1
|
Zhang W, Rao Y, Wong SH, Wu Y, Zhang Y, Yang R, Tsui SKW, Ker DFE, Mao C, Frith JE, Cao Q, Tuan RS, Wang DM. Transcriptome-Optimized Hydrogel Design of a Stem Cell Niche for Enhanced Tendon Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313722. [PMID: 39417770 DOI: 10.1002/adma.202313722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/04/2024] [Indexed: 10/19/2024]
Abstract
Bioactive hydrogels have emerged as promising artificial niches for enhancing stem cell-mediated tendon repair. However, a substantial knowledge gap remains regarding the optimal combination of niche features for targeted cellular responses, which often leads to lengthy development cycles and uncontrolled healing outcomes. To address this critical gap, an innovative, data-driven materiomics strategy is developed. This approach is based on in-house RNA-seq data that integrates bioinformatics and mathematical modeling, which is a significant departure from traditional trial-and-error methods. It aims to provide both mechanistic insights and quantitative assessments and predictions of the tenogenic effects of adipose-derived stem cells induced by systematically modulated features of a tendon-mimetic hydrogel (TenoGel). The knowledge generated has enabled a rational approach for TenoGel design, addressing key considerations, such as tendon extracellular matrix concentration, uniaxial tensile loading, and in vitro pre-conditioning duration. Remarkably, our optimized TenoGel demonstrated robust tenogenesis in vitro and facilitated tendon regeneration while preventing undesired ectopic ossification in a rat tendon injury model. These findings shed light on the importance of tailoring hydrogel features for efficient tendon repair. They also highlight the tremendous potential of the innovative materiomics strategy as a powerful predictive and assessment tool in biomaterial development for regenerative medicine.
Collapse
Affiliation(s)
- Wanqi Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ying Rao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shing Hei Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yeung Wu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuanhao Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rui Yang
- Department of Sports Medicine, Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dai Fei Elmer Ker
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jessica E Frith
- Materials Science and Engineering, Monash University, Clayton, 3800, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, 3800, VIC, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, 3800, VIC, Australia
| | - Qin Cao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rocky S Tuan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Dan Michelle Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
2
|
Luo Y, Hu Z, Ni R, Xu R, Zhao J, Feng P, Zhu T, Chen Y, Yao J, Yao Y, Yang L, Zhang H, Zhu Y. Fabrication of 3D Biomimetic Smooth Muscle Using Magnetic Induction and Bioprinting for Tissue Regeneration. Biomater Res 2024; 28:0076. [PMID: 39253032 PMCID: PMC11382380 DOI: 10.34133/bmr.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/18/2024] [Accepted: 08/10/2024] [Indexed: 09/11/2024] Open
Abstract
Smooth muscles play a vital role in peristalsis, tissue constriction, and relaxation but lack adequate self-repair capability for addressing extensive muscle defects. Engineering scaffolds have been broadly proposed to repair the muscle tissue. However, efforts to date have shown that those engineered scaffolds focus on cell alignment in 2-dimension (2D) and fail to direct muscle cells to align in 3D area, which is irresolvable to remodel the muscle architecture and restore the muscle functions like contraction and relaxation. Herein, we introduced an iron oxide (Fe3O4) filament-embedded gelatin (Gel)-silk fibroin composite hydrogel in which the oriented Fe3O4 self-assembled and functioned as micro/nanoscale geometric cues to induce cell alignment growth. The hydrogel scaffold can be designed to fabricate aligned or anisotropic muscle by combining embedded 3D bioprinting with magnetic induction to accommodate special architectures of muscular tissues in the body. Particularly, the bioprinted muscle-like matrices effectively promote the self-organization of smooth muscle cells (SMCs) and the directional differentiation of bone marrow mesenchymal stem cells (BMSCs) into SMCs. This biomimetic muscle accelerated tissue regeneration, enhancing intercellular connectivity within the muscular tissue, and the deposition of fibronectin and collagen I. This work provides a novel approach for constructing engineered biomimetic muscles, holding significant promise for clinical treatment of muscle-related diseases in the future.
Collapse
Affiliation(s)
- Yang Luo
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zeming Hu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Renhao Ni
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Rong Xu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Jianmin Zhao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Peipei Feng
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315046, China
| | - Tong Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yaoqi Chen
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jie Yao
- The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
- Research Institute of Smart Medicine and Biological Engineering, Ningbo University, Ningbo 315211, China
| | - Yudong Yao
- Health Science Center, Ningbo University, Ningbo 315211, China
- Research Institute of Smart Medicine and Biological Engineering, Ningbo University, Ningbo 315211, China
| | - Lu Yang
- The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Hua Zhang
- Health Science Center, Ningbo University, Ningbo 315211, China
- Research Institute of Smart Medicine and Biological Engineering, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
3
|
Chen R, Chen F, Chen K, Xu J. Advances in the application of hydrogel-based scaffolds for tendon repair. Genes Dis 2024; 11:101019. [PMID: 38560496 PMCID: PMC10978548 DOI: 10.1016/j.gendis.2023.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 04/04/2024] Open
Abstract
Tendon injuries often lead to joint dysfunction due to the limited self-regeneration capacity of tendons. Repairing tendons is a major challenge for surgeons and imposes a significant financial burden on society. Therefore, there is an urgent need to develop effective strategies for repairing injured tendons. Tendon tissue engineering using hydrogels has emerged as a promising approach that has attracted considerable interest. Hydrogels possess excellent biocompatibility and biodegradability, enabling them to create an extracellular matrix-like growth environment for cells. They can also serve as a carrier for cells or other substances to accelerate tendon repair. In the past decade, numerous studies have made significant progress in the preparation of hydrogel scaffolds for tendon healing. This review aims to provide an overview of recent research on the materials of hydrogel-based scaffolds used for tendon tissue engineering and discusses the delivery systems based on them.
Collapse
Affiliation(s)
- Renqiang Chen
- Department of Orthopedics, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Fanglin Chen
- Department of Orthopedics, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Kenian Chen
- Department of Orthopedics, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Jian Xu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
4
|
Li Y, Deng T, Aili D, Chen Y, Zhu W, Liu Q. Cell Sheet Technology: An Emerging Approach for Tendon and Ligament Tissue Engineering. Ann Biomed Eng 2024; 52:141-152. [PMID: 37731091 DOI: 10.1007/s10439-023-03370-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023]
Abstract
Tendon and ligament injuries account for a substantial proportion of disorders in the musculoskeletal system. While non-operative and operative treatment strategies have advanced, the restoration of native tendon and ligament structures after injury is still challenging due to its innate limited regenerative ability. Cell sheet technology is an innovative tool for tissue fabrication and cell transplantation in regenerative medicine. In this review, we first summarize different harvesting procedures and advantages of cell sheet technology, which preserves intact cell-to-cell connections and extracellular matrix. We then describe the recent progress of cell sheet technology from preclinical studies, focusing on the application of stem cell-derived sheets in treating tendon and ligament injuries, as well as highlighting its effects on mitigating inflammation and promoting tendon/graft-bone interface healing. Finally, we discuss several prerequisites for future clinical translation including the selection of appropriate cell source, optimization of preparation process, establishment of suitable animal model, and the fabrication of vascularized complex tissue. We believe this review could potentially provoke new ideas and drive the development of more functional biomimetic tissues using cell sheet technology to meet the needs of clinical patients.
Collapse
Affiliation(s)
- Yexin Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ting Deng
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Dilihumaer Aili
- Department of Orthopedic Surgery, Affiliated Hospital of Traditional Chinese Medicine, Xinjiang Medical University, Ürümqi, People's Republic of China
| | - Yang Chen
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Weihong Zhu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Qian Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| |
Collapse
|
5
|
Wu JY, Yeager K, Tavakol DN, Morsink M, Wang B, Soni RK, Hung CT, Vunjak-Novakovic G. Directed differentiation of human iPSCs into mesenchymal lineages by optogenetic control of TGF-β signaling. Cell Rep 2023; 42:112509. [PMID: 37178118 PMCID: PMC10278972 DOI: 10.1016/j.celrep.2023.112509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/28/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
In tissue development and homeostasis, transforming growth factor (TGF)-β signaling is finely coordinated by latent forms and matrix sequestration. Optogenetics can offer precise and dynamic control of cell signaling. We report the development of an optogenetic human induced pluripotent stem cell system for TGF-β signaling and demonstrate its utility in directing differentiation into the smooth muscle, tenogenic, and chondrogenic lineages. Light-activated TGF-β signaling resulted in expression of differentiation markers at levels close to those in soluble factor-treated cultures, with minimal phototoxicity. In a cartilage-bone model, light-patterned TGF-β gradients allowed the establishment of hyaline-like layer of cartilage tissue at the articular surface while attenuating with depth to enable hypertrophic induction at the osteochondral interface. By selectively activating TGF-β signaling in co-cultures of light-responsive and non-responsive cells, undifferentiated and differentiated cells were simultaneously maintained in a single culture with shared medium. This platform can enable patient-specific and spatiotemporally precise studies of cellular decision making.
Collapse
Affiliation(s)
- Josephine Y Wu
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Keith Yeager
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | | | - Margaretha Morsink
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Bryan Wang
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
6
|
Stem Cell Applications and Tenogenic Differentiation Strategies for Tendon Repair. Stem Cells Int 2023; 2023:3656498. [PMID: 36970597 PMCID: PMC10033217 DOI: 10.1155/2023/3656498] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 02/25/2023] [Indexed: 03/17/2023] Open
Abstract
Tendons are associated with a high injury risk because of their overuse and age-related tissue degeneration. Thus, tendon injuries pose great clinical and economic challenges to the society. Unfortunately, the natural healing capacity of tendons is far from perfect, and they respond poorly to conventional treatments when injured. Consequently, tendons require a long period of healing and recovery, and the initial strength and function of a repaired tendon cannot be completely restored as it is prone to a high rate of rerupture. Nowadays, the application of various stem cell sources, including mesenchymal stem cells (MSCs) and embryonic stem cells (ESCs), for tendon repair has shown great potential, because these cells can differentiate into a tendon lineage and promote functional tendon repair. However, the mechanism underlying tenogenic differentiation remains unclear. Moreover, no widely adopted protocol has been established for effective and reproducible tenogenic differentiation because of the lack of definitive biomarkers for identifying the tendon differentiation cascades. This work is aimed at reviewing the literature over the past decade and providing an overview of background information on the clinical relevance of tendons and the urgent need to improve tendon repair; the advantages and disadvantages of different stem cell types used for boosting tendon repair; and the unique advantages of reported strategies for tenogenic differentiation, including growth factors, gene modification, biomaterials, and mechanical stimulation.
Collapse
|
7
|
Chen Z, Chen P, Zheng M, Gao J, Liu D, Wang A, Zheng Q, Leys T, Tai A, Zheng M. Challenges and perspectives of tendon-derived cell therapy for tendinopathy: from bench to bedside. Stem Cell Res Ther 2022; 13:444. [PMID: 36056395 PMCID: PMC9438319 DOI: 10.1186/s13287-022-03113-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Tendon is composed of dense fibrous connective tissues, connecting muscle at the myotendinous junction (MTJ) to bone at the enthesis and allowing mechanical force to transmit from muscle to bone. Tendon diseases occur at different zones of the tendon, including enthesis, MTJ and midsubstance of the tendon, due to a variety of environmental and genetic factors which consequently result in different frequencies and recovery rates. Self-healing properties of tendons are limited, and cell therapeutic approaches in which injured tendon tissues are renewed by cell replenishment are highly sought after. Homologous use of individual’s tendon-derived cells, predominantly differentiated tenocytes and tendon-derived stem cells, is emerging as a treatment for tendinopathy through achieving minimal cell manipulation for clinical use. This is the first review summarizing the progress of tendon-derived cell therapy in clinical use and its challenges due to the structural complexity of tendons, heterogeneous composition of extracellular cell matrix and cells and unsuitable cell sources. Further to that, novel future perspectives to improve therapeutic effect in tendon-derived cell therapy based on current basic knowledge are discussed.
Collapse
Affiliation(s)
- Ziming Chen
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Peilin Chen
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Monica Zheng
- Department of Orthopaedic Surgery, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Junjie Gao
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.,Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, 200233, China
| | - Delin Liu
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Allan Wang
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Qiujian Zheng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China.,Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, Guangdong, China
| | - Toby Leys
- Department of Orthopaedic Surgery, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Andrew Tai
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.
| | - Minghao Zheng
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia. .,Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.
| |
Collapse
|
8
|
Bowers K, Amelse L, Bow A, Newby S, MacDonald A, Sun X, Anderson D, Dhar M. Mesenchymal Stem Cell Use in Acute Tendon Injury: In Vitro Tenogenic Potential vs. In Vivo Dose Response. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9080407. [PMID: 36004932 PMCID: PMC9404841 DOI: 10.3390/bioengineering9080407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022]
Abstract
Stem cell therapy for the treatment of tendon injury is an emerging clinical practice in the fields of human and veterinary sports medicine; however, the therapeutic benefit of intralesional transplantation of mesenchymal stem cells in tendonitis cases is not well designed. Questions persist regarding the overall tenogenic potential and efficacy of this treatment alone. In this study, we aimed to isolate a rat mesenchymal stem cell lineage for in vitro and in vivo use, to assess the effects of growth factor exposure in vitro on cell morphology, behavior, and tendon-associated glycoprotein production, and to assess the therapeutic potential of intralesional stem cells, as a function of dose, in vivo. First, rat adipose-derived (rAdMSC) and bone marrow-derived (rBMSC) stem cell lineages were isolated, characterized with flow cytometric analysis, and compared in terms of proliferation (MTS assay) and cellular viability (calcein AM staining). Rat AdMSCs displayed superior proliferation and more homogenous CD 73, CD 44H, and CD 90 expression as compared to rBMSC. Next, the tenogenic differentiation potential of the rAdMSC lineage was tested in vitro through isolated and combined stimulation with reported tenogenic growth factors, transforming growth factor (TGF)-β3 and connective tissue growth factor (CTGF). We found that the most effective tenogenic factor in terms of cellular morphologic change, cell alignment/orientation, sustained cellular viability, and tendon-associated glycoprotein upregulation was TGFβ3, and we confirmed that rAdMSC could be induced toward a tenogenic lineage in vitro. Finally, the therapeutic potential of rAdMSCs as a function of dose was assessed using a rat acute Achilles tendon injury model. Amounts of 5 × 105 (low dose) and 4 × 106 (high dose) were used. Subjectively, on the gross morphology, the rAdMSC-treated tendons exhibited fewer adhesions and less scar tissue than the control tendons; however, regardless of the rAdMSC dose, no significant differences in histological grade or tissue collagen I deposition were noted between the rAdMSC-treated and control tendons. Collectively, rAdMSCs exhibited appropriate stem cell markers and tenogenic potential in vitro, but the clinical efficacy of intralesional implantation of undifferentiated cells in acute tendonitis cases could not be proven. Further investigation into complementary therapeutics or specialized culture conditions prior to implantation are warranted.
Collapse
Affiliation(s)
- Kristin Bowers
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
- Correspondence:
| | - Lisa Amelse
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Austin Bow
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Steven Newby
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Amber MacDonald
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Xiaocun Sun
- Office of Information and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - David Anderson
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Madhu Dhar
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| |
Collapse
|
9
|
Titan AL, Davitt M, Foster D, Salhotra A, Menon S, Chen K, Fahy E, Lopez M, Jones RE, Baiu I, Burcham A, Januszyk M, Gurtner G, Fox P, Chan C, Quarto N, Longaker M. Partial Tendon Injury at the Tendon-to-Bone Enthesis Activates Skeletal Stem Cells. Stem Cells Transl Med 2022; 11:715-726. [PMID: 35640155 PMCID: PMC9299518 DOI: 10.1093/stcltm/szac027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/09/2022] [Indexed: 11/24/2022] Open
Abstract
The tendon enthesis plays a critical role in facilitating movement and reducing stress within joints. Partial enthesis injuries heal in a mechanically inferior manner and never achieve healthy tissue function. The cells responsible for tendon-to-bone healing remain incompletely characterized and their origin is unknown. Here, we evaluated the putative role of mouse skeletal stem cells (mSSCs) in the enthesis after partial-injury. We found that mSSCs were present at elevated levels within the enthesis following injury and that these cells downregulated TGFβ signaling pathway elements at both the RNA and protein levels. Exogenous application of TGFβ post-injury led to a reduced mSSC response and impaired healing, whereas treatment with a TGFβ inhibitor (SB43154) resulted in a more robust mSSC response. Collectively, these data suggest that mSSCs may augment tendon-to-bone healing by dampening the effects of TGFβ signaling within the mSSC niche.
Collapse
Affiliation(s)
- Ashley L Titan
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Davitt
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Deshka Foster
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ankit Salhotra
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Siddharth Menon
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Kellen Chen
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Evan Fahy
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Lopez
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - R Ellen Jones
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ioana Baiu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Austin Burcham
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Januszyk
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Geoffrey Gurtner
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Paige Fox
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Charles Chan
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Natalina Quarto
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
| |
Collapse
|
10
|
Mechanical activation drives tenogenic differentiation of human mesenchymal stem cells in aligned dense collagen hydrogels. Biomaterials 2022; 286:121606. [DOI: 10.1016/j.biomaterials.2022.121606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 01/13/2023]
|
11
|
Berntsen L, Forghani A, Hayes DJ. Mesenchymal Stem Cell Sheets for Engineering of the Tendon-Bone Interface. Tissue Eng Part A 2022; 28:341-352. [PMID: 34476994 PMCID: PMC9057909 DOI: 10.1089/ten.tea.2021.0072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/25/2021] [Indexed: 11/12/2022] Open
Abstract
Failure to regenerate the gradient tendon-bone interface of the enthesis results in poor clinical outcomes for surgical repair. The goal of this study was to evaluate the potential of composite cell sheets for engineering of the tendon-bone interface to improve regeneration of the functionally graded tissue. We hypothesize that stacking cell sheets at early stages of differentiation into tenogenic and osteogenic progenitors will create a composite structure with integrated layers. Cell sheets were fabricated on methyl cellulose and poly(N-isopropylacrylamide) thermally reversible polymers with human adipose-derived stem cells and differentiated into progenitors of tendon and bone with chemical induction media. Tenogenic and osteogenic cell sheets were stacked, and the engineered tendon-bone interface (TM-OM) was characterized in vitro in comparison to stacked cell sheet controls cultured in basal growth medium (GM-GM), osteogenic medium (OM-OM), and tenogenic medium (TM-TM). Samples were characterized by histology, quantitative real-time polymerase chain reaction, and immunofluorescent staining for markers of tendon, fibrocartilage, and bone including mineralization, scleraxis, tenomodulin, COL2, COLX, RUNX2, osteonectin, and osterix. After 1 week co-culture in basal growth medium, TM-OM cell sheets formed a tissue construct with integrated layers expressing markers of tendon, mineralized fibrocartilage, and bone with a spatial gradient in RUNX2 expression. Tenogenic cell sheets had increased expression of scleraxis and tenomodulin. Osteogenic cell sheets exhibited mineralization 1 week after stacking and upregulation of osterix and osteonectin. Additionally, in the engineered interface, there was significantly increased gene expression of IHH and COLX, indicative of endochondral ossification. These results highlight the potential for composite cell sheets fabricated with adipose-derived stem cells for engineering of the tendon-bone interface. Impact statement This study presents a method for fabrication of the tendon-bone interface using stacked cell sheets of tenogenic and osteogenic progenitors differentiated from human adipose-derived mesenchymal stem cells, resulting in a composite structure expressing markers of tendon, mineralized fibrocartilage, and bone. This work is an important step toward regeneration of the biological gradient of the enthesis and demonstrates the potential for engineering complex tissue interfaces from a single autologous cell source to facilitate clinical translation.
Collapse
Affiliation(s)
- Lisa Berntsen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Anoosha Forghani
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Daniel J Hayes
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
12
|
Choi JH, Shim IK, Shin MJ, Lee YN, Koh KH. Stem cell sheet interpositioned between the tendon and bone would be better for healing than stem cell sheet overlaid above the tendon-to-bone junction in rotator cuff repair of rats. PLoS One 2022; 17:e0266030. [PMID: 35324992 PMCID: PMC8947210 DOI: 10.1371/journal.pone.0266030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/11/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Although stem cells might enhance natural enthesis healing in surgical rotator cuff repair, not much attention has been given to the delivery and location of delivering stem cells. The purpose of this study to know where to locate those stem cells during repair. METHODS Animal model of chronic rotator cuff tear was created in 24 rats. Adipose-derived stem cells were engineered as a sheet and transplanted 1) between a torn tendon and humerus (interposition group) or 2) over a repaired tendon-to-bone junction (overlay group) at the time of surgical repair. Tracking of stem cells with overexpression of green fluorescent protein (GFP) were carried out at the time of sacrifice in additional 4 shoulders in each group. Histological and Biomechanical evaluation was performed to compare the differences in tendon-to-bone healing. RESULTS Histology showed increased fibrocartilage, a clear boundary at the mineralized fibrocartilage, abundant collagen type III, and higher total scores, especially in the interposition group. GFP-overexpression was observed at the transplanted site at 2 weeks after repair. Although two groups where stem cell sheets applied showed higher load to failure than the repair-only group, the load to failure was not different between the interposition and overlay group. CONCLUSION In the chronic rotator cuff repair model, stem cell sheets enhanced regeneration of the tendon-to-bone junction. This regeneration was effective when the stem cell sheet was interpositioned at the tendon-to-bone interface. LEVEL OF EVIDENCE Basic Science Study; In Vivo Animal Model; Histology and Biomechanics.
Collapse
Affiliation(s)
- Jae hee Choi
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In Kyong Shim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | - Yu Na Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyoung Hwan Koh
- Department of Orthopaedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Yoshimoto Y, Uezumi A, Ikemoto-Uezumi M, Tanaka K, Yu X, Kurosawa T, Yambe S, Maehara K, Ohkawa Y, Sotomaru Y, Shukunami C. Tenogenic Induction From Induced Pluripotent Stem Cells Unveils the Trajectory Towards Tenocyte Differentiation. Front Cell Dev Biol 2022; 10:780038. [PMID: 35372337 PMCID: PMC8965463 DOI: 10.3389/fcell.2022.780038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/09/2022] [Indexed: 12/27/2022] Open
Abstract
The musculoskeletal system is integrated by tendons that are characterized by the expression of scleraxis (Scx), a functionally important transcription factor. Here, we newly developed a tenocyte induction method using induced pluripotent stem cells established from ScxGFP transgenic mice by monitoring fluorescence, which reflects a dynamic differentiation process. Among several developmentally relevant factors, transforming growth factor-beta 2 (TGF-β2) was the most potent inducer for differentiation of tenomodulin-expressing mature tenocytes. Single-cell RNA sequencing (scRNA-seq) revealed 11 distinct clusters, including mature tenocyte population and tenogenic differentiation trajectory, which recapitulated the in vivo developmental process. Analysis of the scRNA-seq dataset highlighted the importance of retinoic acid (RA) as a regulatory pathway of tenogenic differentiation. RA signaling was shown to have inhibitory effects on entheseal chondrogenic differentiation as well as TGF-β2-dependent tenogenic/fibrochondrogenic differentiation. The collective findings provide a new opportunity for tendon research and further insight into the mechanistic understanding of the differentiation pathway to a tenogenic fate.
Collapse
Affiliation(s)
- Yuki Yoshimoto
- Department of Molecular Biology and Biochemistry, Biomedical Sciences Major, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Akiyoshi Uezumi
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- *Correspondence: Chisa Shukunami, ; Akiyoshi Uezumi,
| | - Madoka Ikemoto-Uezumi
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kaori Tanaka
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Xinyi Yu
- Department of Molecular Biology and Biochemistry, Biomedical Sciences Major, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tamaki Kurosawa
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, Tokyo University, Tokyo, Japan
| | - Shinsei Yambe
- Department of Molecular Biology and Biochemistry, Biomedical Sciences Major, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Biomedical Sciences Major, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- *Correspondence: Chisa Shukunami, ; Akiyoshi Uezumi,
| |
Collapse
|
14
|
Wu SY, Kim W, Kremen TJ. In Vitro Cellular Strain Models of Tendon Biology and Tenogenic Differentiation. Front Bioeng Biotechnol 2022; 10:826748. [PMID: 35242750 PMCID: PMC8886160 DOI: 10.3389/fbioe.2022.826748] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 11/19/2022] Open
Abstract
Research has shown that the surrounding biomechanical environment plays a significant role in the development, differentiation, repair, and degradation of tendon, but the interactions between tendon cells and the forces they experience are complex. In vitro mechanical stimulation models attempt to understand the effects of mechanical load on tendon and connective tissue progenitor cells. This article reviews multiple mechanical stimulation models used to study tendon mechanobiology and provides an overview of the current progress in modelling the complex native biomechanical environment of tendon. Though great strides have been made in advancing the understanding of the role of mechanical stimulation in tendon development, damage, and repair, there exists no ideal in vitro model. Further comparative studies and careful consideration of loading parameters, cell populations, and biochemical additives may further offer new insight into an ideal model for the support of tendon regeneration studies.
Collapse
Affiliation(s)
- Shannon Y. Wu
- David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Won Kim
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Thomas J. Kremen
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- *Correspondence: Thomas J. Kremen Jr,
| |
Collapse
|
15
|
Ding L, Zhou B, Hou Y, Xu L. Stem cells in tendon regeneration and factors governing tenogenesis. Curr Stem Cell Res Ther 2022; 17:503-512. [PMID: 35086458 DOI: 10.2174/1574888x17666220127111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
Tendons are connective tissue structures of paramount importance to the human ability of locomotion. Tendinopathy and tendon rupture can be resistant to treatment and often recurs, thus resulting in a significant health problem with a relevant social impact worldwide. Unfortunately, existing treatment approaches are suboptimal. A better understanding of the basic biology of tendons may provide a better way to solve these problems and promote tendon regeneration. Stem cells, either obtained from tendons or non-tendon sources, such as bone marrow (BMSCs), adipose tissue (AMSCs), as well as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have received increasing attention toward enhancing tendon healing. There are many studies showing that stem cells can contribute to improving tendon healing. Hence, in this review, the current knowledge of BMSCs, AMSCs, TSPCs, ESCs and iPSCs for tendon regeneration, as well as the advantages and limitations among them, has been highlighted. Moreover, the transcriptional and bioactive factors governing tendon healing processes have been discussed.
Collapse
Affiliation(s)
- Lingli Ding
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - BingYu Zhou
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yonghui Hou
- Key Laboratory of Orthopaedics & Traumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Liangliang Xu
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Chae S, Choi YJ, Cho DW. Mechanically and biologically promoted cell-laden constructs generated using tissue-specific bioinks for tendon/ligament tissue engineering applications. Biofabrication 2022; 14. [PMID: 35086074 DOI: 10.1088/1758-5090/ac4fb6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/27/2022] [Indexed: 11/11/2022]
Abstract
Tendon and ligament tissues provide stability and mobility crucial for musculoskeletal function, but are particularly prone to injury. Owing to poor innate healing capacity, the regeneration of mature and functional tendon/ligament (T/L) poses a formidable clinical challenge. Advanced bioengineering strategies to develop biomimetic tissue implants are highly desired for the treatment of T/L injuries. Here, we presented a cell-based tissue engineering strategy to generate cell-laden tissue constructs comprising stem cells and tissue-specific bioinks using 3D cell-printing technology. We implemented an in vitro preconditioning approach to guide semi-organized T/L-like formation before the in vivo application of cell-printed implants. During in vitro maturation, tissue-specific decellularized extracellular matrix-based cellular constructs facilitated long-term in vitro culture with high cell viability and promoted tenogenesis with enhanced cellular/structural anisotropy. Moreover, we demonstrated improved cell survival/retention upon in vivo implantation of pre-matured constructs in nude mice with de novo tendon formation and improved mechanical strength. Although in vivo mechanical properties of the cell-printed implants were lower than those of human T/L tissues, the results of this study may have significant implications for future cell-based therapies in tendon and ligament regeneration and translational medicine.
Collapse
Affiliation(s)
- Suhun Chae
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Gyeongsangbuk-do, Pohang, Gyeongsangbuk-do, 37679, Korea (the Republic of)
| | - Yeong-Jin Choi
- Department of Advanced Biomaterials Research, Korea Institute of Materials Science, 797, Changwon-daero, Seongsan-gu, Gyeongsangnam-do, Changwon, 51508, Korea (the Republic of)
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, KOREA, Pohang, 37673, Korea (the Republic of)
| |
Collapse
|
17
|
Exosomes derived from human umbilical cord mesenchymal stem cells reduce tendon injuries via the miR-27b-3p/ARHGAP5/RhoA signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2022; 54:232-242. [PMID: 35130628 PMCID: PMC9909356 DOI: 10.3724/abbs.2021026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tendon injuries are common clinical issues resulted from tissue overuse and age-related degeneration. Previous sutdies have suggested that exosomes secreted by mesenchymal stem cells (MSCs) contribute to tissue injury repair. Here, we provide evidence for a critical role of human umbilical cord mesenchymal stem cell (hucMSC)-derived exosomes in reducing tendon injury by activating the RhoA signaling. Treatment of primary injured tenocytes with hucMSC exosomes increases cell proliferation and invasion, which correlates with increased RhoA activity. RhoA mediates the effects of hucMSC exosomes, as treatment of primary injured tenocytes with the RhoA inhibitor, CCG-1423, abolishes the effects of hucMSC exosomes on cell proliferation and invasion. Mechanistically, we observe that hucMSC exosomes induce the expression of a microRNA, miR-27b-3p, which targets and suppresses ARHGAP5, a negative regulator of RhoA. Consistent with this observation, ARHGAP5 overexpression suppresses the effects of hucMSC exosomes on cell proliferation and invasion, while knockdown of ARHGAP5 rescues these effects. Finally, we demonstrate the functional significance of our findings using an Achilles tendon injury model and show that treatment with exosomes reduces tendon injury in rats, which correlates with increased RhoA activity and reduced ARHGAP5 expression. Taken together, our findings highlight a critical role of hucMSC exosomes in reducing tendon injury via miR-27b-3p-mediated suppression of ARHGAP5, resulting in RhoA activation, and leading to increased cell proliferation and invasion of primary injured tenocytes.
Collapse
|
18
|
Chun SW, Kim W, Lee SY, Lim CY, Kim K, Kim JG, Park CH, Hong SH, Yoo HJ, Chung SG. A randomized controlled trial of stem cell injection for tendon tear. Sci Rep 2022; 12:818. [PMID: 35039529 PMCID: PMC8764049 DOI: 10.1038/s41598-021-04656-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/28/2021] [Indexed: 11/09/2022] Open
Abstract
Tendons have limited reparative ability and perform a relatively simple mechanical function via the extracellular matrix. Thus, the injured tendon might be treated successfully by stem cell transplantation. We performed a randomized, controlled study to investigate the effects of mesenchymal stem cell injection for treating partial tears in the supraspinatus tendon. We enrolled 24 patients with shoulder pain lasting more than 3 months and partial tears in the supraspinatus tendon. Participants were assigned to three groups: stem cells in fibrin glue, normal saline/fibrin glue mixture, and normal saline only, with which intra-lesional injection was performed. Pain at activity and rest, shoulder function and tear size were evaluated. For safety measures, laboratory tests were taken and adverse events were recorded at every visit. Participants were followed up at 6, 12 weeks, 6, 12 months and 2 years after injection. The primary outcome measure was the improvement in pain at activity at 3 months after injection. Twenty-three patients were included in the final analysis. Primary outcome did not differ among groups (p = 0.35). A mixed effect model revealed no statistically significant interactions. Only time significantly predicted the outcome measure. All participants reported transient pain at the injection site. There were no differences in post-injection pain duration or severity. Safety measures did not differ between groups, and there were no persistent adverse events. Stem cell injection into supraspinatus partial tears in patients with shoulder pain lasting more than 3 months was not more effective than control injections.ClinicalTrials.gov Identifier: NCT02298023.
Collapse
Affiliation(s)
- Se-Woong Chun
- Department of Rehabilitation Medicine, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon, Gyeongsangnam-do, Republic of Korea
| | - Won Kim
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Rehabilitation Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Republic of Korea
| | - Sang Yoon Lee
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Chai-Young Lim
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Keewon Kim
- Department of Rehabilitation Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Republic of Korea.,Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jeong-Gil Kim
- Armed Forces Daejeon Hospital, Daejeon, Republic of Korea
| | - Chul-Hyun Park
- Department of Physical and Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sung Hwan Hong
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye Jin Yoo
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sun G Chung
- Department of Rehabilitation Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Republic of Korea. .,Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea. .,Institute of Aging, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Autologous bone marrow-derived mesenchymal stem cells provide complete regeneration in a rabbit model of the Achilles tendon bundle rupture. INTERNATIONAL ORTHOPAEDICS 2021; 45:3263-3276. [PMID: 34510279 DOI: 10.1007/s00264-021-05168-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/21/2021] [Indexed: 01/02/2023]
Abstract
PURPOSE To ascertain the role of autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) in the tendon regeneration. METHODS The study was conducted on 58 Achilles tendons from 29 laboratory Chinchilla adult rabbits. The central bundles of 48 tendons were partially removed and substituted with a tissue-engineered construct consisting of a collagen sponge either loaded with BM-MSCs (n = 24) or cell free (n = 24), placed inside a Vicryl mesh tube. The ends of the resected tendon were inserted in the construct to reach a direct contact with the sponge and sutured to the tube. The animals were sacrificed three and six months post-surgery. Ten intact tendons from five rabbits were used as an untreated control. The tissue samples (n = 30) were stained with haematoxylin and eosin, Picrosirius red, primary antibodies to collagen types I and III and studied by bright-field, phase-contrast, polarized light, and scanning electron microscopies followed by semi-quantitative morphometry. RESULTS Six months results of cell-loaded scaffolds demonstrated parallel collagen fibres, spindle-shaped tenocytes, and neoangiogenesis. In the control cell-free group, the injured areas were filled with a nonspecific fibrotic tissue with minor foci of incomplete regeneration. The biomechanical tests of 28 tendons taken from 14 rabbits showed that the stiffness of the cell-based reconstructed tendons increased to 98% of the value for the intact samples. CONCLUSION The obtained results support the hypothesis that the application of BM-MSCs in a tissue-engineered tendon construct leads to the restitution of the tendon tissue.
Collapse
|
20
|
Liu YJ, Wang HJ, Xue ZW, Cheang LH, Tam MS, Li RW, Li JR, Hou HG, Zheng XF. Long noncoding RNA H19 accelerates tenogenic differentiation by modulating miR-140-5p/VEGFA signaling. Eur J Histochem 2021; 65:3297. [PMID: 34494412 PMCID: PMC8447539 DOI: 10.4081/ejh.2021.3297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/24/2021] [Indexed: 12/17/2022] Open
Abstract
Rotator cuff tear (RCT) is a common tendon injury, but the mechanisms of tendon healing remain incompletely understood. Elucidating the molecular mechanisms of tenogenic differentiation is essential to develop novel therapeutic strategies in clinical treatment of RCT. The long noncoding RNA H19 plays a regulatory role in tenogenic differentiation and tendon healing, but its detailed mechanism of action remains unknown. To elucidate the role of H19 in tenogenic differentiation and tendon healing, tendon-derived stem cells were harvested from the Achilles tendons of Sprague Dawley rats and a rat model of cuff tear was established for the exploration of the function of H19 in promoting tenogenic differentiation. The results showed that H19 overexpression promoted, while H19 silencing suppressed, tenogenic differentiation of tendon-derived stem cells (TDSCs). Furthermore, bioinformatic analyses and a luciferase reporter gene assay showed that H19 directly targeted and inhibited miR-140-5p to promote tenogenic differentiation. Further, inhibiting miR-140-5p directly increased VEGFA expression, revealing a novel regulatory axis between H19, miR-140-5p, and VEGFA in modulating tenogenic differentiation. In rats with RTC, implantation of H19-overexpressing TDSCs at the lesion promoted tendon healing and functional recovery. In general, the data suggest that H19 promotes tenogenic differentiation and tendon-bone healing by targeting miR-140-5p and increasing VEGFA levels. Modulation of the H19/miR-140-5p/VEGFA axis in TDSCs is a new potential strategy for clinical treatment of tendon injury.
Collapse
Affiliation(s)
- You-Jie Liu
- Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital and The First Clinical College, Jinan University, Guangzhou.
| | - Hua-Jun Wang
- Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital and The First Clinical College, Jinan University, Guangzhou.
| | - Zhao-Wen Xue
- Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital and The First Clinical College, Jinan University, Guangzhou.
| | - Lek-Hang Cheang
- IAN WO Medical Center, Macau Special Administrative Region, Macau.
| | - Man-Seng Tam
- Macau Medical Science and Technology Research Association, Macau.
| | - Ri-Wang Li
- Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital and The First Clinical College, Jinan University, Guangzhou.
| | - Jie-Ruo Li
- Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital and The First Clinical College, Jinan University, Guangzhou.
| | - Hui-Ge Hou
- Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital and The First Clinical College, Jinan University, Guangzhou.
| | - Xiao-Fei Zheng
- Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital and The First Clinical College, Jinan University, Guangzhou.
| |
Collapse
|
21
|
Dursun G, Tandale SB, Gulakala R, Eschweiler J, Tohidnezhad M, Markert B, Stoffel M. Development of convolutional neural networks for recognition of tenogenic differentiation based on cellular morphology. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 208:106279. [PMID: 34343743 DOI: 10.1016/j.cmpb.2021.106279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE The use of automated systems for image recognition is highly preferred for regenerative medicine applications to evaluate stem cell differentiation early in the culturing state with non-invasive methodologies instead of invasive counterparts. Bone marrow-derived mesenchymal stem cells (BMSCs) are able to differentiate into desired cell phenotypes, and thereby promise a proper cell source for tendon regeneration. The therapeutic success of stem cell therapy requires cellular characterization prior to the implantation of cells. The foremost problem is that traditional characterization techniques require cellular material which would be more useful for cell therapy, complex laboratory procedures, and human expertise. Convolutional neural networks (CNNs), a class of deep neural networks, have recently made great improvements in image-based classifications, recognition, and detection tasks. We, therefore, aim to develop a potential CNN model in order to recognize differentiated stem cells by learning features directly from image data of unlabelled cells. METHODS The differentiation of bone marrow mesenchymal stem cells (BMSCs) into tenocytes was induced with the treatment of bone morphogenetic protein-12 (BMP-12). Following the treatment and incubation step, the phase-contrast images of cells were obtained and immunofluorescence staining has been applied to characterize the differentiated state of BMSCs. CNN models were developed and trained with the phase-contrast cell images. The comparison of CNN models was performed with respect to prediction performance and training time. Moreover, we have evaluated the effect of image enhancement method, data augmentation, and fine-tuning training strategy to increase classification accuracy of CNN models. The best model was integrated into a mobile application. RESULTS All the CNN models can fit the biological data extracted from immunofluorescence characterization. CNN models enable the cell classification with satisfactory accuracies. The best result in terms of accuracy and training time is achieved by the model proposed based on Inception-ResNet V2 trained from scratch using image enhancement and data augmentation strategies (96.80%, 434.55 sec). CONCLUSION Our study reveals that the CNN models show good performance by identifying stem cell differentiation. Importantly this technique provides a faster and real-time tool in comparison to traditional methods enabling the adjustment of culture conditions during cultivation to improve the yield of therapeutic stem cells.
Collapse
Affiliation(s)
- Gözde Dursun
- Institute of General Mechanics, RWTH Aachen University, Aachen, Germany
| | | | - Rutwik Gulakala
- Institute of General Mechanics, RWTH Aachen University, Aachen, Germany
| | - Jörg Eschweiler
- Department of Orthopaedic Surgery, RWTH Aachen University, Aachen, Germany
| | | | - Bernd Markert
- Institute of General Mechanics, RWTH Aachen University, Aachen, Germany
| | - Marcus Stoffel
- Institute of General Mechanics, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
22
|
Ye Y, Zhou Y, Jing Z, Xu Y, Yin D. Electrospun heparin-loaded nano-fiber sutures for the amelioration of achilles tendon rupture regeneration: in vivo evaluation. J Mater Chem B 2021; 9:4154-4168. [PMID: 33982044 DOI: 10.1039/d1tb00162k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Peritendinous blood circulation improvement is a challenge to promote the healing of ruptured tendons in clinical treatment. Although electrospun membranes or scaffolds enable the reduction of complications such as adhesion, however, low efficiency, toxicity issues, the loss of biological activity, and complex electrospinning techniques are all bottlenecks of these systems. Improving the blood supply is crucial for their successful use, which involves promoting the metabolism and nutrient absorption in tendons. Here, a multifunctional, structurally simple strategy involving heparin-loaded sutures (PPH) that are clinically applicable is reported, in the form of electrospun core-shell nanofibers, with the ability to perform sustained release of anticoagulants heparin (verified in our previous publication) for the improvement of the healing of Achilles tendon. The morphology and diameter distribution of the collagen fiber in the PPH group are closely related to the health of the Achilles tendon than those of commercial sutures (CS). The in vivo results of the total collagen content and the expression of collagen type I in the PPH group are more than those of the CS group. After 6 weeks of culture, the tensile strength of the PPH group shows no significant difference compared to the healthy group. The data obtained in this study improves the current understanding on the regeneration of ruptured tendons and presents a promising strategy for clinical treatment.
Collapse
Affiliation(s)
- Yajing Ye
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Yaqing Zhou
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Zhuoyuan Jing
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Yifan Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Dachuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
23
|
Application of Stem Cell Therapy for ACL Graft Regeneration. Stem Cells Int 2021; 2021:6641818. [PMID: 34381504 PMCID: PMC8352687 DOI: 10.1155/2021/6641818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/19/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Graft regeneration after anterior cruciate ligament (ACL) reconstruction surgery is a complex three-stage process, which usually takes a long duration and often results in fibrous scar tissue formation that exerts a detrimental impact on the patients' prognosis. Hence, as a regeneration technique, stem cell transplantation has attracted increasing attention. Several different stem cell types have been utilized in animal experiments, and almost all of these have shown good capacity in improving tendon-bone regeneration. Various differentiation inducers have been widely applied together with stem cells to enhance specific lineage differentiation, such as recombinant gene transfection, growth factors, and biomaterials. Among the various different types of stem cells, bone marrow-derived mesenchymal stem cells (BMSCs) have been investigated the most, while ligament stem progenitor cells (LDSCs) have demonstrated the best potential in generating tendon/ligament lineage cells. In the clinic, 4 relevant completed trials have been reported, but only one trial with BMSCs showed improved outcomes, while 5 relevant trials are still in progress. This review describes the process of ACL graft regeneration after implantation and summarizes the current application of stem cells from bench to bedside, as well as discusses future perspectives in this field.
Collapse
|
24
|
Abdulmalik S, Ramos D, Rudraiah S, Banasavadi-Siddegowda YK, Kumbar SG. The glucagon-like peptide 1 receptor agonist Exendin-4 induces tenogenesis in human mesenchymal stem cells. Differentiation 2021; 120:1-9. [PMID: 34062407 DOI: 10.1016/j.diff.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/21/2021] [Accepted: 05/16/2021] [Indexed: 11/26/2022]
Abstract
Tendon injuries are common and account for up to 50% of musculoskeletal injuries in the United States. The poor healing nature of the tendon is attributed to poor vascularization and cellular composition. In the absence of FDA-approved growth factors for tendon repair, engineering strategies using bioactive factors, donor cells, and delivery matrices to promote tendon repair and regeneration are being explored. Growth factor alternatives in the form of small molecules, donor cells, and progenitors offer several advantages and enhance the tendon healing response. Small drug molecules and peptides offer stability over growth factors that are known to suffer from relatively short biological half-lives. The primary focus of this study was to assess the ability of the exendin-4 (Ex-4) peptide, a glucagon-like peptide 1 (GLP-1) receptor agonist, to induce tenocyte differentiation in bone marrow-derived human mesenchymal stem cells (hMSCs). We treated hMSCs with varied doses of Ex-4 in culture media to evaluate proliferation and tendonogenic differentiation. A 20 nM Ex-4 concentration was optimal for promoting cell proliferation and tendonogenic differentiation. Tendonogenic differentiation of hMSCs was evaluated via gene expression profile, immunofluorescence, and biochemical analyses. Collectively, the levels of tendon-related transcription factors (Mkx and Scx) and extracellular matrix (Col-I, Dcn, Bgn, and Tnc) genes and proteins were elevated compared to media without Ex-4 and other controls including insulin and IGF-1 treatments. The tendonogenic factor Ex-4 in conjunction with hMSCs appear to enhance tendon regeneration.
Collapse
Affiliation(s)
- Sama Abdulmalik
- University of Connecticut Health Center, Department of Orthopedic Surgery, Farmington, CT, USA; University of Connecticut, Biomedical Engineering, Storrs, CT, USA
| | - Daisy Ramos
- University of Connecticut Health Center, Department of Orthopedic Surgery, Farmington, CT, USA; University of Connecticut, Materials Science and Engineering, Storrs, CT, USA
| | - Swetha Rudraiah
- University of Connecticut Health Center, Department of Orthopedic Surgery, Farmington, CT, USA; University of St. Joseph, Department of Pharmaceutical Sciences, Hartford, CT, USA
| | | | - Sangamesh G Kumbar
- University of Connecticut Health Center, Department of Orthopedic Surgery, Farmington, CT, USA; University of Connecticut, Biomedical Engineering, Storrs, CT, USA; University of Connecticut, Materials Science and Engineering, Storrs, CT, USA.
| |
Collapse
|
25
|
Differentiation of human adipose-derived mesenchymal stem cells toward tenocyte by platelet-derived growth factor-BB and growth differentiation factor-6. Cell Tissue Bank 2021; 23:237-246. [PMID: 34013429 DOI: 10.1007/s10561-021-09935-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Mesenchymal Stem Cells (MSCs) are important in regenerative medicine and tissue engineering and will be a very sensible choice for repair and regeneration of tendon. New biological practices, such as cellular therapy using stem cells, are promising for facilitating or expediting tendon therapy. Before using these cells clinically, it is best to check and confirm the optimal conditions for differentiation of these cells in the laboratory. Hence, in the present study, the impacts of PDGF-BB and GDF-6 supplementation on adipose-derived MSCs (ASCs) culture were studied. The frozen ASC were recovered and expanded in basic culture medium (DMEM with 10%FBS). The cells after passage five (P5) were treated with basic medium containing L-Prolin, Ascorbic Acid and only PDGF-BB or GDF-6 (20 ng/ml) or both of them (mix) as 3 groups for 14 days to investigate efficiency of ASCs differentiation towards tenocytes. The cells culturing in basic medium were used as control group. To validate tenogenic differentiation, H&E and Sirius Red staining were used to assess cell morphology and collagen production, respectively. In addition, mRNA levels of collagen I and III, Scleraxis and Tenomodulin as tenogenic markers were analyzed using qPCR. In all test groups, cells appeared slenderer, elongated cytoplasmic attributes compared to the control cells. The intensity of Sirius Red staining was significantly higher in GDF-6, PDGF-BB alone, than in group without supplements. The optical density was higher in the GDF-6 than PDGF-BB and mix-group. QPCR results showed that Col I and III gene expression was increased in all groups compared to the control. SCX expression was significantly increased only in the PDGF-BB group. TNMD mRNA expression was not significant among groups. In this study, we have corroborated that human ASCs are reactionary to tenogenic induction by GDF-6 and PDGF-BB alone or in combination. These outcomes will help greater insight into GDF-6 and PDGF-BB driven tenogenesis of ASCs and new directions of discovery in the design of ASC-based treatments for tendon healing.
Collapse
|
26
|
Ning LJ, Zhang YJ, Zhang YJ, Zhu M, Ding W, Jiang YL, Zhang Y, Luo JC, Qin TW. Enhancement of Migration and Tenogenic Differentiation of Macaca Mulatta Tendon-Derived Stem Cells by Decellularized Tendon Hydrogel. Front Cell Dev Biol 2021; 9:651583. [PMID: 33987178 PMCID: PMC8111289 DOI: 10.3389/fcell.2021.651583] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/06/2021] [Indexed: 02/05/2023] Open
Abstract
Decellularized tendon hydrogel from human or porcine tendon has been manufactured and found to be capable of augmenting tendon repair in vivo. However, no studies have clarified the effect of decellularized tendon hydrogel upon stem cell behavior. In the present study, we developed a new decellularized tendon hydrogel (T-gel) from Macaca mulatta, and investigated the effect of T-gel on the proliferation, migration and tenogenic differentiation of Macaca mulatta tendon-derived stem cells (mTDSCs). The mTDSCs were first identified to have universal stem cell characteristics, including clonogenicity, expression of mesenchymal stem cell and embryonic stem cell markers, and multilineage differentiation potential. Decellularization of Macaca mulatta Achilles tendons was confirmed to be effective by histological staining and DNA quantification. The resultant T-gel exhibited highly porous structure or similar nanofibrous structure and approximately swelling ratio compared to the collagen gel (C-gel). Interestingly, stromal cell-derived factor-1 (SDF-1) and fibromodulin (Fmod) inherent in the native tendon extracellular matrix (ECM) microenvironment were retained and the values of SDF-1 and Fmod in the T-gel were significantly higher than those found in the C-gel. Compared with the C-gel, the T-gel was found to be cytocompatible with NIH-3T3 fibroblasts and displayed good histocompatibility when implanted into rat subcutaneous tissue. More importantly, it was demonstrated that the T-gel supported the proliferation of mTDSCs and significantly promoted the migration and tenogenic differentiation of mTDSCs compared to the C-gel. These findings indicated that the T-gel, with its retained nanofibrous structure and some bioactive factors of native tendon ECM microenvironment, represents a promising hydrogel for tendon regeneration.
Collapse
Affiliation(s)
- Liang-Ju Ning
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Ya-Jing Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yan-Jing Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Min Zhu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Wei Ding
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yan-Lin Jiang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yi Zhang
- Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Jing-Cong Luo
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Ting-Wu Qin
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
27
|
Bobzin L, Roberts RR, Chen HJ, Crump JG, Merrill AE. Development and maintenance of tendons and ligaments. Development 2021; 148:239823. [PMID: 33913478 DOI: 10.1242/dev.186916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tendons and ligaments are fibrous connective tissues vital to the transmission of force and stabilization of the musculoskeletal system. Arising in precise regions of the embryo, tendons and ligaments share many properties and little is known about the molecular differences that differentiate them. Recent studies have revealed heterogeneity and plasticity within tendon and ligament cells, raising questions regarding the developmental mechanisms regulating tendon and ligament identity. Here, we discuss recent findings that contribute to our understanding of the mechanisms that establish and maintain tendon progenitors and their differentiated progeny in the head, trunk and limb. We also review the extent to which these findings are specific to certain anatomical regions and model organisms, and indicate which findings similarly apply to ligaments. Finally, we address current research regarding the cellular lineages that contribute to tendon and ligament repair, and to what extent their regulation is conserved within tendon and ligament development.
Collapse
Affiliation(s)
- Lauren Bobzin
- Division of Biomedical Sciences, Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ryan R Roberts
- Division of Biomedical Sciences, Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Hung-Jhen Chen
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - J Gage Crump
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Amy E Merrill
- Division of Biomedical Sciences, Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
28
|
Zhang Z, Li Y, Zhang T, Shi M, Song X, Yang S, Liu H, Zhang M, Cui Q, Li Z. Hepatocyte Growth Factor-Induced Tendon Stem Cell Conditioned Medium Promotes Healing of Injured Achilles Tendon. Front Cell Dev Biol 2021; 9:654084. [PMID: 33898452 PMCID: PMC8059769 DOI: 10.3389/fcell.2021.654084] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Tendon repair is a medical challenge. Our present study investigated the effectiveness of acellular therapy consisting of conditioned medium (CM) of tendon stem cells (TSCs) induced with hepatocyte growth factor (HGF) in promoting the healing of injured Achilles tendon in a rat model. Proteomic analysis of soluble substances in the CM was performed using an array chip, and bioinformatic analysis was carried out to evaluate interactions among the factors. The effects of CM on viability and migratory capacity of tendon fibroblasts derived from rats with ruptured Achilles tendon were evaluated with the Cell Counting Kit 8 and wound healing assay, respectively. The expression of extracellular matrix (ECM)-related protein was assessed by western blotting. Rats with Achilles tendon injury were treated with CM by local injection for 2 weeks, and the organization of tendon fibers at the lesion site was evaluated by hematoxylin and eosin and Masson's trichrome staining of tissue samples. The deposition and degradation of ECM proteins and the expression of inflammatory factors at the lesion site were evaluated by immunohistochemistry and immunofluorescence. Biomechanical testing was carried out on the injured tendons to assess functional recovery. There were 12 bioactive molecules in the CM, with HGF as the hub of the protein-protein interaction network. CM treatment enhanced the viability and migration of tendon fibroblasts, altered the expression of ECM proteins, promoted the organization of tendon fibers, suppressed inflammation and improved the biomechanics of the injured Achilles tendon. These results suggest that HGF stimulates the secretion of soluble secretory products by TSCs and CM promotes the repair and functional recovery of ruptured Achilles tendon. Thus, HGF-induced TSC CM has therapeutic potential for the treatment of tendinopathy.
Collapse
Affiliation(s)
- Zenan Zhang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yutian Li
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tingting Zhang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Manyu Shi
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Song
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shulong Yang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hengchen Liu
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingzhao Zhang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingbo Cui
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaozhu Li
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
29
|
Ruiz-Alonso S, Lafuente-Merchan M, Ciriza J, Saenz-Del-Burgo L, Pedraz JL. Tendon tissue engineering: Cells, growth factors, scaffolds and production techniques. J Control Release 2021; 333:448-486. [PMID: 33811983 DOI: 10.1016/j.jconrel.2021.03.040] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
Tendon injuries are a global health problem that affects millions of people annually. The properties of tendons make their natural rehabilitation a very complex and long-lasting process. Thanks to the development of the fields of biomaterials, bioengineering and cell biology, a new discipline has emerged, tissue engineering. Within this discipline, diverse approaches have been proposed. The obtained results turn out to be promising, as increasingly more complex and natural tendon-like structures are obtained. In this review, the nature of the tendon and the conventional treatments that have been applied so far are underlined. Then, a comparison between the different tendon tissue engineering approaches that have been proposed to date is made, focusing on each of the elements necessary to obtain the structures that allow adequate regeneration of the tendon: growth factors, cells, scaffolds and techniques for scaffold development. The analysis of all these aspects allows understanding, in a global way, the effect that each element used in the regeneration of the tendon has and, thus, clarify the possible future approaches by making new combinations of materials, designs, cells and bioactive molecules to achieve a personalized regeneration of a functional tendon.
Collapse
Affiliation(s)
- Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - Markel Lafuente-Merchan
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - Jesús Ciriza
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Laura Saenz-Del-Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain.
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain.
| |
Collapse
|
30
|
Zhang Y, Lei T, Tang C, Chen Y, Liao Y, Ju W, Zhang H, Zhou B, Liang R, Zhang T, Fan C, Chen X, Zhao Y, Xie Y, Ye J, Heng BC, Chen X, Hong Y, Shen W, Yin Z. 3D printing of chemical-empowered tendon stem/progenitor cells for functional tissue repair. Biomaterials 2021; 271:120722. [PMID: 33676234 DOI: 10.1016/j.biomaterials.2021.120722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Tendon injuries are the leading cause of chronic debilitation to patients. Tendon stem/progenitor cells (TSPCs) are potential seed cells for tendon tissue engineering and regeneration, but TSPCs are prone to lose their distinct phenotype in vitro and specific differentiation into the tenocyte lineage is challenging. Utilizing small molecules in an ex vivo culture system may be a promising solution and can significantly improve the therapeutic applications of these cells. Here, by using an image-based, high-throughput screening platform on small molecule libraries, this study established an effective stepwise culture strategy for TSPCs application. The study formulated a cocktail of small molecules which effected proliferation, tenogenesis initiation and maturation phases, and significantly upregulated expression of various tendon-related genes and proteins in TSPCs, which were demonstrated by high-throughput PCR, ScxGFP reporter assay and immunocytochemistry. Furthermore, by combining small molecule-based culture system with 3D printing technology, we embedded living, chemical-empowered TSPCs within a biocompatible hydrogel to engineer tendon grafts, and verified their enhanced ability in promoting functional tendon repair and regeneration both in vivo and in situ. The stepwise culture system for TSPCs and construction of engineered tendon grafts can not only serve as a platform for further studies of underlying molecular mechanisms of tenogenic differentiation, but also provide a new strategy for tissue engineering and development of novel therapeutics for clinical applications.
Collapse
Affiliation(s)
- Yanjie Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tingyun Lei
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chenqi Tang
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yangwu Chen
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Youguo Liao
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Ju
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Zhang
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bo Zhou
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Renjie Liang
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tao Zhang
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chunmei Fan
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyi Chen
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Zhao
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanhao Xie
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinchun Ye
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | | | - Xiao Chen
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Yi Hong
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Weiliang Shen
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China.
| | - Zi Yin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China.
| |
Collapse
|
31
|
Tsiapalis D, Kearns S, Kelly JL, Zeugolis DI. Growth factor and macromolecular crowding supplementation in human tenocyte culture. BIOMATERIALS AND BIOSYSTEMS 2021; 1:100009. [PMID: 36825160 PMCID: PMC9934496 DOI: 10.1016/j.bbiosy.2021.100009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 11/18/2020] [Accepted: 01/22/2021] [Indexed: 01/20/2023] Open
Abstract
Cell-assembled tissue engineering strategies hold great potential in regenerative medicine, as three-dimensional tissue-like modules can be produced, even from a patient's own cells. However, the development of such implantable devices requires prolonged in vitro culture time, which is associated with cell phenotypic drift. Considering that the cells in vivo are subjected to numerous stimuli, multifactorial approaches are continuously gaining pace towards controlling cell fate during in vitro expansion. Herein, we assessed the synergistic effect of simultaneous and serial growth factor supplementation (insulin growth factor-1, platelet-derived growth factor ββ, growth differentiation factor 5 and transforming growth factor β3) to macromolecular crowding (carrageenan) in human tenocyte function; collagen synthesis and deposition; and gene expression. TGFβ3 supplementation (without/with carrageenan) induced the highest (among all groups) DNA content. In all cases, tenocyte proliferation was significantly increased as a function of time in culture, whilst metabolic activity was not affected. Carrageenan supplementation induced significantly higher collagen deposition than groups without carrageenan (without/with any growth factor). Of all the growth factors used, TGFβ3 induced the highest collagen deposition when used together with carrageenan in both simultaneous and serial fashion. At day 13, gene expression analysis revealed that TGFβ3 in serial supplementation to carrageenan upregulated the most and downregulated the least collagen- and tendon- related genes and upregulated the least and downregulated the most osteo-, chondro-, fibrosis- and adipose- related trans-differentiation genes. Collectively, these data clearly advocate the beneficial effects of multifactorial approaches (in this case, growth factor and macromolecular crowding supplementation) in the development of functional cell-assembled tissue surrogates.
Collapse
Affiliation(s)
- Dimitrios Tsiapalis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | | | | | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
- Corresponding authors.
| |
Collapse
|
32
|
Zhang BY, Xu P, Luo Q, Song GB. Proliferation and tenogenic differentiation of bone marrow mesenchymal stem cells in a porous collagen sponge scaffold. World J Stem Cells 2021; 13:115-127. [PMID: 33584983 PMCID: PMC7859984 DOI: 10.4252/wjsc.v13.i1.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Collagen is one of the most commonly used natural biomaterials for tendon tissue engineering. One of the possible practical ways to further enhance tendon repair is to combine a porous collagen sponge scaffold with a suitable growth factor or cytokine that has an inherent ability to promote the recruitment, proliferation, and tenogenic differentiation of cells. However, there is an incomplete understanding of which growth factors are sufficient and optimal for the tenogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) in a collagen sponge-based 3D culture system.
AIM To identify one or more ideal growth factors that benefit the proliferation and tenogenic differentiation of rat BMSCs in a porous collagen sponge scaffold.
METHODS We constructed a 3D culture system based on a type I collagen sponge scaffold. The surface topography of the collagen sponge scaffold was observed by scanning electron microscopy. Primary BMSCs were isolated from Sprague-Dawley rats. Cell survival on the surfaces of the scaffolds with different growth factors was assessed by live/dead assay and CCK-8 assay. The mRNA and protein expression levels were confirmed by quantitative real-time polymerase chain reaction and Western blot, respectively. The deposited collagen was assessed by Sirius Red staining.
RESULTS Transforming growth factor β1 (TGF-β1) showed great promise in the tenogenic differentiation of BMSCs compared to growth differentiation factor 7 (GDF-7) and insulin-like growth factor 1 (IGF-1) in both the 2D and 3D cultures, and the 3D culture enhanced the differentiation of BMSCs into tenocytes well beyond the level of induction in the 2D culture after TGF-β1 treatment. In the 2D culture, the proliferation of the BMSCs showed no significant changes compared to the control group after TGF-β1, IGF-1, or GDF-7 treatment. However, TGF-β1 and GDF-7 could increase the cell proliferation in the 3D culture. Strangely, we also found more dead cells in the BMSC-collagen sponge constructs that were treated with TGF-β1. Moreover, TGF-β1 promoted more collagen deposition in both the 2D and 3D cultures.
CONCLUSION Collagen sponge-based 3D culture with TGF-β1 enhances the responsiveness of the proliferation and tenogenic differentiation of rat BMSCs.
Collapse
Affiliation(s)
- Bing-Yu Zhang
- Department of College of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Pu Xu
- Department of College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Qing Luo
- Department of College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Guan-Bin Song
- Department of College of Bioengineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
33
|
Comparative Analysis of Tenogenic Gene Expression in Tenocyte-Derived Induced Pluripotent Stem Cells and Bone Marrow-Derived Mesenchymal Stem Cells in Response to Biochemical and Biomechanical Stimuli. Stem Cells Int 2021; 2021:8835576. [PMID: 33510795 PMCID: PMC7825360 DOI: 10.1155/2021/8835576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/19/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The tendon is highly prone to injury, overuse, or age-related degeneration in both humans and horses. Natural healing of injured tendon is poor, and cell-based therapeutic treatment is still a significant clinical challenge. In this study, we extensively investigated the expression of tenogenic genes in equine bone marrow mesenchymal stem cells (BMSCs) and tenocyte-derived induced pluripotent stem cells (teno-iPSCs) stimulated by growth factors (TGF-β3 and BMP12) combined with ectopic expression of tenogenic transcription factor MKX or cyclic uniaxial mechanical stretch. Western blotting revealed that TGF-β3 and BMP12 increased the expression of transcription factors SCX and MKX in both cells, but the tenocyte marker tenomodulin (TNMD) was detected only in BMSCs and upregulated by either inducer. On the other hand, quantitative real-time PCR showed that TGF-β3 increased the expression of EGR1, COL1A2, FMOD, and TNC in BMSCs and SCX, COL1A2, DCN, FMOD, and TNC in teno-iPSCs. BMP12 treatment elevated SCX, MKX, DCN, FMOD, and TNC in teno-iPSCs. Overexpression of MKX increased SCX, DCN, FMOD, and TNC in BMSCs and EGR1, COL1A2, DCN, FMOD, and TNC in teno-iPSCs; TGF-β3 further enhanced TNC in BMSCs. Moreover, mechanical stretch increased SCX, EGR1, DCN, ELN, and TNC in BMSCs and SCX, MKX, EGR1, COL1A2, DCN, FMOD, and TNC in teno-iPSCs; TGF-β3 tended to further elevate SCX, ELN, and TNC in BMSCs and SCX, MKX, COL1A2, DCN, and TNC in teno-iPSCs, while BMP12 further uptrended the expression of SCX and DCN in BMSCs and DCN in teno-iPSCs. Additionally, the aforementioned tenogenic inducers also affected the expression of signaling regulators SMAD7, ETV4, and SIRT1 in BMSCs and teno-iPSCs. Taken together, our data demonstrate that, in respect to the tenocyte-lineage-specific gene expression, BMSCs and teno-iPSCs respond differently to the tenogenic stimuli, which may affect the outcome of their application in tendon repair or regeneration.
Collapse
|
34
|
Chen P, Cui L, Fu SC, Shen L, Zhang W, You T, Ong TY, Liu Y, Yung SH, Jiang C. The 3D-Printed PLGA Scaffolds Loaded with Bone Marrow-Derived Mesenchymal Stem Cells Augment the Healing of Rotator Cuff Repair in the Rabbits. Cell Transplant 2020; 29:963689720973647. [PMID: 33300392 PMCID: PMC7873762 DOI: 10.1177/0963689720973647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The healing of tendon-bone in the rotator cuff is featured by the formation of the scar tissues in the interface after repair. This study aimed to determine if the 3D-printed poly lactic-co-glycolic acid (PLGA) scaffolds loaded with bone marrow-derived mesenchymal stem cells (BMSCs) could augment the rotator cuff repair in the rabbits. PLGA scaffolds were generated by the 3D-printed technology; Cell Counting Kit-8 assay evaluated the proliferation of BMSCs; the mRNA and protein expression levels were assessed by quantitative real-time polymerase chain reaction and western blot, respectively; immunohistology evaluated the rotator cuff repair; biomechanical characteristics of the repaired tissues were also assessed. 3D-printed PLGA scaffolds showed good biocompatibility without affecting the proliferative ability of BMSCs. BMSCs-PLGA scaffolds implantation enhanced the cell infiltration into the tendon-bone injunction at 4 weeks after implantation and improved the histology score in the tendon tissues after implantation. The mRNA expression levels of collagen I, III, tenascin, and biglycan were significantly higher in the scaffolds + BMSCs group at 4 weeks post-implantation than that in the scaffolds group. At 8 and 12 weeks after implantation, the biglycan mRNA expression level in the BMSCs-PLGA scaffolds group was significantly lower than that in the scaffolds group. BMSCs-PLGA scaffolds implantation enhanced collagen formation and increased collagen dimeter in the tendon-bone interface. The biomechanical analysis showed that BMSCs-PLGA scaffolds implantation improved the biomechanical properties of the regenerated tendon. The combination of 3D-printed PLGA scaffolds with BMSCs can augment the tendon-bone healing in the rabbit rotator cuff repair model.
Collapse
Affiliation(s)
- Peng Chen
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China.,*Both the authors contributed equally to this article
| | - Lei Cui
- Clinical College of Peking University Shenzhen Hospital, Anhui Medical University, Hefei, China.,*Both the authors contributed equally to this article
| | - Sai Chuen Fu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, China
| | - Li Shen
- Department of Clinical Laboratory, Maternity and Child-Care Hospital of Pingshan District, Shenzhen, Guangdong Province, China
| | - Wentao Zhang
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Tian You
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Tim-Yun Ong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, China
| | - Yang Liu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, China
| | - Shu-Hang Yung
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, China
| | - Changqing Jiang
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
35
|
Shin MJ, Shim IK, Kim DM, Choi JH, Lee YN, Jeon IH, Kim H, Park D, Kholinne E, Yang HS, Koh KH. Engineered Cell Sheets for the Effective Delivery of Adipose-Derived Stem Cells for Tendon-to-Bone Healing. Am J Sports Med 2020; 48:3347-3358. [PMID: 33136454 DOI: 10.1177/0363546520964445] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Efforts are being made to treat rotator cuff tears (RCTs) that exhibit poor healing and high retear rates. Tendon-to-bone healing using mesenchymal stem cells is being explored, but research is needed to establish effective delivery options. PURPOSE To evaluate the effects of an adipose-derived stem cell (ADSC) sheet on mesenchymal stem cell delivery for tendon-to-bone healing of a chronic RCT in rats and to demonstrate that ADSC sheets enhance tendon-to-bone healing. STUDY DESIGN Controlled laboratory study. METHODS Mesenchymal stem cells were obtained from rat adipose tissue, and a cell sheet was prepared using a temperature-responsive dish. To evaluate the efficacy of stem cells produced in a sheet for the lesion, the experiment was conducted with 3 groups: repair group, cell sheet transplantation after repair group, and cell sheet-only group. Histological, biomechanical, and micro-computed tomography (micro-CT) results were compared among the groups. RESULTS Hematoxylin and eosin staining for histomorphological analysis revealed that the cell sheet transplantation after repair group (5.75 ± 0.95) showed statistically significant higher scores than the repair (2.75 ± 0.50) and cell sheet-only (3.25 ± 0.50) groups (P < .001). On safranin O staining, the cell sheet transplantation after repair group (0.51 ± 0.04 mm2) had a larger fibrocartilage area than the repair (0.31 ± 0.06 mm2) and cell sheet-only (0.32 ± 0.03 mm2) groups (P = .001). On micro-CT, bone volume/total volume values were significantly higher in the cell sheet transplantation after repair group (23.98% ± 1.75%) than in the other groups (P < .039); there was no significant difference in the other values. On the biomechanical test, the cell sheet transplantation after repair group (4 weeks after repair) showed significantly higher results than the other groups (P < .005). CONCLUSION Our study shows that engineered stem cells are a clinically feasible stem cell delivery tool for rotator cuff repair. CLINICAL RELEVANCE This laboratory study provides evidence that ADSCs are effective in repairing RCTs, which are common sports injuries.
Collapse
Affiliation(s)
- Myung Jin Shin
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - In Kyong Shim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong Min Kim
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Hee Choi
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yu Na Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - In-Ho Jeon
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyojune Kim
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dongjun Park
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Erica Kholinne
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Orthopedic Surgery, St Carolus Hospital, Faculty of Medicine, Trisakti University, Jakarta, Indonesia
| | - Ha-Sol Yang
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyoung Hwan Koh
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
36
|
Wang Z, Tang Y, Yakufu M, Li L, Li G, Liu J, Zhang P. Highly Permeable Gelatin/Poly(lactic acid) Fibrous Scaffolds with a Three-Dimensional Spatial Structure for Efficient Cell Infiltration, Mineralization and Bone Regeneration. ACS APPLIED BIO MATERIALS 2020; 3:6932-6943. [PMID: 35019354 DOI: 10.1021/acsabm.0c00815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Three-dimensional (3D) fibrous scaffolds allowing sufficient cell infiltration are urgently needed for bone tissue engineering. In this study, a highly permeable 3D interconnected scaffold was fabricated by surface bonding of cotton-like nonwoven fibers with micro- and nanoscale architecture using gaseous chloroform. The results of physiochemical characterization indicated that bonding for 90 min with a fiber density of 0.15 g/cm3 could facilitate satisfactory porosity, supportive mechanical properties, and a 3D spatial microstructure for cell ingrowth. Coating with gelatin on the fibers induced highly efficient in vitro mineralization and in vivo bone formation as indicated by mineral deposition and repair of rabbit radius bone defect. The findings from this work demonstrated that these biofunctionalized fibrous scaffolds could bionically represent topographic nanofeatures and biological composition for cell binding affinities similar to those of the natural extracellular matrix (ECM). It can be concluded that the facile fabrication and modification strategy of 3D fibrous scaffolds exhibit promising prospect to fulfill the progressive needs in bone tissue engineering.
Collapse
Affiliation(s)
- Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yufeng Tang
- Department of Traumatology, Qianfoshan Hospital of Shandong Province, Jinan 250000, P. R. China.,Department of Orthopaedics, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Maihemuti Yakufu
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Linlong Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,Department of Orthopaedics and Traumatology and Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P. R. China
| | - Gang Li
- Department of Orthopaedics and Traumatology and Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P. R. China
| | - Jianguo Liu
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
37
|
Hypoxia-Induced Mesenchymal Stem Cells Exhibit Stronger Tenogenic Differentiation Capacities and Promote Patellar Tendon Repair in Rabbits. Stem Cells Int 2020; 2020:8822609. [PMID: 33133195 PMCID: PMC7591963 DOI: 10.1155/2020/8822609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/29/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Tendon injury is a common but tough medical problem. Unsatisfactory clinical results have been reported in tendon repair using mesenchymal stem cell (MSC) therapy, creating a need for a better strategy to induce MSCs to tenogenic differentiation. This study was designed to examine the effect of hypoxia on the tenogenic differentiation of different MSCs and their tenogenic differentiation capacities under hypoxia condition in vitro and to investigate the in vivo inductility of hypoxia in tenogenesis. Adipose tissue-derived MSCs (AMSCs) and bone marrow-derived MSCs (BMSCs) were isolated and characterized. The expression of hypoxia-induced factor-1 alpha (Hif-1α) was examined to confirm the establishment of hypoxia condition. qRT-PCR, western blot, and immunofluorescence staining were used to evaluate the expression of tendon-associated marker Col-1a1, Col-3a1, Dcn, and Tnmd in AMSCs and BMSCs under hypoxia condition, compared with Tgf-β1 induction. In vivo, a patellar tendon injury model was established. Normoxic and hypoxic BMSCs were cultured and implanted. Histological, biomechanical, and transmission electron microscopy analyses were performed to assess the improved healing effect of hypoxic BMSCs on tendon injury. Our in vitro results showed that hypoxia remarkably increased the expression of Hif-1α and that hypoxia not only promoted a significant increase in tenogenic markers in both AMSCs and BMSCs compared with the normoxia group but also showed higher inductility compared with Tgf-β1. In addition, hypoxic BMSCs exhibited higher potential of tenogenic differentiation than hypoxic AMSCs. Our in vivo results demonstrated that hypoxic BMSCs possessed better histological and biomechanical properties than normoxic BMSCs, as evidenced by histological scores, patellar tendon biomechanical parameters, and the range and average of collagen fibril diameters. These findings suggested that hypoxia may be a practical and reliable strategy to induce tenogenic differentiation of BMSCs for tendon repair and could enhance the effectiveness of MSCs therapy in treating tendon injury.
Collapse
|
38
|
Citeroni MR, Ciardulli MC, Russo V, Della Porta G, Mauro A, El Khatib M, Di Mattia M, Galesso D, Barbera C, Forsyth NR, Maffulli N, Barboni B. In Vitro Innovation of Tendon Tissue Engineering Strategies. Int J Mol Sci 2020; 21:E6726. [PMID: 32937830 PMCID: PMC7555358 DOI: 10.3390/ijms21186726] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Tendinopathy is the term used to refer to tendon disorders. Spontaneous adult tendon healing results in scar tissue formation and fibrosis with suboptimal biomechanical properties, often resulting in poor and painful mobility. The biomechanical properties of the tissue are negatively affected. Adult tendons have a limited natural healing capacity, and often respond poorly to current treatments that frequently are focused on exercise, drug delivery, and surgical procedures. Therefore, it is of great importance to identify key molecular and cellular processes involved in the progression of tendinopathies to develop effective therapeutic strategies and drive the tissue toward regeneration. To treat tendon diseases and support tendon regeneration, cell-based therapy as well as tissue engineering approaches are considered options, though none can yet be considered conclusive in their reproduction of a safe and successful long-term solution for full microarchitecture and biomechanical tissue recovery. In vitro differentiation techniques are not yet fully validated. This review aims to compare different available tendon in vitro differentiation strategies to clarify the state of art regarding the differentiation process.
Collapse
Affiliation(s)
- Maria Rita Citeroni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
- Interdepartment Centre BIONAM, Università di Salerno, via Giovanni Paolo I, 84084 Fisciano (SA), Italy
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Devis Galesso
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme (PD), Italy; (D.G.); (C.B.)
| | - Carlo Barbera
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme (PD), Italy; (D.G.); (C.B.)
| | - Nicholas R. Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke on Trent ST4 7QB, UK;
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Via San Leonardo 1, 84131 Salerno, Italy
- Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London E1 4DG, UK
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent ST5 5BG, UK
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| |
Collapse
|
39
|
Javanshir S, Younesi Soltani F, Dowlati G, Parham A, Naderi-Meshkin H. Induction of tenogenic differentiation of equine adipose-derived mesenchymal stem cells by platelet-derived growth factor-BB and growth differentiation factor-6. Mol Biol Rep 2020; 47:6855-6862. [PMID: 32875433 DOI: 10.1007/s11033-020-05742-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/15/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Managing tendon healing process is complicated mainly due to the limited regeneration capacity of tendon tissue. Mesenchymal stem cells (MSCs) have potential applications in regenerative medicine and have been considered for tendon repair and regeneration. This study aimed to evaluate the capacity of equine adipose tissue-derived cells (eASCs) to differentiate into tenocytes in response to platelet-derived growth factor-BB (PDGF-BB) and growth differentiation factor-6 (GDF-6) in vitro. Frozen characterized eASCS of 3 mares were thawed and the cells were expanded in basic culture medium (DMEM supplemented with 10% FBS). The cells at passage 5 were treated for 14 days in different conditions including: (1) control group in basic culture medium (CM), (2) induction medium as IM (CM containing L-prolin, and ascorbic acid (AA)) supplemented with PDGF-BB (20 ng/ml), (3) IM supplemented with GDF-6 (20 ng/ml), and (4) IM supplemented with PDGF-BB and GDF-6. At the end of culture period (14th day), tenogenic differentiation was evaluated. Sirius Red staining was used to assess collagen production, and H&E was used for assessing cell morphology. mRNA levels of collagen type 1 (colI), scleraxis (SCX), and Mohawk (MKX), as tenogenic markers, were analyzed using real-time reverse-transcription polymerase chain reaction (qPCR). H&E staining showed a stretching and spindle shape (tenocyte-like) cells in all treated groups compared to unchanged from of cells in control groups. Also, Sirius red staining data showed a significant increase in collagen production in all treated groups compared with the control group. MKX expression was significantly increased in PDGF-BB and mixed groups and COLI expression was significantly increased only in PDGF-BB group. In conclusion, our results showed that PDGF-BB and GDF-6 combination could induce tenogenic differentiation in eASCs. These in vitro findings could be useful for cell therapy in equine regenerative medicine.
Collapse
Affiliation(s)
- Shabnam Javanshir
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh Younesi Soltani
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Gholamreza Dowlati
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abbas Parham
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Iran.
| | - Hojjat Naderi-Meshkin
- Stem Cells and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| |
Collapse
|
40
|
Hurley-Novatny A, Arumugasaamy N, Kimicata M, Baker H, Mikos AG, Fisher JP. Concurrent multi-lineage differentiation of mesenchymal stem cells through spatial presentation of growth factors. Biomed Mater 2020; 15:055035. [PMID: 32526725 PMCID: PMC7648258 DOI: 10.1088/1748-605x/ab9bb0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Severe tendon and ligament injuries are estimated to affect between 300 000 and 400 000 people annually. Surgical repairs of these injuries often have poor long-term clinical outcomes because of resection of the interfacial tissue-the enthesis-and subsequent stress concentration at the attachment site. A healthy enthesis consists of distinct regions of bone, fibrocartilage, and tendon, each with distinct cell types, extracellular matrix components, and architecture, which are important for tissue function. Tissue engineering, which has been proposed as a potential strategy for replacing this tissue, is currently limited by its inability to differentiate multiple lineages of cells from a single stem cell population within a single engineered construct. In this study, we develop a multi-phasic gelatin methacrylate hydrogel construct system for spatial presentation of proteins, which is then validated for multi-lineage differentiation towards the cell types of the bone-tendon enthesis. This study determines growth factor concentrations for differentiation of mesenchymal stem cells towards osteoblasts, chondrocytes/fibrochondrocytes, and tenocytes, which maintain similar differentiation profiles in 3D hydrogel culture as assessed by qPCR and immunofluorescence staining. Finally, it is shown that this method is able to guide heterogeneous and spatially confined changes in mesenchymal stem cell genes and protein expressions with the tendency to result in osteoblast-, fibrochondrocyte-, and tenocyte-like expression profiles. Overall, we demonstrate the utility of the culture technique for engineering other musculoskeletal tissue interfaces and provide a biochemical approach for recapitulating the bone-tendon enthesis in vitro.
Collapse
Affiliation(s)
- Amelia Hurley-Novatny
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States of America. Center for Engineering Complex Tissues, University of Maryland and Rice University, College Park, MD 20742, United States of America
| | | | | | | | | | | |
Collapse
|
41
|
Falcon ND, Riley GP, Saeed A. Induction of Tendon-Specific Markers in Adipose-Derived Stem Cells in Serum-Free Culture Conditions. Tissue Eng Part C Methods 2020; 25:389-400. [PMID: 31140381 DOI: 10.1089/ten.tec.2019.0080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
IMPACT STATEMENT Herein, we describe the tenogenic effect of bone morphogenetic protein-12 and transforming growth factor-β1 in cultured adipose-derived stem cells (ADSCs) in serum-free conditions. This culture system provides an insight into serum-free culture conditions in stem cell differentiation protocols. A positive response of the ADSCs to the tenogenic induction was observed. In particular, the different growth factors used in this study displayed notable differences both on the gene and on the protein expression of the tendon-specific markers. The results underline the positive outcome of the serum removal in tenogenic differentiation protocols, contributing to the development of future cell-based therapies for tendon regeneration and repair.
Collapse
Affiliation(s)
- Noelia D Falcon
- 1School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Graham P Riley
- 2School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Aram Saeed
- 1School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
42
|
Ha SH, Choung PH. MSM promotes human periodontal ligament stem cells differentiation to osteoblast and bone regeneration. Biochem Biophys Res Commun 2020; 528:160-167. [PMID: 32466845 DOI: 10.1016/j.bbrc.2020.05.097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/13/2020] [Indexed: 12/19/2022]
Abstract
Periodontal disease is the most common chronic disease of the oral and maxillofacial region, causing alveolar bone loss and ultimate loss of tooth. The purpose of treatment of periodontal disease is to promote the regeneration of periodontal tissue, including alveolar bone, and implantation of fixtures to replace the missing tooth as a result of advanced periodontal disease also requires alveolar bone regeneration. Methylsulfonylmethane (MSM) is a sulfur compound with well-known anti-inflammatory effects but its effects on bone regeneration are unknown. In this study, we investigated the effects of MSM on osteogenic differentiation of human PDLSCs (hPDLSCs) in vitro and in vivo. Our results demonstrate that MSM not only promotes the proliferation but also promotes osteogenic differentiation of hPDLSCs. MSM increased the expression levels of osteogenic specific markers that ALP, OPN, OCN, Runx2, and OSX. Smad2/3 signaling pathway was reinforced by MSM. Runx2, which downstream of Smad pathway, was expressed in accordance. Consistent with in vitro results, in vivo calvarial defect model and transplantation model revealed that MSM induces hPDLSCs to differentiate into osteoblast, which express ALP, OPN and OCN highly and enhance bone formation. These results suggest that MSM promotes osteogenic differentiation and bone formation of hPDLSCs, and Smad2/3 / Runx2 / OSX / OPN may play critical roles in the MSM-induced osteogenic differentiation. Thus, MSM combined with hPDLSCs may be a good candidate for future clinical applications in alveolar bone regeneration and can be used for graft material in reconstructive dentistry.
Collapse
Affiliation(s)
- Sung-Ho Ha
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea.
| | - Pill-Hoon Choung
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
43
|
Yan Z, Yin H, Brochhausen C, Pfeifer CG, Alt V, Docheva D. Aged Tendon Stem/Progenitor Cells Are Less Competent to Form 3D Tendon Organoids Due to Cell Autonomous and Matrix Production Deficits. Front Bioeng Biotechnol 2020; 8:406. [PMID: 32432103 PMCID: PMC7214752 DOI: 10.3389/fbioe.2020.00406] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Tendons are dense connective tissues, which are critical for the integrity and function of our musculoskeletal system. During tendon aging and degeneration, tendon stem/progenitor cells (TSPCs) experience profound phenotypic changes with declined cellular functions that can be linked to the known increase in complications during tendon healing process in elderly patients. Tissue engineering is a promising approach for achieving a complete recovery of injured tendons. However, use of autologous cells from aged individuals would require restoring the cellular fitness prior to implantation. In this study, we applied an established cell sheet model for in vitro tenogenesis and compared the sheet formation of TSPC derived from young/healthy (Y-TSPCs) versus aged/degenerative (A-TSPCs) human Achilles tendon biopsies with the purpose to unravel differences in their potential to form self-assembled three-dimensional (3D) tendon organoids. Using our three-step protocol, 4 donors of Y-TSPCs and 9 donors of A-TSPCs were subjected to cell sheet formation and maturation in a period of 5 weeks. The sheets were then cross evaluated by weight and diameter measurements; quantification of cell density, proliferation, senescence and apoptosis; histomorphometry; gene expression of 48 target genes; and collagen type I protein production. The results revealed very obvious and significant phenotype in A-TSPC sheets characterized by being fragile and thin with poor tissue morphology, and significantly lower cell density and proliferation, but significantly higher levels of the senescence-related gene markers and apoptotic cells. Quantitative gene expression analyses at the mRNA and protein levels, also demonstrated abnormal molecular circuits in the A-TSPC sheets. Taken together, we report for the first time that A-TSPCs exhibit profound deficits in forming 3D tendon tissue organoids, thus making the cell sheet model suitable to investigate the molecular mechanisms involved in tendon aging and degeneration, as well as examining novel pharmacologic strategies for rejuvenation of aged cells.
Collapse
Affiliation(s)
- Zexing Yan
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Heyong Yin
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | | | - Christian G Pfeifer
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Volker Alt
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany.,Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
44
|
Yu H, Cheng J, Shi W, Ren B, Zhao F, Shi Y, Yang P, Duan X, Zhang J, Fu X, Hu X, Ao Y. Bone marrow mesenchymal stem cell-derived exosomes promote tendon regeneration by facilitating the proliferation and migration of endogenous tendon stem/progenitor cells. Acta Biomater 2020; 106:328-341. [PMID: 32027991 DOI: 10.1016/j.actbio.2020.01.051] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/15/2020] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs)-derived exosomes are being increasingly focused as the new biological pro-regenerative therapeutic agents for various types of tissue injury. Here, we explored the potential of a novel exosome-based therapeutic application combined with a local fibrin delivery strategy for tendon repair. After discovering that bone marrow mesenchymal stem cells-derived exosomes (BMSCs-exos) promoted the proliferation, migration and tenogenic differentiation of tendon stem/progenitor cells (TSPCs) in vitro, we embedded BMSCs-exos in fibrin and injected it into the defect area of rat patellar tendon, and the results showed that the exosomes could be controlled-released from the fibrin, retained within the defect area, and internalized by TSPCs. BMSCs-exos embedded in fibrin significantly improved the histological scores, enhanced the expression of mohawk, tenomodulin, and type I collagen, as well as the mechanical properties of neotendon, and also promoted the proliferation of local TSPCs in vivo. Overall, we demonstrated the beneficial role of BMSCs-exos in tendon regeneration, and that fibrin-exosomes delivery system represents a successful local treatment strategy of exosomes. This study brings prospects in the potential application of exosomes in novel therapies for tendon injury. STATEMENT OF SIGNIFICANCE: Mesenchymal stem cells have been identified as a preferred approach in tissue regeneration. In this study, we reported bone marrow mesenchymal stem cells (BMSCs) promote the proliferation and migration of tendon stem/progenitor cells (TSPCs) via the paracrine signaling effect of the nanoscale exosomes. We also demonstrated that the application of BMSCs-derived exosomes might be a promising approach to activate the regenerative potential of endogenous TSPCs in tendon injured region, and fibrin-exosomes delivery system represents a successful local treatment strategy of exosomes.
Collapse
|
45
|
Yang Y, Pan Q, Zou K, Wang H, Zhang X, Yang Z, Lee WYW, Wei B, Gu W, Yang YP, Lin S, Li G. Administration of allogeneic mesenchymal stem cells in lengthening phase accelerates early bone consolidation in rat distraction osteogenesis model. Stem Cell Res Ther 2020; 11:129. [PMID: 32197646 PMCID: PMC7083044 DOI: 10.1186/s13287-020-01635-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/20/2020] [Accepted: 03/04/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Distraction osteogenesis (DO) is a surgical technique to promote bone regeneration which may require long duration for bone consolidation. Bone marrow-derived mesenchymal stem cells (MSCs) have been applied to accelerate bone formation in DO. However, the optimal time point for cell therapy in DO remains unknown. This study sought to determine the optimal time point of cell administration to achieve early bone consolidation in DO. We hypothesized that the ratio of circulating MSCs to peripheral mononuclear cells and the level of cytokines in serum might be indicators for cell administration in DO. METHODS Unilateral tibial osteotomy with an external fixator was performed in adult Sprague Dawley rats. Three days after osteotomy, the tibia was lengthened at 0.5 mm/12 h for 5 days. At first, 5 rats were used to analyze the blood components at 6 different time points (3 days before lengthening, on the day lengthening began, or 3, 6, 10, or 14 days after lengthening began) by sorting circulating MSCs and measuring serum levels of stromal cell-derived factor 1 (SDF-1) and interleukin 1β. Then, 40 rats were used for cell therapy study. A single dose of 5 × 105 allogeneic MSCs was locally injected at the lengthening site on day 3, 6, or 10 after lengthening began, or 3 doses of MSCs were injected at the three time points. Sequential X-ray radiographs were taken weekly. Endpoint examinations included micro-computed tomography analysis, mechanical testing, histomorphometry, and histology. RESULTS The number of circulating MSCs and serum level of SDF-1 were significantly increased during lengthening, and then decreased afterwards. Single injection of MSCs during lengthening phase (on day 3, but not day 6 or 10) significantly increased bone volume fraction, mechanical maximum loading, and bone mineralization of the regenerate. Triple injections of MSCs at three time points also significantly increased bone volume and maximum loading of the regenerates. CONCLUSION This study demonstrated that bone consolidation could be accelerated by a single injection of MSCs during lengthening when the ratio of peripheral MSCs to mononuclear cells and the serum SDF-1 presented at peak levels concurrently, suggesting that day 3 after lengthening began may be the optimal time point for cell therapy to promote early bone consolidation.
Collapse
Affiliation(s)
- Yanhua Yang
- Department of Central Laboratory, Changzhou Seventh People's Hospital, Changzhou, China.,Department of Orthopaedic and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Qi Pan
- Department of Orthopaedic and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Kaijie Zou
- Department of Central Laboratory, Changzhou Seventh People's Hospital, Changzhou, China.,Department of Orthopaedic and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Haixing Wang
- Department of Orthopaedic and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Xiaoting Zhang
- Department of Orthopaedic and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Zhengmeng Yang
- Department of Orthopaedic and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Wayne Yuk Wai Lee
- Department of Orthopaedic and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Bo Wei
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Weidong Gu
- Department of Central Laboratory, Changzhou Seventh People's Hospital, Changzhou, China
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, USA.,Department of Materials Science and Engineering, School of Engineering, Stanford University, Stanford, USA.,Department of Bioengineering, School of Medicine, Stanford University, Stanford, USA
| | - Sien Lin
- Department of Orthopaedic and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China. .,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China. .,Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China. .,Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, USA.
| | - Gang Li
- Department of Orthopaedic and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China. .,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China. .,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China. .,Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
46
|
Komura S, Satake T, Goto A, Aoki H, Shibata H, Ito K, Hirakawa A, Yamada Y, Akiyama H. Induced pluripotent stem cell-derived tenocyte-like cells promote the regeneration of injured tendons in mice. Sci Rep 2020; 10:3992. [PMID: 32132649 PMCID: PMC7055210 DOI: 10.1038/s41598-020-61063-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Tendons are dense fibrous structures that attach muscles to bones. Healing of tendon injuries is a clinical challenge owing to poor regenerative potential and scarring. Here, we created reporter mice that express EGFP, driven by the promoter of the tendon-specific Scleraxis (Scx) transcription-factor gene; we then generated induced pluripotent stem cells (iPSCs) from these mice. Utilising these fluorescently labelled iPSCs, we developed a tenogenic differentiation protocol. The iPSC-derived EGFP-positive cells exhibited elevated expression of tendon-specific genes, including Scx, Mohawk, Tenomodulin, and Fibromodulin, indicating that they have tenocyte-like properties. Finally, we demonstrated that these cells promoted tendon regeneration in mice after transplantation into injured tendons reducing scar formation via paracrine effect. Our data demonstrate that the tenogenic differentiation protocol successfully provided functional cells from iPSCs. We propose that pluripotent stem cell-based therapy using this protocol will provide an effective therapeutic approach for tendon injuries.
Collapse
Affiliation(s)
- Shingo Komura
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan. .,Laboratory of Stem Cell Oncology, Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| | - Takashi Satake
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Atsushi Goto
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Hirofumi Shibata
- Laboratory of Stem Cell Oncology, Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Kenji Ito
- Laboratory of Stem Cell Oncology, Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.,Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Akihiro Hirakawa
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Yasuhiro Yamada
- Laboratory of Stem Cell Oncology, Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.,Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| |
Collapse
|
47
|
Qi F, Deng Z, Ma Y, Wang S, Liu C, Lyu F, Wang T, Zheng Q. From the perspective of embryonic tendon development: various cells applied to tendon tissue engineering. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:131. [PMID: 32175424 DOI: 10.21037/atm.2019.12.78] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is a high risk of injury from damage to the force-bearing tissue of the tendon. Due to its poor self-healing ability, clinical interventions for tendon injuries are limited and yield unsatisfying results. Tissue engineering might supply an alternative to this obstacle. As one of the key elements of tissue engineering, various cell sources have been used for tendon engineering, but there is no consensue concerning a single optimal source. In this review, we summarized the development of tendon tissue from the embryonic stage and categorized the used cell sources in tendon engineering. By comparing various cell sources as the candidates for tendon regeneration, each cell type was found to have its advantages and limitations; therefore, it is difficult to define the best cell source for tendon engineering. The microenvironment cells located is also crucial for cell growth and differentiation; so, the optimal cells are unlikely to be the same for each patient. In the future, the clinical application of tendon engineering might be more precise and customized in contrast to the current use of a standardized/generic one-size-fits-all procedure. The best cell source for tendon engineering will require a case-based assessment.
Collapse
Affiliation(s)
- Fangjie Qi
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Zhantao Deng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Shuai Wang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Chang Liu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Fengjuan Lyu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Tao Wang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.,Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.,Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
48
|
Evrova O, Kellenberger D, Calcagni M, Vogel V, Buschmann J. Supporting Cell-Based Tendon Therapy: Effect of PDGF-BB and Ascorbic Acid on Rabbit Achilles Tenocytes in Vitro. Int J Mol Sci 2020; 21:ijms21020458. [PMID: 31936891 PMCID: PMC7014238 DOI: 10.3390/ijms21020458] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/21/2022] Open
Abstract
Cell-based tendon therapies with tenocytes as a cell source need effective tenocyte in vitro expansion before application for tendinopathies and tendon injuries. Supplementation of tenocyte culture with biomolecules that can boost proliferation and matrix synthesis is one viable option for supporting cell expansion. In this in vitro study, the impacts of ascorbic acid or PDGF-BB supplementation on rabbit Achilles tenocyte culture were studied. Namely, cell proliferation, changes in gene expression of several ECM and tendon markers (collagen I, collagen III, fibronectin, aggrecan, biglycan, decorin, ki67, tenascin-C, tenomodulin, Mohawk, α-SMA, MMP-2, MMP-9, TIMP1, and TIMP2) and ECM deposition (collagen I and fibronectin) were assessed. Ascorbic acid and PDGF-BB enhanced tenocyte proliferation, while ascorbic acid significantly accelerated the deposition of collagen I. Both biomolecules led to different changes in the gene expression profile of the cultured tenocytes, where upregulation of collagen I, Mohawk, decorin, MMP-2, and TIMP-2 was observed with ascorbic acid, while these markers were downregulated by PDGF-BB supplementation. Vice versa, there was an upregulation of fibronectin, biglycan and tenascin-C by PDGF-BB supplementation, while ascorbic acid led to a downregulation of these markers. However, both biomolecules are promising candidates for improving and accelerating the in vitro expansion of tenocytes, which is vital for various tendon tissue engineering approaches or cell-based tendon therapy.
Collapse
Affiliation(s)
- Olivera Evrova
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland; (O.E.); (M.C.)
- Laboratory of Applied Mechanobiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; (D.K.); (V.V.)
| | - Damian Kellenberger
- Laboratory of Applied Mechanobiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; (D.K.); (V.V.)
| | - Maurizio Calcagni
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland; (O.E.); (M.C.)
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; (D.K.); (V.V.)
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland; (O.E.); (M.C.)
- Correspondence: ; Tel.: +41-44-255-9895
| |
Collapse
|
49
|
Woods S, Bates N, Dunn SL, Serracino‐Inglott F, Hardingham TE, Kimber SJ. Generation of Human-Induced Pluripotent Stem Cells From Anterior Cruciate Ligament. J Orthop Res 2020; 38:92-104. [PMID: 31613026 PMCID: PMC6972590 DOI: 10.1002/jor.24493] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/04/2019] [Indexed: 02/04/2023]
Abstract
Human-induced pluripotent stem cells (hiPSCs) are reprogrammed somatic cells and are an excellent cell source for tissue engineering applications, disease modeling, and for understanding human development. HiPSC lines have now been generated from a diverse range of somatic cell types and have been reported to retain an epigenetic memory of their somatic origin. To date, the reprogramming of a true ligament has not been reported. The aim of this study is to generate iPSCs from human anterior cruciate ligament (ACL) cells. ACL cells from three above-knee amputation donors, with donor matched dermal fibroblasts (DFs) were tested for reprogramming using an existing DF reprogramming protocol. ACL cells were, however, more sensitive than donor matched DF to transforming growth factor-β (TGF-β); displaying marked contraction, increased proliferation and increased TNC and COMP expression in vitro, which hindered reprogramming to iPSCs. Modification of the protocol by scoring the cell monolayer or by removal of TGF-β during ACL reprogramming resulted in emerging colonies being easier to identify and extract, increasing reprogramming efficiency. Following 30 passages in culture, the generated ACL derived iPSCs displayed pluripotency markers, normal karyotype and can successfully differentiate to cells of the three embryonic germ layers. This study illustrates it is possible to generate hiPSCs from ligament and identifies optimized ligament reprogramming conditions. ACL derived iPSCs may provide a promising cell source for ligament and related tissue engineering applications. © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society J Orthop Res 38:92-104, 2020.
Collapse
Affiliation(s)
- Steven Woods
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological SciencesUniversity of ManchesterMichael Smith Building, Oxford RdManchesterM13 9PTUnited Kingdom
| | - Nicola Bates
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological SciencesUniversity of ManchesterMichael Smith Building, Oxford RdManchesterM13 9PTUnited Kingdom
| | - Sara L. Dunn
- Division of Cell‐Matrix Biology and Regenerative Medicine, Wellcome Trust Centre for Cell‐Matrix Research, Faculty of Biology, Medicine and Health, School of Biological SciencesUniversity of ManchesterManchesterUnited Kingdom
| | | | - Tim E. Hardingham
- Division of Cell‐Matrix Biology and Regenerative Medicine, Wellcome Trust Centre for Cell‐Matrix Research, Faculty of Biology, Medicine and Health, School of Biological SciencesUniversity of ManchesterManchesterUnited Kingdom
| | - Susan J. Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological SciencesUniversity of ManchesterMichael Smith Building, Oxford RdManchesterM13 9PTUnited Kingdom
| |
Collapse
|
50
|
Li J, Cai Q, Ge H, Xue C, Fu Q, Cheng B. WITHDRAWN: RNA binding protein QKI5 accelerates tenogenic differentiation and promotes tendon healing through AKT-mTOR signalling by stabilizing MALAT1. Life Sci 2019:117236. [PMID: 31887297 DOI: 10.1016/j.lfs.2019.117236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/17/2019] [Accepted: 12/25/2019] [Indexed: 10/25/2022]
Abstract
This article has been withdrawn at the request of the authors. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Jun Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Qiuchen Cai
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Heng'an Ge
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Chao Xue
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Biao Cheng
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China.
| |
Collapse
|