1
|
Jiang Y, Hu J, Cui C, Peng Z, Yang S, Lei J, Li B, Yang X, Qin J, Yin M, Liu X, Ye K, Xu Z, Zhang X, Lu X. Netrin1-Enriched Exosomes From Genetically Modified ADSCs as a Novel Treatment for Diabetic Limb Ischemia. Adv Healthc Mater 2024:e2403521. [PMID: 39440618 DOI: 10.1002/adhm.202403521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Indexed: 10/25/2024]
Abstract
Diabetic limb ischemia (DLI) is a frequent complication of diabetes and the leading cause of non-traumatic amputation. Traditional treatments like stent placement and bypass surgery may not suit all patients. Exosome transplantation has emerged as a promising therapy. Netrin1, a protective cardiovascular factor, has an unclear role in DLI. This study investigates the role of Netrin1 in DLI patients and evaluates the therapeutic potential of exosomes derived from Netrin1-overexpressing adipose-derived stem cells (N-ADSCs). The expression of Netrin1 is significantly decreased in both endothelial cells and serum of DLI patients, highlighting its potential as a biomarker or therapeutic target. In vitro, Netrin1-enriched exosomes (N-Exos) promoted human umbilical vein endothelial cell (HUVEC) proliferation, migration, tube formation, and increased resistance to apoptosis under high glucose conditions. These protective effects are mediated through PI3K/AKT/eNOS and MEK/ERK pathways, and N-Exos further facilitated macrophage polarization from M1 to M2. In vivo, N-Exos demonstrates superior therapeutic effects over ADSC exosomes (Exos), including enhanced angiogenesis, improved collateral artery remodeling, reduced inflammation, and muscle protection. Collectively, these findings identify Netrin1 as a critical factor in DLI and underscore its significance in disease progression and therapeutic strategies. N-Exos offers a promising non-cellular therapeutic approach for the treatment of DLI.
Collapse
Affiliation(s)
- Yihong Jiang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Jiateng Hu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Chaoyi Cui
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Zhaoxi Peng
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Sen Yang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Jiahao Lei
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Bo Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Xinrui Yang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Jinbao Qin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Minyi Yin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Xiaobing Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Kaichuang Ye
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Zhijue Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xing Zhang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
2
|
Li Y, Yue G, Yu S, Liu Z, Cao Y, Wang X. Extracellular Vesicles Derived from H 2O 2-Stimulated Adipose-Derived Stem Cells Alleviate Senescence in Diabetic Bone Marrow Mesenchymal Stem Cells and Restore Their Osteogenic Capacity. Drug Des Devel Ther 2024; 18:2103-2124. [PMID: 38882044 PMCID: PMC11177868 DOI: 10.2147/dddt.s454509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/02/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction Autologous stem cell transplantation has emerged as a promising strategy for bone repair. However, the osteogenic potential of mesenchymal stem cells derived from diabetic patients is compromised, possibly due to hyperglycemia-induced senescence. The objective of this study was to assess the preconditioning effects of extracellular vesicles derived from H2O2-stimulated adipose-derived stem cells (ADSCs) and non-modified ADSCs on the osteogenic potential of diabetic bone marrow mesenchymal stem cells (BMSCs). Methods Sprague-Dawley (SD) rats were experimentally induced into a diabetic state through a high-fat diet followed by an injection of streptozotocin, and diabetic BMSCs were collected from the bone marrow of these rats. Extracellular vesicles (EVs) were isolated from the conditioned media of ADSCs, with or without hydrogen peroxide (H2O2) preconditioning, using density gradient centrifugation. The effects of H2O2 preconditioning on the morphology, marker expression, and particle size of the EVs were analyzed. Furthermore, the impact of EV-pretreatment on the viability, survivability, migration ability, osteogenesis, cellular senescence, and oxidative stress of diabetic BMSCs was examined. Moreover, the expression of the Nrf2/HO-1 pathway was also assessed to explore the underlying mechanism. Additionally, we transplanted EV-pretreated BMSCs into calvarial defects in diabetic rats to assess their in vivo bone formation and anti-senescence capabilities. Results Our study demonstrated that pretreatment with EVs from ADSCs significantly improved the viability, senescence, and osteogenic differentiation potential of diabetic BMSCs. Moreover, in-vitro experiments revealed that diabetic BMSCs treated with H2O2-activated EVs exhibited increased viability, reduced senescence, and enhanced osteogenic differentiation compared to those treated with non-modified EVs. Furthermore, when transplanted into rat bone defects, diabetic BMSCs treated with H2O2-activated EVs showed improved bone regeneration potential and enhanced anti-senescence function t compared to those treated with non-modified EVs. Both H2O2-activated EVs and non-modified EVs upregulated the expression of the Nrf2/HO-1 pathway in diabetic BMSCs, however, the promoting effect of H2O2-activated EVs was more pronounced than that of non-modified EVs. Conclusion Extracellular vesicles derived from H2O2-preconditioned ADSCs mitigated senescence in diabetic BMSCs and enhanced their bone regenerative functions via the activation of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Yu Li
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Guangren Yue
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Shuying Yu
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zheng Liu
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yilin Cao
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- National Tissue Engineering Center of China, Shanghai, People's Republic of China
| | - Ximei Wang
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
3
|
Meechem MB, Jadli AS, Patel VB. Uncovering the link between diabetes and cardiovascular diseases: insights from adipose-derived stem cells. Can J Physiol Pharmacol 2024; 102:229-241. [PMID: 38198660 DOI: 10.1139/cjpp-2023-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of morbidity and mortality worldwide. The escalating global occurrence of obesity and diabetes mellitus (DM) has led to a significant upsurge in individuals afflicted with CVDs. As the prevalence of CVDs continues to rise, it is becoming increasingly important to identify the underlying cellular and molecular mechanisms that contribute to their development and progression, which will help discover novel therapeutic avenues. Adipose tissue (AT) is a connective tissue that plays a crucial role in maintaining lipid and glucose homeostasis. However, when AT is exposed to diseased conditions, such as DM, this tissue will alter its phenotype to become dysfunctional. AT is now recognized as a critical contributor to CVDs, especially in patients with DM. AT is comprised of a heterogeneous cellular population, which includes adipose-derived stem cells (ADSCs). ADSCs resident in AT are believed to regulate physiological cardiac function and have potential cardioprotective roles. However, recent studies have also shown that ADSCs from various adipose tissue depots become pro-apoptotic, pro-inflammatory, less angiogenic, and lose their ability to differentiate into various cell lineages upon exposure to diabetic conditions. This review aims to summarize the current understanding of the physiological roles of ADSCs, the impact of DM on ADSC phenotypic changes, and how these alterations may contribute to the pathogenesis of CVDs.
Collapse
Affiliation(s)
- Megan B Meechem
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Anshul S Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Vaibhav B Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
4
|
Pang N, Laiva AL, Sulaiman NZ, Das P, O’Brien FJ, Keogh MB. Dual Glyoxalase-1 and β-Klotho Gene-Activated Scaffold Reduces Methylglyoxal and Reprograms Diabetic Adipose-Derived Stem Cells: Prospects in Improved Wound Healing. Pharmaceutics 2024; 16:265. [PMID: 38399319 PMCID: PMC10892312 DOI: 10.3390/pharmaceutics16020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Tissue engineering approaches aim to provide biocompatible scaffold supports that allow healing to progress often in healthy tissue. In diabetic foot ulcers (DFUs), hyperglycemia impedes ulcer regeneration, due to complications involving accumulations of cellular methylglyoxal (MG), a key component of oxidated stress and premature cellular aging which further limits repair. In this study, we aim to reduce MG using a collagen-chondroitin sulfate gene-activated scaffold (GAS) containing the glyoxalase-1 gene (GLO-1) to scavenge MG and anti-fibrotic β-klotho to restore stem cell activity in diabetic adipose-derived stem cells (dADSCs). dADSCs were cultured on dual GAS constructs for 21 days in high-glucose media in vitro. Our results show that dADSCs cultured on dual GAS significantly reduced MG accumulation (-84%; p < 0.05) compared to the gene-free controls. Similar reductions in profibrotic proteins α-smooth muscle actin (-65%) and fibronectin (-76%; p < 0.05) were identified in dual GAS groups. Similar findings were observed in the expression of pro-scarring structural proteins collagen I (-62%), collagen IV (-70%) and collagen VII (-86%). A non-significant decrease in the expression of basement membrane protein E-cadherin (-59%) was noted; however, the dual GAS showed a significant increase in the expression of laminin (+300%). We conclude that dual GAS-containing Glo-1 and β-klotho had a synergistic MG detoxification and anti-fibrotic role in dADSC's. This may be beneficial to provide better wound healing in DFUs by controlling the diabetic environment and rejuvenating the diabetic stem cells towards improved wound healing.
Collapse
Affiliation(s)
- Nadia Pang
- Tissue Engineering Research Group—Bahrain, Royal College of Surgeons in Ireland, Adliya P.O. Box 15503, Bahrain; (N.P.); (N.Z.S.); (P.D.)
| | - Ashang L. Laiva
- Tissue Engineering Research Group—Bahrain, Royal College of Surgeons in Ireland, Adliya P.O. Box 15503, Bahrain; (N.P.); (N.Z.S.); (P.D.)
| | - Noof Z. Sulaiman
- Tissue Engineering Research Group—Bahrain, Royal College of Surgeons in Ireland, Adliya P.O. Box 15503, Bahrain; (N.P.); (N.Z.S.); (P.D.)
| | - Priya Das
- Tissue Engineering Research Group—Bahrain, Royal College of Surgeons in Ireland, Adliya P.O. Box 15503, Bahrain; (N.P.); (N.Z.S.); (P.D.)
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, D02 YN77 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Michael B. Keogh
- Tissue Engineering Research Group—Bahrain, Royal College of Surgeons in Ireland, Adliya P.O. Box 15503, Bahrain; (N.P.); (N.Z.S.); (P.D.)
| |
Collapse
|
5
|
Yao MX, Zhang YF, Liu W, Wang HC, Ren C, Zhang YQ, Shi TL, Chen W. Cartilage tissue healing and regeneration based on biocompatible materials: a systematic review and bibliometric analysis from 1993 to 2022. Front Pharmacol 2024; 14:1276849. [PMID: 38239192 PMCID: PMC10794889 DOI: 10.3389/fphar.2023.1276849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/20/2023] [Indexed: 01/22/2024] Open
Abstract
Cartilage, a type of connective tissue, plays a crucial role in supporting and cushioning the body, and damages or diseases affecting cartilage may result in pain and impaired joint function. In this regard, biocompatible materials are used in cartilage tissue healing and regeneration as scaffolds for new tissue growth, barriers to prevent infection and reduce inflammation, and deliver drugs or growth factors to the injury site. In this article, we perform a comprehensive bibliometric analysis of literature on cartilage tissue healing and regeneration based on biocompatible materials, including an overview of current research, identifying the most influential articles and authors, discussing prevailing topics and trends in this field, and summarizing future research directions.
Collapse
Affiliation(s)
- Meng-Xuan Yao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Yi-Fan Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Wei Liu
- Department of Pharmacy, Cangzhou People’s Hospital, Cangzhou, China
| | - Hai-Cheng Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Chuan Ren
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Yu-Qin Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Tai-Long Shi
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| |
Collapse
|
6
|
Ayyanaar S, Kesavan MP. Magnetic iron oxide nanoparticles@lecithin/poly (l-lactic acid) microspheres for targeted drug release in cancer therapy. Int J Biol Macromol 2023; 253:127480. [PMID: 37863144 DOI: 10.1016/j.ijbiomac.2023.127480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/30/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023]
Abstract
The use of targeted chemotherapy is a promising solution to mitigate the side effects and dosage of drugs. This research focuses on the development of magnetic microspheres (MMS) based drug carriers for targeted chemotherapy, formulated with iron oxide nanoparticles (Fe3O4 NPs) and poly (l-lactic acid) (PLA) loaded with the antibiotic drug Ciprofloxacin (CIF). In this study, Fe3O4 NPs were synthesized using pomegranate peel extract as a natural reducing and stabilizing agent. The double emulsification method (W1/O/W2) was employed to produce Fe3O4@LEC-CIF-PLA-MMS, which were characterized using various spectral and microscopic techniques. The drug encapsulation efficiency for Fe3O4@LEC-CIF-PLA-MMS was found to be 80.7 %. The in vitro drug release of CIF from Fe3O4@LEC-CIF-PLA-MMS induced by H2O2 and GSH- stimuli was found to be 87.55 % and 82.32 %, respectively in acidic pH 4.5. Notably, the magnetically triggered drug release behaviour of Fe3O4@LEC-CIF-PLA-MMS (93.56 %) was assessed in acidic pH environment upon exposure to low-frequency alternating magnetic field (LF-AMF). Fe3O4@LEC-CIF-PLA-MMS demonstrated significantly enhanced in vitro cytotoxicity (IC50 = 0.8 ± 0.03 μg/mL) against the HeLa-S3 cancer cell lines. Nevertheless, these research findings highlight the potential of Fe3O4@LEC-CIF-PLA-MMS for further development as a chemotherapeutic agent and hold promise for the future of targeted cancer treatment.
Collapse
Affiliation(s)
- Srinivasan Ayyanaar
- Department of Chemistry, Syed Ammal Arts and Science College, Pullankudi, 623 513 Ramanathapuram, Tamilnadu, India.
| | - Mookkandi Palsamy Kesavan
- Department of Chemistry, Hajee Karutha Rowther Howdia College, Uthamapalayam 625 533, Tamil Nadu, India.
| |
Collapse
|
7
|
Hu J, Xu Z, Liao D, Jiang Y, Pu H, Wu Z, Xu X, Zhao Z, Liu J, Lu X, Liu X, Li B. An H 2 S-BMP6 Dual-Loading System with Regulating Yap/Taz and Jun Pathway for Synergistic Critical Limb Ischemia Salvaging Therapy. Adv Healthc Mater 2023; 12:e2301316. [PMID: 37531238 DOI: 10.1002/adhm.202301316] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/12/2023] [Indexed: 08/04/2023]
Abstract
Critical limb ischemia, the final course of peripheral artery disease, is characterized by an insufficient supply of blood flow and excessive oxidative stress. H2 S molecular therapy possesses huge potential for accelerating revascularization and scavenging intracellular reactive oxygen species (ROS). Moreover, it is found that BMP6 is the most significantly up-expressed secreted protein-related gene in HUVECs treated with GYY4137, a H2 S donor, based on the transcriptome analysis. Herein, a UIO-66-NH2 @GYY4137@BMP6 co-delivery nanoplatform to strengthen the therapeutic effects of limb ischemia is developed. The established UIO-66-NH2 @GYY4137@BMP6 nanoplatform exerts its proangiogenic and anti-oxidation functions by regulating key pathways. The underlying molecular mechanisms of UIO-66-NH2 @GYY4137@BMP6 dual-loading system lie in the upregulation of phosphorylated YAP/TAZ and Jun to promote HUVECs proliferation and downregulation of phosphorylated p53/p21 to scavenge excessive ROS. Meanwhile, laser-doppler perfusion imaging (LDPI), injury severity evaluation, and histological analysis confirm the excellent therapeutic effects of UIO-66-NH2 @GYY4137@BMP6 in vivo. This work may shed light on the treatment of critical limb ischemia by regulating YAP, Jun, and p53 signaling pathways based on gas-protein synergistic therapy.
Collapse
Affiliation(s)
- Jiateng Hu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Zhijue Xu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Donghui Liao
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, 523700, China
| | - Yihong Jiang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Hongji Pu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Zhaoyu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Xintong Xu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Zhen Zhao
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, 523700, China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Xiaobing Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Bo Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| |
Collapse
|
8
|
Miranda ER, Haus JM. Glyoxalase I is a novel target for the prevention of metabolic derangement. Pharmacol Ther 2023; 250:108524. [PMID: 37722607 DOI: 10.1016/j.pharmthera.2023.108524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023]
Abstract
Obesity prevalence in the US has nearly tripled since 1975 and a parallel increase in prevalence of type 2 diabetes (T2D). Obesity promotes a myriad of metabolic derangements with insulin resistance (IR) being perhaps the most responsible for the development of T2D and other related diseases such as cardiovascular disease. The precarious nature of IR development is such that it provides a valuable target for the prevention of further disease development. However, the mechanisms driving IR are numerous and complex making the development of viable interventions difficult. The development of metabolic derangement in the context of obesity promotes accumulation of reactive metabolites such as the reactive alpha-dicarbonyl methylglyoxal (MG). MG accumulation has long been appreciated as a marker of disease progression in patients with T2D as well as the development of diabetic complications. However, recent evidence suggests that the accumulation of MG occurs with obesity prior to T2D onset and may be a primary driving factor for the development of IR and T2D. Further, emerging evidence also suggests that this accumulation of MG with obesity may be a result in a loss of MG detoxifying capacity of glyoxalase I. In this review, we will discuss the evidence that posits MG accumulation because of GLO1 attenuation is a novel target mechanism of the development of metabolic derangement. In addition, we will also explore the regulation of GLO1 and the strategies that have been investigated so far to target GLO1 regulation for the prevention and treatment of metabolic derangement.
Collapse
Affiliation(s)
- Edwin R Miranda
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States of America
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
9
|
Leone A, Nicolò A, Prevenzano I, Zatterale F, Longo M, Desiderio A, Spinelli R, Campitelli M, Conza D, Raciti GA, Beguinot F, Nigro C, Miele C. Methylglyoxal Impairs the Pro-Angiogenic Ability of Mouse Adipose-Derived Stem Cells (mADSCs) via a Senescence-Associated Mechanism. Cells 2023; 12:1741. [PMID: 37443775 PMCID: PMC10340470 DOI: 10.3390/cells12131741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) play a crucial role in angiogenesis and repair of damaged tissues. However, in pathological conditions including diabetes, ADSC function is compromised. This work aims at evaluating the effect of Methylglyoxal (MGO), a product of chronic hyperglycemia, on mouse ADSCs' (mADSCs) pro-angiogenic function and the molecular mediators involved. The mADSCs were isolated from C57bl6 mice. MGO-adducts and p-p38 MAPK protein levels were evaluated by Western Blot. Human retinal endothelial cell (hREC) migration was analyzed by transwell assays. Gene expression was measured by qRT-PCR, and SA-βGal activity by cytofluorimetry. Soluble factor release was evaluated by multiplex assay. MGO treatment does not impair mADSC viability and induces MGO-adduct accumulation. hREC migration is reduced in response to both MGO-treated mADSCs and conditioned media from MGO-treated mADSCs, compared to untreated cells. This is associated with an increase of SA-βGal activity, SASP factor release and p53 and p21 expression, together with a VEGF- and PDGF-reduced release from MGO-treated mADSCs and a reduced p38-MAPK activation in hRECs. The MGO-induced impairment of mADSC function is reverted by senolytics. In conclusion, MGO impairs mADSCs' pro-angiogenic function through the induction of a senescent phenotype, associated with the reduced secretion of growth factors crucial for hREC migration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Cecilia Nigro
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council & Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (A.L.); (A.N.); (I.P.)
| | | |
Collapse
|
10
|
Zgutka K, Tkacz M, Tomasiak P, Tarnowski M. A Role for Advanced Glycation End Products in Molecular Ageing. Int J Mol Sci 2023; 24:9881. [PMID: 37373042 PMCID: PMC10298716 DOI: 10.3390/ijms24129881] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Ageing is a composite process that involves numerous changes at the cellular, tissue, organ and whole-body levels. These changes result in decreased functioning of the organism and the development of certain conditions, which ultimately lead to an increased risk of death. Advanced glycation end products (AGEs) are a family of compounds with a diverse chemical nature. They are the products of non-enzymatic reactions between reducing sugars and proteins, lipids or nucleic acids and are synthesised in high amounts in both physiological and pathological conditions. Accumulation of these molecules increases the level of damage to tissue/organs structures (immune elements, connective tissue, brain, pancreatic beta cells, nephrons, and muscles), which consequently triggers the development of age-related diseases, such as diabetes mellitus, neurodegeneration, and cardiovascular and kidney disorders. Irrespective of the role of AGEs in the initiation or progression of chronic disorders, a reduction in their levels would certainly provide health benefits. In this review, we provide an overview of the role of AGEs in these areas. Moreover, we provide examples of lifestyle interventions, such as caloric restriction or physical activities, that may modulate AGE formation and accumulation and help to promote healthy ageing.
Collapse
Affiliation(s)
- Katarzyna Zgutka
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| | - Marta Tkacz
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| | - Patrycja Tomasiak
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| |
Collapse
|
11
|
Lai SWT, Lopez Gonzalez EDJ, Zoukari T, Ki P, Shuck SC. Methylglyoxal and Its Adducts: Induction, Repair, and Association with Disease. Chem Res Toxicol 2022; 35:1720-1746. [PMID: 36197742 PMCID: PMC9580021 DOI: 10.1021/acs.chemrestox.2c00160] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Metabolism is an essential part of life that provides energy for cell growth. During metabolic flux, reactive electrophiles are produced that covalently modify macromolecules, leading to detrimental cellular effects. Methylglyoxal (MG) is an abundant electrophile formed from lipid, protein, and glucose metabolism at intracellular levels of 1-4 μM. MG covalently modifies DNA, RNA, and protein, forming advanced glycation end products (MG-AGEs). MG and MG-AGEs are associated with the onset and progression of many pathologies including diabetes, cancer, and liver and kidney disease. Regulating MG and MG-AGEs is a potential strategy to prevent disease, and they may also have utility as biomarkers to predict disease risk, onset, and progression. Here, we review recent advances and knowledge surrounding MG, including its production and elimination, mechanisms of MG-AGEs formation, the physiological impact of MG and MG-AGEs in disease onset and progression, and the latter in the context of its receptor RAGE. We also discuss methods for measuring MG and MG-AGEs and their clinical application as prognostic biomarkers to allow for early detection and intervention prior to disease onset. Finally, we consider relevant clinical applications and current therapeutic strategies aimed at targeting MG, MG-AGEs, and RAGE to ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Seigmund Wai Tsuen Lai
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Edwin De Jesus Lopez Gonzalez
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Tala Zoukari
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Priscilla Ki
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Sarah C Shuck
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| |
Collapse
|
12
|
Wan R, Hussain A, Behfar A, Moran SL, Zhao C. The Therapeutic Potential of Exosomes in Soft Tissue Repair and Regeneration. Int J Mol Sci 2022; 23:ijms23073869. [PMID: 35409228 PMCID: PMC8998690 DOI: 10.3390/ijms23073869] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Soft tissue defects are common following trauma and tumor extirpation. These injuries can result in poor functional recovery and lead to a diminished quality of life. The healing of skin and muscle is a complex process that, at present, leads to incomplete recovery and scarring. Regenerative medicine may offer the opportunity to improve the healing process and functional outcomes. Barriers to regenerative strategies have included cost, regulatory hurdles, and the need for cell-based therapies. In recent years, exosomes, or extracellular vesicles, have gained tremendous attention in the field of soft tissue repair and regeneration. These nanosized extracellular particles (30-140 nm) can break the cellular boundaries, as well as facilitate intracellular signal delivery in various regenerative physiologic and pathologic processes. Existing studies have established the potential of exosomes in regenerating tendons, skeletal muscles, and peripheral nerves through different mechanisms, including promoting myogenesis, increasing tenocyte differentiation and enhancing neurite outgrowth, and the proliferation of Schwann cells. These exosomes can be stored for immediate use in the operating room, and can be produced cost efficiently. In this article, we critically review the current advances of exosomes in soft tissue (tendons, skeletal muscles, and peripheral nerves) healing. Additionally, new directions for clinical applications in the future will be discussed.
Collapse
Affiliation(s)
- Rou Wan
- Division of Plastic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (R.W.); (A.H.); (S.L.M.)
| | - Arif Hussain
- Division of Plastic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (R.W.); (A.H.); (S.L.M.)
| | - Atta Behfar
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Steven L. Moran
- Division of Plastic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (R.W.); (A.H.); (S.L.M.)
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence:
| |
Collapse
|
13
|
Bhardwaj G, Vakani M, Srivastava A, Rawal K, Kalathil A, Gupta S. Influence of metabolically compromised Adipose derived stem cell secretome on islet differentiation and functionality. Exp Cell Res 2022; 410:112970. [PMID: 34896076 DOI: 10.1016/j.yexcr.2021.112970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 01/07/2023]
Abstract
Islet integrity plays a major role in maintaining glucose homeostasis and thus replenishment of damaged islets by differentiation of resident endocrine progenitors into neo islets regulates the islet functionality. Islet differentiation is affected by many factors including crosstalk with various organs by secretome. Adipose derived stem cells (ADSC) secrete a large array of factors in the extracellular milieu that exhibit regulatory effects on other tissues including pancreatic islets. The microenvironment of metabolically compromised human ADSCs (hADSCs) has a detrimental impact on islet functionality. In the present study, the role of secretome was studied on the differentiation of islets. Expression of key transcription factors like HNF-3B, NGN-3, NeuroD, PDX- 1, Maf-A, and GLUT-2 involved in development were differentially regulated in obese hADSC secretome as compared to control hADSC secretome. Islet like cell clusters (ILCCs) functionality and viability were critically hampered under obese hADSC secretome with compromised yield, morphometry, lower expression of C-peptide and Glucagon as well as higher ROS activity and cell death parameters. This study provides considerable insights on two major findings which are (i) exploring the use of hADSC secretome in islet differentiation and (ii) understanding the regulating effect of altered hADSC secretome under a metabolically compromised condition.
Collapse
Affiliation(s)
- Gurprit Bhardwaj
- Molecular Endocrinology and Stem Cell Research Laboratory, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390021, India.
| | - Mitul Vakani
- Molecular Endocrinology and Stem Cell Research Laboratory, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390021, India
| | - Abhay Srivastava
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Komal Rawal
- Molecular Endocrinology and Stem Cell Research Laboratory, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390021, India
| | - Amrita Kalathil
- Molecular Endocrinology and Stem Cell Research Laboratory, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390021, India
| | - Sarita Gupta
- Molecular Endocrinology and Stem Cell Research Laboratory, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390021, India.
| |
Collapse
|
14
|
Atkinson SP. A preview of selected articles. Stem Cells Transl Med 2021; 10:1577-1580. [PMID: 34859967 DOI: 10.1002/sct3.13039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
15
|
Camargo CP, Kubrusly MS, Morais-Besteiro J, Harmsen MC, Gemperli R. The influence of adipocyte-derived stem cells (ASCs) on the ischemic epigastric flap survival in diabetic rats. Acta Cir Bras 2021; 36:e360907. [PMID: 34755767 PMCID: PMC8580509 DOI: 10.1590/acb360907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/21/2021] [Indexed: 11/22/2022] Open
Abstract
Purpose: To assess the effects of adipocyte-derived stem cell (ASC)-injection on the
survival of surgical flaps under ischemia in diabetic rats. Methods: Diabetes was induced in 30 male Wistar rats using streptozotocin (55 mg/kg).
After eight weeks, epigastric flap (EF) surgery was performed. The animals
were divided into control (CG), medium-solution (MG), and ASC groups. The
outcomes were: the survival area (SA), the survival/total area rate (S/TR),
and expression levels (EL) of genes: C5ar1, Icam1, Nos2, Vegf-a. Results: In the ASC group, compared to CG, we observed improved flap SA (CG-420
mm2vs. ASC-720 mm2; p=0.003) was observed. The S/TR
analysis was larger in the ASC group (78%) than the CG (45%). This study
showed an increase in the Vegf-a EL in the ASC group (2.3)
vs. CG (0.93, p=0.0008). The Nos2 EL increased
four-fold in the ASC group compared to CG, and C5ar1 EL decreased almost
two-fold in the ASC group vs. the CG (p=0.02). There was no
difference among the groups regarding Icam1 EL. Compared to the MG, the ASC
group had a bigger flap SA (720 mm2vs. 301 mm2, respectively), a bigger S/TR (78%
vs. 32%, p=0.06, respectively) and increased EL of
Vegf-a (2.3 vs. 1.3, respectively). No difference between
ASC-group and MG was seen regarding Nos2 (p=0.08) and C5ar1 (p=0.05). Conclusions: This study suggests that ASCs increase the survival of EF under IR in
diabetic rats.
Collapse
|
16
|
Zhang X, Jiang Y, Huang Q, Wu Z, Pu H, Xu Z, Li B, Lu X, Yang X, Qin J, Peng Z. Exosomes derived from adipose-derived stem cells overexpressing glyoxalase-1 protect endothelial cells and enhance angiogenesis in type 2 diabetic mice with limb ischemia. Stem Cell Res Ther 2021; 12:403. [PMID: 34266474 PMCID: PMC8281719 DOI: 10.1186/s13287-021-02475-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/26/2021] [Indexed: 01/09/2023] Open
Abstract
Background Diabetic limb ischemia is a clinical syndrome and refractory to therapy. Our previous study demonstrated that adipose-derived stem cells (ADSCs) overexpressing glyoxalase-1 (GLO-1) promoted the regeneration of ischemic lower limbs in diabetic mice, but low survival rate, difficulty in differentiation, and tumorigenicity of the transplanted cells restricted its application. Recent studies have found that exosomes secreted by the ADSCs have the advantages of containing parental beneficial factors and exhibiting non-immunogenic, non-tumorigenic, and strong stable characteristics. Methods ADSCs overexpressing GLO-1 (G-ADSCs) were established using lentivirus transfection, and exosomes secreted from ADSCs (G-ADSC-Exos) were isolated and characterized to coculture with human umbilical vein endothelial cells (HUVECs). Proliferation, apoptosis, migration, and tube formation of the HUVECs were detected under high-glucose conditions. The G-ADSC-Exos were injected into ischemic hindlimb muscles of type 2 diabetes mellitus (T2DM) mice, and the laser Doppler perfusion index, Masson’s staining, immunofluorescence, and immunohistochemistry assays were adopted to assess the treatment efficiency. Moreover, the underlying regulatory mechanisms of the G-ADSC-Exos on the proliferation, migration, angiogenesis, and apoptosis of the HUVECs were explored. Results The G-ADSC-Exos enhanced the proliferation, migration, tube formation, and anti-apoptosis of the HUVECs in vitro under high-glucose conditions. After in vivo transplantation, the G-ADSC-Exo group showed significantly higher laser Doppler perfusion index, better muscle structural integrity, and higher microvessel’s density than the ADSC-Exo and control groups by Masson’s staining and immunofluorescence assays. The underlying mechanisms by which the G-ADSC-Exos protected endothelial cells both in vitro and in vivo might be via the activation of eNOS/AKT/ERK/P-38 signaling pathways, inhibition of AP-1/ROS/NLRP3/ASC/Caspase-1/IL-1β, as well as the increased secretion of VEGF, IGF-1, and FGF. Conclusion Exosomes derived from adipose-derived stem cells overexpressing GLO-1 protected the endothelial cells and promoted the angiogenesis in type 2 diabetic mice with limb ischemia, which will be a promising clinical treatment in diabetic lower limb ischemia. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02475-7.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Yihong Jiang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Qun Huang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Zhaoyu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Hongji Pu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Zhijue Xu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Bo Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Xinrui Yang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| | - Jinbao Qin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| | - Zhiyou Peng
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
17
|
Dermal white adipose tissue: Much more than a metabolic, lipid-storage organ? Tissue Cell 2021; 71:101583. [PMID: 34171520 DOI: 10.1016/j.tice.2021.101583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022]
Abstract
The role of dermal white adipose tissue (dWAT) has emerged in the biomedical science as an ancillary fat district in the derma without a defined and distinct function respect to the subcutaneous adipose tissue (sWAT). Despite some evidence describing dWAT as an immune-competent compartment, particularly engaged in wound repair, very few reports dealing with dWAT has elucidated its major modulatory role within the skin biology. Whereas an increasing bulk of evidence allows researcher to describe the main activity of sWAT, in humans dWAT is not properly a separated fat compartment and therefore scarcely considered in the scientific debate. Due to its strategic position between epidermis and sWAT, dermal fat might play a much more intriguing role than expected. This review tries to shed light on this issue, by expanding the debate about a possible role of dWAT in skin physiology.
Collapse
|
18
|
Zha K, Li X, Yang Z, Tian G, Sun Z, Sui X, Dai Y, Liu S, Guo Q. Heterogeneity of mesenchymal stem cells in cartilage regeneration: from characterization to application. NPJ Regen Med 2021; 6:14. [PMID: 33741999 PMCID: PMC7979687 DOI: 10.1038/s41536-021-00122-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Articular cartilage is susceptible to damage but hard to self-repair due to its avascular nature. Traditional treatment methods are not able to produce satisfactory effects. Mesenchymal stem cells (MSCs) have shown great promise in cartilage repair. However, the therapeutic effect of MSCs is often unstable partly due to their heterogeneity. Understanding the heterogeneity of MSCs and the potential of different types of MSCs for cartilage regeneration will facilitate the selection of superior MSCs for treating cartilage damage. This review provides an overview of the heterogeneity of MSCs at the donor, tissue source and cell immunophenotype levels, including their cytological properties, such as their ability for proliferation, chondrogenic differentiation and immunoregulation, as well as their current applications in cartilage regeneration. This information will improve the precision of MSC-based therapeutic strategies, thus maximizing the efficiency of articular cartilage repair.
Collapse
Affiliation(s)
- Kangkang Zha
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhen Yang
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Guangzhao Tian
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Zhiqiang Sun
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xiang Sui
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
| | - Yongjing Dai
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
| | - Shuyun Liu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.
| | - Quanyi Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.
| |
Collapse
|
19
|
Laiva AL, O’Brien FJ, Keogh MB. SDF-1α Gene-Activated Collagen Scaffold Restores Pro-Angiogenic Wound Healing Features in Human Diabetic Adipose-Derived Stem Cells. Biomedicines 2021; 9:biomedicines9020160. [PMID: 33562165 PMCID: PMC7914837 DOI: 10.3390/biomedicines9020160] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Non-healing diabetic foot ulcers (DFUs) can lead to leg amputation in diabetic patients. Autologous stem cell therapy holds some potential to solve this problem; however, diabetic stem cells are relatively dysfunctional and restrictive in their wound healing abilities. This study sought to explore if a novel collagen-chondroitin sulfate (coll-CS) scaffold, functionalized with polyplex nanoparticles carrying the gene encoding for stromal-derived factor-1 alpha (SDF-1α gene-activated scaffold), can enhance the regenerative functionality of human diabetic adipose-derived stem cells (ADSCs). We assessed the impact of the gene-activated scaffold on diabetic ADSCs by comparing their response against healthy ADSCs cultured on a gene-free scaffold over two weeks. Overall, we found that the gene-activated scaffold could restore the pro-angiogenic regenerative response in the human diabetic ADSCs similar to the healthy ADSCs on the gene-free scaffold. Gene and protein expression analysis revealed that the gene-activated scaffold induced the overexpression of SDF-1α in diabetic ADSCs and engaged the receptor CXCR7, causing downstream β-arrestin signaling, as effectively as the transfected healthy ADSCs. The transfected diabetic ADSCs also exhibited pro-wound healing features characterized by active matrix remodeling of the provisional fibronectin matrix and basement membrane protein collagen IV. The gene-activated scaffold also induced a controlled pro-healing response in the healthy ADSCs by disabling early developmental factors signaling while promoting the expression of tissue remodeling components. Conclusively, we show that the SDF-1α gene-activated scaffold can overcome the deficiencies associated with diabetic ADSCs, paving the way for autologous stem cell therapies combined with novel biomaterials to treat DFUs.
Collapse
Affiliation(s)
- Ashang L. Laiva
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland; (A.L.L.); (F.J.O.)
- Department of Biomedical Science, Royal College of Surgeons in Ireland, Adliya, P.O. Box 15503 Manama, Bahrain
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland; (A.L.L.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| | - Michael B. Keogh
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland; (A.L.L.); (F.J.O.)
- Department of Biomedical Science, Royal College of Surgeons in Ireland, Adliya, P.O. Box 15503 Manama, Bahrain
- Correspondence: ; Tel.: +973-17351450
| |
Collapse
|
20
|
Rodrigues T, Borges P, Mar L, Marques D, Albano M, Eickhoff H, Carrêlo C, Almeida B, Pires S, Abrantes M, Martins B, Uriarte C, Botelho F, Gomes P, Silva S, Seiça R, Matafome P. GLP-1 improves adipose tissue glyoxalase activity and capillarization improving insulin sensitivity in type 2 diabetes. Pharmacol Res 2020; 161:105198. [DOI: 10.1016/j.phrs.2020.105198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022]
|
21
|
Fan X, Li K, Zhu L, Deng X, Feng Z, Xu C, Liu S, Wu J. Prolonged therapeutic effects of photoactivated adipose-derived stem cells following ischaemic injury. Acta Physiol (Oxf) 2020; 230:e13475. [PMID: 32306486 DOI: 10.1111/apha.13475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Abstract
AIM Adipose-derived stem cells (ASCs) therapies are emerging as a promising approach to therapeutic angiogenesis. Therapeutic persistence and reduced primitive stem cell function following cell delivery remains a critical hurdle for the clinical translation of stem cells in current approaches. METHODS Cultured ASCs were derived from subcutaneous white adipose tissue isolated from mice fed a normal diet (ND). Unilateral hindlimb ischaemia model was induced in high-fat diet (HFD)-fed mice by femoral artery interruption, after which photoactivated and non-light-treated ASCs were injected into the tail vein of mice. Laser Doppler imaging was conducted to measure the blood flow reperfusion. Capillary density was measured in the ischaemic gastrocnemius muscle. mRNA levels of angiogenic factors were determined by reverse-transcription polymerase chain reaction. Flow cytometry was used to determine the characterization of ASCs and endothelial progenitor cell (EPC). Human ASCs secretomes were analysed by liquid chromatography tandem mass spectrometry. RESULTS Our study demonstrated that photoactivated ND-ASCs prolonged functional blood flow perfusion and increased ASCs-derived EPC and neovascularization 38 days after ligation, when compared with saline-treated controls. Profiling analysis in ischaemic muscles showed upregulation of genes associated with pro-angiogenic factors after injection of photoactivated ND-ASCs when compared with the non-light-treated ASCs or saline treated HFD mice. Mass spectrometry revealed that light-treated ASCs conditioned medium retained a more complete pro-angiogenic activity with significant upregulation of angiogenesis related proteins. CONCLUSION Our data demonstrates that photoactivated ND-ASCs improve blood flow recovery and their injection may prove to be a useful strategy for the prevention and treatment of diabetic peripheral arterial disease.
Collapse
Affiliation(s)
- Xin Fan
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Kai Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Luochen Zhu
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Xin Deng
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Ziqian Feng
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Chunrong Xu
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Sijing Liu
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Jianbo Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| |
Collapse
|
22
|
Hüttl M, Markova I, Miklankova D, Makovicky P, Pelikanova T, Šeda O, Šedová L, Malinska H. Adverse Effects of Methylglyoxal on Transcriptome and Metabolic Changes in Visceral Adipose Tissue in a Prediabetic Rat Model. Antioxidants (Basel) 2020; 9:antiox9090803. [PMID: 32878255 PMCID: PMC7555565 DOI: 10.3390/antiox9090803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
Excessive methylglyoxal (MG) production contributes to metabolic and vascular changes by increasing inflammatory processes, disturbing regulatory mechanisms and exacerbating tissue dysfunction. MG accumulation in adipocytes leads to structural and functional changes. We used transcriptome analysis to investigate the effect of MG on metabolic changes in the visceral adipose tissue of hereditary hypetriglyceridaemic rats, a non-obese model of metabolic syndrome. Compared to controls, 4-week intragastric MG administration impaired glucose tolerance (p < 0.05) and increased glycaemia (p < 0.01) and serum levels of MCP-1 and TNFα (p < 0.05), but had no effect on serum adiponectin or leptin. Adipose tissue insulin sensitivity and lipolysis were impaired (p < 0.05) in MG-treated rats. In addition, MG reduced the expression of transcription factor Nrf2 (p < 0.01), which controls antioxidant and lipogenic genes. Increased expression of Mcp-1 and TNFα (p < 0.05) together with activation of the SAPK/JNK signaling pathway can promote chronic inflammation in adipose tissue. Transcriptome network analysis revealed the over-representation of genes involved in insulin signaling (Irs1, Igf2, Ide), lipid metabolism (Nr1d1, Lpin1, Lrpap1) and angiogenesis (Dusp10, Tp53inp1).
Collapse
Affiliation(s)
- Martina Hüttl
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (M.H.); (I.M.); (D.M.)
| | - Irena Markova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (M.H.); (I.M.); (D.M.)
| | - Denisa Miklankova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (M.H.); (I.M.); (D.M.)
| | - Pavol Makovicky
- Faculty of Education, Department of Biology, J. Selye University, 94501 Komarno, Slovakia;
| | - Terezie Pelikanova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic;
| | - Ondrej Šeda
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague, Czech Republic; (O.Š.); (L.Š.)
| | - Lucie Šedová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague, Czech Republic; (O.Š.); (L.Š.)
| | - Hana Malinska
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (M.H.); (I.M.); (D.M.)
- Correspondence: ; Tel.: +420-261-365-369; Fax: +420-261-363-027
| |
Collapse
|
23
|
Zhu X, Liu H, Liu Y, Chen Y, Liu Y, Yin X. The Antidepressant-Like Effects of Hesperidin in Streptozotocin-Induced Diabetic Rats by Activating Nrf2/ARE/Glyoxalase 1 Pathway. Front Pharmacol 2020; 11:1325. [PMID: 32982741 PMCID: PMC7485173 DOI: 10.3389/fphar.2020.01325] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 08/10/2020] [Indexed: 01/16/2023] Open
Abstract
The co-occurrence of diabetes and depression is a challenging and underrecognized clinical problem. Alpha-carbonyl aldehydes and their detoxifying enzyme glyoxalase 1 (Glo-1) play vital roles in the pathogenesis of diabetic complications, including depression. Hesperidin, a naturally occurring flavanone glycoside, possesses numerous pharmacological properties, but neuroprotection by hesperidin in depression-like behaviors in diabetes was not observed. This study aimed to investigate the mechanisms and signaling pathways by which hesperidin regulates depression-like behaviors in diabetic rats and to identify potential targets of hesperidin. Rats with streptozotocin-induced diabetes were treated orally with hesperidin (50 and 150 mg/kg) or the nuclear factor erythroid 2-related factor 2 (Nrf2) inducer tert-butylhydroquinone (TBHQ, 25 mg/kg) for 10 weeks. After behavioral test, the brains were collected to evaluate the effects of hesperidin on Glo-1, Nrf2, protein glycation, and oxidative stress. Hesperidin showed antidepressant and anxiolytic effects in diabetic rats, as evidenced by the decreased immobility time in the forced swimming test, increased time spent in the center area of the open field test, and increased percentage of open-arm entries and time spent in the open arms in the elevated plus maze, as well as by the enhancement of Glo-1 and the inhibition of the AGEs/RAGE axis and oxidative stress in the brain. In addition, hesperidin caused significant increases in the Nrf2 levels and upregulated γ-glutamylcysteine synthetase, a well-known target gene of Nrf2/ARE signaling. In vitro, the effects of hesperidin on N2a cell injury caused by high glucose (HG) was assessed by MTT and LDH, and the effects on Nrf2 signaling were also assessed. We found that the Nrf2 inhibitor ML385 reversed the protective effects of hesperidin on the cell injury induced by HG. Hesperidin prevented the HG-induced reduction in the Nrf2 and Glo-1 levels, and ML385 reversed the effects of hesperidin on the expression of the proteins mentioned above, indicating that Nrf2 signaling is involved in the hesperidin-induced neuroprotective effects. Our findings indicate that the effects of hesperidin on ameliorating the depression- and anxiety-like behaviors of diabetic rats, which are mediated by the enhancement of Glo-1, may be due to the activation of the Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Haiyan Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yuan Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yajing Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yaowu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
24
|
Liu J, Qiu P, Qin J, Wu X, Wang X, Yang X, Li B, Zhang W, Ye K, Peng Z, Lu X. Allogeneic adipose-derived stem cells promote ischemic muscle repair by inducing M2 macrophage polarization via the HIF-1α/IL-10 pathway. Stem Cells 2020; 38:1307-1320. [PMID: 32627897 PMCID: PMC7590195 DOI: 10.1002/stem.3250] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/19/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
Abstract
Adipose-derived mesenchymal stem cells (ASCs) are multipotent stromal cells that possess considerable therapeutic potential for tissue remodeling. However, their protective mechanism in critical limb ischemia has not been fully defined. After the occlusion of blood vessels, hypoxia becomes a prominent feature of the ischemic limb. This study investigated the immunomodulatory effect of ASCs on ischemic muscle repair and explored the specific mechanism. We found that the ability of RAW264.7 cells to migrate was impaired in hypoxia, whereas coculturing with ASCs could enhance the migration capacity. In addition, under hypoxic conditions, the paracrine effect of ASCs was enhanced and ASCs could induce RAW264.7 macrophages toward the anti-inflammatory M2 phenotype. We further demonstrated that ASCs-derived interleukin 10 (IL-10), mediated by hypoxia inducible factor-1α (HIF-1α), played a crucial role in the induction of M2 macrophages by activating the signal transducer and activator of transcription 3 (STAT3)/Arginase (Arg-1) pathway. Our in vivo experiments revealed that transplanted ASCs exhibited an immunomodulatory effect by recruiting macrophages to ischemic muscle and increasing the density of M2 macrophages. The transplantation of ASCs into ischemic limbs induced increased blood flow reperfusion and limb salvage rate, whereas the depletion of tissue macrophages or transplanting HIF-1α-silenced ASCs inhibited the therapeutic effect. These findings elucidated the critical role of macrophages in ASCs-mediated ischemic muscle repair and proved that allogeneic ASCs could exert the protective effect by enhancing the recruitment of macrophages and inducing macrophages toward M2 phenotype through HIF-1α/IL-10 pathway.
Collapse
Affiliation(s)
- Junchao Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Peng Qiu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Jinbao Qin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoyu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Xin Wang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Xinrui Yang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Bo Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Wenjie Zhang
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Kaichuang Ye
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Zhiyou Peng
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China.,Vascular Center of Shanghai JiaoTong University, Shanghai, People's Republic of China
| |
Collapse
|
25
|
Common Protective Strategies in Neurodegenerative Disease: Focusing on Risk Factors to Target the Cellular Redox System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8363245. [PMID: 32832006 PMCID: PMC7422410 DOI: 10.1155/2020/8363245] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022]
Abstract
Neurodegenerative disease is an umbrella term for different conditions which primarily affect the neurons in the human brain. In the last century, significant research has been focused on mechanisms and risk factors relevant to the multifaceted etiopathogenesis of neurodegenerative diseases. Currently, neurodegenerative diseases are incurable, and the treatments available only control the symptoms or delay the progression of the disease. This review is aimed at characterizing the complex network of molecular mechanisms underpinning acute and chronic neurodegeneration, focusing on the disturbance in redox homeostasis, as a common mechanism behind five pivotal risk factors: aging, oxidative stress, inflammation, glycation, and vascular injury. Considering the complex multifactorial nature of neurodegenerative diseases, a preventive strategy able to simultaneously target multiple risk factors and disease mechanisms at an early stage is most likely to be effective to slow/halt the progression of neurodegenerative diseases.
Collapse
|
26
|
Ayyanaar S, Balachandran C, Bhaskar RC, Kesavan MP, Aoki S, Raja RP, Rajesh J, Webster TJ, Rajagopal G. ROS-Responsive Chitosan Coated Magnetic Iron Oxide Nanoparticles as Potential Vehicles for Targeted Drug Delivery in Cancer Therapy. Int J Nanomedicine 2020; 15:3333-3346. [PMID: 32494133 PMCID: PMC7229795 DOI: 10.2147/ijn.s249240] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022] Open
Abstract
Background and Objective Cancer cells accumulate high concentrations of reactive oxygen species as a result of their faster and uninhibited metabolic activity. Cancer chemotherapeutic agents release an excess of severe adverse reactions as a result of targeting normal cells. This demands an improvement in targeted drug-delivery systems to selectively discharge anticancer drugs in the vicinity of such highly metabolically and mitotically active cells. Materials and Methods Here, magnetic nanoparticles were synthesized by a traditional co-precipitation technique. Fe3O4@OA-CS-5-FLU-NPs were synthesized by an easy and rapid in situ loading method. The proposed Fe3O4@OA-CS-5-FLU-NPs were productively prepared as well as characterized by various spectroscopic and microscopic studies. Results The targeted drug release profile of the Fe3O4@OA-CS-5-FLU-NPs was studied in the presence of ROS including H2O2 and pH induction. The released product, Fe3O4@OA-CS-5-FLU-NP, exhibited desirable levels of cytotoxicity and demonstrated morphological changes and inhibition of colony formation for A549 and HeLa S3 cancer cells. The IC50 values at 24 hours were 12.9 and 23 μg/mL, respectively. Conclusion In summary, results from the MTT assay, fluorescence staining as well as colony formation assays, revealed that the Fe3O4@OA-CS-5-FLU-NPs were active and safe for anticancer biomedical applications. In summary, the present investigation provides a powerful nanostructured based system for improved cancer theranostics that should be further studied.
Collapse
Affiliation(s)
- Srinivasan Ayyanaar
- PG and Research Department of Chemistry, Chikkanna Government Arts College, Tiruppur 641 602, Tamilnadu, India
| | | | - Rangaswamy Chinnabba Bhaskar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Mookkandi Palsamy Kesavan
- Department of Chemistry, Hajee Karutha Rowther Howdia College, Uthamapalayam 625 533, Tamil Nadu, India
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan.,Research Institute of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | | | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Gurusamy Rajagopal
- PG and Research Department of Chemistry, Chikkanna Government Arts College, Tiruppur 641 602, Tamilnadu, India
| |
Collapse
|
27
|
Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3818196. [PMID: 32256950 PMCID: PMC7104326 DOI: 10.1155/2020/3818196] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/13/2020] [Accepted: 01/24/2020] [Indexed: 02/08/2023]
Abstract
The advanced glycation end products (AGEs) are organic molecules formed in any living organisms with a great variety of structural and functional properties. They are considered organic markers of the glycation process. Due to their great heterogeneity, there is no specific test for their operational measurement. In this review, we have updated the most common chromatographic, colorimetric, spectroscopic, mass spectrometric, and serological methods, typically used for the determination of AGEs in biological samples. We have described their signaling and signal transduction mechanisms and cell epigenetic effects. Although mass spectrometric analysis is not widespread in the detection of AGEs at the clinical level, this technique is highly promising for the early diagnosis and therapeutics of diseases caused by AGEs. Protocols are available for high-resolution mass spectrometry of glycated proteins although they are characterized by complex machine management. Simpler procedures are available although much less precise than mass spectrometry. Among them, immunochemical tests are very common since they are able to detect AGEs in a simple and immediate way. In these years, new methodologies have been developed using an in vivo novel and noninvasive spectroscopic methods. These methods are based on the measurement of autofluorescence of AGEs. Another method consists of detecting AGEs in the human skin to detect chronic exposure, without the inconvenience of invasive methods. The aim of this review is to compare the different approaches of measuring AGEs at a clinical perspective due to their strict association with oxidative stress and inflammation.
Collapse
|
28
|
Schalkwijk CG, Stehouwer CDA. Methylglyoxal, a Highly Reactive Dicarbonyl Compound, in Diabetes, Its Vascular Complications, and Other Age-Related Diseases. Physiol Rev 2020; 100:407-461. [DOI: 10.1152/physrev.00001.2019] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The formation and accumulation of methylglyoxal (MGO), a highly reactive dicarbonyl compound, has been implicated in the pathogenesis of type 2 diabetes, vascular complications of diabetes, and several other age-related chronic inflammatory diseases such as cardiovascular disease, cancer, and disorders of the central nervous system. MGO is mainly formed as a byproduct of glycolysis and, under physiological circumstances, detoxified by the glyoxalase system. MGO is the major precursor of nonenzymatic glycation of proteins and DNA, subsequently leading to the formation of advanced glycation end products (AGEs). MGO and MGO-derived AGEs can impact on organs and tissues affecting their functions and structure. In this review we summarize the formation of MGO, the detoxification of MGO by the glyoxalase system, and the biochemical pathways through which MGO is linked to the development of diabetes, vascular complications of diabetes, and other age-related diseases. Although interventions to treat MGO-associated complications are not yet available in the clinical setting, several strategies to lower MGO have been developed over the years. We will summarize several new directions to target MGO stress including glyoxalase inducers and MGO scavengers. Targeting MGO burden may provide new therapeutic applications to mitigate diseases in which MGO plays a crucial role.
Collapse
Affiliation(s)
- C. G. Schalkwijk
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - C. D. A. Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
29
|
Lian K, Wang Q, Zhao S, Yang M, Chen G, Chen Y, Li C, Gao H, Li C. Pretreatment of Diabetic Adipose-derived Stem Cells with mitoTEMPO Reverses their Defective Proangiogenic Function in Diabetic Mice with Critical Limb Ischemia. Cell Transplant 2019; 28:1652-1663. [PMID: 31684763 PMCID: PMC6923552 DOI: 10.1177/0963689719885076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) have the ability to migrate to injury sites and
facilitate tissue repair by promoting angiogenesis. However, the therapeutic effect of
ADSCs from patients with diabetes is impaired due to oxidative stress. Given that diabetes
is a group of metabolic disorders and mitochondria are a major source of reactive oxygen
species (ROS), it is possible that mitochondrial ROS plays an important role in the
induction of diabetic ADSC (dADSC) dysfunction. ADSCs isolated from diabetic mice were
treated with mitoTEMPO, a mitochondrial ROS scavenger, or TEMPO, a universal ROS
scavenger, for three passages. The results showed that pretreatment with mitoTEMPO
increased the proliferation, multidifferentiation potential, and the migration and
proangiogenic capacities of dADSCs to levels similar to those of ADSCs from control mice,
whereas pretreatment with TEMPO showed only minor effects. Mechanistically, mitoTEMPO
pretreatment enhanced the mitochondrial antioxidant capacity of dADSCs, and knockdown of
superoxide dismutase reduced the restored mitochondrial antioxidant capacity and
attenuated the proangiogenic effects induced by mitoTEMPO pretreatment. In addition,
mitoTEMPO pretreatment improved the survival of dADSCs in diabetic mice with critical limb
ischemia, showing protective effects similar to those of control ADSCs. Pretreatment of
dADSCs with mitoTEMPO decreased limb injury and improved angiogenesis in diabetic mice
with critical limb ischemia. These findings suggested that short-term pretreatment of
dADSCs with a mitochondrial ROS scavenger restored their normal functions, which may be an
effective strategy for improving the therapeutic effects of ADSC-based therapies in
patients with diabetes.
Collapse
Affiliation(s)
- Kun Lian
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.,Both the authors contributed equally to this article
| | - Qin Wang
- Department of Pharmacogenomics, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China.,Both the authors contributed equally to this article
| | - Shuai Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Maosen Yang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Genrui Chen
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Youhu Chen
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haokao Gao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chengxiang Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
30
|
Bartling B, Zunkel K, Al-Robaiy S, Dehghani F, Simm A. Gene doubling increases glyoxalase 1 expression in RAGE knockout mice. Biochim Biophys Acta Gen Subj 2019; 1864:129438. [PMID: 31526867 DOI: 10.1016/j.bbagen.2019.129438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND The receptor for advanced glycation end-products (RAGE) is a multifunctional protein. Its function as pattern recognition receptor able to interact with various extracellular ligands is well described. Genetically modified mouse models, especially the RAGE knockout (RAGE-KO) mouse, identified the amplification of the immune response as an important function of RAGE. Pro-inflammatory ligands of RAGE are also methylglyoxal-derived advanced glycation end-products, which depend in their quantity, at least in part, on the activity of the methylglyoxal-detoxifying enzyme glyoxalase-1 (Glo1). Therefore, we studied the potential interaction of RAGE and Glo1 by use of RAGE-KO mice. METHODS Various tissues (lung, liver, kidney, heart, spleen, and brain) and blood cells from RAGE-KO and wildtype mice were analyzed for Glo1 expression and activity by biochemical assays and the Glo1 gene status by PCR techniques. RESULTS We identified an about two-fold up-regulation of Glo1 expression and activity in all tissues of RAGE-KO mice. This was result of a copy number variation of the Glo1 gene on mouse chromosome 17. In liver tissue and blood cells, the Glo1 expression and activity was additionally influenced by sex with higher values for male than female animals. As the genomic region containing Glo1 also contains the full-length sequence of another gene, namely Dnahc8, both genes were duplicated in RAGE-KO mice. CONCLUSION A genetic variance in RAGE-KO mice falsely suggests an interaction of RAGE and Glo1 function. GENERAL SIGNIFICANCE RAGE-independent up-regulation of Glo1 in RAGE-KO mice might be as another explanation for, at least some, effects attributed to RAGE before.
Collapse
Affiliation(s)
- Babett Bartling
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Katja Zunkel
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Samiya Al-Robaiy
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Faramarz Dehghani
- Institute of Anatomy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andreas Simm
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
31
|
Li H, O'Meara M, Zhang X, Zhang K, Seyoum B, Yi Z, Kaufman RJ, Monks TJ, Wang JM. Ameliorating Methylglyoxal-Induced Progenitor Cell Dysfunction for Tissue Repair in Diabetes. Diabetes 2019; 68:1287-1302. [PMID: 30885990 PMCID: PMC6610016 DOI: 10.2337/db18-0933] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/09/2019] [Indexed: 01/01/2023]
Abstract
Patient-derived progenitor cell (PC) dysfunction is severely impaired in diabetes, but the molecular triggers that contribute to mechanisms of PC dysfunction are not fully understood. Methylglyoxal (MGO) is one of the highly reactive dicarbonyl species formed during hyperglycemia. We hypothesized that the MGO scavenger glyoxalase 1 (GLO1) reverses bone marrow-derived PC (BMPC) dysfunction through augmenting the activity of an important endoplasmic reticulum stress sensor, inositol-requiring enzyme 1α (IRE1α), resulting in improved diabetic wound healing. BMPCs were isolated from adult male db/db type 2 diabetic mice and their healthy corresponding control db/+ mice. MGO at the concentration of 10 µmol/L induced immediate and severe BMPC dysfunction, including impaired network formation, migration, and proliferation and increased apoptosis, which were rescued by adenovirus-mediated GLO1 overexpression. IRE1α expression and activation in BMPCs were significantly attenuated by MGO exposure but rescued by GLO1 overexpression. MGO can diminish IRE1α RNase activity by directly binding to IRE1α in vitro. In a diabetic mouse cutaneous wound model in vivo, cell therapies using diabetic cells with GLO1 overexpression remarkably accelerated wound closure by enhancing angiogenesis compared with diabetic control cell therapy. Augmenting tissue GLO1 expression by adenovirus-mediated gene transfer or with the small-molecule inducer trans-resveratrol and hesperetin formulation also improved wound closure and angiogenesis in diabetic mice. In conclusion, our data suggest that GLO1 rescues BMPC dysfunction and facilitates wound healing in diabetic animals, at least partly through preventing MGO-induced impairment of IRE1α expression and activity. Our results provide important knowledge for the development of novel therapeutic approaches targeting MGO to improve PC-mediated angiogenesis and tissue repair in diabetes.
Collapse
Affiliation(s)
- Hainan Li
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI
| | - Megan O'Meara
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI
| | - Xiang Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
- Department of Immunology and Microbiology, Wayne State University, Detroit, MI
| | - Berhane Seyoum
- Division of Endocrinology, School of Medicine, Wayne State University, Detroit, MI
| | - Zhengping Yi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI
- Integrated Biosciences, Wayne State University, Detroit, MI
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Terrence J Monks
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI
- Integrated Biosciences, Wayne State University, Detroit, MI
| | - Jie-Mei Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
- Cardiovascular Research Institute, Wayne State University, Detroit, MI
| |
Collapse
|
32
|
van Dongen JA, Getova V, Brouwer LA, Liguori GR, Sharma PK, Stevens HP, van der Lei B, Harmsen MC. Adipose tissue-derived extracellular matrix hydrogels as a release platform for secreted paracrine factors. J Tissue Eng Regen Med 2019; 13:973-985. [PMID: 30808068 PMCID: PMC6593768 DOI: 10.1002/term.2843] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/28/2019] [Accepted: 02/21/2019] [Indexed: 12/21/2022]
Abstract
Fat grafting is an established clinical intervention to promote tissue repair. The role of the fat's extracellular matrix (ECM) in regeneration is largely neglected. We investigated in vitro the use of human adipose tissue‐derived ECM hydrogels as release platform for factors secreted by adipose‐derived stromal cells (ASCs). Lipoaspirates from nondiabetic and diabetic donors were decellularized. Finely powdered acellular ECM was evaluated for cell remainders and DNA content. Acellular ECM was digested, and hydrogels were formed at 37°C and their viscoelastic relaxation properties investigated. Release of ASC‐released factors from hydrogels was immune assessed, and bio‐activity was determined by fibroblast proliferation and migration and endothelial angiogenesis. Acellular ECM contained no detectable cell remainders and negligible DNA contents. Viscoelastic relaxation measurements yielded no data for diabetic‐derived hydrogels due to gel instability. Hydrogels released several ASC‐released factors concurrently in a sustained fashion. Functionally, released factors stimulated fibroblast proliferation and migration as well as angiogenesis. No difference between nondiabetic and diabetic hydrogels in release of factors was measured. Adipose ECM hydrogels incubated with released factors by ASC are a promising new therapeutic modality to promote several important wound healing‐related processes by releasing factors in a controlled way.
Collapse
Affiliation(s)
- Joris A van Dongen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Plastic Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vasilena Getova
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Linda A Brouwer
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gabriel R Liguori
- Laboratory of Cardiovascular Surgery and Circulation Pathophysiology (LIM-11), Heart Institute (InCor), Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Prashant K Sharma
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Berend van der Lei
- Department of Plastic Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Bergman Clinics, Heerenveen, Zwolle, and Groningen, The Netherlands
| | - Martin C Harmsen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
33
|
Liu L, Cui Y, Li X, Que X, Xiao Y, Yang C, Zhang J, Xie X, Cowan PJ, Tian J, Hao H, Liu Z. Concomitant overexpression of triple antioxidant enzymes selectively increases circulating endothelial progenitor cells in mice with limb ischaemia. J Cell Mol Med 2019; 23:4019-4029. [PMID: 30973215 PMCID: PMC6533526 DOI: 10.1111/jcmm.14287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 12/15/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are a group of heterogeneous cells in bone marrow (BM) and blood. Ischaemia increases reactive oxygen species (ROS) production that regulates EPC number and function. The present study was conducted to determine if ischaemia‐induced ROS differentially regulated individual EPC subpopulations using a mouse model concomitantly overexpressing superoxide dismutase (SOD)1, SOD3 and glutathione peroxidase. Limb ischaemia was induced by femoral artery ligation in male transgenic mice with their wild‐type littermate as control. BM and blood cells were collected for EPCs analysis and mononuclear cell intracellular ROS production, apoptosis and proliferation at baseline, day 3 and day 21 after ischaemia. Cells positive for c‐Kit+/CD31+ or Sca‐1+/Flk‐1+ or CD34+/CD133+ or CD34+/Flk‐1+ were identified as EPCs. ischaemia significantly increased ROS production and cell apoptosis and decreased proliferation of circulating and BM mononuclear cells and increased BM and circulating EPCs levels. Overexpression of triple antioxidant enzymes effectively prevented ischaemia‐induced ROS production with significantly decreased cell apoptosis and preserved proliferation and significantly increased circulating EPCs level without significant changes in BM EPC populations, associated with enhanced recovery of blood flow and function of the ischemic limb. These data suggested that ischaemia‐induced ROS was differentially involved in the regulation of circulating EPC population.
Collapse
Affiliation(s)
- Lingjuan Liu
- Department of Cardiology, Children's hospital of Chongqing Medical University, Chongqing, China.,Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Yuqi Cui
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Xin Li
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Xingyi Que
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri.,Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri
| | - Yuan Xiao
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Chunlin Yang
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Jia Zhang
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Xiaoyun Xie
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Peter J Cowan
- Department of Medicine, University of Melbourne, Melbourne, Australia.,Immunology Research Centre, St. Vincent's Hospital, Melbourne, Australia
| | - Jie Tian
- Department of Cardiology, Children's hospital of Chongqing Medical University, Chongqing, China
| | - Hong Hao
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| |
Collapse
|
34
|
Chen YJ, Kong L, Tang ZZ, Zhang YM, Liu Y, Wang TY, Liu YW. Hesperetin ameliorates diabetic nephropathy in rats by activating Nrf2/ARE/glyoxalase 1 pathway. Biomed Pharmacother 2019; 111:1166-1175. [PMID: 30841430 DOI: 10.1016/j.biopha.2019.01.030] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 01/08/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most common diabetic complications, and alpha-carbonyl aldehydes and their detoxicating enzyme glyoxalase 1 (Glo-1) play vital roles in pathogenesis of diabetic complications. The aim of this study was to evaluate the renoprotective effects of hesperetin against DN in rats, and to investigate mechanisms from the aspect of Nrf2/ARE/Glo-1 pathway. Streptozotocin-induced diabetic rats were treated orally with hesperetin (50 and 150 mg/kg), or nuclear factor erythroid-derived-2-like 2 (Nrf2) inducer tert-butylhydroquinone (tBHQ, 25 mg/kg) for 10 weeks. Then proteinuria, creatinine, urea nitrogen, and uric acid were assayed for renal functions, fibronectin and collagen IV levels by immunohistochemistry, as well as periodic acid-Schiff staining and electron microscope observation, were used to assess renal morphology. Glo-1 activity, protein, and mRNA levels and the classic Nrf2/ARE pathway were investigated. Moreover, advanced glycation endproducts (AGEs) and its receptor RAGE, interleukin-1β and tumor necrosis factor-α levels were also examined in the kidney. Hesperetin markedly ameliorated the renal functions and structural changes of diabetic rats, accompanied by up-regulation of Glo-1 as well as inhibition of AGEs/RAGE axis and inflammation. Meanwhile, hesperetin caused significant increases in Nrf2 and p-Nrf2 levels, as well as up-regulation of γ-glutamylcysteine synthetase, a well-known target gene of Nrf2/ARE signaling. Our results demonstrated that hesperetin could slow down the pathological process of DN, and Glo-1 enhancement contributed to the beneficial effects, which was obtained by the activation of Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Ya-Jing Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Li Kong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zhuang-Zhuang Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yu-Meng Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yue Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Tao-Yun Wang
- College of Chemistry, Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yao-Wu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Department of Pharmacology, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
35
|
Augmentation of Dermal Wound Healing by Adipose Tissue-Derived Stromal Cells (ASC). Bioengineering (Basel) 2018; 5:bioengineering5040091. [PMID: 30373121 PMCID: PMC6316823 DOI: 10.3390/bioengineering5040091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/21/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022] Open
Abstract
The skin is the largest organ of the human body and is the first line of defense against physical and biological damage. Thus, the skin is equipped to self-repair and regenerates after trauma. Skin regeneration after damage comprises a tightly spatial-temporally regulated process of wound healing that involves virtually all cell types in the skin. Wound healing features five partially overlapping stages: homeostasis, inflammation, proliferation, re-epithelization, and finally resolution or fibrosis. Dysreguled wound healing may resolve in dermal scarring. Adipose tissue is long known for its suppressive influence on dermal scarring. Cultured adipose tissue-derived stromal cells (ASCs) secrete a plethora of regenerative growth factors and immune mediators that influence processes during wound healing e.g., angiogenesis, modulation of inflammation and extracellular matrix remodeling. In clinical practice, ASCs are usually administered as part of fractionated adipose tissue i.e., as part of enzymatically isolated SVF (cellular SVF), mechanically isolated SVF (tissue SVF), or as lipograft. Enzymatic isolation of SVF obtained adipose tissue results in suspension of adipocyte-free cells (cSVF) that lack intact intercellular adhesions or connections to extracellular matrix (ECM). Mechanical isolation of SVF from adipose tissue destructs the parenchyma (adipocytes), which results in a tissue SVF (tSVF) with intact connections between cells, as well as matrix. To date, due to a lack of well-designed prospective randomized clinical trials, neither cSVF, tSVF, whole adipose tissue, or cultured ASCs can be indicated as the preferred preparation procedure prior to therapeutic administration. In this review, we present and discuss current literature regarding the different administration options to apply ASCs (i.e., cultured ASCs, cSVF, tSVF, and lipografting) to augment dermal wound healing, as well as the available indications for clinical efficacy.
Collapse
|
36
|
Netrin-1 improves adipose-derived stem cell proliferation, migration, and treatment effect in type 2 diabetic mice with sciatic denervation. Stem Cell Res Ther 2018; 9:285. [PMID: 30359296 PMCID: PMC6202825 DOI: 10.1186/s13287-018-1020-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/16/2018] [Accepted: 09/27/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Diabetic peripheral neurovascular diseases (DPNVs) are complex, lacking effective treatment. Autologous/allogeneic transplantation of adipose-derived stem cells (ADSCs) is a promising strategy for DPNVs. Nonetheless, the transplanted ADSCs demonstrate unsatisfying viability, migration, adhesion, and differentiation in vivo, which reduce the treatment efficiency. Netrin-1 secreted as an axon guidance molecule and served as an angiogenic factor, demonstrating its ability in enhancing cell proliferation, migration, adhesion, and neovascularization. METHODS ADSCs acquired from adipose tissue were modified by Netrin-1 gene (NTN-1) using the adenovirus method (N-ADSCs) and proliferation, migration, adhesion, and apoptosis examined under high-glucose condition. The sciatic denervated mice (db/db) with type 2 diabetes mellitus (T2DM) were transplanted with N-ADSCs and treatment efficiency assessed based on the laser Doppler perfusion index, immunofluorescence, and histopathological assay. Also, the molecular mechanisms underlying Netrin-1-mediated proliferation, migration, adhesion, differentiation, proangiogenic capacity, and apoptosis of ADSCs were explored. RESULTS N-ADSCs improved the proliferation, migration, and adhesion and inhibited the apoptosis of ADSCs in vitro in the condition of high glucose. The N-ADSCs group demonstrated an elevated laser Doppler perfusion index in the ADSCs and control groups. N-ADSCs analyzed by immunofluorescence and histopathological staining demonstrated the distribution of the cells in the injected limb muscles, indicating chronic ischemia; capillaries and endothelium were formed by differentiation of N-ADSCs. The N-ADSCs group showed a significantly high density of the microvessels than the ADSCs group. The upregulation of AKT/PI3K/eNOS/P-38/NF-κB signaling pathways and secretion of multiple growth factors might explain the positive effects of Netrin-1 on ADSCs. CONCLUSION The overexpression of Netrin-1 in ADSCs improves proliferation, migration, and treatment effect in type 2 diabetic mice with sciatic denervation, which directs the clinical treatment of patients with DPNVs.
Collapse
|
37
|
Li Q, Yin Y, Zheng Y, Chen F, Jin P. Inhibition of autophagy promoted high glucose/ROS-mediated apoptosis in ADSCs. Stem Cell Res Ther 2018; 9:289. [PMID: 30359319 PMCID: PMC6203262 DOI: 10.1186/s13287-018-1029-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/13/2018] [Accepted: 09/30/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Increased apoptosis in adipose tissue-derived stem cells (ADSCs) limits their application in treating diabetes complications. Autophagy is a molecular process that allows cells to degrade and recover damaged macromolecules, and closely interacts with apoptosis. The aim of the present study was to investigate the potential role of autophagy in ADSC apoptosis induced by high glucose. METHODS Human ADSCs were cultured in normal or high-glucose medium for 6 h, 12 h, or 24 h. The effects of high glucose on ADSC autophagy, reactive oxygen species (ROS) production, and apoptosis were evaluated. The impact of autophagy on ROS production and apoptosis was explored by treatment with rapamycin or 3-methyladenine (3-MA). The c-jun kinase (JNK) signaling pathway was investigated by pharmacological disruption of SP600125. RESULTS ADSCs subjected to high glucose stress showed an obvious induction of autophagy and apoptosis and a significant increase in intracellular ROS levels. The JNK signaling pathway was confirmed to be involved in high glucose-induced autophagy. Pre-treatment with SP600125 or N-acetylcysteine reversed the effects of high glucose on the JNK signaling pathway and autophagy-related proteins. Pretreatment of ADSCs with 3-MA under high glucose stress induced a further increase in ROS levels compared to those of high glucose-treated cells. Furthermore, ADSCs pretreated with 3-MA under high glucose stress showed a marked increase in apoptosis compared with that of the cells treated with high glucose. Conversely, pre-treatment with rapamycin inhibited the apoptosis of ADSCs. CONCLUSIONS Taken together, our data suggest that autophagy may play a protective role in high glucose-induced apoptosis in ADSCs. ROS/JNK signaling is essential in upregulating high glucose-induced autophagy. This study provides new insights into the molecular mechanism of autophagy involved in high glucose-induced apoptosis in ADSCs.
Collapse
Affiliation(s)
- Qiang Li
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Huai-hai West Road, Xuzhou, 221002, Jiangsu, China
| | - Yating Yin
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Huai-hai West Road, Xuzhou, 221002, Jiangsu, China
| | - Yuqing Zheng
- The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Han-zhong Road, Nanjing, 210005, Jiangsu, China
| | - Feifei Chen
- Jiangsu Center for the Collaboration and Innovation of Cancer, Xuzhou Medical University, Huai-hai West Road, Xuzhou, 221002, Jiangsu, China.
| | - Peisheng Jin
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Huai-hai West Road, Xuzhou, 221002, Jiangsu, China. .,Jiangsu Center for the Collaboration and Innovation of Cancer, Xuzhou Medical University, Huai-hai West Road, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
38
|
Li Y, Zhang ZZ. Sustained curcumin release from PLGA microspheres improves bone formation under diabetic conditions by inhibiting the reactive oxygen species production. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1453-1466. [PMID: 29872268 PMCID: PMC5973436 DOI: 10.2147/dddt.s154334] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Excessive reactive oxygen species production caused by type 2 diabetes conditions can disrupt normal bone metabolism and greatly impair bone regeneration. Materials and methods In the present study, curcumin (Cur)-loaded microspheres were incorporated into a fish collagen nano-hydroxyapatite scaffold to promote bone repair under diabetic conditions by inhibiting the reactive oxygen species production. Results The drug release kinetic study showed that the Cur release from the composite scaffolds lasted up to 30 days. The sustained curcumin release from the scaffold significantly inhibited the overproduction of reactive oxygen species in mesenchymal stem cells caused by diabetic serum. Moreover, the Cur-loaded scaffold also remarkedly alleviated the negative effects of diabetic serum on the proliferation, migration, and osteogenic differentiation of mesenchymal stem cells. When implanted into bone defects in type 2 diabetic rats, the Cur-loaded scaffold also showed a greater bone formation capability compared to the pure scaffold. Conclusion The results of this study suggested that the novel controlled Cur release system may provide a promising route to improve bone regeneration in type 2 diabetic patients.
Collapse
Affiliation(s)
- Yu Li
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Zhan-Zhao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.,Department of Aesthetic Surgery, Hangzhou Raily Aesthetic Plastic Hospital, Hangzhou 310003, People's Republic of China
| |
Collapse
|
39
|
Fiori A, Terlizzi V, Kremer H, Gebauer J, Hammes HP, Harmsen MC, Bieback K. Mesenchymal stromal/stem cells as potential therapy in diabetic retinopathy. Immunobiology 2018; 223:729-743. [PMID: 29402461 DOI: 10.1016/j.imbio.2018.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/13/2017] [Accepted: 01/15/2018] [Indexed: 02/06/2023]
Abstract
Diabetic retinopathy (DR) is a multifactorial microvascular disease induced by hyperglycemia and subsequent metabolic abnormalities. The resulting cell stress causes a sequela of events that ultimately can lead to severe vision impairment and blindness. The early stages are characterized by activation of glia and loss of pericytes, endothelial cells (EC) and neuronal cells. The integrity of the retinal microvasculature becomes affected, and, as a possible late response, macular edema may develop as a common reason for vision loss in patients with non-proliferative DR. Moreover, the local ischemia can trigger vasoproliferation leading to vision-threating proliferative DR (PDR) in humans. Available treatment options include control of metabolic and hemodynamic factors. Timely intervention of advanced DR stages with laser photocoagulation, intraocular anti-vascular endothelial growth factor (VEGF) or glucocorticoid drugs can reduce vision loss. As the pathology involves cell loss of both the vascular and neuroglial compartments, cell replacement strategies by stem and progenitor cells have gained considerable interest in the past years. Compared to other disease entities, so far little is known about the efficacy and potential mode of action of cell therapy in treatment of DR. In preclinical models of DR different cell types have been applied ranging from embryonic or induced pluripotent stem cells, hematopoietic stem cells, and endothelial progenitor cells to mesenchymal stromal cells (MSC). The latter cell population can combine various modes of action (MoA), thus they are among the most intensely tested cell types in cell therapy. The aim of this review is to discuss the rationale for using MSC as potential cell therapy to treat DR. Accordingly, we will revise identified MoA of MSCs and speculate how these may support the repair of the damaged retina.
Collapse
Affiliation(s)
- Agnese Fiori
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Germany
| | - Vincenzo Terlizzi
- Dept. Endocrinology, 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Germany; University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Lab for Cardiovascular Regenerative Medicine (CAVAREM), Groningen, The Netherlands
| | - Heiner Kremer
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Germany
| | - Julian Gebauer
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Germany
| | - Hans-Peter Hammes
- Dept. Endocrinology, 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Martin C Harmsen
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Lab for Cardiovascular Regenerative Medicine (CAVAREM), Groningen, The Netherlands
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Germany.
| |
Collapse
|
40
|
Functional blocking of Ninjurin1 as a strategy for protecting endothelial cells in diabetes mellitus. Clin Sci (Lond) 2018; 132:213-229. [PMID: 29263137 DOI: 10.1042/cs20171273] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/10/2017] [Accepted: 12/16/2017] [Indexed: 02/06/2023]
Abstract
Ongoing efforts to remove pathological inflammatory stimuli are crucial for the protection of endothelial cells in diabetes. Nerve injury-induced protein 1 (Ninj1) is an adhesion molecule that not only contributes to inflammation but also regulates the apoptosis of endothelial cells. In the present study, Ninj1 was found highly expressed in endothelial cells in Type 2 diabetic mice and increased in high-glucose (HG) cultured HUVECs. Furthermore, we found that Ninj1 levels are up-regulated in endothelial cells in clinical specimens of diabetic patients when compared with nondiabetic tissues, indicating a biological correlation between Ninj1 and endothelial pathophysiology in diabetic condition. Functional blocking of Ninj1 promoted endothelial tube formation and eNOS phosphorylation in the HG condition. Additionally, blocking Ninj1 inhibited the activation of caspase-3 and increased the Bcl-2/Bax ratio, thus inhibiting HUVECs apoptosis induced by HG. HG-induced ROS overproduction, p38 MAPK and NF-κB activation, and the overexpression of VCAM-1, ICAM-1, MCP-1, and IL-6 genes were ameliorated after Ninj1 was blocked. Using the signaling pathway inhibitor LY294002, we found that Bcl-2 expression and eNOS phosphorylation after Ninj1 blockade were regulated via PI3K/Akt signaling pathway. The in vivo endothelial contents, α-SMA+PECAM-1+ vascular numbers, and blood perfusion in the hindlimb were markedly up-regulated after Ninj1 was blocked. According to our findings, functional blocking of Ninj1 shows protective effects on diabetic endothelial cells both in vitro and in vivo Thus, we consider Ninj1 to be a potential therapeutic target for preventing endothelial dysfunction in diabetes mellitus.
Collapse
|
41
|
ETV-2 activated proliferation of endothelial cells and attenuated acute hindlimb ischemia in mice. In Vitro Cell Dev Biol Anim 2017; 53:616-625. [DOI: 10.1007/s11626-017-0151-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 03/30/2017] [Indexed: 01/03/2023]
|