1
|
Yong YY, Yan L, Wang BD, Fan DS, Guo MS, Yu L, Wu JM, Qin DL, Law BYK, Wong VKW, Yu CL, Zhou XG, Wu AG. Penthorum chinense Pursh inhibits ferroptosis in cellular and Caenorhabditis elegans models of Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155463. [PMID: 38452694 DOI: 10.1016/j.phymed.2024.155463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Ferroptosis, a unique type of cell death triggered by iron-dependent lipid peroxidation, plays a critical role in the pathogenesis of Alzheimer's disease (AD), a debilitating condition marked by memory loss and cognitive impairment due to the accumulation of beta-amyloid (Aβ) and hyperphosphorylated Tau protein. Increasing evidence suggests that inhibitors of ferroptosis could be groundbreaking in the treatment of AD. METHOD In this study, we established in vitro ferroptosis using erastin-, RSL-3-, hemin-, and iFSP1-induced PC-12 cells. Using MTT along with Hoechst/PI staining, we assessed cell viability and death. To determine various aspects of ferroptosis, we employed fluorescence probes, including DCFDA, JC-1, C11 BODIPY, Mito-Tracker, and PGSK, to measure ROS production, mitochondrial membrane potential, lipid peroxidation, mitochondrial morphology, and intracellular iron levels. Additionally, Western blotting, biolayer interferometry technology, and shRNA were utilized to investigate the underlying molecular mechanisms. Furthermore, p-CAX APP Swe/Ind- and pRK5-EGFP-Tau P301L overexpressing PC-12 cells, along with Caenorhabditis elegans (C. elegans) strains CL4176, CL2331, and BR5270, were employed to examine ferroptosis in AD models. RESULTS Here, we conducted a screening of our natural medicine libraries and identified the ethanol extract of Penthorum chinense Pursh (PEE), particularly its ethyl acetate fraction (PEF), displayed inhibitory effects on ferroptosis in cells. Specifically, PEF inhibited the generation of ROS, lipid peroxidation, and intracellular iron levels. Furthermore, PEF demonstrated protective effects against H2O2-induced cell death, ROS production, and mitochondrial damage. Mechanistic investigations unveiled PEF's modulation of intracellular iron accumulation, GPX4 expression and activity, and FSP1 expression. In p-CAX APP Swe/Ind and pRK5-EGFP-Tau P301L overexpressing PC-12 cells, PEF significantly reduced cell death, as well as ROS and lipid peroxidase production. Moreover, PEF ameliorated paralysis and slowing rate in Aβ and Tau transgenic C. elegans models, while inhibiting ferroptosis, as evidenced by decreased DHE intensity, lipid peroxidation levels, iron accumulation, and expression of SOD-3 and gst-4. CONCLUSION Our findings highlight the suppressive effects of PEF on ferroptosis in AD cellular and C. elegans models. This study helps us better understand how ferroptosis affects AD and emphasizes the potential of PCP as a candidate for AD intervention.
Collapse
Affiliation(s)
- Yuan-Yuan Yong
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Lu Yan
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Bin-Ding Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Dong-Sheng Fan
- Department of Pharmacy, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Gui Yang, 550000, China
| | - Min-Song Guo
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 99078, China
| | - Vincent Kam-Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 99078, China
| | - Chong-Lin Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
2
|
Isaksson HS, Farkas SA, Müller P, Gustafsson D, Nilsson TK. Whole genome microarray expression analysis in blood identifies pathways linked to signs and symptoms of a patient with hypercalprotectinaemia and hyperzincaemia. Clin Exp Immunol 2017; 191:240-251. [PMID: 28984903 DOI: 10.1111/cei.13064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2017] [Indexed: 11/30/2022] Open
Abstract
A child, 2 years with the 'hypercalprotectinaemia with hyperzincaemia' clinical syndrome, presented with atypical symptoms and signs, notably persistent fever of approximately 38°C, thrombocythaemia of > 700 × 109 /l and a predominance of persistent intestinal symptoms. In an effort to find a cure by identifying the dysregulated pathways we analysed whole-genome mRNA expression by the Affymetrix HG U133 Plus 2·0 array in blood on three occasions 3-5 months apart. Major up-regulation was demonstrated for the Janus kinase/signal transducer and activators of transcription (JAK/STAT) pathway including, in particular, CD177, S100A8, S100A9 and S100A12, accounting for the thrombocytosis; a large number of interleukins, their receptors and activators, accounting for the febrile apathic state; and the high mobility group box 1 (HMBG1) gene, possibly accounting for part of the intestinal symptoms. These results show that gene expression array technology may assist the clinician in the diagnostic work-up of individual patients with suspected syndromal states of unknown origin, and the expression data can guide the selection of optimal treatment directed at the identified target pathways.
Collapse
Affiliation(s)
- H S Isaksson
- Department of Laboratory Medicine, Örebro University Hospital, Faculty of Medicine and Health, Örebro University, Sweden
| | - S A Farkas
- Department of Laboratory Medicine, Örebro University Hospital, Faculty of Medicine and Health, Örebro University, Sweden
| | - P Müller
- Affymetrix Core Facility at Novum, BEA, Karolinska Institute, Huddinge, Sweden
| | - D Gustafsson
- Department of Pediatrics, Örebro University Hospital, Faculty of Medicine and Health, Örebro University, Umeå, Sweden
| | - T K Nilsson
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden
| |
Collapse
|
3
|
Kaushik A, Jayant RD, Tiwari S, Vashist A, Nair M. Nano-biosensors to detect beta-amyloid for Alzheimer's disease management. Biosens Bioelectron 2016; 80:273-287. [PMID: 26851586 PMCID: PMC4786026 DOI: 10.1016/j.bios.2016.01.065] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/21/2016] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
Abstract
Beta-amyloid (β-A) peptides are potential biomarkers to monitor Alzheimer's diseases (AD) for diagnostic purposes. Increased β-A level is neurotoxic and induces oxidative stress in brain resulting in neurodegeneration and causes dementia. As of now, no sensitive and inexpensive method is available for β-A detection under physiological and pathological conditions. Although, available methods such as neuroimaging, enzyme-linked immunosorbent assay (ELISA), and polymerase chain reaction (PCR) detect β-A, but they are not yet extended at point-of-care (POC) due to sophisticated equipments, need of high expertize, complicated operations, and challenge of low detection limit. Recently, β-A antibody based electrochemical immuno-sensing approach has been explored to detect β-A at pM levels within 30-40 min compared to 6-8h of ELISA test. The introduction of nano-enabling electrochemical sensing technology could enable rapid detection of β-A at POC and may facilitate fast personalized health care delivery. This review explores recent advancements in nano-enabling electrochemical β-A sensing technologies towards POC application to AD management. These analytical tools can serve as an analytical tool for AD management program to obtain bio-informatics needed to optimize therapeutics for neurodegenerative diseases diagnosis management.
Collapse
Affiliation(s)
- Ajeet Kaushik
- Center for Personalized Nanomedicine, Institute of Neuro immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| | - Rahul Dev Jayant
- Center for Personalized Nanomedicine, Institute of Neuro immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Sneham Tiwari
- Center for Personalized Nanomedicine, Institute of Neuro immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Arti Vashist
- Center for Personalized Nanomedicine, Institute of Neuro immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Madhavan Nair
- Center for Personalized Nanomedicine, Institute of Neuro immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| |
Collapse
|
4
|
Levine AJ, Miller JA, Shapshak P, Gelman B, Singer EJ, Hinkin CH, Commins D, Morgello S, Grant I, Horvath S. Systems analysis of human brain gene expression: mechanisms for HIV-associated neurocognitive impairment and common pathways with Alzheimer's disease. BMC Med Genomics 2013; 6:4. [PMID: 23406646 PMCID: PMC3626801 DOI: 10.1186/1755-8794-6-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/30/2013] [Indexed: 12/26/2022] Open
Abstract
Background Human Immunodeficiency Virus-1 (HIV) infection frequently results in neurocognitive impairment. While the cause remains unclear, recent gene expression studies have identified genes whose transcription is dysregulated in individuals with HIV-association neurocognitive disorder (HAND). However, the methods for interpretation of such data have lagged behind the technical advances allowing the decoding genetic material. Here, we employ systems biology methods novel to the field of NeuroAIDS to further interrogate extant transcriptome data derived from brains of HIV + patients in order to further elucidate the neuropathogenesis of HAND. Additionally, we compare these data to those derived from brains of individuals with Alzheimer’s disease (AD) in order to identify common pathways of neuropathogenesis. Methods In Study 1, using data from three brain regions in 6 HIV-seronegative and 15 HIV + cases, we first employed weighted gene co-expression network analysis (WGCNA) to further explore transcriptome networks specific to HAND with HIV-encephalitis (HIVE) and HAND without HIVE. We then used a symptomatic approach, employing standard expression analysis and WGCNA to identify networks associated with neurocognitive impairment (NCI), regardless of HIVE or HAND diagnosis. Finally, we examined the association between the CNS penetration effectiveness (CPE) of antiretroviral regimens and brain transcriptome. In Study 2, we identified common gene networks associated with NCI in both HIV and AD by correlating gene expression with pre-mortem neurocognitive functioning. Results Study 1: WGCNA largely corroborated findings from standard differential gene expression analyses, but also identified possible meta-networks composed of multiple gene ontology categories and oligodendrocyte dysfunction. Differential expression analysis identified hub genes highly correlated with NCI, including genes implicated in gliosis, inflammation, and dopaminergic tone. Enrichment analysis identified gene ontology categories that varied across the three brain regions, the most notable being downregulation of genes involved in mitochondrial functioning. Finally, WGCNA identified dysregulated networks associated with NCI, including oligodendrocyte and mitochondrial functioning. Study 2: Common gene networks dysregulated in relation to NCI in AD and HIV included mitochondrial genes, whereas upregulation of various cancer-related genes was found. Conclusions While under-powered, this study identified possible biologically-relevant networks correlated with NCI in HIV, and common networks shared with AD, opening new avenues for inquiry in the investigation of HAND neuropathogenesis. These results suggest that further interrogation of existing transcriptome data using systems biology methods can yield important information.
Collapse
Affiliation(s)
- Andrew J Levine
- Department of Neurology, National Neurological AIDS Bank, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Common transcriptional signatures in brain tissue from patients with HIV-associated neurocognitive disorders, Alzheimer's disease, and Multiple Sclerosis. J Neuroimmune Pharmacol 2012; 7:914-26. [PMID: 23065460 PMCID: PMC3515772 DOI: 10.1007/s11481-012-9409-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 09/26/2012] [Indexed: 01/01/2023]
Abstract
HIV-Associated Neurocognitive Disorders (HAND) is a common manifestation of HIV infection that afflicts about 50 % of HIV-positive individuals. As people with access to antiretroviral treatments live longer, HAND can be found in increasing segments of populations at risk for other chronic, neurodegenerative conditions such as Alzheimer’s disease (AD) and Multiple Sclerosis (MS). If brain diseases of diverse etiologies utilize similar biological pathways in the brain, they may coexist in a patient and possibly exacerbate neuropathogenesis and morbidity. To test this proposition, we conducted comparative meta-analysis of selected publicly available microarray datasets from brain tissues of patients with HAND, AD, and MS. In pair-wise and three-way analyses, we found a large number of dysregulated genes and biological processes common to either HAND and AD or HAND and MS, or to all three diseases. The common characteristic of all three diseases was up-regulation of broadly ranging immune responses in the brain. In addition, HAND and AD share down-modulation of processes involved, among others, in synaptic transmission and cell-cell signaling while HAND and MS share defective processes of neurogenesis and calcium/calmodulin-dependent protein kinase activity. Our approach could provide insight into the identification of common disease mechanisms and better intervention strategies for complex neurocognitive disorders.
Collapse
|
6
|
Zhou L, Diefenbach E, Crossett B, Tran SL, Ng T, Rizos H, Rua R, Wang B, Kapur A, Gandhi K, Brew BJ, Saksena NK. First evidence of overlaps between HIV-Associated Dementia (HAD) and non-viral neurodegenerative diseases: proteomic analysis of the frontal cortex from HIV+ patients with and without dementia. Mol Neurodegener 2010; 5:27. [PMID: 20573273 PMCID: PMC2904315 DOI: 10.1186/1750-1326-5-27] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Accepted: 06/24/2010] [Indexed: 12/12/2022] Open
Abstract
Background The pathogenesis of HIV-associated dementia (HAD) is poorly understood. To date, detailed proteomic fingerprinting directly from autopsied brain tissues of HAD and HIV non-dementia patients has not been performed. Result Here, we have analyzed total proteins from the frontal cortex of 9 HAD and 5 HIV non-dementia patients. Using 2-Dimensional differential in-gel electrophoresis (2-DIGE) to analyze the brain tissue proteome, 76 differentially expressed proteins (p < 0.05; fold change>1.25) were identified between HAD and HIV non-dementia patients, of which 36 protein spots (based on 3D appearance of spots on the images) were chosen for the mass spectrometry analysis. The large majority of identified proteins were represented in the energy metabolic (mitochondria) and signal transduction pathways. Furthermore, over 90% of the protein candidates are common to both HAD and other non-viral neurodegenerative disease, such as Alzheimer's disease. The data was further validated using specific antibodies to 4 proteins (CA2, GS, CKMT and CRMP2) by western blot (WB) in the same samples used for 2D-DIGE, with additional confirmation by immunohistochemitsry (IHC) using frontal lobe tissue from different HAD and HIV+ non-dementia patients. The validation for all 4 antibodies by WB and IHC was in concordance with the DIGE results, lending further credence to the current findings. Conclusion These results suggest not only convergent pathogenetic pathways for the two diseases but also the possibility of increased Alzheimer's disease (AD) susceptibility in HAD patients whose life expectancy has been significantly increased by highly active antiretroviral therapy.
Collapse
Affiliation(s)
- Li Zhou
- Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney, Westmead, NSW 2145, Sydney, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Shapshak P, Chiappelli F, Commins D, Singer E, Levine AJ, Somboonwit C, Minagar A, Pellionisz AJ. Molecular epigenetics, chromatin, and NeuroAIDS/HIV: translational implications. Bioinformation 2008; 3:53-7. [PMID: 19052667 PMCID: PMC2586134 DOI: 10.6026/97320630003053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 09/13/2008] [Indexed: 11/29/2022] Open
Abstract
We describe current research that applies epigenetics to a novel understanding of the immuno-neuropathogenesis of HIV-1 viral infection and NeuroAIDS. We propose the hypothesis that HIV-1 alters the structure-function relationship of chromatin, coding DNA and non-coding DNA, including RNA transcribed from these regions resulting in pathogenesis in AIDS, drug abuse, and NeuroAIDS. We discuss the general implications of molecular epigenetics with special emphasis on drug abuse, bar-codes, pyknons, and miRNAs for translational and clinical research. We discuss the application of the recent recursive algorithm of biology to this field and propose to synthesize the Genomic and Epigenomic views into a holistic approach of HoloGenomics.
Collapse
Affiliation(s)
- Paul Shapshak
- Division of Infectious Diseases and International Medicine, Departments of Internal Medicine and of Psychiatry and Behavioral Medicine, University of South Florida Health, Tampa, FL 33606, USA.
| | | | | | | | | | | | | | | |
Collapse
|