origin and their associated secretome have been investigated as a therapeutic option for a myriad of neonatal models of disease, with very promising results. Despite the devastating nature of some of these disorders, translation of the preclinical evidence to the bedside has been slow. In this review, we explore the existing clinical evidence for stem cell therapies in neonates, highlight the barriers faced by researchers and suggest potential solutions to move the field forward.
Collapse
Affiliation(s)
- Andreas Damianos
- Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio
| | - Ibrahim Sammour
- Riley Hospital for Children, Indiana University, Indianapolis, USA.
| |
Collapse
|
9
|
Hao D, Liu R, Fernandez TG, Pivetti C, Jackson JE, Kulubya ES, Jiang HJ, Ju HY, Liu WL, Panitch A, Lam KS, Leach JK, Farmer DL, Wang A. A bioactive material with dual integrin-targeting ligands regulates specific endogenous cell adhesion and promotes vascularized bone regeneration in adult and fetal bone defects. Bioact Mater 2023; 20:179-193. [PMID: 35663336 PMCID: PMC9160290 DOI: 10.1016/j.bioactmat.2022.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 12/18/2022] Open
Abstract
Significant progress has been made in designing bone materials capable of directing endogenous cells to promote vascularized bone regeneration. However, current strategies lack regulation of the specific endogenous cell populations for vascularized bone regeneration, thus leading to adverse tissue formation and decreased regenerative efficiency. Here, we engineered a biomaterial to regulate endogenous cell adhesion and promote vascularized bone regeneration. The biomaterial works by presenting two synthetic ligands, LLP2A and LXW7, explicitly targeting integrins α4β1 and αvβ3, respectively, expressed on the surfaces of the cells related to bone formation and vascularization, such as mesenchymal stem cells (MSCs), osteoblasts, endothelial progenitor cells (EPCs), and endothelial cells (ECs). In vitro, the LLP2A/LXW7 modified biomaterial improved the adhesion of MSCs, osteoblasts, EPCs, and ECs via integrin α4β1 and αvβ3, respectively. In an adult rat calvarial bone defect model, the LLP2A/LXW7 modified biomaterial enhanced bone formation and vascularization by synergistically regulating endogenous cells with osteogenic and angiogenic potentials, such as DLX5+ cells, osteocalcin+ cells, CD34+/CD45- cells and CD31+ cells. In a fetal sheep spinal bone defect model, the LLP2A/LXW7 modified biomaterial augmented bone formation and vascularization without any adverse effects. This innovative biomaterial offers an off-the-shelf, easy-to-use, and biologically safe product suitable for vascularized bone regeneration in both fetal and adult disease environments. Two integrin-binding ligands for constructing vascularized bone biomaterial. Extracellular matrix (ECM)-mimicking collagen-based biomaterial with specific integrin binding sites for cell adhesion. Biomaterial regulates adhesion of endogenous stem cells with osteogenic and angiogenic potentials. Biomaterial promotes vascularized bone formation in adult and fetal bone defects without safety issues. An easy-to-make and off-the-shelf biomaterial for treatment of clinical bone diseases.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Tomas Gonzalez Fernandez
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States
| | - Christopher Pivetti
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Jordan Elizabeth Jackson
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Edwin Samuel Kulubya
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Hong-Jiang Jiang
- Wendeng Orthopaedic Hospital, No. 1 Fengshan Road, Wendeng, 264400, Shandong, China
| | - Hai-Yang Ju
- Wendeng Orthopaedic Hospital, No. 1 Fengshan Road, Wendeng, 264400, Shandong, China
| | - Wen-Liang Liu
- Wendeng Orthopaedic Hospital, No. 1 Fengshan Road, Wendeng, 264400, Shandong, China
| | - Alyssa Panitch
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - J. Kent Leach
- Department of Orthopaedic Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Diana L. Farmer
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States
- Corresponding author. Center for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California, Davis, 4625 2nd Ave., Research II, Suite 3005, Sacramento, CA, 95817, USA.
| |
Collapse
|
10
|
Lee SY, Papanna R, Farmer D, Tsao K. Fetal Repair of Neural Tube Defects. Clin Perinatol 2022; 49:835-848. [PMID: 36328602 DOI: 10.1016/j.clp.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Myelomeningocele is the most common congenital neurologic defect, and the only nonlethal disease addressed by fetal surgery. A randomized control trial has established amelioration of the Arnold-Chiari II malformation, reduced ventriculoperitoneal shunt rate, and improvement in distal neurologic function in patients that receive in utero repair. Long-term follow-up of these school-age children demonstrates the persistence of these effects. The use of stem cells in fetal repair is being investigated to further improve distal motor function.
Collapse
Affiliation(s)
- Su Yeon Lee
- Department of Surgery, Division of Pediatric, Thoracic and Fetal Surgery, University of California Davis Medical Center, 2335 Stockton Boulevard, Room 5107, Sacramento, CA 95817, USA.
| | - Ramesha Papanna
- Department of Obstetrics, Gynecology and Reproductive Sciences, UT Health Science Center at Houston, 6410 Fannin Street, Suite 210, Houston, TX 77030, USA
| | - Diana Farmer
- Department of Surgery, University of California Davis Medical Center, 2335 Stockton Boulevard, Sacramento, CA 95817, USA
| | - KuoJen Tsao
- Department of Pediatric Surgery, UT Health Science Center at Houston, 6410 Fannin Street, Suite 950, Houston, TX 77030, USA
| |
Collapse
|
11
|
Berkowitz CL, Luks VL, Puc M, Peranteau WH. Molecular and Cellular In Utero Therapy. Clin Perinatol 2022; 49:811-820. [PMID: 36328600 DOI: 10.1016/j.clp.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Significant advances in maternal-fetal medicine and gene sequencing technology have fostered a new frontier of in utero molecular and cellular therapeutics, including gene editing, enzyme replacement therapy, and stem cell transplantation to treat single-gene disorders with limited postnatal treatment strategies. In utero therapies take advantage of unique developmental properties of the fetus to allow for the correction of monogenic disorders before irreversible disease pathology develops. While early preclinical studies in animal models are encouraging, more studies are needed to further evaluate their safety and efficacy prior to widespread clinical use.
Collapse
Affiliation(s)
- Cara L Berkowitz
- Division of Pediatric General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Valerie L Luks
- Division of Pediatric General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Marcelina Puc
- Division of Pediatric General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - William H Peranteau
- Division of Pediatric General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Athiel Y, Nasone J, Arakelian L, Faivre L, Dugas A, Jouannic JM, Larghero J, Guilbaud L. Biodistribution of allogenic umbilical cord-derived mesenchymal stromal cells after fetal repair of myelomeningocele in an ovine model. Stem Cell Res Ther 2022; 13:300. [PMID: 35841029 PMCID: PMC9284777 DOI: 10.1186/s13287-022-02991-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background Myelomeningocele (MMC) is a spinal cord congenital defect that leads to paraplegia, sphincter disorders and potential neurocognitive disabilities. Prenatal surgery of MMC provides a significant benefit compared to surgery at birth. Mesenchymal stromal cell (MSC) therapy as an adjuvant treatment for prenatal surgery showed promising results in animal experiments which could be considered for clinical use in human fetuses. Despite numerous reassuring studies on the safety of MSCs administration in humans, no study focused on MSCs biodistribution after a local MSCs graft on the fetal spinal cord. Aim The purpose of our study was to assess the biodistribution of umbilical cord-derived mesenchymal stromal cells (UC-MSCs) at birth in lambs who had a prenatal myelomeningocele repair using a fibrin patch seeded with allogenic UC-MSCs. Methods After isolation, UC-MSCs were tagged using a green fluorescent protein (GFP)-containing lentiviral vector. MMC defects were surgically created at 75 days of gestation and repaired 15 days later using UC-MSCs patch. Lambs were delivered at 142 days and sacrificed. DNA extraction was performed among biopsies of the different organs and q-PCR analysis was used to detect the expression of GFP (GFP DNA coding sequence). Results In our 6 surviving lambs grafted with UC-MSCs, GFP lentivirus genomic DNA was not detected in the organs. Conclusion These reassuring data will support translational application in humans, especially since the first human clinical trial using mesenchymal stromal cells for in-utero treatment of MMC started recently in U.S.A.
Collapse
Affiliation(s)
- Yoann Athiel
- Stem Cell Biotechnologies, U976 et Centre d'Investigation Clinique en Biothérapies CIC-BT CBT501, INSERM, Paris, France.,Department of Fetal Medicine, APHP, Trousseau Hospital, DMU ORIGYNE, Sorbonne University, Paris, France
| | - Justine Nasone
- Stem Cell Biotechnologies, U976 et Centre d'Investigation Clinique en Biothérapies CIC-BT CBT501, INSERM, Paris, France.,Unité de Thérapie Cellulaire et Centre MEARY de Thérapie Cellulaire et Génique, Saint Louis Hospital, Université Paris Cité, Paris, France
| | - Lousineh Arakelian
- Stem Cell Biotechnologies, U976 et Centre d'Investigation Clinique en Biothérapies CIC-BT CBT501, INSERM, Paris, France
| | - Lionel Faivre
- Stem Cell Biotechnologies, U976 et Centre d'Investigation Clinique en Biothérapies CIC-BT CBT501, INSERM, Paris, France.,Unité de Thérapie Cellulaire et Centre MEARY de Thérapie Cellulaire et Génique, Saint Louis Hospital, Université Paris Cité, Paris, France
| | - Anaïs Dugas
- Stem Cell Biotechnologies, U976 et Centre d'Investigation Clinique en Biothérapies CIC-BT CBT501, INSERM, Paris, France.,Department of Fetal Medicine, APHP, Trousseau Hospital, DMU ORIGYNE, Sorbonne University, Paris, France
| | - Jean-Marie Jouannic
- Stem Cell Biotechnologies, U976 et Centre d'Investigation Clinique en Biothérapies CIC-BT CBT501, INSERM, Paris, France.,Department of Fetal Medicine, APHP, Trousseau Hospital, DMU ORIGYNE, Sorbonne University, Paris, France
| | - Jérôme Larghero
- Stem Cell Biotechnologies, U976 et Centre d'Investigation Clinique en Biothérapies CIC-BT CBT501, INSERM, Paris, France.,Unité de Thérapie Cellulaire et Centre MEARY de Thérapie Cellulaire et Génique, Saint Louis Hospital, Université Paris Cité, Paris, France
| | - Lucie Guilbaud
- Stem Cell Biotechnologies, U976 et Centre d'Investigation Clinique en Biothérapies CIC-BT CBT501, INSERM, Paris, France. .,Department of Fetal Medicine, APHP, Trousseau Hospital, DMU ORIGYNE, Sorbonne University, Paris, France.
| |
Collapse
|
13
|
Donoho DA, Syed HR. Fetal Neurosurgical Interventions for Spinal Malformations, Cerebral Malformations, and Hydrocephalus: Past, Present, and Future. Semin Pediatr Neurol 2022; 42:100964. [PMID: 35868731 DOI: 10.1016/j.spen.2022.100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022]
Abstract
In this article we review the last 40 years of progress in fetal neurosurgery with special attention to current controversies and upcoming challenges in the field. We surveyed the published literature describing prenatal interventions for spinal malformations, cerebral malformations, and hydrocephalus. Even the most mature treatment paradigm, intrauterine repair of myelomeningocele, stands to benefit from advances in imaging and therapeutic modalities to improve patient selection, refine surgical techniques, validate novel biologic therapies, and streamline postoperative patient care. Other conditions under evaluation include congenital cerebral malformations, such as encephalocele, cerebrovascular malformations, and hydrocephalus. We describe cross-cutting needs for advances in fetal neuroimaging, basic disease models and new therapeutic devices to support further progress across various neurosurgical conditions affecting patients during the fetal period.
Collapse
Affiliation(s)
- Daniel A Donoho
- Division of Neurosurgery, Center for Neuroscience, Children's National Hospital, Washington, DC; Sheikh Zayed Institute for Pediatric Surgical Innovation, Arlington, VA; Division of Neurosurgery, Department of Surgery, George Washington University, Washington, DC
| | - Hasan R Syed
- Division of Neurosurgery, Center for Neuroscience, Children's National Hospital, Washington, DC; Sheikh Zayed Institute for Pediatric Surgical Innovation, Arlington, VA; Division of Neurosurgery, Department of Surgery, George Washington University, Washington, DC.
| |
Collapse
|
14
|
Spina Bifida: A Review of the Genetics, Pathophysiology and Emerging Cellular Therapies. J Dev Biol 2022; 10:jdb10020022. [PMID: 35735913 PMCID: PMC9224552 DOI: 10.3390/jdb10020022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 12/11/2022] Open
Abstract
Spina bifida is the most common congenital defect of the central nervous system which can portend lifelong disability to those afflicted. While the complete underpinnings of this disease are yet to be fully understood, there have been great advances in the genetic and molecular underpinnings of this disease. Moreover, the treatment for spina bifida has made great advancements, from surgical closure of the defect after birth to the now state-of-the-art intrauterine repair. This review will touch upon the genetics, embryology, and pathophysiology and conclude with a discussion on current therapy, as well as the first FDA-approved clinical trial utilizing stem cells as treatment for spina bifida.
Collapse
|
15
|
Dural substitutes for spina bifida repair: past, present, and future. Childs Nerv Syst 2022; 38:873-891. [PMID: 35378616 PMCID: PMC9968456 DOI: 10.1007/s00381-022-05486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/28/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE The use of materials to facilitate dural closure during spina bifida (SB) repair has been a highly studied aspect of the surgical procedure. The overall objective of this review is to present key findings pertaining to the success of the materials used in clinical and pre-clinical studies. Additionally, this review aims to aid fetal surgeons as they prepare for open or fetoscopic prenatal SB repairs. METHODS Relevant publications centered on dural substitutes used during SB repair were identified. Important information from each article was extracted including year of publication, material class and sub-class, animal model used in pre-clinical studies, whether the repair was conducted pre-or postnatally, the bioactive agent delivered, and key findings from the study. RESULTS Out of 1,121 publications, 71 were selected for full review. We identified the investigation of 33 different patches where 20 and 63 publications studied synthetic and natural materials, respectively. From this library, 43.6% focused on clinical results, 36.6% focused on pre-clinical results, and 19.8% focused on tissue engineering approaches. Overall, the use of patches, irrespective of material, have shown to successfully protect the spinal cord and most have shown promising survival and neurological outcomes. CONCLUSION While most have shown significant promise as a therapeutic strategy in both clinical and pre-clinical studies, none of the patches developed so far are deemed perfect for SB repair. Therefore, there is an opportunity to develop new materials and strategies that aim to overcome these challenges and further improve the outcomes of SB patients.
Collapse
|
16
|
Stokes SC, Kabagambe SK, Lee CJ, Wang A, Farmer DL, Kumar P. Impact of Gestational Age on Neuroprotective Function of Placenta-Derived Mesenchymal Stromal Cells. J Surg Res 2022; 273:201-210. [PMID: 35093836 PMCID: PMC9396930 DOI: 10.1016/j.jss.2021.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/29/2021] [Accepted: 12/15/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The Management of Myelomeningocele Study demonstrated that in utero repair of myelomeningocele improved motor outcomes compared with postnatal repair. However, even after in utero repair, many children were still unable to walk. We have previously demonstrated that augmentation of in utero repair with early-gestation placental mesenchymal stromal cells (PMSCs) improves motor outcomes in lambs compared with standard in utero repair. The neuroprotective potential of PMSCs of all gestational ages has not been evaluated previously. METHODS PMSCs were isolated from discarded first trimester (n = 3), second trimester (n = 3), and term (n = 3) placentas by explant culture. Cytokine array analysis was performed. Secretion of two neurotrophic factors, brain-derived neurotrophic factor and hepatocyte growth factor, was evaluated by enzyme-linked immunosorbent assay. An in vitro neuroprotective assay demonstrated to be associated with in vivo function was performed. RESULTS All cell lines secreted immunomodulatory and neuroprotective cytokines and secreted the neurotrophic factors evaluated. Increased neuroprotective capabilities relative to no PMSCs were demonstrated in two of the three first trimester cell lines (5.61, 4.96-6.85, P < 0.0001 and 2.67, 1.67-4.12, P = 0.0046), two of the three second trimester cell lines (2.82, 2.45-3.43, P = 0.0004 and 3.25, 2.62-3.93, P < 0.0001), and two of the three term cell lines (2.72, 2.32-2.92, P = 0.0033 and 2.57, 1.41-4.42, P = 0.0055). CONCLUSIONS We demonstrated variation in neuroprotective function between cell lines and found that some cell lines from each trimester had neuroprotective properties. This potentially expands the donor pool of PMSCs for clinical use. Further in-depth studies are needed to understand potential subtle differences in cell function at different gestational ages.
Collapse
|
17
|
Theodorou CM, Jackson JE, Stokes SC, Pivetti CD, Kumar P, Paxton ZJ, Matsukuma KE, Yamashiro KJ, Reynaga L, Hyllen AA, de Lorimier AJ, Hassan M, Wang A, Farmer DL, Saadai P. Early investigations into improving bowel and bladder function in fetal ovine myelomeningocele repair. J Pediatr Surg 2022; 57:941-948. [PMID: 35093254 PMCID: PMC10372624 DOI: 10.1016/j.jpedsurg.2021.12.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Fetal myelomeningocele (MMC) repair improves lower extremity motor function. We have previously demonstrated that augmentation of fetal MMC repair with placental mesenchymal stromal cells (PMSCs) seeded on extracellular matrix (PMSC-ECM) further improves motor function in the ovine model. However, little progress has been made in improving bowel and bladder function, with many patients suffering from neurogenic bowel and bladder. We hypothesized that fetal MMC repair with PMSC-ECM would also improve bowel and bladder function. METHODS MMC defects were surgically created in twelve ovine fetuses at median gestational age (GA) 73 days, followed by defect repair at GA101 with PMSC-ECM. Fetuses were delivered at GA141. Primary bladder function outcomes were voiding posture and void volumes. Primary bowel function outcome was anorectal manometry findings including resting anal pressure and presence of rectoanal inhibitory reflex (RAIR). Secondary outcomes were anorectal and bladder detrusor muscle thickness. PMSC-ECM lambs were compared to normal lambs (n = 3). RESULTS Eighty percent of PMSC-ECM lambs displayed normal voiding posture compared to 100% of normal lambs (p = 1). Void volumes were similar (PMSC-ECM 6.1 ml/kg vs. normal 8.8 ml/kg, p = 0.4). Resting mean anal pressures were similar between cohorts (27.0 mmHg PMSC-ECM vs. normal 23.5 mmHg, p = 0.57). RAIR was present in 3/5 PMSC-ECM lambs that underwent anorectal manometry and all normal lambs (p = 0.46). Thicknesses of anal sphincter complex, rectal wall muscles, and bladder detrusor muscles were similar between cohorts. CONCLUSION Ovine fetal MMC repair augmented with PMSC-ECM results in near-normal bowel and bladder function. Further work is needed to evaluate these outcomes in human patients.
Collapse
Affiliation(s)
- Christina M Theodorou
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA, United States.
| | - Jordan E Jackson
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA, United States
| | - Sarah C Stokes
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA, United States
| | - Christopher D Pivetti
- Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA, United States
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA, United States
| | - Zachary J Paxton
- Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA, United States
| | - Karen E Matsukuma
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, United States
| | - Kaeli J Yamashiro
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA, United States
| | - Lizette Reynaga
- Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA, United States
| | - Alicia A Hyllen
- Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA, United States
| | - Arthur J de Lorimier
- Department of Pediatrics, Division of Gastroenterology. University of California Davis Medical Center. Sacramento, CA, United States
| | - Maheen Hassan
- Department of Pediatrics, Division of Gastroenterology. University of California Davis Medical Center. Sacramento, CA, United States
| | - Aijun Wang
- Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA, United States
| | - Diana L Farmer
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA, United States
| | - Payam Saadai
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA, United States
| |
Collapse
|
18
|
Theodorou CM, Stokes SC, Jackson JE, Pivetti CD, Kumar P, Yamashiro KJ, Paxton ZJ, Reynaga L, Hyllen AA, Wang A, Farmer DL. Efficacy of clinical-grade human placental mesenchymal stromal cells in fetal ovine myelomeningocele repair. J Pediatr Surg 2022; 57:753-758. [PMID: 34217509 PMCID: PMC9365331 DOI: 10.1016/j.jpedsurg.2021.05.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/11/2021] [Accepted: 05/31/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND While fetal repair of myelomeningocele (MMC) revolutionized management, many children are still unable to walk independently. Preclinical studies demonstrated that research-grade placental mesenchymal stromal cells (PMSCs) prevent paralysis in fetal ovine MMC, however this had not been replicated with clinical-grade cells that could be used in an upcoming human clinical trial. We tested clinical-grade PMSCs seeded on an extracellular matrix (PMSC-ECM) in the gold standard fetal ovine model of MMC. METHODS Thirty-five ovine fetuses underwent MMC defect creation at a median of 76 days gestational age, and defect repair at 101 days gestational age with application of clinical-grade PMSC-ECM (3 × 105 cells/cm2, n = 12 fetuses), research-grade PMSC-ECM (3 × 105 cells/cm2, three cell lines with n = 6 (Group 1), n = 6 (Group 2), and n = 3 (Group 3) fetuses, respectively) or ECM without PMSCs (n = 8 fetuses). Three normal lambs underwent no surgical interventions. The primary outcome was motor function measured by the Sheep Locomotor Rating scale (SLR, range 0: complete paralysis to 15: normal ambulation) at 24 h of life. Correlation of lumbar spine large neuron density with SLR was evaluated. RESULTS Clinical-grade PMSC-ECM lambs had significantly better motor function than ECM-only lambs (SLR 14.5 vs. 6.5, p = 0.04) and were similar to normal lambs (14.5 vs. 15, p = 0.2) and research-grade PMSC-ECM lambs (Group 1: 14.5 vs. 15, p = 0.63; Group 2: 14.5 vs. 14.5, p = 0.86; Group 3: 14.5 vs. 15, p = 0.50). Lumbar spine large neuron density was strongly correlated with motor function (r = 0.753, p<0.001). CONCLUSIONS Clinical-grade placental mesenchymal stromal cells seeded on an extracellular matrix rescued ambulation in a fetal ovine myelomeningocele model. Lumbar spine large neuron density correlated with motor function, suggesting a neuroprotective effect of the PMSC-ECM in prevention of paralysis. A first-in-human clinical trial of PMSCs in human fetal myelomeningocele repair is underway.
Collapse
Affiliation(s)
- Christina M. Theodorou
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA,Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA,Corresponding author information: Christina Theodorou, Department of Surgery, University of California Davis Medical Center, 2335 Stockton Blvd, Room 5107, Sacramento, CA 95817, , Phone: 916-453-2080
| | - Sarah C. Stokes
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA,Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| | - Jordan E. Jackson
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA,Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| | - Christopher D. Pivetti
- Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| | - Kaeli J. Yamashiro
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA,Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| | - Zachary J. Paxton
- Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| | - Lizette Reynaga
- Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| | - Alicia A. Hyllen
- Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| | - Aijun Wang
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA,Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| | - Diana L. Farmer
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA,Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| |
Collapse
|
19
|
He S, Walimbe T, Chen H, Gao K, Kumar P, Wei Y, Hao D, Liu R, Farmer DL, Lam KS, Zhou J, Panitch A, Wang A. Bioactive extracellular matrix scaffolds engineered with proangiogenic proteoglycan mimetics and loaded with endothelial progenitor cells promote neovascularization and diabetic wound healing. Bioact Mater 2022; 10:460-473. [PMID: 34901560 PMCID: PMC8636679 DOI: 10.1016/j.bioactmat.2021.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetic ischemic wound treatment remains a critical clinical challenge. Neovascularization plays a significant role in wound healing during all stages of the tissue repair process. Strategies that enhance angiogenesis and neovascularization and improve ischemic pathology may promote the healing of poor wounds, particularly diabetic wounds in highly ischemic conditions. We previously identified a cyclic peptide LXW7 that specifically binds to integrin αvβ3 on endothelial progenitor cells (EPCs) and endothelial cells (ECs), activates vascular endothelial growth factor (VEGF) receptors, and promotes EC growth and maturation. In this study, we designed and synthesized a multi-functional pro-angiogenic molecule by grafting LXW7 and collagen-binding peptides (SILY) to a dermatan sulfate (DS) glycosaminoglycan backbone, named LXW7-DS-SILY, and further employed this multi-functional molecule to functionalize collagen-based extracellular matrix (ECM) scaffolds. We confirmed that LXW7-DS-SILY modification significantly promoted EPC attachment and growth on the ECM scaffolds in vitro and supported EPC survival in vivo in the ischemic environment. When applied in an established Zucker Diabetic Fatty (ZDF) rat ischemic skin flap model, LXW7-DS-SILY-functionalized ECM scaffolds loaded with EPCs significantly improved wound healing, enhanced neovascularization and modulated collagen fibrillogenesis in the ischemic environment. Altogether, this study provides a promising novel treatment to accelerate diabetic ischemic wound healing, thereby reducing limb amputation and mortality of diabetic patients.
Collapse
Affiliation(s)
- Siqi He
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, China
- Department of Surgery, UC Davis, United States
| | - Tanaya Walimbe
- Department of Biomedical Engineering, UC Davis, United States
| | | | - Kewa Gao
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, China
- Department of Surgery, UC Davis, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, United States
| | - Priyadarsini Kumar
- Department of Surgery, UC Davis, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, United States
| | - Yifan Wei
- Department of Surgery, UC Davis, United States
| | - Dake Hao
- Department of Surgery, UC Davis, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, UC Davis, United States
| | - Diana L Farmer
- Department of Surgery, UC Davis, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, United States
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, UC Davis, United States
| | - Jianda Zhou
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, China
| | - Alyssa Panitch
- Department of Surgery, UC Davis, United States
- Department of Biomedical Engineering, UC Davis, United States
| | - Aijun Wang
- Department of Surgery, UC Davis, United States
- Department of Biomedical Engineering, UC Davis, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, United States
| |
Collapse
|
20
|
Exo-D-Mapps Attenuates Production of Inflammatory Cytokines and Promoted Generation of Immunosuppressive Phenotype in Peripheral Blood Mononuclear Cells. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022. [DOI: 10.2478/sjecr-2019-0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Mesenchymal stem cells (MSCs) produce immunomodulatory factors that regulate production of cytokines and chemokines in immune cells affecting their functional properties. Administration of MSCs-sourced secretome, including MSC-derived conditioned medium (MSC-CM) and MSC-derived exosomes (MSC-Exos), showed beneficial effects similar to those observed after transplantation of MSCs. Due to their nano-size dimension, MSC-Exos easily penetrate through the tissue and in paracrine and endocrine manner, may deliver MSC-sourced factors to the target immune cells modulating their function. MSCs derived from amniotic fluid (AF-MSCs) had superior cell biological properties than MSCs derived from bone marrow. We recently developed “Exosomes Derived Multiple Allogeneic Proteins Paracrine Signaling (Exo-d-MAPPS)”, a biological product in which the activity is based on AF-MSC-derived Exos capable to deliver immunomodulatory molecules and growth factors to the target cells. Herewith, we analyzed immunosuppressive capacity of Exo-d-MAPPS against human peripheral blood mononuclear cells (pbMNCs) and demonstrated that Exo-d-MAPPS efficiently suppressed generation of inflammatory phenotype in activated pbMNCs. Exo-d-MAPPS attenuated production of inflammatory cytokines and promoted generation of immunosuppressive phenotype in Lipopolysaccharide-primed pbMNCs. Exo-d-MAPPS treatment reduced expansion of inflammatory Th1 and Th17 cells and promoted generation of immunosuppressive T regulatory cells in the population of Concanavalin A-primed pbMNCs. Similarly, Exod-MAPPS treatment suppressed pro-inflammatory and promoted anti-inflammatory properties of α-GalCer-primed pbMNCs. In summing up, due to its capacity for suppression of activated pbMNCs, Exo-d-MAPPS should be further explored in animal models of acute and chronic inflammatory diseases as a potentially new remedy for the attenuation of detrimental immune response.
Collapse
|
21
|
Chaubey S, Bhandari V. Stem cells in neonatal diseases: An overview. Semin Fetal Neonatal Med 2022; 27:101325. [PMID: 35367186 DOI: 10.1016/j.siny.2022.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Preterm birth and its common complications are major causes of infant mortality and long-term morbidity. Despite great advances in understanding the pathogenesis of neonatal diseases and improvements in neonatal intensive care, effective therapies for the prevention or treatment for these conditions are still lacking. Stem cell (SC) therapy is rapidly emerging as a novel therapeutic tool for several diseases of the newborn with encouraging pre-clinical results that hold promise for translation to the bedside. The utility of different types of SCs in neonatal diseases is being explored. SC therapeutic efficacy is closely associated with its secretome-conditioned media and SC-derived extracellular vesicles, and a subsequent paracrine action in response to tissue injuries. In the current review, we summarize the pre-clinical and clinical studies of SCs and its secretome in diverse preterm and term birth-related diseases, thereby providing new insights for future therapies in neonatal medicine.
Collapse
Affiliation(s)
- Sushma Chaubey
- Department of Biomedical Engineering, Widener University, Chester, PA, 19013, USA.
| | - Vineet Bhandari
- Neonatology Research Laboratory, Department of Pediatrics, The Children's Regional Hospital at Cooper, Cooper Medical School of Rowan University, Suite Dorrance 755, One Cooper Plaza, Camden, NJ, 08103, USA.
| |
Collapse
|
22
|
Damianos A, Xu K, Kalin GT, Kalinichenko VV. Placental tissue stem cells and their role in neonatal diseases. Semin Fetal Neonatal Med 2022; 27:101322. [PMID: 34953760 DOI: 10.1016/j.siny.2021.101322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neonatal diseases such as hypoxic ischemic encephalopathy, diseases of prematurity and congenital disorders carry increased morbidity and mortality. Despite technological advancements, their incidence remains largely unabated. Stem cell (SC) interventions are novel therapies in the neonatal world. In pre-clinical models of neonatal diseases, SC applications have shown encouraging results. SC sources vary, with the bone marrow being the most utilized. However, the ability to harvest bone marrow SCs from neonates is limited. Placental-tissue derived SCs (PTSCs), provide an alternative and highly attractive source. Human placentas, the cornerstone of fetal survival, are abundant with such cells. Comparing to adult pools, PTSCs exhibit increased potency, decreased immunogenicity and stronger anti-inflammatory effects. Several types of PTSCs have been identified, with mesenchymal stem cells being the most utilized population. This review will focus on PTSCs and their pre-clinical and clinical applications in neonatology.
Collapse
Affiliation(s)
- Andreas Damianos
- Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Kui Xu
- Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gregory T Kalin
- Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vladimir V Kalinichenko
- Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
23
|
Stokes SC, Theodorou CM, Jackson JE, Pivetti C, Kumar P, Yamashiro KJ, Paxton ZJ, Reynaga L, Hyllen A, Wang A, Farmer DL. Long-term safety evaluation of placental mesenchymal stromal cells for in utero repair of myelomeningocele in a novel ovine model. J Pediatr Surg 2022; 57:18-25. [PMID: 34657738 PMCID: PMC9415987 DOI: 10.1016/j.jpedsurg.2021.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Augmentation of in utero myelomeningocele repair with human placental mesenchymal stromal cells seeded onto extracellular matrix (PMSC-ECM) improves motor outcomes in an ovine myelomeningocele model. This study evaluated the safety of PMSC-ECM application directly onto the fetal spinal cord in preparation for a clinical trial. METHODS Laminectomy of L5-L6 with PMSC-ECM placement directly onto the spinal cord was performed in five fetal lambs at gestational age (GA) 100-106 days. Lambs and ewes were monitored for three months following delivery. Lambs underwent magnetic resonance imaging (MRI) of the brain and spine at birth and at three months. All organs from lambs and uteri from ewes underwent histologic evaluation. Lamb spinal cords and brains and ewe placentas were evaluated for persistence of PMSCs by polymerase chain reaction for presence of human DNA. RESULTS MRIs demonstrated no evidence of abnormal tissue growth or spinal cord tethering. Histological analysis demonstrated no evidence of abnormal tissue growth or treatment related adverse effects. No human DNA was identified in evaluated tissues. CONCLUSION There was no evidence of abnormal tissue growth or PMSC persistence at three months following in utero application of PMSC-ECM to the spinal cord. This supports proceeding with clinical trials of PMSC-ECM for in utero myelomeningocele repair. LEVEL OF EVIDENCE N/A TYPE OF STUDY: Basic science.
Collapse
Affiliation(s)
- Sarah C Stokes
- Division of Pediatric General, Thoracic and Fetal Surgery, Department of Surgery, University of California Davis Medical Center, 2335 Stockton Blvd, Room 5107, Sacramento, CA 95817, USA.
| | - Christina M Theodorou
- Division of Pediatric General, Thoracic, and Fetal Surgery, Department of Surgery, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Jordan E Jackson
- Division of Pediatric General, Thoracic, and Fetal Surgery, Department of Surgery, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Christopher Pivetti
- Surgical Bioengineering Laboratory, University of California Davis, Sacramento, CA 95817, USA
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, University of California Davis, Sacramento, CA 95817, USA
| | - Kaeli J Yamashiro
- Division of Pediatric General, Thoracic, and Fetal Surgery, Department of Surgery, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Zachary J Paxton
- Surgical Bioengineering Laboratory, University of California Davis, Sacramento, CA 95817, USA
| | - Lizette Reynaga
- Surgical Bioengineering Laboratory, University of California Davis, Sacramento, CA 95817, USA
| | - Alicia Hyllen
- Surgical Bioengineering Laboratory, University of California Davis, Sacramento, CA 95817, USA
| | - Aijun Wang
- Surgical Bioengineering Laboratory, University of California Davis, Sacramento, CA 95817, USA.,Shriners Hospital for Children Northern California, 3425 Stockton Blvd, Sacramento, CA 95817, USA
| | - Diana L Farmer
- Division of Pediatric General, Thoracic, and Fetal Surgery, Department of Surgery, University of California Davis Medical Center, Sacramento, CA 95817, USA.,Surgical Bioengineering Laboratory, University of California Davis, Sacramento, CA 95817, USA.,Shriners Hospital for Children Northern California, 3425 Stockton Blvd, Sacramento, CA 95817, USA
| |
Collapse
|
24
|
Ma L, Wei X, Ma W, Liu Y, Wang Y, He Y, Jia S, Wang Y, Luo W, Liu D, Huang T, Yan J, Gu H, Bai Y, Yuan Z. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:539-551. [PMID: 35325230 PMCID: PMC9154334 DOI: 10.1093/stcltm/szac009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/24/2022] [Indexed: 11/12/2022] Open
Abstract
Spinal bifida aperta (SBA) is a congenital malformation with a high incidence. Bone marrow mesenchymal stem cell (BMSC) transplantation has the potential to repair the structure of damaged tissues and restore their functions. This is an optional treatment that can be used as a supplement to surgery in the treatment of SBA. However, the application of BMSCs is limited, as the neuronal differentiation rate of BMSCs is not satisfactory when used in treating severe SBA. Thus, we aimed to assess the effect of neural stem cell (NSC)-derived exosomes on BMSC neuronal differentiation and observe the therapeutic effect in an ex vivo rat SBA embryo model. We found that NSC-derived exosomes increased the neuronal differentiation rate of BMSCs in vitro and in the SBA embryo model ex vivo. Proteomic analysis showed that NSC-derived exosomes were enriched in Netrin1, which positively regulated neuronal differentiation. Netrin1 increased the neuronal differentiation rate of BMSCs and NSCs and upregulated the expression of the neuronal markers, microtubule-associated protein (Map2), neurofilament, and β3-tubulin. Bioinformatic analysis revealed that Netrin1 treatment increased the expression of the transcription factors Hand2 and Phox2b, related to neuronal differentiation. Furthermore, the Netrin1-induced NSC neuronal differentiation was significantly blocked by Phox2b knockdown. We suggest that NSC-derived exosomal Netrin1 induces neuronal differentiation via the Hand2/Phox2b axis by upregulating the expression of Hand2 and Phox2b. Therefore, NSC-derived exosomes are a critical inducer of BMSC neuronal differentiation and represent a potential treatment agent that can benefit BMSC treatment in SBA.
Collapse
Affiliation(s)
- Ling Ma
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Xiaowei Wei
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Wei Ma
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Yusi Liu
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Yanfu Wang
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Yiwen He
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Shanshan Jia
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Yu Wang
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Wenting Luo
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Dan Liu
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Tianchu Huang
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Jiayu Yan
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Hui Gu
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Yuzuo Bai
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Zhengwei Yuan
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
- Corresponding author: Zhengwei Yuan, Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang 110004, China. Tel: +86 24 23929903;
| |
Collapse
|
25
|
Deng J, Li M, Meng F, Liu Z, Wang S, Zhang Y, Li M, Li Z, Zhang L, Tang P. 3D spheroids of human placenta-derived mesenchymal stem cells attenuate spinal cord injury in mice. Cell Death Dis 2021; 12:1096. [PMID: 34803160 PMCID: PMC8606575 DOI: 10.1038/s41419-021-04398-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 12/23/2022]
Abstract
Mesenchymal stem cell (MSC) is an absorbing candidate for cell therapy in treating spinal cord injury (SCI) due to its great potential for multiple cell differentiation, mighty paracrine secretion as well as vigorous immunomodulatory effect, of which are beneficial to the improvement of functional recovery post SCI. However, the therapeutic effects of MSC on SCI have been limited because of the gradual loss of MSC stemness in the process of expanding culture. Therefore, in this study, we aimed to maintain those beneficial properties of MSC via three-dimensional spheroid cell culture and then compared them with conventionally-cultured MSCs in the treatment of SCI both in vitro and in vivo with the aid of two-photon microscope. We found that 3D human placenta-derived MSCs (3D-HPMSCs) demonstrated a significant increase in secretion of anti-inflammatory factors and trophic factors like VEGF, PDGF, FGF via QPCR and Bio-Plex assays, and showed great potentials on angiogenesis and neurite morphogenesis when co-cultured with HUVECs or DRGs in vitro. After transplantation into the injured spinal cord, 3D-HPMSCs managed to survive for the entire experiment and retained their advantageous properties in secretion, and exhibited remarkable effects on neuroprotection by minimizing the lesion cavity, inhibiting the inflammation and astrogliosis, and promoting angiogenesis. Further investigation of axonal dieback via two-photon microscope indicated that 3D-HPMSCs could effectively alleviate axonal dieback post injury. Further, mice only treated with 3D-HPMSCs obtained substantial improvement of functional recovery on electrophysiology, BMS score, and Catwalk analysis. RNA sequencing suggested that the 3D-HPMSCs structure organization-related gene was significantly changed, which was likely to potentiate the angiogenesis and inflammation regulation after SCI. These results suggest that 3D-HPMSCs may hold great potential for the treatment of SCI.
Collapse
Affiliation(s)
- Junhao Deng
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China
| | - Miao Li
- Key Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA
| | - Fanqi Meng
- Department of Spine Surgery, Peking University People's hospital, Beijing, 100044, China
| | - Zhongyang Liu
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China
| | - Song Wang
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China
- Medical college, Nankai University, Tianjin, 300071, China
| | - Yuan Zhang
- IBM Research-China, Beijing, 100193, China
| | - Ming Li
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhirui Li
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China.
| | - Licheng Zhang
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China.
| | - Peifu Tang
- Medical School of Chinese PLA, Beijing, 100853, China.
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
26
|
In utero treatment of myelomeningocele with allogenic umbilical cord-derived mesenchymal stromal cells in an ovine model. Curr Res Transl Med 2021; 70:103314. [PMID: 34731725 DOI: 10.1016/j.retram.2021.103314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF THE STUDY The purpose of our study was to investigate the effects of ovine umbilical cord-derived mesenchymal stromal cells (UC-MSCs) seeded in a fibrin patch as an adjuvant therapy for fetal myelomeningocele repair in the ovine model. MATERIALS AND METHODS MMC defects were surgically created at 75 days of gestation and repaired 15 days later with UC-MSCs patch or an acellular patch. At birth, motor function, tail movements, and voiding abilities were recorded. Histological and immunohistochemical analysis included study of MMC defect's healing, spinal cord, UC-MSCs survival, and screening for tumors. RESULTS Six lambs were born alive in each group. There was no difference between the two groups on the median sheep locomotor rating score but all lambs in the control group had a score between lower than 3 compared to 50% in UC-MSCs group. There were more lambs with tail movements and voiding ability in UC-MSCs group (83% vs 0% and 50% vs 0%, respectively). gray matter area and large neurons density were higher in UC-MSCs group (2.5 vs 0.8 mm2 and 19.3 vs 1.6 neurons/mm2 of gray matter, respectively). Fibrosis thickness at the myelomeningocele scar level was reduced in UC-MSCs group (1269 µm vs 2624 µm). No tumors were observed. CONCLUSION Fetal repair of myelomeningocele using allogenic UC-MSCs patch provides a moderate improvement in neurological functions, gray matter and neuronal preservation and prevented from fibrosis development at the myelomeningocele scar level.
Collapse
|
27
|
Mann LK, Won JH, Patel R, Bergh EP, Garnett J, Bhattacharjee MB, Narayana PA, Jain R, Fletcher SA, Lai D, Papanna R. Allografts for Skin Closure during In Utero Spina Bifida Repair in a Sheep Model. J Clin Med 2021; 10:4928. [PMID: 34768448 PMCID: PMC8584988 DOI: 10.3390/jcm10214928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Use of off-label tissue graft materials, such as acellular dermal matrix (ADM), for in utero repair of severe spina bifida (SB), where primary skin layer closure is not possible, is associated with poor neurological outcomes. The cryopreserved human umbilical cord (HUC) patch has regenerative, anti-inflammatory, and anti-scarring properties, and provides watertight SB repair. We tested the hypothesis that the HUC is a superior skin patch to ADM for reducing inflammation at the repair site and preserving spinal cord function. METHODS In timed-pregnant ewes with twins, on gestational day (GD) 75, spina bifida was created without a myelotomy (functional model). On GD 95, repair was performed using HUC vs. ADM patches (randomly assigned) by suturing them to the skin edges. Additionally, full thickness skin closure as a primary skin closure (PSC) served as a positive control. Delivery was performed on GD 140, followed by blinded to treatment neurological assessments of the lambs using the Texas Spinal Cord Injury Scale (TSCIS) for gait, proprioception, and nociception. Lambs without spina bifida were used as controls (CTL). Ex vivo magnetic resonance imaging of spines at the repair site were performed, followed by quantitative pathological assessments. Histological assessments (blinded) included Masson's trichrome, and immunofluorescence for myeloperoxidase (MPO; neutrophils) and for reactive astrocytes (inflammation) by co-staining vimentin and GFAP. RESULTS The combined hind limbs' TSCIS was significantly higher in the HUC group than in ADM and PSC groups, p = 0.007. Both ADM and PSC groups exhibited loss of proprioception and mild to moderate ataxia compared to controls. MRI showed increased pathological findings in the PSC group when compared to the HUC group, p = 0.045. Histologically, the meningeal layer was thickened (inflammation) by 2-3 fold in ADM and PSC groups when compared to HUC and CTL groups, p = 0.01. There was lower MPO positive cells in the HUC group than in the ADM group, p = 0.018. Posterior column astrocyte activation was increased in ADM and PSC lambs compared to HUC lambs, p = 0.03. CONCLUSION The HUC as a skin patch for in utero spina bifida repair preserves spinal cord function by reducing underlying inflammation when compared to ADM.
Collapse
Affiliation(s)
- Lovepreet K. Mann
- Division of Maternal-Fetal Medicine, The Fetal Center at Children’s Memorial Hermann Hospital, Department of Obstetrics, Gynecology and Reproductive Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; (J.H.W.); (E.P.B.); (J.G.)
| | - Jong Hak Won
- Division of Maternal-Fetal Medicine, The Fetal Center at Children’s Memorial Hermann Hospital, Department of Obstetrics, Gynecology and Reproductive Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; (J.H.W.); (E.P.B.); (J.G.)
| | - Rajan Patel
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; (R.P.); (P.A.N.)
| | - Eric P. Bergh
- Division of Maternal-Fetal Medicine, The Fetal Center at Children’s Memorial Hermann Hospital, Department of Obstetrics, Gynecology and Reproductive Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; (J.H.W.); (E.P.B.); (J.G.)
| | - Jeannine Garnett
- Division of Maternal-Fetal Medicine, The Fetal Center at Children’s Memorial Hermann Hospital, Department of Obstetrics, Gynecology and Reproductive Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; (J.H.W.); (E.P.B.); (J.G.)
| | - Meenakshi B. Bhattacharjee
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA;
| | - Ponnada A. Narayana
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; (R.P.); (P.A.N.)
| | - Ranu Jain
- Department of Anesthesia, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA;
| | - Stephen A. Fletcher
- Division of Pediatric Neurosurgery, Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA;
| | - Dejian Lai
- Department of Biostatistics, School of Public Health, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA;
| | - Ramesha Papanna
- Division of Maternal-Fetal Medicine, The Fetal Center at Children’s Memorial Hermann Hospital, Department of Obstetrics, Gynecology and Reproductive Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; (J.H.W.); (E.P.B.); (J.G.)
| |
Collapse
|
28
|
The Unique Properties of Placental Mesenchymal Stromal Cells: A Novel Source of Therapy for Congenital and Acquired Spinal Cord Injury. Cells 2021; 10:cells10112837. [PMID: 34831060 PMCID: PMC8616037 DOI: 10.3390/cells10112837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/28/2022] Open
Abstract
Spinal cord injury (SCI) is a devasting condition with no reliable treatment. Spina bifida is the most common cause of congenital SCI. Cell-based therapies using mesenchymal stem/stromal cells (MSCS) have been largely utilized in SCI. Several clinical trials for acquired SCI use adult tissue-derived MSC sources, including bone-marrow, adipose, and umbilical cord tissues. The first stem/stromal cell clinical trial for spina bifida is currently underway (NCT04652908). The trial uses early gestational placental-derived mesenchymal stem/stromal cells (PMSCs) during the fetal repair of myelomeningocele. PMSCs have been shown to exhibit unique neuroprotective, angiogenic, and antioxidant properties, all which are promising applications for SCI. This review will summarize the unique properties and current applications of PMSCs and discuss their therapeutic role for acquired SCI.
Collapse
|
29
|
Preliminary Results of a Reverse Thermal Gel Patch for Fetal Ovine Myelomeningocele Repair. J Surg Res 2021; 270:113-123. [PMID: 34655937 DOI: 10.1016/j.jss.2021.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Prenatal surgical closure of Myelomeningocele (MMC) is considered part of the current age armamentarium. Clinical data has demonstrated the need for innovative patches to maximize the benefits and decrease the risks of this approach. Our team has developed a minimally invasive reverse thermal gel (RTG) patch with cellular scaffolding properties. Here, we demonstrate the initial gross and microscopic histological effects of this RTG patch in the fetal ovine model of MMC. MATERIALS AND METHODS A fetal ovine MMC defect was created at 68-75 days gestation, RTG patch application or untreated at 100-103 days, and harvest at 135-140 days. The RTG was applied to the defect and secured in place with an overlay sealant. Defect areas underwent gross and microscopic analysis for inflammation and skin development. Brains were analyzed for hindbrain herniation and hydrocephalus. RESULTS The untreated fetus (n = 1) demonstrated an open defect lacking tissue coverage, evidence of spinal cord injury, increased caspase-3, Iba1 and GFAP in spinal cord tissues, and hindbrain herniation and ventricular dilation. RTG treated fetuses (n = 3) demonstrated defect healing with well-organized dermal and epidermal layers throughout the entire healed tissue area overlaying the defect with minimal inflammation, reduced caspase-3, Iba1 and GFAP in spinal cord tissues, and no hindbrain herniation or ventricular dilation. CONCLUSION An RTG patch applied to MMC defects in fetal sheep promoted skin coverage over the defect, was associated with minimal inflammation of the spinal cord tissues and prevented brain abnormalities. The present findings provide exciting results for future comprehensive radiological, functional, and mechanistic evaluation of the RTG.
Collapse
|
30
|
Huang J, Zhao Q, Wei X, Ma W, Luo W, Gu H, Liu D, He Y, Huang T, Liu Y, Wang C, Yuan Z. miR-351-3p promotes rat amniotic fluid-derived mesenchymal stromal cell proliferation via targeting the coding sequence of Abca4. Stem Cells 2021; 39:1192-1206. [PMID: 33970551 DOI: 10.1002/stem.3392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Amniotic fluid-derived mesenchymal stromal cells (AFMSCs) present different features, depending on the isolation timing and culture conditions. The lack of uniform experimental standards hinders the comparison of results from different studies on AFMSCs. Moreover, understanding the molecular mechanisms that underlie the features of AFMSCs isolated at different embryonic developmental stages might allow the obtention of more viable and highly proliferative AFMSCs through genetic modification. We isolated AFMSCs from pregnant rats at embryonic day (E)12, E15, E18, and E21 and compared their cell proliferation capacity and transcriptome. The cell counting kit-8 assay and RNA sequencing revealed that E12 and E15 AFMSCs showed different characteristics from E18 and E21 AFMSCs. Therefore, AFMSCs were divided into two groups: early (E12 and E15) and late (E18 and E21) pregnancy-stage groups. Next, we screened the gene/microRNA pair Abca4/miR-351-3p that was related to cell proliferation. Abca4 knockdown/overexpression suggested that this gene represses the proliferation of AFMSCs, which is a newly discovered function of this gene. Finally, dual luciferase reporter gene assays confirmed that miR-351-3p targeted the coding sequence of Abca4 and regulated AFMSC proliferation. miR-351-3p promotes AFMSC proliferation via targeting the coding sequence of Abca4. Our findings provide a molecular foundation for further research for obtaining AFMSCs with a higher proliferation capacity.
Collapse
Affiliation(s)
- Jieting Huang
- BaYi Children's Hospital, Seventh Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
- Department of Pediatrics, Chinese PLA General Hospital, Beijing, People's Republic of China
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Qi Zhao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, People's Republic of China
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yiwen He
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Tianchu Huang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yusi Liu
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Chenfei Wang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
31
|
Sbragia L, da Costa KM, Nour ALA, Ruano R, Santos MV, Machado HR. State of the art in translating experimental myelomeningocele research to the bedside. Childs Nerv Syst 2021; 37:2769-2785. [PMID: 34333685 DOI: 10.1007/s00381-021-05299-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 11/30/2022]
Abstract
Myelomeningocele (MMC), the commonest type of spina bifida (SB), occurs due to abnormal development of the neural tube and manifest as failure of the complete fusion of posterior arches of the spinal column, leading to dysplastic growth of the spinal cord and meninges. It is associated with several degrees of motor and sensory deficits below the level of the lesion, as well as skeletal deformities, bladder and bowel incontinence, and sexual dysfunction. These children might develop varying degrees of neuropsychomotor delay, partly due to the severity of the injuries that affect the nervous system before birth, partly due to the related cerebral malformations (notably hydrocephalus-which may also lead to an increase in intracranial pressure-and Chiari II deformity). Traditionally, MMC was repaired surgically just after birth; however, intrauterine correction of MMC has been shown to have several potential benefits, including better sensorimotor outcomes (since exposure to amniotic fluid and its consequent deleterious effects is shortened) and reduced rates of hydrocephalus, among others. Fetal surgery for myelomeningocele, nevertheless, would not have been made possible without the development of experimental models of this pathological condition. Hence, the aim of the current article is to provide an overview of the animal models of MMC that were used over the years and describe how this knowledge has been translated into the fetal treatment of MMC in humans.
Collapse
Affiliation(s)
- Lourenço Sbragia
- Division of Pediatric Surgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Karina Miura da Costa
- Division of Pediatric Surgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Antonio Landolffi Abdul Nour
- Division of Pediatric Surgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo Ruano
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas, Houston, TX, USA
| | - Marcelo Volpon Santos
- Division of Pediatric Neurosurgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Hélio Rubens Machado
- Division of Pediatric Neurosurgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
32
|
Nasirishargh A, Kumar P, Ramasubramanian L, Clark K, Hao D, Lazar SV, Wang A. Exosomal microRNAs from mesenchymal stem/stromal cells: Biology and applications in neuroprotection. World J Stem Cells 2021; 13:776-794. [PMID: 34367477 PMCID: PMC8316862 DOI: 10.4252/wjsc.v13.i7.776] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/29/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are extensively studied as cell-therapy agents for neurological diseases. Recent studies consider exosomes secreted by MSCs as important mediators for MSCs’ neuroprotective functions. Exosomes transfer functional molecules including proteins, lipids, metabolites, DNAs, and coding and non-coding RNAs from MSCs to their target cells. Emerging evidence shows that exosomal microRNAs (miRNAs) play a key role in the neuroprotective properties of these exosomes by targeting several genes and regulating various biological processes. Multiple exosomal miRNAs have been identified to have neuroprotective effects by promoting neurogenesis, neurite remodeling and survival, and neuroplasticity. Thus, exosomal miRNAs have significant therapeutic potential for neurological disorders such as stroke, traumatic brain injury, and neuroinflammatory or neurodegenerative diseases and disorders. This review discusses the neuroprotective effects of selected miRNAs (miR-21, miR-17-92, miR-133, miR-138, miR-124, miR-30, miR146a, and miR-29b) and explores their mechanisms of action and applications for the treatment of various neurological disease and disorders. It also provides an overview of state-of-the-art bioengineering approaches for isolating exosomes, optimizing their yield and manipulating the miRNA content of their cargo to improve their therapeutic potential.
Collapse
Affiliation(s)
- Aida Nasirishargh
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Lalithasri Ramasubramanian
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States
| | - Kaitlin Clark
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Dake Hao
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Sabrina V Lazar
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States
| |
Collapse
|
33
|
Stokes SC, Jackson JE, Theodorou CM, Pivetti CD, Kumar P, Yamashiro KJ, Wang A, Farmer DL. A Novel Model of Fetal Spinal Cord Exposure Allowing for Long-Term Postnatal Survival. Fetal Diagn Ther 2021; 48:472-478. [PMID: 34111873 DOI: 10.1159/000516542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/07/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The inherent morbidity associated with fetal ovine models of myelomeningocele (MMC) has created challenges for long-term survival of lambs. We aimed to develop a fetal ovine surgical spinal exposure model which could be used to evaluate long-term safety after direct spinal cord application of novel therapeutics for augmentation of in utero MMC repair. METHODS At gestational age (GA) 100-106, fetal lambs underwent surgical intervention. Laminectomy of L5-L6 was performed, dura was removed, and an experimental product was directly applied to the spinal cord. Paraspinal muscles and skin were closed and the fetus was returned to the uterus. Lambs were delivered via cesarean section at GA 140-142. Lambs were survived for 3 months with regular evaluation of motor function by the sheep locomotor rating scale. Spinal angulation was evaluated by magnetic resonance imaging at 2 weeks and 3 months. RESULTS Five fetal surgical intervention lambs and 6 control lambs who did not undergo surgical intervention were included. All lambs survived to the study endpoint of 3 months. No lambs had motor function abnormalities or increased spinal angulation. CONCLUSION This model allows for long-term survival after fetal spinal cord exposure with product application directly onto the spinal cord.
Collapse
Affiliation(s)
- Sarah C Stokes
- Department of Surgery, University of California-Davis, Sacramento, California, USA
| | - Jordan E Jackson
- Department of Surgery, University of California-Davis, Sacramento, California, USA
| | | | - Christopher D Pivetti
- Department of Biomedical Engineering, University of California-Davis, Davis, California, USA
| | - Priyadarsini Kumar
- Department of Biomedical Engineering, University of California-Davis, Davis, California, USA
| | - Kaeli J Yamashiro
- Department of Surgery, University of California-Davis, Sacramento, California, USA
| | - Aijun Wang
- Department of Surgery, University of California-Davis, Sacramento, California, USA.,Department of Biomedical Engineering, University of California-Davis, Davis, California, USA
| | - Diana L Farmer
- Department of Surgery, University of California-Davis, Sacramento, California, USA.,Shriners Hospital for Children Northern California, Sacramento, California, USA
| |
Collapse
|
34
|
Rodríguez-Sánchez DN, Pinto GBA, Cartarozzi LP, de Oliveira ALR, Bovolato ALC, de Carvalho M, da Silva JVL, Dernowsek JDA, Golim M, Barraviera B, Ferreira RS, Deffune E, Bertanha M, Amorim RM. 3D-printed nerve guidance conduits multi-functionalized with canine multipotent mesenchymal stromal cells promote neuroregeneration after sciatic nerve injury in rats. Stem Cell Res Ther 2021; 12:303. [PMID: 34051869 PMCID: PMC8164252 DOI: 10.1186/s13287-021-02315-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/29/2021] [Indexed: 01/09/2023] Open
Abstract
Background Nerve injuries are debilitating, leading to long-term motor deficits. Remyelination and axonal growth are supported and enhanced by growth factor and cytokines. Combination of nerve guidance conduits (NGCs) with adipose-tissue-derived multipotent mesenchymal stromal cells (AdMSCs) has been performing promising strategy for nerve regeneration. Methods 3D-printed polycaprolactone (PCL)-NGCs were fabricated. Wistar rats subjected to critical sciatic nerve damage (12-mm gap) were divided into sham, autograft, PCL (empty NGC), and PCL + MSCs (NGC multi-functionalized with 106 canine AdMSCs embedded in heterologous fibrin biopolymer) groups. In vitro, the cells were characterized and directly stimulated with interferon-gamma to evaluate their neuroregeneration potential. In vivo, the sciatic and tibial functional indices were evaluated for 12 weeks. Gait analysis and nerve conduction velocity were analyzed after 8 and 12 weeks. Morphometric analysis was performed after 8 and 12 weeks following lesion development. Real-time PCR was performed to evaluate the neurotrophic factors BDNF, GDNF, and HGF, and the cytokine and IL-10. Immunohistochemical analysis for the p75NTR neurotrophic receptor, S100, and neurofilament was performed with the sciatic nerve. Results The inflammatory environment in vitro have increased the expression of neurotrophins BDNF, GDNF, HGF, and IL-10 in canine AdMSCs. Nerve guidance conduits multi-functionalized with canine AdMSCs embedded in HFB improved functional motor and electrophysiological recovery compared with PCL group after 12 weeks. However, the results were not significantly different than those obtained using autografts. These findings were associated with a shift in the regeneration process towards the formation of myelinated fibers. Increased immunostaining of BDNF, GDNF, and growth factor receptor p75NTR was associated with the upregulation of BDNF, GDNF, and HGF in the spinal cord of the PCL + MSCs group. A trend demonstrating higher reactivity of Schwann cells and axonal branching in the sciatic nerve was observed, and canine AdMSCs were engrafted at 30 days following repair. Conclusions 3D-printed NGCs multi-functionalized with canine AdMSCs embedded in heterologous fibrin biopolymer as cell scaffold exerted neuroregenerative effects. Our multimodal approach supports the trophic microenvironment, resulting in a pro-regenerative state after critical sciatic nerve injury in rats.
Collapse
Affiliation(s)
- Diego Noé Rodríguez-Sánchez
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Giovana Boff Araujo Pinto
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luciana Politti Cartarozzi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | | | - Ana Livia Carvalho Bovolato
- Blood Transfusion Center, Cell Engineering Laboratory, Botucatu Medical School, São Paulo State University, Botucatu, SP, Brazil
| | - Marcio de Carvalho
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Jorge Vicente Lopes da Silva
- Renato Archer Information Technology Center (CTI), Three-dimensional Technologies Research Group, Campinas, SP, Brazil
| | - Janaina de Andréa Dernowsek
- Renato Archer Information Technology Center (CTI), Three-dimensional Technologies Research Group, Campinas, SP, Brazil
| | - Marjorie Golim
- Hemocenter division of Botucatu Medical School, São Paulo State University, Botucatu, SP, Brazil
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Elenice Deffune
- Blood Transfusion Center, Cell Engineering Laboratory, Botucatu Medical School, São Paulo State University, Botucatu, SP, Brazil
| | - Mathues Bertanha
- Blood Transfusion Center, Cell Engineering Laboratory, Botucatu Medical School, São Paulo State University, Botucatu, SP, Brazil
| | - Rogério Martins Amorim
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
35
|
Yamashiro KJ, Farmer DL. Fetal myelomeningocele repair: a narrative review of the history, current controversies and future directions. Transl Pediatr 2021; 10:1497-1505. [PMID: 34189108 PMCID: PMC8192992 DOI: 10.21037/tp-20-87] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Fetal surgery is a relatively new field of medicine. The purpose of this narrative review is to present the history of how fetal surgery became the standard of care for myelomeningocele (MMC), the current controversies of this treatment, and active areas of research that may change how MMC is treated. Fetal surgery for MMC emerged out of the University of California, San Francisco in the 1980s in the laboratory of Dr. Michael Harrison. Initial research focused on testing the hypothesis that the in utero repair of MMC could improve outcomes in the ovine model. Evidence from this model suggested that in utero repair decreases the secondary damage to the exposed neural tissue and improves post-natal neurologic outcomes, opening the door for human intervention. This was followed by the Management of Myelomeningocele Study (MOMS), which was a multicenter randomized controlled trial comparing the prenatal versus postnatal MMC repair. The MOMS trial was stopped early due to the improved outcomes of the prenatal repair, establishing the open fetal MMC repair as the standard of care. Since the MOMS trial, two primary areas of controversy have arisen: the operative approach and criteria for the repair. The three operative approaches include open, endoscopic and a hybrid approach combining open and endoscopic. Several of the inclusion and exclusion criteria from the MOMS trial have been challenged, to include body mass index, gestational diabetes, other fetal abnormalities, maternal infections and Rh alloimmunization. New areas of research have also emerged, exploring cell based therapies to improve fetal outcomes, alternatives to fetal surgery and alternatives to primary skin closure of the fetus.
Collapse
Affiliation(s)
- Kaeli J Yamashiro
- Department of Surgery, University of California-Davis, Sacramento, CA, USA
| | - Diana L Farmer
- Department of Surgery, University of California-Davis, Sacramento, CA, USA
| |
Collapse
|
36
|
Alvites RD, Branquinho MV, Sousa AC, Lopes B, Sousa P, Mendonça C, Atayde LM, Maurício AC. Small Ruminants and Its Use in Regenerative Medicine: Recent Works and Future Perspectives. BIOLOGY 2021; 10:biology10030249. [PMID: 33810087 PMCID: PMC8004958 DOI: 10.3390/biology10030249] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary Small ruminants such as sheep and goats have been increasingly used as animal models due to their dimensions, physiology and anatomy identical to those of humans. Their low costs, ease of accommodation, great longevity and easy handling make them advantageous animals to be used in a wide range of research work. Although there is already a lot of scientific literature describing these species, their use still lacks some standardization. The purpose of this review is to summarize the general principles related to the use of small ruminants as animal models for scientific research. Abstract Medical and translational scientific research requires the use of animal models as an initial approach to the study of new therapies and treatments, but when the objective is an exploration of translational potentialities, classical models fail to adequately mimic problems in humans. Among the larger animal models that have been explored more intensely in recent decades, small ruminants, namely sheep and goats, have emerged as excellent options. The main advantages associated to the use of these animals in research works are related to their anatomy and dimensions, larger than conventional laboratory animals, but very similar to those of humans in most physiological systems, in addition to their low maintenance and feeding costs, tendency to be docile, long life expectancies and few ethical complications raised in society. The most obvious disadvantages are the significant differences in some systems such as the gastrointestinal, and the reduced amount of data that limits the comparison between works and the validation of the characterization essays. Despite everything, recently these species have been increasingly used as animal models for diseases in different systems, and the results obtained open doors for their more frequent and advantageous use in the future. The purpose of this review is to summarize the general principles related to the use of small ruminants as animal models, with a focus on regenerative medicine, to group the most relevant works and results published recently and to highlight the potentials for the near future in medical research.
Collapse
Affiliation(s)
- Rui Damásio Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Mariana Vieira Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Ana Catarina Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Patrícia Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Carla Mendonça
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Luís Miguel Atayde
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
- Correspondence: ; Tel.: +351-919-071-286 or +351-220-428-000
| |
Collapse
|
37
|
Soltani Khaboushan A, Shakibaei M, Kajbafzadeh AM, Majidi Zolbin M. Prenatal Neural Tube Anomalies: A Decade of Intrauterine Stem Cell Transplantation Using Advanced Tissue Engineering Methods. Stem Cell Rev Rep 2021; 18:752-767. [PMID: 33742349 DOI: 10.1007/s12015-021-10150-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
Neural tube defects (NTDs) are among the most common congenital defects during neurulation. Spina bifida is a type of NTD that can occur in different forms. Since myelomeningocele (MMC) is the most severe form of spina bifida, finding a satisfactory treatment for MMC is a gold standard for the treatment of spina bifida. The Management of Myelomeningocele Study (MOMS) demonstrated that intrauterine treatment of spina bifida could ameliorate the complications associated with spina bifida and would also reduce the placement of ventriculoperitoneal (VP) shunt by 50%. Recently developed tissue engineering (TE) approaches using scaffolds, stem cells, and growth factors allow treatment of the fetus with minimally invasive methods and promising outcomes. The application of novel patches with appropriate stem cells and growth factors leads to better coverage of the defect with fewer complications. These approaches with less invasive surgical procedures, even in animal models with similar characteristics as the human MMC defect, paves the way for the modern application of less invasive surgical methods. Significantly, the early detection of these problems and applying these approaches can increase the potential efficacy of MMC treatment with fewer complications. However, further studies should be conducted to find the most suitable scaffolds and stem cells, and their application should be evaluated in animal models. This review intends to discuss advanced TE methods for treating MMC and recent successes in increasing the efficacy of the treatment.
Collapse
Affiliation(s)
- Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419433151, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336, Munich, Germany
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419433151, Iran.
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419433151, Iran.
| |
Collapse
|
38
|
Bardill JR, Williams SM, Laughter MR, Park D, Marwan AI. Evaluation of scaffolding, inflammatory response, and wound healing support of a reverse thermal gel for myelomeningocele patching. J Appl Polym Sci 2021. [DOI: 10.1002/app.50013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- James R. Bardill
- Department of Bioengineering University of Colorado Denver Anschutz Medical Campus Aurora Colorado USA
- Division of Pediatric Surgery, Department of Surgery University of Colorado Denver Anschutz Medical Campus Aurora Colorado USA
| | - Sarah M. Williams
- Division of Pediatric Surgery, Department of Surgery University of Colorado Denver Anschutz Medical Campus Aurora Colorado USA
| | - Melissa R. Laughter
- Department of Bioengineering University of Colorado Denver Anschutz Medical Campus Aurora Colorado USA
| | - Daewon Park
- Department of Bioengineering University of Colorado Denver Anschutz Medical Campus Aurora Colorado USA
| | - Ahmed I. Marwan
- Department of Surgery University of Colorado, Anschutz medical campus Aurora Colorado USA
| |
Collapse
|
39
|
Soto J, Ding X, Wang A, Li S. Neural crest-like stem cells for tissue regeneration. Stem Cells Transl Med 2021; 10:681-693. [PMID: 33533168 PMCID: PMC8046096 DOI: 10.1002/sctm.20-0361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Neural crest stem cells (NCSCs) are a transient population of cells that arise during early vertebrate development and harbor stem cell properties, such as self‐renewal and multipotency. These cells form at the interface of non‐neuronal ectoderm and neural tube and undergo extensive migration whereupon they contribute to a diverse array of cell and tissue derivatives, ranging from craniofacial tissues to cells of the peripheral nervous system. Neural crest‐like stem cells (NCLSCs) can be derived from pluripotent stem cells, placental tissues, adult tissues, and somatic cell reprogramming. NCLSCs have a differentiation capability similar to NCSCs, and possess great potential for regenerative medicine applications. In this review, we present recent developments on the various approaches to derive NCLSCs and the therapeutic application of these cells for tissue regeneration.
Collapse
Affiliation(s)
- Jennifer Soto
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
| | - Xili Ding
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, People's Republic of China
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA.,Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA.,Department of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
40
|
Kunpalin Y, Subramaniam S, Perin S, Gerli MFM, Bosteels J, Ourselin S, Deprest J, De Coppi P, David AL. Preclinical stem cell therapy in fetuses with myelomeningocele: A systematic review and meta-analysis. Prenat Diagn 2021; 41:283-300. [PMID: 33427329 PMCID: PMC7611444 DOI: 10.1002/pd.5887] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/16/2020] [Accepted: 12/15/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE We performed a systematic review to summarize the efficacy and safety of in utero stem cells application in preclinical models with myelomeningocele (MMC). METHODS The study was registered with PROSPERO (CRD42019160399). We searched MEDLINE, Embase, Web of Science, Scopus and CENTRAL for publications articles on stem cell therapy in animal fetuses with MMC until May 2020. Publication quality was assessed by the SYRCLE's tool. Meta-analyses were pooled if studies were done in the same animal model providing similar type of stem cell used and outcome measurements. Narrative synthesis was performed for studies that could not be pooled. RESULTS Nineteen and seven studies were included in narrative and quantitative syntheses, respectively. Most used mesenchymal stem cells (MSCs) and primarily involved ovine and rodent models. Both intra-amniotic injection of allogeneic amniotic fluid (AF)-MSCs in rat MMC model and the application of human placental (P)-MSCs to the spinal cord during fetal surgery in MMC ovine model did not compromise fetal survival rates at term (rat model, relative risk [RR] 1.03, 95% CI 0.92-1.16; ovine model, RR 0.94, 95% CI 0.78-1.13). A single intra-amniotic injection of allogeneic AF-MSCs into rat MMC model was associated with a higher rate of complete defect coverage compared to saline injection (RR 16.35, 95% CI 3.27-81.79). The incorporation of human P-MSCs as a therapeutic adjunct to fetal surgery in the ovine MMC model significantly improved sheep locomotor rating scale after birth (mean difference 5.18, 95% CI 3.36-6.99). CONCLUSIONS Stem cell application during prenatal period in preclinical animal models is safe and effective.
Collapse
Affiliation(s)
- Yada Kunpalin
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Sindhu Subramaniam
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Silvia Perin
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Mattia F M Gerli
- Great Ormond Street Institute of Child Health, University College London, London, UK.,Division of Surgery and Interventional Science, Royal Free Hospital, University College London, London, UK
| | - Jan Bosteels
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium.,Cochrane Belgium, Belgian Centre for Evidence-Based Medicine (Cebam), Leuven, Belgium
| | - Sebastien Ourselin
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Jan Deprest
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium.,Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - Paolo De Coppi
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium.,Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Peng SY, Wu TH, Lin TY, Hii LY, Chan KS, Fu TY, Chang SC, Shen PC, Liu KY, Shaw SW. Application of cattle placental stem cells for treating ovarian follicular cyst. World J Stem Cells 2020; 12:1366-1376. [PMID: 33312404 PMCID: PMC7705470 DOI: 10.4252/wjsc.v12.i11.1366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/02/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND High humidity and temperature in Taiwan have significant effects on the reproductivity of Holstein cattle, resulting in the occurrence of bovine ovarian follicular cyst (OFC). Because of economic loss from OFC, manual rupture and hormone injection have been advocated for the management of OFC. However, these incomplete treatments increase hormone resistance in cattle. Mesenchymal stem cells (MSCs) derived from placental stem cells (PSCs) demonstrate potential properties for the treatment of several diseases via promoting angiogenesis and immune modulation.
AIM To establish the possibility of cattle placental stem cells (CPSCs) as a treatment modality for OFC of cows in Taiwan.
METHODS The cows with OFC were divided into three groups: control (BC1 and BC2), hormone (H1 and H2), and CPSC (PS1 and PS2) treatment groups. In the hormone treatment group, the cows were given gonadotrophin-releasing hormone (GnRH)-prostaglandin-GnRH intramuscular injection with or without drainage of follicular fluid. In the CPSC treatment group, CPSCs were isolated from the placenta after labor. With the identification of surface antigen on stem cells, the cows were administered ovarian injection of 1 × 106 or 6 × 106 CPSCs with drainage. In all groups, OFC was scanned by ultrasound once a week for a total of seven times. The concentrations of estradiol and progesterone in serum were tested in the same period. The estrus cycle was analyzed by food intake and activity. If estrus was detected, artificial insemination was conducted. Then the cow was monitored by ultrasound for confirmation of pregnancy.
RESULTS After 7 d of culture, CPSCs were successfully isolated from placental pieces. CPSCs significantly proliferated every 24 h and had high expression of MSC markers such as cluster of differentiation 44, as determined by flow cytometry. Ultrasound showed lower numbers of OFCs with drainage of follicular fluid. We achieved recovery rates of 0%, 50%, 50%, 75%, 75% and 75% in BC1, BC2, H1, H2, PS1, and PS2, respectively. Higher concentrations of progesterone were detected in the CPSC treatment groups. However, both hormone and CPSC treatment groups had no significant difference in the concentration of estradiol. The estrus rate was 0%, 100%, 25%, 75%, 75% and 75% in BC1, BC2, H1, H2, PS1, and PS2, respectively. The two fetuses were born in H2 and PS1. In brief, cows with CPSC injection achieved higher recovery, estrus, and inseminated conception rates.
CONCLUSION CPSCs have efficacy in treating cows with OFC, and thus, may serve as an alternative treatment for reproductive disorders.
Collapse
Affiliation(s)
- Shao-Yu Peng
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Tsung-Hsin Wu
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Tzu-Yi Lin
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ling-Yien Hii
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 105, Taiwan
| | - Kok-Seong Chan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 105, Taiwan
| | - Tzu-Yen Fu
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Shen-Chang Chang
- Kaohsiung Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Executive Yuan, Pingtung 912, Taiwan
| | - Perng-Chih Shen
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Kang-You Liu
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Steven W. Shaw
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Prenatal Cell and Gene Therapy Group, Institute for Women's Health, University College London, London WC1E 6HU, United Kingdom
| |
Collapse
|
42
|
Yamashiro K, Galganski LA, Peyton J, Haynes K, Vicuna V, Kumar P, Keller B, Becker J, Pivetti C, Stokes S, Theodorou C, Jackson J, Wang A, Farmer D. Surviving Lambs with Myelomeningocele Repaired in utero with Placental Mesenchymal Stromal Cells for 6 Months: A Pilot Study. Fetal Diagn Ther 2020; 47:912-917. [PMID: 33166951 DOI: 10.1159/000510813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 08/11/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND Fetal repair of myelomeningocele (MMC) with placental mesenchymal stromal cells (PMSCs) rescues ambulation in the ovine model up to 48 h postnatally. Outcomes past 48 h are unknown as MMC lambs have not been survived past this timepoint. OBJECTIVE We aimed to survive lambs for 6 months following the fetal repair of MMC with PMSCs. METHODS Fetal MMC lambs were repaired with PMSCs. Lambs received either no additional treatment or postnatal bracing and physical therapy (B/PT). Motor function was assessed with the sheep locomotor rating (SLR). Lambs with an SLR of 15 at birth were survived for 6 months or until a decline in SLR less than 15, whichever came first. All lambs underwent a perimortem MRI. RESULTS The lambs with no postnatal treatment (n = 2) had SLR declines to 7 and 13 at 29 and 65 days, respectively, and were euthanized. These lambs had a spinal angulation of 57° and 47°, respectively. The B/PT lamb (n = 1) survived for 6 months with a sustained SLR of 15 and a lumbar angulation of 42°. CONCLUSION Postnatal physical therapy and bracing counteracted the inherent morbidity of the absent paraspinal muscles in the ovine MMC model allowing for survival and maintenance of rescued motor function of the prenatally treated lamb up to 6 months.
Collapse
Affiliation(s)
- Kaeli Yamashiro
- Department of Surgery, University of California-Davis, Sacramento, California, USA,
| | - Laura A Galganski
- Department of Surgery, University of California-Davis, Sacramento, California, USA
| | - Jamie Peyton
- Department of Veterinary Medicine, University of California-Davis, Sacramento, California, USA
| | - Kalie Haynes
- Department of Veterinary Medicine, University of California-Davis, Sacramento, California, USA
| | - Victoria Vicuna
- Department of Veterinary Medicine, University of California-Davis, Sacramento, California, USA
| | - Priyadarsini Kumar
- Department of Surgery, University of California-Davis, Sacramento, California, USA.,Shriner's Hospitals for Children Northern California, Sacramento, California, USA
| | - Benjamin Keller
- Department of Surgery, University of California-Davis, Sacramento, California, USA
| | - James Becker
- Department of Surgery, University of California-Davis, Sacramento, California, USA
| | - Christopher Pivetti
- Department of Surgery, University of California-Davis, Sacramento, California, USA.,Shriner's Hospitals for Children Northern California, Sacramento, California, USA
| | - Sarah Stokes
- Department of Surgery, University of California-Davis, Sacramento, California, USA
| | - Christina Theodorou
- Department of Surgery, University of California-Davis, Sacramento, California, USA
| | - Jordan Jackson
- Department of Surgery, University of California-Davis, Sacramento, California, USA
| | - Aijun Wang
- Department of Surgery, University of California-Davis, Sacramento, California, USA.,Shriner's Hospitals for Children Northern California, Sacramento, California, USA.,Department of Biomedical Engineering, University of California-Davis, Davis, California, USA
| | - Diana Farmer
- Department of Surgery, University of California-Davis, Sacramento, California, USA.,Shriner's Hospitals for Children Northern California, Sacramento, California, USA
| |
Collapse
|
43
|
Galganski LA, Kumar P, Vanover MA, Pivetti CD, Anderson JE, Lankford L, Paxton ZJ, Chung K, Lee C, Hegazi MS, Yamashiro KJ, Wang A, Farmer DL. In utero treatment of myelomeningocele with placental mesenchymal stromal cells - Selection of an optimal cell line in preparation for clinical trials. J Pediatr Surg 2020; 55:1941-1946. [PMID: 31672407 PMCID: PMC7170747 DOI: 10.1016/j.jpedsurg.2019.09.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/04/2019] [Accepted: 09/01/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND We determined whether in vitro potency assays inform which placental mesenchymal stromal cell (PMSC) lines produce high rates of ambulation following in utero treatment of myelomeningocele in an ovine model. METHODS PMSC lines were created following explant culture of three early-gestation human placentas. In vitro neuroprotection was assessed with a neuronal apoptosis model. In vivo, myelomeningocele defects were created in 28 fetuses and repaired with PMSCs at 3 × 105 cells/cm2 of scaffold from Line A (n = 6), Line B (n = 7) and Line C (n = 5) and compared to no PMSCs (n = 10). Ambulation was scored as ≥13 on the Sheep Locomotor Rating Scale. RESULTS In vitro, Line A and B had higher neuroprotective capability than no PMSCs (1.7 and 1.8 respectively vs 1, p = 0.02, ANOVA). In vivo, Line A and B had higher large neuron densities than no PMSCs (25.2 and 27.9 respectively vs 4.8, p = 0.03, ANOVA). Line C did not have higher neuroprotection or larger neuron density than no PMSCs. In vivo, Line A and B had ambulation rates of 83% and 71%, respectively, compared to 60% with Line C and 20% with no PMSCs. CONCLUSION The in vitro neuroprotection assay will facilitate selection of optimal PMSC lines for clinical use. LEVEL OF EVIDENCE n/a. TYPE OF STUDY Basic science.
Collapse
Affiliation(s)
- Laura A Galganski
- University of California-Davis, 4625 2nd Ave, Suite 3005, Sacramento, CA 95817, USA.
| | - Priyadarsini Kumar
- University of California-Davis, 4625 2nd Ave, Suite 3005, Sacramento, CA 95817, USA.
| | - Melissa A Vanover
- University of California-Davis, 4625 2nd Ave, Suite 3005, Sacramento, CA 95817, USA.
| | - Christopher D Pivetti
- University of California-Davis, 4625 2nd Ave, Suite 3005, Sacramento, CA 95817, USA; Shriners Hospitals for Children Northern California, 2425 Stockton Blvd, Sacramento, CA 95817, USA.
| | - Jamie E Anderson
- University of California-Davis, 4625 2nd Ave, Suite 3005, Sacramento, CA 95817, USA.
| | - Lee Lankford
- University of California-Davis, 4625 2nd Ave, Suite 3005, Sacramento, CA 95817, USA.
| | - Zachary J Paxton
- University of California-Davis, 4625 2nd Ave, Suite 3005, Sacramento, CA 95817, USA.
| | - Karen Chung
- University of California-Davis, 4625 2nd Ave, Suite 3005, Sacramento, CA 95817, USA.
| | - Chelsey Lee
- University of California-Davis, 4625 2nd Ave, Suite 3005, Sacramento, CA 95817, USA.
| | - Mennatalla S Hegazi
- University of California-Davis, 4625 2nd Ave, Suite 3005, Sacramento, CA 95817, USA.
| | - Kaeli J Yamashiro
- University of California-Davis, 4625 2nd Ave, Suite 3005, Sacramento, CA 95817, USA.
| | - Aijun Wang
- University of California-Davis, 4625 2nd Ave, Suite 3005, Sacramento, CA 95817, USA; Shriners Hospitals for Children Northern California, 2425 Stockton Blvd, Sacramento, CA 95817, USA.
| | - Diana L Farmer
- University of California-Davis, 4625 2nd Ave, Suite 3005, Sacramento, CA 95817, USA; Shriners Hospitals for Children Northern California, 2425 Stockton Blvd, Sacramento, CA 95817, USA.
| |
Collapse
|
44
|
Biancotti JC, Walker KA, Jiang G, Di Bernardo J, Shea LD, Kunisaki SM. Hydrogel and neural progenitor cell delivery supports organotypic fetal spinal cord development in an ex vivo model of prenatal spina bifida repair. J Tissue Eng 2020; 11:2041731420943833. [PMID: 32782773 PMCID: PMC7383650 DOI: 10.1177/2041731420943833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Studying how the fetal spinal cord regenerates in an ex vivo model of spina bifida repair may provide insights into the development of new tissue engineering treatment strategies to better optimize neurologic function in affected patients. Here, we developed hydrogel surgical patches designed for prenatal repair of myelomeningocele defects and demonstrated viability of both human and rat neural progenitor donor cells within this three-dimensional scaffold microenvironment. We then established an organotypic slice culture model using transverse lumbar spinal cord slices harvested from retinoic acid–exposed fetal rats to study the effect of fibrin hydrogel patches ex vivo. Based on histology, immunohistochemistry, gene expression, and enzyme-linked immunoabsorbent assays, these experiments demonstrate the biocompatibility of fibrin hydrogel patches on the fetal spinal cord and suggest this organotypic slice culture system as a useful platform for evaluating mechanisms of damage and repair in children with neural tube defects.
Collapse
Affiliation(s)
- Juan C Biancotti
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Kendal A Walker
- Section of Pediatric Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Guihua Jiang
- Section of Pediatric Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Julie Di Bernardo
- Section of Pediatric Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Shaun M Kunisaki
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins University, Baltimore, MD, USA.,Fetal Program, Johns Hopkins Children's Center, Baltimore, MD, USA
| |
Collapse
|
45
|
Placenta-derived multipotent mesenchymal stromal cells: a promising potential cell-based therapy for canine inflammatory brain disease. Stem Cell Res Ther 2020; 11:304. [PMID: 32698861 PMCID: PMC7374910 DOI: 10.1186/s13287-020-01799-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 01/01/2023] Open
Abstract
Background Canine inflammatory brain disease (IBD) is a severe inflammatory disorder characterized by infiltration of activated immune cell subsets into the brain and spinal cord. Multipotent mesenchymal stromal cells (MSCs) are a promising therapy for IBD, based on their potent pro-angiogenic, neuroprotective, and immunomodulatory properties. The aims of this study were to compare the immunomodulatory attributes of canine adipose-derived MSCs (ASCs) and placenta-derived MSCs (PMSCs) in vitro. These data will serve as potency information to help inform the optimal MSC cell source to treat naturally occurring canine IBD. Methods Indoleamine 2,3 dioxygenase (IDO) activity and prostaglandin E2 (PGE2) concentration at baseline and after stimulation with interferon gamma (IFNγ) and/or tumor necrosis factor alpha (TNFα) were measured from canine ASC and PMSC cultures. Leukocyte suppression assays (LSAs) were performed to compare the ability of ASCs and PMSCs to inhibit activated peripheral blood mononuclear cell (PBMC) proliferation. IDO activity and PGE2; interleukin (IL)-2, IL-6, and IL-8; TNFα; and vascular endothelial growth factor (VEGF) concentrations were also measured from co-culture supernatants. Cell cycle analysis was performed to determine how ASCs and PMSCs altered lymphocyte proliferation. Results Activated canine MSCs from both tissue sources secreted high concentrations of IDO and PGE2, after direct stimulation with IFNγ and TNFα, or indirect stimulation by activated PBMCs. Both ASCs and PMSCs inhibited activated PBMC proliferation in LSA assays; however, PMSCs inhibited PBMC proliferation significantly more than ASCs. Blocking PGE2 and IDO in LSA assays determined that PGE2 is important only for ASC inhibition of PBMC proliferation. Activated ASCs increased IL-6 and VEGF secretion and decreased TNFα secretion, while activated PMSCs increased IL-6, IL-8, and VEGF secretion. ASCs inhibited lymphocyte proliferation via cell cycle arrest in the G0/G1 and PMSCs inhibited lymphocyte proliferation via induction of lymphocyte apoptosis. Conclusion Our results demonstrate that ASCs and PMSCs have substantial in vitro potential as a cell-based therapy for IBD; however, PMSCs more potently inhibited lymphocyte proliferation by inducing apoptosis of activated lymphocytes. These data suggest that the mechanism by which ASCs and PMSCs downregulate PBMC proliferation differs. Additional studies may elucidate additional mechanisms by which canine MSCs modulate neuroinflammatory responses.
Collapse
|
46
|
Cell therapy for prenatal repair of myelomeningocele: A systematic review. Curr Res Transl Med 2020; 68:183-189. [PMID: 32624428 DOI: 10.1016/j.retram.2020.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/13/2020] [Accepted: 04/23/2020] [Indexed: 02/01/2023]
Abstract
Myelomeningocele (MMC) is a spinal cord congenital defect that leads to paraplegia, bladder incontinence and bowel dysfunction. A randomized human trial demonstrated that in utero surgical repair of the MMC defect improves lower limb motor function. However, functional recovery remains incomplete. Stem cell therapy has recently generated great interest in the field of prenatal repair of MMC. In this systematic review we attempt to provide an overview of the current application of stem cells in different animal models of MMC. Publications were retrieved from PubMed and Cochrane Library databases. This process yielded twenty-two studies for inclusion in this review, experimenting five different types of stem cells: human embryonic stem cells, neural stem cells, induced pluripotent stem cells, human amniotic fluid stem cells, and mesenchymal stem cells (MSCs). Rodents and ovine were the two major species used for animal model studies. The source, the aims, and the main results were analyzed. Stem cell therapy appears to be a promising candidate for prenatal repair of MMC, especially MSCs. Further explorations in ovine and rodent models, reporting clinical and functional results, are necessary before an application in humans.
Collapse
|
47
|
Hao D, Swindell HS, Ramasubramanian L, Liu R, Lam KS, Farmer DL, Wang A. Extracellular Matrix Mimicking Nanofibrous Scaffolds Modified With Mesenchymal Stem Cell-Derived Extracellular Vesicles for Improved Vascularization. Front Bioeng Biotechnol 2020; 8:633. [PMID: 32671037 PMCID: PMC7329993 DOI: 10.3389/fbioe.2020.00633] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022] Open
Abstract
The network structure and biological components of natural extracellular matrix (ECM) are indispensable for promoting tissue regeneration. Electrospun nanofibrous scaffolds have been widely used in regenerative medicine to provide structural support for cell growth and tissue regeneration due to their natural ECM mimicking architecture, however, they lack biological functions. Extracellular vesicles (EVs) are potent vehicles of intercellular communication due to their ability to transfer RNAs, proteins, and lipids, thereby mediating significant biological functions in different biological systems. Matrix-bound nanovesicles (MBVs) are identified as an integral and functional component of ECM bioscaffolds mediating significant regenerative functions. Therefore, to engineer EVs modified electrospun scaffolds, mimicking the structure of the natural EV-ECM complex and the physiological interactions between the ECM and EVs, will be attractive and promising in tissue regeneration. Previously, using one-bead one-compound (OBOC) combinatorial technology, we identified LLP2A, an integrin α4β1 ligand, which had a strong binding to human placenta-derived mesenchymal stem cells (PMSCs). In this study, we isolated PMSCs derived EVs (PMSC-EVs) and demonstrated they expressed integrin α4β1 and could improve endothelial cell (EC) migration and vascular sprouting in an ex vivo rat aortic ring assay. LLP2A treated culture surface significantly improved PMSC-EV attachment, and the PMSC-EV treated culture surface significantly enhanced the expression of angiogenic genes and suppressed apoptotic activity. We then developed an approach to enable "Click chemistry" to immobilize LLP2A onto the surface of electrospun scaffolds as a linker to immobilize PMSC-EVs onto the scaffold. The PMSC-EV modified electrospun scaffolds significantly promoted EC survival and angiogenic gene expression, such as KDR and TIE2, and suppressed the expression of apoptotic markers, such as caspase 9 and caspase 3. Thus, PMSC-EVs hold promising potential to functionalize biomaterial constructs and improve the vascularization and regenerative potential. The EVs modified biomaterial scaffolds can be widely used for different tissue engineering applications.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Hila Shimshi Swindell
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Lalithasri Ramasubramanian
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Diana L. Farmer
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|
48
|
Jahangard Y, Monfared H, Moradi A, Zare M, Mirnajafi-Zadeh J, Mowla SJ. Therapeutic Effects of Transplanted Exosomes Containing miR-29b to a Rat Model of Alzheimer's Disease. Front Neurosci 2020; 14:564. [PMID: 32625049 PMCID: PMC7314926 DOI: 10.3389/fnins.2020.00564] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer disease (AD) is a complex neurodegenerative disorder with no definite treatment. The expression of miR-29 family is significantly reduced in AD, suggesting a part for the family members in pathogenesis of the disease. The recent emergence of microRNA (miRNA)-based therapeutic approaches is emphasized on the efficiency of miRNA transfer to target cells. The endogenously made secretory vesicles could provide a biological vehicle for drug delivery. Characteristics such as small sizes, the ability to cross the blood-brain barrier, the specificity in binding to the right target cells, and most importantly the capacity to be engineered as drug carriers have made exosomes desirable vehicles to deliver genetic materials to the central nervous system. Here, we transfected rat bone marrow mesenchymal stem cells and HEK-293T cells (human embryonic kidney 293 cells) with recombinant expression vectors, carrying either mir-29a or mir-29b precursor sequences. A significant overexpression of miR-29 and downregulation of their targets genes, BACE1 (β-site amyloid precursor protein cleaving enzyme 1) and BIM [Bcl-2 interacting mediator of cell death (BCL2-like 11)], were confirmed in the transfected cells. Then, we confirmed the packaging of miR-29 in exosomes secreted from the transfected cells. Finally, we investigated a possible therapeutic effect of the engineered exosomes to reduce the pathological effects of amyloid-β (Aβ) peptide in a rat model of AD. Aβ-treated model rats showed some deficits in spatial learning and memory. However, in animals injected with miR-29-containing exosomes at CA1 (cornu ammonis area), the aforementioned impairments were prevented. In conclusion, our findings provide a new approach for the packaging of miR-29 in exosomes and that the engineered exosomes might have a therapeutic potential in AD.
Collapse
Affiliation(s)
- Yavar Jahangard
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamideh Monfared
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Arman Moradi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Meysam Zare
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
49
|
André A, Zerah M. Commentary: First Human Trial of Stem Cell Transplantation in Complex Arrays for Stroke Patients Using the Intracerebral Microinjection Instrument. Oper Neurosurg (Hagerstown) 2020; 18:E151-E152. [PMID: 31625578 DOI: 10.1093/ons/opz267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Arthur André
- Department of Neurosurgery, Pitié-Salpétriêre University Hospital, AP-HP Paris, France.,Ramsay Générale de Santé, Clinique Geoffroy Saint-Hilaire, Paris, France.,NeuroGenCell, Institut du cerveau et de la moelle épinière, IHU Pitié-Salpétrière, Paris, France
| | - Michel Zerah
- NeuroGenCell, Institut du cerveau et de la moelle épinière, IHU Pitié-Salpétrière, Paris, France.,Department of Pediatric Neurosurgery, IHU-Necker Enfants Malades University Hospital, AP-HP Paris, France
| |
Collapse
|
50
|
Danzer E, Joyeux L, Flake AW, Deprest J. Fetal surgical intervention for myelomeningocele: lessons learned, outcomes, and future implications. Dev Med Child Neurol 2020; 62:417-425. [PMID: 31840814 DOI: 10.1111/dmcn.14429] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2019] [Indexed: 12/23/2022]
Abstract
Fetal myelomeningocele (fMMC) closure (spina bifida aperta) has become a care option for patients that meet inclusion criteria, but it is clear that fetal intervention, while improving outcomes, is not a cure. This review will: (1) focus on the rationale for fMMC surgery based on preclinical studies and observations that laid the foundation for human pilot studies and a randomized controlled trial; (2) summarize important clinical outcomes; (3) discuss the feasibility, efficacy, and safety of recent developments in fetal surgical techniques and approaches; and (4) highlight future research directions. Given the increased risk of maternal and fetal morbidity associated with prenatal intervention, accompanied by the increasing number of centres performing interventions worldwide, teams involved in the care of these patients need to proceed with caution to maintain technical expertise, competency, and patient safety. Ongoing assessment of durability of the benefits of fMMC surgery, as well as additional refinement of patient selection criteria and counselling, is needed to further improve outcomes and reduce the risks to the mother and fetus. WHAT THIS PAPER ADDS: High-quality prospective studies are needed to broaden the indication for fetal surgery in the general myelomeningocele population. Innovative minimally invasive approaches have had promising results, yet lack comprehensive and robust experimental or clinical evaluation. Important information to help families make informed decisions regarding fetal surgery for myelomeningocele is provided.
Collapse
Affiliation(s)
- Enrico Danzer
- Center for Fetal Diagnosis and Treatment, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Luc Joyeux
- MyFetUZ Fetal Research Center, Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium.,Department of Obstetrics and Gynecology, Division of Woman and Child, Fetal Medicine Unit, University Hospital Gasthuisberg, Leuven, Belgium
| | - Alan W Flake
- Center for Fetal Diagnosis and Treatment, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jan Deprest
- MyFetUZ Fetal Research Center, Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium.,Department of Obstetrics and Gynecology, Division of Woman and Child, Fetal Medicine Unit, University Hospital Gasthuisberg, Leuven, Belgium.,Institute of Women's Health, University College London Hospitals, London, UK
| |
Collapse
|