1
|
Wuerger LT, Hammer HS, Hofmann U, Kudiabor F, Sieg H, Braeuning A. Okadaic acid influences xenobiotic metabolism in HepaRG cells. EXCLI JOURNAL 2022; 21:1053-1065. [PMID: 36172076 PMCID: PMC9489895 DOI: 10.17179/excli2022-5033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/28/2022] [Indexed: 11/10/2022]
Abstract
Okadaic acid (OA) is an algae-produced lipophilic marine biotoxin that accumulates in the fatty tissue of filter-feeding shellfish. Ingestion of contaminated shellfish leads to the diarrheic shellfish poisoning syndrome. Furthermore, several other effects of OA like genotoxicity, liver toxicity and tumor-promoting properties have been observed, probably linked to the phosphatase-inhibiting properties of the toxin. It has been shown that at high doses OA can disrupt the physical barrier of the intestinal epithelium. As the intestine and the liver do not only constitute a physical, but also a metabolic barrier against xenobiotic exposure, we here investigated the impact of OA on the expression of cytochrome P450 (CYP) enzymes and transporter proteins in human HepaRG cells liver cells in vitro at non-cytotoxic concentrations. The interplay of OA with known CYP inducers was also studied. Data show that the expression of various xenobiotic-metabolizing CYPs was downregulated after exposure to OA. Moreover, OA was able to counteract the activation of CYPs by their inducers. A number of transporters were also mainly downregulated. Overall, we demonstrate that OA has a significant effect on xenobiotic metabolism barrier in liver cells, highlighting the possibility for interactions of OA exposure with the metabolism of drugs and xenobiotics.
Collapse
Affiliation(s)
- Leonie T.D. Wuerger
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Helen S. Hammer
- SIGNATOPE GmbH, Markwiesenstraße 55, 72770 Reutlingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, and University of Tübingen, 72074 Tübingen, Germany
| | - Felicia Kudiabor
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Holger Sieg
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany,*To whom correspondence should be addressed: Holger Sieg, German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany, E-mail:
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
2
|
Zhou J, Qian X, Zhou Y, Xiong S, Ji S, Wang Y, Zhao P. Human liver microsomes study on the inhibitory effect of plantainoside D on the activity of cytochrome P450 activity. BMC Complement Med Ther 2022; 22:197. [PMID: 35870998 PMCID: PMC9308932 DOI: 10.1186/s12906-022-03671-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plantainoside D is widely existed in the herbs and possesses various pharmacological activities, making it possible to co-administrate with other herbs. Its effect on cytochrome P450 enzymes (P450) is a risk factor for inducing adverse drug-drug interactions. To assess the effect of plantainoside D on the activity of major P450 isoenzymes in human liver microsomes. METHODS The Cocktail method was conducted in human liver microsomes in the presence of probe substrates. The activity of P450 isoenzymes was evaluated by the production of corresponding metabolites. The concentration-dependent and time-dependent inhibition assays were performed in the presence of 0, 2.5, 5, 10, 25, 50, and 100 μM plantainoside D to characterize the inhibitory effect of plantainoside D. RESULTS Significant inhibition was observed in the activity of CYP1A2, 2D6, and 3A, which was concentration-dependent with the IC50 values of 12.83, 8.39, and 14.66 μM, respectively. The non-competitive manner and competitive manner were observed in the CYP3A inhibition (Ki = 7.16 μM) and CYP1A2 (Ki = 6.26 μM) and 2D6 inhibition (Ki = 4.54 μM), respectively. Additionally, the inhibition of CYP3A was found to be time-dependent with the KI of 1.28 μM-1 and Kinact of 0.039 min-1. CONCLUSIONS Weak inhibitory effects of plantainoside D on the activity of CYP1A2, 2D6, and 3A were revealed in vitro, implying its potential of inducing interactions with CYP1A2-, 2D6-, and 3A-metabolized drugs. Although further in vivo validations are needed, the feasibility of the Cocktail method in evaluating P450 activity has been verified.
Collapse
Affiliation(s)
- Jin Zhou
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, 201908, China
| | - Xian Qian
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, 201908, China
| | - Yanqing Zhou
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, 201908, China
| | - Shili Xiong
- Clinical Research Center, Shanghai Baoshan Luodian Hospital, No.121 Luoxi Road, Baoshan District, Shanghai, 201908, China
| | - Shuxia Ji
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, 201908, China
| | - Ying Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Ping Zhao
- Clinical Research Center, Shanghai Baoshan Luodian Hospital, No.121 Luoxi Road, Baoshan District, Shanghai, 201908, China.
| |
Collapse
|
3
|
Zhou X, Fu L, Wang P, Yang L, Zhu X, Li CG. Drug-herb interactions between Scutellaria baicalensis and pharmaceutical drugs: Insights from experimental studies, mechanistic actions to clinical applications. Biomed Pharmacother 2021; 138:111445. [PMID: 33711551 DOI: 10.1016/j.biopha.2021.111445] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Whilst the popular use of herbal medicine globally, it poses challenges in managing potential drug-herb interaction. There are two folds of the drug-herb interaction, a beneficial interaction that may improve therapeutic outcome and minimise the toxicity of drug desirably; by contrast, negative interaction may evoke unwanted clinical consequences, especially with drugs of narrow therapeutic index. Scutellaria baicalensis Georgi is one of the most popular medicinal plants used in Asian countries. It has been widely used for treating various diseases and conditions such as cancer, diabetes, inflammation, and oxidative stress. Studies on its extract and bioactive compounds have shown pharmacodynamic and pharmacokinetic interactions with a wide range of pharmaceutical drugs as evidenced by plenty of in vitro, in vivo and clinical studies. Notably, S. baicalensis and its bioactives including baicalein, baicalin and wogonin exhibited synergistic interactions with many pharmaceutical drugs to enhance their efficacy, reduce toxicity or overcome drug resistance to combat complex diseases such as cancer, diabetes and infectious diseases. On the other hand, S. baicalensis and its bioactives also affected the pharmacokinetic profile of many drugs in absorption, distribution, metabolism and elimination via the regulatory actions of the efflux pumps and cytochrome P450 enzymes. This review provides comprehensive references of the observed pharmacodynamic and pharmacokinetic drug interactions of Scutellaria baicalensis and its bioactives. We have elucidated the interaction with detailed mechanistic actions, identified the knowledge gaps for future research and potential clinical implications. Such knowledge is important for the practice of both conventional and complementary medicines, and it is essential to ensure the safe use of related herbal medicines. The review may be of great interest to practitioners, consumers, clinicians who require comprehensive information on the possible drug interactions with S. baicalensis and its bioactives.
Collapse
Affiliation(s)
- Xian Zhou
- NICM Health Research Institute, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Ling Fu
- Chinese Medicine Centre, School of Health Sciences, Western Sydney University, Penrith, NSW 2751, Australia; The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, People's Republic of China; The Second Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Second Chinese Medicine Hospital), Nanjing, Jiangsu 210017, People's Republic of China
| | - Pengli Wang
- Chinese Medicine Centre, School of Health Sciences, Western Sydney University, Penrith, NSW 2751, Australia; School of Chinese Medicine, School of Integrated Chinese & Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, People's Republic of China
| | - Lan Yang
- Chinese Medicine Centre, School of Health Sciences, Western Sydney University, Penrith, NSW 2751, Australia; School of Chinese Medicine, School of Integrated Chinese & Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, People's Republic of China
| | - Xiaoshu Zhu
- Chinese Medicine Centre, School of Health Sciences, Western Sydney University, Penrith, NSW 2751, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| |
Collapse
|
4
|
Zhang L, Xu X, Badawy S, Ihsan A, Liu Z, Xie C, Wang X, Tao Y. A Review: Effects of Macrolides on CYP450 Enzymes. Curr Drug Metab 2020; 21:928-937. [PMID: 32807049 DOI: 10.2174/1389200221666200817113920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/23/2020] [Accepted: 07/03/2020] [Indexed: 11/22/2022]
Abstract
As a kind of haemoglobin, cytochrome P450 enzymes (CYP450) participate in the metabolism of many substances, including endogenous substances, exogenous substances and drugs. It is estimated that 60% of common prescription drugs require bioconversion through CYP450. The influence of macrolides on CYP450 contributes to the metabolism and drug-drug interactions (DDIs) of macrolides. At present, most studies on the effects of macrolides on CYP450 are focused on CYP3A, but a few exist on other enzymes and drug combinations, such as telithromycin, which can decrease the activity of hepatic CYP1A2 and CYP3A2. This article summarizes some published applications of the influence of macrolides on CYP450 and the DDIs of macrolides caused by CYP450. And the article may subsequently guide the rational use of drugs in clinical trials. To a certain extent, poisoning caused by adverse drug interactions can be avoided. Unreasonable use of macrolide antibiotics may enable the presence of residue of macrolide antibiotics in animal-origin food. It is unhealthy for people to eat food with macrolide antibiotic residues. So it is of great significance to guarantee food safety and protect the health of consumers by the rational use of macrolides. This review gives a detailed description of the influence of macrolides on CYP450 and the DDIs of macrolides caused by CYP450. Moreover, it offers a perspective for researchers to further explore in this area.
Collapse
Affiliation(s)
- Liyun Zhang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaoqing Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Sara Badawy
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Awais Ihsan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Changqing Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanfei Tao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
5
|
Kühnl J, Tao TP, Brandmair K, Gerlach S, Rings T, Müller-Vieira U, Przibilla J, Genies C, Jaques-Jamin C, Schepky A, Marx U, Hewitt NJ, Maschmeyer I. Characterization of application scenario-dependent pharmacokinetics and pharmacodynamic properties of permethrin and hyperforin in a dynamic skin and liver multi-organ-chip model. Toxicology 2020; 448:152637. [PMID: 33220337 DOI: 10.1016/j.tox.2020.152637] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Microphysiological systems (MPS) aim to mimic the dynamic microenvironment and the interaction between tissues. While MPS exist for investigating pharmaceuticals, the applicability of MPS for cosmetics ingredients is yet to be evaluated. The HUMIMIC Chip2 ("Chip2″), is the first multi-organ chip technology to incorporate skin models, allowing for the topical route to be tested. Therefore, we have used this model to analyze the impact of different exposure scenarios on the pharmacokinetics and pharmacodynamics of two topically exposed chemicals, hyperforin and permethrin. The Chip2 incorporated reconstructed human epidermis models (EpiDerm™) and HepaRG-stellate spheroids. Initial experiments using static incubations of single organoids helped determine the optimal dose. In the Chip2 studies, parent and metabolites were analyzed in the circuit over 5 days after application of single and repeated topical or systemic doses. The gene expression of relevant xenobiotic metabolizing enzymes in liver spheroids was measured to reflect toxicodynamics effects of the compounds in liver. The results show that 1) metabolic capacities of EpiDerm™ and liver spheroids were maintained over five days; 2) EpiDerm™ model barrier function remained intact; 3) repeated application of compounds resulted in higher concentrations of parent chemicals and most metabolites compared to single application; 4) compound-specific gene induction e.g. induction of CYP3A4 by hyperforin depended on the application route and frequency; 5) different routes of application influenced the systemic concentrations of both parents and metabolites in the chip over the course of the experiment; 6) there was excellent intra- and inter-lab reproducibility. For permethrin, a process similar to the excretion in a human in vivo study could be simulated which was remarkably comparable to the in vivo situation. These results support the use of the Chip2 model to provide information on parent and metabolite disposition that may be relevant to risk assessment of topically applied cosmetics ingredients.
Collapse
Affiliation(s)
- Jochen Kühnl
- Beiersdorf AG, Unnastraße 48, D-20253, Hamburg, Germany.
| | - Thi Phuong Tao
- TissUse GmbH, Oudenarder Str. 16, D-13347, Berlin, Germany
| | | | - Silke Gerlach
- Beiersdorf AG, Unnastraße 48, D-20253, Hamburg, Germany
| | - Thamée Rings
- Beiersdorf AG, Unnastraße 48, D-20253, Hamburg, Germany
| | | | - Julia Przibilla
- Pharmacelsus GmbH, Science Park 2, D-66123, Saarbrücken, Germany
| | | | | | | | - Uwe Marx
- TissUse GmbH, Oudenarder Str. 16, D-13347, Berlin, Germany
| | - Nicola J Hewitt
- Cosmetics Europe, Avenue Herrmann-Debroux 40, 1160, Auderghem, Belgium
| | | |
Collapse
|
6
|
Youssef RB, Fouad MA, El-Zaher AA. Bioanalytical Study of the Effect of Lycopene on the Pharmacokinetics of Theophylline in Rats. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Coté CJ, Wilson S. Guidelines for Monitoring and Management of Pediatric Patients Before, During, and After Sedation for Diagnostic and Therapeutic Procedures. Pediatrics 2019; 143:peds.2019-1000. [PMID: 31138666 DOI: 10.1542/peds.2019-1000] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The safe sedation of children for procedures requires a systematic approach that includes the following: no administration of sedating medication without the safety net of medical/dental supervision, careful presedation evaluation for underlying medical or surgical conditions that would place the child at increased risk from sedating medications, appropriate fasting for elective procedures and a balance between the depth of sedation and risk for those who are unable to fast because of the urgent nature of the procedure, a focused airway examination for large (kissing) tonsils or anatomic airway abnormalities that might increase the potential for airway obstruction, a clear understanding of the medication's pharmacokinetic and pharmacodynamic effects and drug interactions, appropriate training and skills in airway management to allow rescue of the patient, age- and size-appropriate equipment for airway management and venous access, appropriate medications and reversal agents, sufficient numbers of appropriately trained staff to both carry out the procedure and monitor the patient, appropriate physiologic monitoring during and after the procedure, a properly equipped and staffed recovery area, recovery to the presedation level of consciousness before discharge from medical/dental supervision, and appropriate discharge instructions. This report was developed through a collaborative effort of the American Academy of Pediatrics and the American Academy of Pediatric Dentistry to offer pediatric providers updated information and guidance in delivering safe sedation to children.
Collapse
|
8
|
Youssef RBA, Fouad MA, El-Zaher AA. Validated analytical study of the effect of Lycopene on the pharmacokinetics of Paracetamol and Chlorzoxazone in rats. BRAZ J PHARM SCI 2019. [DOI: 10.1590/s2175-97902019000118084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Gong EC, Chea S, Balupuri A, Kang NS, Chin YW, Choi YH. Enzyme Kinetics and Molecular Docking Studies on Cytochrome 2B6, 2C19, 2E1, and 3A4 Activities by Sauchinone. Molecules 2018; 23:molecules23030555. [PMID: 29498658 PMCID: PMC6017976 DOI: 10.3390/molecules23030555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 02/06/2023] Open
Abstract
Sauchinone, an active lignan isolated from the aerial parts of Saururus chinensis (Saururaceae), exhibits anti-inflammatory, anti-obesity, anti-hyperglycemic, and anti-hepatic steatosis effects. As herb–drug interaction (HDI) through cytochrome P450s (CYPs)-mediated metabolism limits clinical application of herbs and drugs in combination, this study sought to explore the enzyme kinetics of sauchinone towards CYP inhibition in in vitro human liver microsomes (HLMs) and in vivo mice studies and computational molecular docking analysis. In in vitro HLMs, sauchinone reversibly inhibited CYP2B6, 2C19, 2E1, and 3A4 activities in non-competitive modes, showing inhibition constant (Ki) values of 14.3, 16.8, 41.7, and 6.84 μM, respectively. Also, sauchinone time-dependently inhibited CYP2B6, 2E1 and 3A4 activities in vitro HLMs. Molecular docking study showed that sauchinone could be bound to a few key amino acid residues in the active site of CYP2B6, 2C19, 2E1, and 3A4. When sibutramine, clopidogrel, or chlorzoxazone was co-administered with sauchinone to mice, the systemic exposure of each drug was increased compared to that without sauchinone, because sauchinone reduced the metabolic clearance of each drug. In conclusion, when sauchinone was co-treated with drugs metabolized via CYP2B6, 2C19, 2E1, or 3A4, sauchinone–drug interactions occurred because sauchinone inhibited the CYP-mediated metabolic activities.
Collapse
Affiliation(s)
- Eun Chae Gong
- College of Pharmacy and Intergrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang, Gyeonggi-do 10326, Korea; (E.C.G.); (S.C.); (Y.-W.C.)
| | - Satya Chea
- College of Pharmacy and Intergrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang, Gyeonggi-do 10326, Korea; (E.C.G.); (S.C.); (Y.-W.C.)
| | - Anand Balupuri
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 305-764, Korea; (A.B.); (N.S.K)
| | - Nam Sook Kang
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 305-764, Korea; (A.B.); (N.S.K)
| | - Young-Won Chin
- College of Pharmacy and Intergrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang, Gyeonggi-do 10326, Korea; (E.C.G.); (S.C.); (Y.-W.C.)
| | - Young Hee Choi
- College of Pharmacy and Intergrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang, Gyeonggi-do 10326, Korea; (E.C.G.); (S.C.); (Y.-W.C.)
- Correspondence: ; Tel.: +82-31-961-5212
| |
Collapse
|
10
|
The Use of Complementary and Alternative Medicine Supplements of Potential Concern during Breast Cancer Chemotherapy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4382687. [PMID: 27528880 PMCID: PMC4977399 DOI: 10.1155/2016/4382687] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 06/07/2016] [Indexed: 11/18/2022]
Abstract
Objective. While many Complementary and Alternative Medicines (CAM) are unlikely to interact negatively with conventional oncology treatment, some ingestible CAM substances have biological activities that may reduce the effectiveness of chemotherapy or radiation. This study surveyed women with breast cancer in order to document the extent to which women with breast cancer use these CAM substances of concern concurrently with conventional treatments. Methods. A total of 398 women completed a survey describing their use of CAM at various time points in their cancer treatment. This report focuses on a subsample of 250 women receiving chemotherapy or radiation who reported using specific one or more of several chemotherapies. Results. Of those participating, 104 (43.7%) of those receiving chemotherapy (n = 238) and 45 (32.3%) of those receiving radiation (139; 58.4% of all patients) reported using one or more CAM substances that could be cause for concern when taken concurrently. Conclusion. Research is needed to understand the real risks associated with CAM and conventional polypharmacy. If risks associated with CAM conventional polypharmacy use prove to be substantial then improved systems to assure all women get advice regarding herb and supplement use during breast cancer treatment appear to be needed.
Collapse
|
11
|
Coté CJ, Wilson S. Guidelines for Monitoring and Management of Pediatric Patients Before, During, and After Sedation for Diagnostic and Therapeutic Procedures: Update 2016. Pediatrics 2016; 138:peds.2016-1212. [PMID: 27354454 DOI: 10.1542/peds.2016-1212] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The safe sedation of children for procedures requires a systematic approach that includes the following: no administration of sedating medication without the safety net of medical/dental supervision, careful presedation evaluation for underlying medical or surgical conditions that would place the child at increased risk from sedating medications, appropriate fasting for elective procedures and a balance between the depth of sedation and risk for those who are unable to fast because of the urgent nature of the procedure, a focused airway examination for large (kissing) tonsils or anatomic airway abnormalities that might increase the potential for airway obstruction, a clear understanding of the medication's pharmacokinetic and pharmacodynamic effects and drug interactions, appropriate training and skills in airway management to allow rescue of the patient, age- and size-appropriate equipment for airway management and venous access, appropriate medications and reversal agents, sufficient numbers of staff to both carry out the procedure and monitor the patient, appropriate physiologic monitoring during and after the procedure, a properly equipped and staffed recovery area, recovery to the presedation level of consciousness before discharge from medical/dental supervision, and appropriate discharge instructions. This report was developed through a collaborative effort of the American Academy of Pediatrics and the American Academy of Pediatric Dentistry to offer pediatric providers updated information and guidance in delivering safe sedation to children.
Collapse
|
12
|
Cheng Y, Liang X, Feng L, Liu D, Qin M, Liu S, Liu G, Dong M. Effects of phillyrin and forsythoside A on rat cytochrome P450 activitiesin vivoandin vitro. Xenobiotica 2016; 47:297-303. [PMID: 27310729 DOI: 10.1080/00498254.2016.1193262] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yanwen Cheng
- Department of Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin, China, and
| | - Xiaoling Liang
- Department of Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin, China, and
| | - Liying Feng
- Department of Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin, China, and
| | - Duo Liu
- Department of Pharmacy, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Mengnan Qin
- Department of Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin, China, and
| | - Shuang Liu
- Department of Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin, China, and
| | - Gaofeng Liu
- Department of Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin, China, and
| | - Mei Dong
- Department of Pharmacy, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Almeida D, Maldonado E, Khan I, Silva L, Gilbert MTP, Zhang G, Jarvis ED, O'Brien SJ, Johnson WE, Antunes A. Whole-Genome Identification, Phylogeny, and Evolution of the Cytochrome P450 Family 2 (CYP2) Subfamilies in Birds. Genome Biol Evol 2016; 8:1115-31. [PMID: 26979796 PMCID: PMC4860681 DOI: 10.1093/gbe/evw041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2016] [Indexed: 12/19/2022] Open
Abstract
The cytochrome P450 (CYP) superfamily defends organisms from endogenous and noxious environmental compounds, and thus is crucial for survival. However, beyond mammals the molecular evolution of CYP2 subfamilies is poorly understood. Here, we characterized the CYP2 family across 48 avian whole genomes representing all major extant bird clades. Overall, 12 CYP2 subfamilies were identified, including the first description of the CYP2F, CYP2G, and several CYP2AF genes in avian genomes. Some of the CYP2 genes previously described as being lineage-specific, such as CYP2K and CYP2W, are ubiquitous to all avian groups. Furthermore, we identified a large number of CYP2J copies, which have been associated previously with water reabsorption. We detected positive selection in the avian CYP2C, CYP2D, CYP2H, CYP2J, CYP2K, and CYP2AC subfamilies. Moreover, we identified new substrate recognition sites (SRS0, SRS2_SRS3, and SRS3.1) and heme binding areas that influence CYP2 structure and function of functional importance as under significant positive selection. Some of the positively selected sites in avian CYP2D are located within the same SRS1 region that was previously linked with the metabolism of plant toxins. Additionally, we find that selective constraint variations in some avian CYP2 subfamilies are consistently associated with different feeding habits (CYP2H and CYP2J), habitats (CYP2D, CYP2H, CYP2J, and CYP2K), and migratory behaviors (CYP2D, CYP2H, and CYP2J). Overall, our findings indicate that there has been active enzyme site selection on CYP2 subfamilies and differential selection associated with different life history traits among birds.
Collapse
Affiliation(s)
- Daniela Almeida
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - Emanuel Maldonado
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - Imran Khan
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - Liliana Silva
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzen, China Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Erich D Jarvis
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, Russia Oceanographic Center, Nova Southeastern University, Ft Lauderdale
| | - Warren E Johnson
- National Zoological Park, Smithsonian Conservation Biology Institute, Washington DC
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal Department of Biology, Faculty of Sciences, University of Porto, Portugal
| |
Collapse
|
14
|
Sadati SN, Ardekani MRS, Ebadi N, Yakhchali M, Dana AR, Masoomi F, Khanavi M, Ramezany F. Review of Scientific Evidence of Medicinal Convoy Plants in Traditional Persian Medicine. Pharmacogn Rev 2016; 10:33-8. [PMID: 27041871 PMCID: PMC4791985 DOI: 10.4103/0973-7847.176546] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
One concept used in traditional Persian medicine (TPM) for multidrug therapy is that of the convoy drug (Mobadregh). According to TPM texts, convoy drugs are substances (or drugs), which facilitate the access of drugs or foods to the whole body or to specific organs. This study reviewed some convoy drugs presented in TPM, their biological effects, and their probable interactions with main drugs, considering the increased absorption through inhibition of P-glycoprotein (P-gp) efflux function, bioavailability-enhancing effects, and decreased metabolism of the main drug using electronic databases including PubMed, Scopus, ScienceDirect, and Google Scholar in November and December, 2013. Recent studies have proven the beneficial effects of Crocus sativus L. (saffron) and camphor on the heart and brain, the cerebral therapeutic effects of Asarum europaeum (hazelwort), the hepatoprotective effects of Cichorium intybus (chicory), and Apium graveolens (celery) seeds, and the diuretic effects of Cinnamomum zeylanicum (cinnamon), and Cucumis melo (melon) seeds. The effects of vinegar in targeting the liver and brain have also been demonstrated. An evaluation of the results demonstrated that the suggested convoy drugs, including Piper nigrum (black pepper), Piper longum (long pepper), red wine, Camellia sinensis (tea), hazelwort, Mentha longifolia (pennyroyal), Anethum graveolens (dill), Foeniculum vulgare (fennel), cinnamon, and Sassafras albidum (sassafras) can increase the bioavailability of coadministered drugs by inhibition of P-gp or cytochrome P450s (CYP450s) or both of them. This evidence could be a good basis for the use of these agents as convoys in TPM.
Collapse
Affiliation(s)
- Seyede Nargess Sadati
- Department of Traditional Pharmacy, School of Traditional Iranian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Shams Ardekani
- Department of Traditional Pharmacy, School of Traditional Iranian Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacognosy and Persian Medicine, Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Ebadi
- Department of Traditional Pharmacy, School of Traditional Iranian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Yakhchali
- Department of Traditional Pharmacy, School of Traditional Iranian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Raees Dana
- Department of Traditional Pharmacy, School of Traditional Iranian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Masoomi
- Department of Traditional Pharmacy, School of Traditional Iranian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Khanavi
- Department of Traditional Pharmacy, School of Traditional Iranian Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacognosy and Persian Medicine, Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Ramezany
- Department of Traditional Pharmacy, School of Traditional Iranian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Selective Inhibition of Bakuchicin Isolated from Psoralea corylifolia on CYP1A in Human Liver Microsomes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5198743. [PMID: 26977174 PMCID: PMC4763008 DOI: 10.1155/2016/5198743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/12/2016] [Indexed: 11/30/2022]
Abstract
Bakuchicin is a furanocoumarin isolated from Psoralea corylifolia and shows several biological activities. Although there have been studies on the biological effects of bakuchicin, its modulation potency of CYP activities has not been previously investigated. Here, we investigated the inhibitory effects of bakuchicin on the activities of CYP isoforms by using a cocktail of probe substrates in pooled human liver microsomes (HLMs) and human recombinant cDNA-expressed CYP. Bakuchicin strongly inhibited CYP1A-mediated phenacetin O-deethylation with an IC50 value of 0.43 μM in HLMs. It was confirmed by human recombinant cDNA-expressed CYP1A1 and CYP1A2 with a Ki value of 0.11 μM and 0.32 μM, respectively. A Lineweaver-Burk plot indicated that the inhibition mechanism of bakuchicin was competitive inhibition. Overall, this is the first study to investigate the potential CYP1A1 and CYP1A2 inhibition associated with bakuchicin and to report its competitive inhibitory effects on HLMs.
Collapse
|
16
|
Silva SM, Martinho A, Moreno I, Silvestre S, Granadeiro LB, Alves G, Duarte AP, Domingues F, Gallardo E. Effects of Hypericum perforatum extract and its main bioactive compounds on the cytotoxicity and expression of CYP1A2 and CYP2D6 in hepatic cells. Life Sci 2015; 144:30-6. [PMID: 26612349 DOI: 10.1016/j.lfs.2015.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 10/19/2015] [Accepted: 11/04/2015] [Indexed: 01/31/2023]
Abstract
AIMS Hypericum perforatum (H. perforatum) is one of the most used medicinal plants. However, it has been associated with relevant interactions with several drugs. This situation is probably mediated by cytochrome P450 enzymes (CYP450), namely the 1A2 (CYP1A2) and 2D6 (CYP2D6) isoforms This study aims to assess the cytotoxic and CYP1A2 and CYP2D6 inductive and/or inhibitory effects of a H. perforatum extract and its main bioactive components in hepatic cell lines. MAIN METHODS A MTT proliferation assay was performed in WRL-68, HepG2 and HepaRG cells after exposition to different concentrations of H. perforatum extract, hypericin and hyperforin for 24 and 72 h. Then, a real-time PCR analysis was accomplished after incubating the cells with these products evaluating the relative CYP1A2 and CYP2D6 expression. KEY FINDINGS These products have relevant cytotoxicity at a 10 μM concentration and it was also demonstrated for the first time that H. perforatum can lead to a significant CYP1A2 and CYP2D6 induction in all cell lines. Moreover, hypericin seems to induce CYP1A2 in HepG2 cells and to inhibit its expression in HepaRG cells while hyperforin induced CYP1A2 in HepG2 and in WRL-68 cells. Additionally, hypericin and hyperforin induce CYP2D6 in HepG2 cells but inhibits its expression in HepaRG and in WRL-68 cells. SIGNIFICANCE This study not only evidenced that H. perforatum extract and two of its bioactive components can have toxic effects in hepatic cell lines but also emphasized the potential risk of the consumption of H. perforatum with CYP1A2- and CYP2D6-metabolized drugs.
Collapse
Affiliation(s)
- Sara M Silva
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Martinho
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ivo Moreno
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Samuel Silvestre
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CNC - Centre for Neuroscience and Cell Biology, 3004-504, Coimbra, Portugal
| | - Luiza Breitenfeld Granadeiro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CNC - Centre for Neuroscience and Cell Biology, 3004-504, Coimbra, Portugal
| | - Ana Paula Duarte
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Fernanda Domingues
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Eugenia Gallardo
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
17
|
Zhu HD, Gu N, Wang M, Kong HR, Zhou MT. Effects of capsicine on rat cytochrome P450 isoforms CYP1A2, CYP2C19, and CYP3A4. Drug Dev Ind Pharm 2015; 41:1824-8. [PMID: 25678312 DOI: 10.3109/03639045.2015.1011166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Due to the frequent consumption of capsaicin (CAP) and its current therapeutic application, the correct assessment of this compound is important from a public health standpoint. The purpose of this study was to find out whether CAP affects rat cytochrome P450 (CYP) enzymes (CYP1A2, CYP2C19, and CYP3A4) by using cocktail probe drugs in vivo. A cocktail solution at a dose of 5 mL/kg, which contained phenacetin (15 mg/kg), omeprazole (15 mg/kg), and midazolam (10 mg/kg), was given orally to rats treated for 7 d with oral administration of CAP. Blood samples were collected at a series of time-points and the concentrations of probe drugs in plasma were determined by HPLC-MS. The results showed that treatment with multiple doses of CAP had no significant effect on rat CYP1A2. However, CAP had a significant inhibitory effect on CYP2C19 and an inductive effect on CYP3A4. Therefore, caution is needed when CAP is co-administered with some CYP substrates clinically because of potential drug-CAP interactions.
Collapse
Affiliation(s)
- Hui-dan Zhu
- a The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Ni Gu
- a The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Meng Wang
- a The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Hong-ru Kong
- a The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Meng-tao Zhou
- a The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| |
Collapse
|
18
|
Pinelliae rhizoma, a toxic chinese herb, can significantly inhibit CYP3A activity in rats. Molecules 2015; 20:792-806. [PMID: 25574821 PMCID: PMC6272293 DOI: 10.3390/molecules20010792] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/31/2014] [Indexed: 12/18/2022] Open
Abstract
Raw Pinelliae Rhizoma (RPR) is a representative toxic herb that is widely used for eliminating phlegm or treating cough and vomiting. Given its irritant toxicity, its processed products, including Pinelliae Rhizoma Praeparatum (PRP) and Pinelliae Rhizoma Praeparatum cum Zingibere et Alumine (PRPZA), are more commonly applied and administered concomitantly with other chemical drugs, such as cough medications. This study aimed to investigate the effects of RPR, PRP, and PRPZA on CYP3A activity. Testosterone (Tes) and buspirone (BP) were used as specific probe substrates ex vivo and in vivo, respectively. CYP3A activity was determined by the metabolite formation ratios from the substrates. Ex vivo results show that the metabolite formation ratios from Tes significantly decreased, indicating that RPR, PRP, and PRPZA could inhibit CYP3A activity in rats. CYP3A protein and mRNA levels were determined to explore the underlying mechanism. These levels showed marked and consistent down-regulation with CYP3A activity. A significant decrease in metabolite formation ratios from BP was also found in PRPZA group in vivo, implying that PRPZA could inhibit CYP3A activity. Conclusively, co-administration of PR with other CYP3A-metabolizing drugs may cause drug–drug interactions. Clinical use of PR-related formulae should be monitored carefully to avoid adverse interactions.
Collapse
|
19
|
Dai PM, Wang Y, Ye L, Zeng S, Zheng ZJ, Li Q, Lu LL, Liu ZQ. Pharmacokinetic comparisons of benzoylmesaconine in rats using ultra-performance liquid chromatography-tandem mass spectrometry after administration of pure benzoylmesaconine and Wutou decoction. Molecules 2014; 19:16757-69. [PMID: 25329869 PMCID: PMC6270907 DOI: 10.3390/molecules191016757] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/08/2014] [Accepted: 10/08/2014] [Indexed: 11/30/2022] Open
Abstract
Wutou decoction is widely used in China because of its therapeutic effect on rheumatoid arthritis. Benzoylmesaconine (BMA), the most abundant component of Wutou decoction, was used as the marker compound for the pharmacokinetic study of Wutou decoction. The aim of the present study was to compare the pharmacokinetics of BMA in rats after oral administration of pure BMA and Wutou decoction. Pure BMA (5 mg/kg) and Wutou decoction (0.54 g/kg, equivalent to 5 mg/kg BMA) were orally administered to rats with blood samples collected over 10 h. Quantification of BMA in rat plasma was achieved using sensitive and validated ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Specifically, the half-life (T1/2) and mean residence time values of pure BMA were 228.3 ± 117.0 min and 155.0 ± 33.2 min, respectively, whereas those of BMA in Wutou decoction were decreased to 61.8 ± 35.1 min and 55.8 ± 16.4 min, respectively. The area under the curve (AUC) of BMA after administration of Wutou decoction was significantly decreased (five-fold) compared with that of pure BMA. The results indicate that the elimination of BMA in rats after the administration of Wutou decoction was significantly faster compared with that of pure BMA.
Collapse
Affiliation(s)
- Pei-Min Dai
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Ying Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Ling Ye
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Shan Zeng
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Zhi-Jie Zheng
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Qiang Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Lin-Liu Lu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Zhong-Qiu Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
20
|
Jin SE, Ha H, Jeong SJ, Shin HK. Effects of Korean traditional herbal formula for common cold on the activities of human CYP450 isozymes. ACTA ACUST UNITED AC 2014. [DOI: 10.13048/jkm.14022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Chen H, Zhang X, Feng Y, Rui W, Shi Z, Wu L. Bioactive components of Glycyrrhiza uralensis mediate drug functions and properties through regulation of CYP450 enzymes. Mol Med Rep 2014; 10:1355-62. [PMID: 24939038 DOI: 10.3892/mmr.2014.2331] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 04/14/2014] [Indexed: 11/06/2022] Open
Abstract
Glycyrrhiza uralensis (G. uralensis) is a common medicinal plant that has mainly been used to modulate the pharmaceutical activity of herbal medicines. Although G. uralensis has been shown to affect the expression and activity of the key metabolic enzyme cytochrome P450 (CYP450), the detailed mechanism of this process has yet to be elucidated. The present study aimed to elucidate the effects of bioactive components of G. uralensis on different isoforms of CYP450 and determine the ability of these components to modulate drug properties. In the present study, mRNA levels of CYP1A2, CYP2D6, CYP2E1, and CYP3A4 were investigated by quantitative polymerase chain reaction (qPCR) in HepG2 cells following treatment with the major bioactive compounds of G. uralensis. The activity of CYP450 enzymes was investigated in human liver microsomes using the cocktail probe drug method, and the metabolites of specific probes were detected by UPLC‑MS/MS. The effects of G. uralensis on CYP450 were assessed using bioinformatics network analysis. Several compounds from G. uralensis had various effects on the expression and activity of multiple CYP450 isoforms. The majority of the compounds analysed the inhibited expression of CYP2D6 and CYP3A4. Several CYP isoforms were differentially modulated depending on the specific compound and dose tested. In conclusion, the present study suggested that G. uralensis influenced the expression and activity of CYP450 enzymes. Therefore, caution should be taken when G. uralensis is co‑administered with drugs that are known to be metabolized by CYP450. This study contributed to the knowledge of the mechanisms by which this medicinal plant, commonly known as licorice, modulates drug efficacy.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiaomei Zhang
- Center Laboratory, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Yifan Feng
- Center Laboratory, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Wen Rui
- Center Laboratory, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Zhongfeng Shi
- Center Laboratory, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Lirong Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
22
|
|
23
|
Sweet ES, Standish LJ, Goff BA, Andersen MR. Adverse events associated with complementary and alternative medicine use in ovarian cancer patients. Integr Cancer Ther 2013; 12:508-16. [PMID: 23625025 DOI: 10.1177/1534735413485815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Many women with ovarian cancer are choosing to include complementary and alternative medicine (CAM) substances in conjunction with their conventional treatment for ovarian cancer. Many oncologists express concern that the adjunct use of CAM substances may be detrimental to the achievement of therapeutic levels of chemotherapy leading to increases in drug toxicity, under-treatment of disease or other adverse events. In an effort to ascertain the extent of the potential problem with simultaneous use of CAM with conventional treatment we undertook comprehensive systematic review of published case reports describing CAM-related adverse events among ovarian cancer patients. STUDY DESIGN This article describes a systematic literature review. METHODS The Natural Medicines Comprehensive Database (NMCD). PubMed, EMBASE® and the Cochrane Central Register of Controlled Trials (CCTR) were systematically reviewed for research articles pertaining to case reports describing adverse events in patients, and clinical trials which examined the effects of herbs and supplements used during cancer treatment. RESULTS Only one case report and one clinical trial were identified which met our inclusion criteria and were relevant to the current investigation. CONCLUSION Although there are concerns about the potential for adverse events related to concurrent use of CAM substances during conventional treatment we found few case reports and clinical trials in the literature which support this.
Collapse
|
24
|
Kazi T, Hussain N, Bremner P, Slater A, Howard C. The application of a DNA-based identification technique to over-the-counter herbal medicines. Fitoterapia 2013; 87:27-30. [PMID: 23500384 DOI: 10.1016/j.fitote.2013.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/27/2013] [Accepted: 03/02/2013] [Indexed: 10/27/2022]
Abstract
Reliable methods to identify medicinal plant material are becoming more important in an increasingly regulated market place. DNA-based methods have been recognised as a valuable tool in this area with benefits such as being unaffected by the age of the plant material, growth conditions and harvesting techniques. It is possible that the methods of production used for medicinal plant products will degrade or remove DNA. So how applicable are these techniques to processed medicinal plant products? A simple PCR-based identification technique has been developed for St. John's Wort, Hypericum perforatum L. Thirteen St. John's Wort products were purchased including capsules, tablets and tinctures. DNA was extracted from each product, and the species specific PCR test conducted. DNA was successfully extracted from all thirteen products, using a fast and efficient modified method for extracting DNA from tinctures. Only four products yielded the full length ITS region (850 bp) due to the quality of the DNA. All of the products tested positive for H. perforatum DNA. DNA-based identification methods can complement existing methods of authentication. This paper shows that these methods are applicable to a wide range of processed products, provided that they are designed to account for the possibility of DNA degradation.
Collapse
Affiliation(s)
- Tazimuddin Kazi
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicester, United Kingdom
| | | | | | | | | |
Collapse
|
25
|
Andersen MR, Sweet E, Lowe KA, Standish LJ, Drescher CW, Goff BA. Dangerous combinations: Ingestible CAM supplement use during chemotherapy in patients with ovarian cancer. J Altern Complement Med 2013; 19:714-20. [PMID: 23445210 DOI: 10.1089/acm.2012.0295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Some ingestible complementary and alternative medicine (CAM) supplements, including herbal remedies, teas, and vitamins, have biological activities that make them likely to interact poorly with conventional chemotherapeutic treatments. This study surveyed women with ovarian cancer to document the extent to which women use ingestible CAM supplements and conventional chemotherapeutic treatments that are believed to be of potential concern when used together. METHODS A total of 219 patients with ovarian cancer who received care from 1 of 2 participating conventional oncology practices were surveyed about CAM use during and after ovarian cancer treatment. RESULTS A total of 200 women reported having chemotherapy to treat their ovarian cancer. Of those, 79 (40%) reported using 1 or more CAM supplements that could be cause for concern when taken with 1 or more of the chemotherapy medications they were receiving. Many patients took multiple supplements of potential concern. Of these women, 42% (n=33) consulted with a conventional provider and 24% (n=19) consulted with a CAM provider about the contraindicated supplements they used. CONCLUSION Although it is not clear that any of these contraindicated combinations of CAM and conventional therapy actually caused adverse outcomes, increased toxicities, or reduced the effectiveness of primary therapies, all these effects are possible given the substances being used in combination. Research is needed to understand the real risk associated with CAM and conventional polypharmacy. If risks associated with CAM use prove substantial, then improved systems to assure that all women get advice regarding supplement use during ovarian cancer treatment will be needed.
Collapse
Affiliation(s)
- M Robyn Andersen
- Molecular Diagnostics Program, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Zhu L, Yang X, Zhou J, Tang L, Xia B, Hu M, Zhou F, Liu Z. The exposure of highly toxic aconitine does not significantly impact the activity and expression of cytochrome P450 3A in rats determined by a novel ultra performance liquid chromatography-tandem mass spectrometric method of a specific probe buspirone. Food Chem Toxicol 2012; 51:396-403. [PMID: 23085095 DOI: 10.1016/j.fct.2012.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/30/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022]
Abstract
Aconitum species are widely used to treat rheumatism, cardiovascular diseases, and tumors in China and other Asian countries. The herbs are always used with drugs such as paclitaxel. Aconitine (AC) is one of the main bioactive/high-toxic alkaloids of Aconitum roots. AC is metabolized by cytochrome P450 (CYP) 3A. However, whether AC inhibits/induces CYP3A, which causes drug-drug interaction (DDI) is unclear. Our study aims to explore the potent effects of AC, as a marker component of Aconitum, on CYP3A using the probe buspirone in rats. The effects of oral AC on pharmacokinetics of buspirone were evaluated. CYP3A activity and protein levels in rat liver microsomes pretreated with oral AC were also measured using in vitro buspirone metabolism and Western blot. Buspirone and its major metabolites 1-(2-pyrimidinyl)piperazine and 6'-hydroxybuspirone were determined using a newly validated UPLC-MS/MS method. Single dose and 7-day AC administration at 0.125mg/kg had no effect on CYP3A activity since no change in the formation of 1-(2-pyrimidinyl)piperazine and 6'-hydroxybuspirone. CYP3A activity and protein levels in liver microsomes were also not affected by 7-day AC pretreatment at 0.125mg/kg. Therefore, AC neither inhibits nor induces CYP3A in rats, indicating AC does not cause CYP3A-related DDI in the liver.
Collapse
Affiliation(s)
- Lijun Zhu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Purwantiningsih, Hussin A, Chana K. Sex-related alterations of aminopyrine metabolism by standardised extract ofEurycoma Longifolia(TAF-273). ACTA ALIMENTARIA 2012. [DOI: 10.1556/aalim.41.2012.3.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Rodríguez-Fragoso L, Martínez-Arismendi JL, Orozco-Bustos D, Reyes-Esparza J, Torres E, Burchiel SW. Potential risks resulting from fruit/vegetable-drug interactions: effects on drug-metabolizing enzymes and drug transporters. J Food Sci 2012; 76:R112-24. [PMID: 22417366 DOI: 10.1111/j.1750-3841.2011.02155.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It has been well established that complex mixtures of phytochemicals in fruits and vegetables can be beneficial for human health. Moreover, it is becoming increasingly apparent that phytochemicals can influence the pharmacological activity of drugs by modifying their absorption characteristics through interactions with drug transporters as well as drug-metabolizing enzyme systems. Such effects are more likely to occur in the intestine and liver, where high concentrations of phytochemicals may occur. Alterations in cytochrome P450 and other enzyme activities may influence the fate of drugs subject to extensive first-pass metabolism. Although numerous studies of nutrient-drug interactions have been published and systematic reviews and meta-analyses of these studies are available, no generalizations on the effect of nutrient-drug interactions on drug bioavailability are currently available. Several publications have highlighted the unintended consequences of the combined use of nutrients and drugs. Many phytochemicals have been shown to have pharmacokinetic interactions with drugs. The present review is limited to commonly consumed fruits and vegetables with significant beneficial effects as nutrients and components in folk medicine. Here, we discuss the phytochemistry and pharmacokinetic interactions of the following fruit and vegetables: grapefruit, orange, tangerine, grapes, cranberry, pomegranate, mango, guava, black raspberry, black mulberry, apple, broccoli, cauliflower, watercress, spinach, tomato, carrot, and avocado. We conclude that our knowledge of the potential risk of nutrient-drug interactions is still limited. Therefore, efforts to elucidate potential risks resulting from food-drug interactions should be intensified in order to prevent undesired and harmful clinical consequences.
Collapse
|
29
|
Thelingwani RS, Dhansay K, Smith P, Chibale K, Masimirembwa CM. Potent inhibition of CYP1A2 by Frutinone A, an active ingredient of the broad spectrum antimicrobial herbal extract fromP. fruticosa. Xenobiotica 2012; 42:989-1000. [DOI: 10.3109/00498254.2012.681077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
|
31
|
Jian TY, He JC, He GH, Feng EF, Li HL, Bai M, Xu GL. Scutellarin inhibits cytochrome P450 isoenzyme 1A2 (CYP1A2) in rats. Phytother Res 2012; 26:1226-30. [PMID: 22228482 DOI: 10.1002/ptr.3723] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 09/22/2011] [Accepted: 11/03/2011] [Indexed: 11/06/2022]
Abstract
Scutellarin is the most important flavone glycoside in the herbal drug Erigeron breviscapus (Vant.) Hand.-Mazz. It is used frequently in the clinic to treat ischemic vascular diseases in China. However, the direct relationship between scutellarin and cytochrome P450 (CYP450) is unclear. The present study investigated the in vitro and in vivo effects of scutellarin on cytochrome P450 1A2 (CYP 1A2) metabolism. According to in vitro experiments, scutellarin (10-250 µM) decreased the formation of 4-acetamidophenol in a concentration-dependent manner, with an IC₅₀ value of 108.20 ± 0.657 µM. Furthermore, scutellarin exhibited a weak mixed-type inhibition against the activity of CYP1A2 in rat liver microsomes, with a K(i) value of 95.2 µM. Whereas in whole animal studies, scutellarin treatment for 7 days (at 5, 15, 30 mg/kg, i.p.) decreased the clearance (CL), and increased the T(1/2) (at 15, 30 mg/kg, i.p.), it did not affect the V(d) of phenacetin. Scutellarin treatment (at 5, 15, 30 mg/kg, i.p.) increased the AUC(0-∞) by 14.3%, 67.3% and 159.2%, respectively. Scutellarin at 30 mg/kg also weakly inhibited CYP1A2 activity, in accordance with our in vitro study. Thus, the results indicate that CYP1A2 is inhibited directly, but weakly, by scutellarin in vivo, and provide useful information on the safe and effective use of scutellarin in clinical practice.
Collapse
Affiliation(s)
- Tun-Yu Jian
- Department of Pharmacy, Kunming General Hospital of Chengdu Military Region, 212 Da-Guan Road, Kunming 650032, PR China
| | | | | | | | | | | | | |
Collapse
|
32
|
Wu LX, Guo CX, Qu Q, Yu J, Chen WQ, Wang G, Fan L, Li Q, Zhang W, Zhou HH. Effects of natural products on the function of human organic anion transporting polypeptide 1B1. Xenobiotica 2011; 42:339-48. [DOI: 10.3109/00498254.2011.623796] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Evaluation of the effects of Mitragyna speciosa alkaloid extract on cytochrome P450 enzymes using a high throughput assay. Molecules 2011; 16:7344-56. [PMID: 21876481 PMCID: PMC6264431 DOI: 10.3390/molecules16097344] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 08/08/2011] [Accepted: 08/19/2011] [Indexed: 12/17/2022] Open
Abstract
The extract from Mitragyna speciosa has been widely used as an opium substitute, mainly due to its morphine-like pharmacological effects. This study investigated the effects of M. speciosa alkaloid extract (MSE) on human recombinant cytochrome P450 (CYP) enzyme activities using a modified Crespi method. As compared with the liquid chromatography-mass spectrometry method, this method has shown to be a fast and cost-effective way to perform CYP inhibition studies. The results indicated that MSE has the most potent inhibitory effect on CYP3A4 and CYP2D6, with apparent half-maximal inhibitory concentration (IC(50)) values of 0.78 µg/mL and 0.636 µg/mL, respectively. In addition, moderate inhibition was observed for CYP1A2, with an IC(50) of 39 µg/mL, and weak inhibition was detected for CYP2C19. The IC(50) of CYP2C19 could not be determined, however, because inhibition was <50%. Competitive inhibition was found for the MSE-treated CYP2D6 inhibition assay, whereas non-competitive inhibition was shown in inhibition assays using CYP3A4, CYP1A2 and CYP2C19. Quinidine (CYP2D6), ketoconazole (CYP3A4), tranylcypromine (CYP2C19) and furafylline (CYP1A2) were ACCESSused as positive controls throughout the experiments. This study shows that MSE may contribute to an herb-drug interaction if administered concomitantly with drugs that are substrates for CYP3A4, CYP2D6 and CYP1A2.
Collapse
|
34
|
Gao Y, Liu Z, Li C, Shen J, Yin H, Li G. Subchronic toxicity studies with ginsenoside compound K delivered to dogs via intravenous administration. Food Chem Toxicol 2011; 49:1857-62. [DOI: 10.1016/j.fct.2011.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 05/02/2011] [Accepted: 05/04/2011] [Indexed: 10/18/2022]
|
35
|
Novel natural inhibitors of CYP1A2 identified by in silico and in vitro screening. Int J Mol Sci 2011; 12:3250-62. [PMID: 21686183 PMCID: PMC3116189 DOI: 10.3390/ijms12053250] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/06/2011] [Accepted: 05/09/2011] [Indexed: 11/16/2022] Open
Abstract
Inhibition of cytochrome P450 (CYP) is a major cause of herb–drug interactions. The CYP1A2 enzyme plays a major role in the metabolism of drugs in humans. Its broad substrate specificity, as well as its inhibition by a vast array of structurally diverse herbal active ingredients, has indicated the possibility of metabolic herb–drug interactions. Therefore nowadays searching inhibitors for CYP1A2 from herbal medicines are drawing much more attention by biological, chemical and pharmological scientists. In our work, a pharmacophore model as well as the docking technology is proposed to screen inhibitors from herbal ingredients data. Firstly different pharmaphore models were constructed and then validated and modified by 202 herbal ingredients. Secondly the best pharmaphore model was chosen to virtually screen the herbal data (a curated database of 989 herbal compounds). Then the hits (147 herbal compounds) were continued to be filtered by a docking process, and were tested in vitro successively. Finally, five of eighteen candidate compounds (272, 284, 300, 616 and 817) were found to have inhibition of CYP1A2 activity. The model developed in our study is efficient for in silico screening of large herbal databases in the identification of CYP1A2 inhibitors. It will play an important role to prevent the risk of herb–drug interactions at an early stage of the drug development process.
Collapse
|
36
|
Genovese S, Epifano F, Curini M, Menger D, Zembruski NCL, Weiss J. In vitro effects of natural prenyloxycinnamic acids on human cytochrome P450 isozyme activity and expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:586-591. [PMID: 21112752 DOI: 10.1016/j.phymed.2010.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 09/15/2010] [Accepted: 10/18/2010] [Indexed: 05/30/2023]
Abstract
Previous studies demonstrated that natural prenyloxyphenylpropanoid derivatives have potent biological properties like anti-cancer effects in vitro and in vivo. Additionally they are extremely safe and associated with low toxicity, making them excellent candidates as chemopreventive agents. However, so far only little is known about possible interactions with isoforms of cytochrome P450 (CYPs) being involved in the metabolism of xenobiotics and representing a major site for drug-drug interactions. The aim of this study was to evaluate the effects of selected natural prenyloxyphenylpropanoids (prenyloxycinnamic acids) on expression and activity of some major CYPs and on the activity of the major drug efflux transporter P-glycoprotein (P-gp). Inhibition of CYP3A4, CYP2C19, and CYP2D6 was quantified using commercially available kits. P-gp inhibtion was quantified by calcein assay. Induction of CYP mRNA (CYP3A4, CYP2C19, CYP2C9, and CYP2B6) was measured in LS180 cells by quantitative real-time reverse transcriptase polymerase chain reaction using the LightCycler technology. Only boropinic acid revealed substantial inhibition of CYPs, especially of CYP2C19 (IC₅₀ = 31±5μM). This compound also had the most pronounced effect on CYP mRNA expression among the prenyloxycinnamic acids tested. However all but 4'-isopentenyloxy-p-coumaric acid revealed inducing effects on CYPs with different induction profiles. P-gp was only significantly inhibited by 4'-geranyloxyferulic acid. This was the first study demonstrating modulating effects of prenyloxycinnamic acids on CYP activity and expression and on P-gp activity. The results suggest that boropinic acid is most prone to drug-drug interactions at the level of CYPs, whereas 4'-isopentenyloxy-p-coumaric acid does not modulate CYP activity and expression.
Collapse
Affiliation(s)
- S Genovese
- Dipartimento di Scienze del Farmaco, Università "G. D'Annunzio", Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Bilgi N, Bell K, Ananthakrishnan AN, Atallah E. Imatinib and Panax ginseng: a potential interaction resulting in liver toxicity. Ann Pharmacother 2010; 44:926-8. [PMID: 20332334 DOI: 10.1345/aph.1m715] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To report a case of imatinib-induced hepatotoxicity after concurrent ginseng ingestion in a patient with chronic myelogenous leukemia (CML). CASE SUMMARY A 26-year-old man with CML who had taken imatinib 400 mg daily for 7 years with no complications presented with right upper quadrant pain. Laboratory test results included alanine aminotransferase 1069 U/L, aspartate aminotransferase 481 U/L, alkaline phosphatase 124 IU/L, total bilirubin 1.4 mg/dL, albumin 4.0 g/dL, and international normalized ratio 1.08. Liver biopsy showed acute lobular hepatitis favoring a drug-induced etiology, and a diagnosis of imatinib-induced hepatotoxicity was made. The patient's only lifestyle modification prior to the diagnosis of hepatotoxicity was daily ingestion of Panax ginseng via energy drinks for the past 3 months. Both imatinib and ginseng were discontinued, and the patient was treated with a short course of corticosteroids. Imatinib was later restarted at the same dose with no recurrent elevations in his liver enzyme levels. DISCUSSION Imatinib-associated hepatotoxicity usually presents within 1-2 years of therapy initiation, with the median time to hepatotoxicity being 100 days. Ginseng is an herb that is not known to be hepatotoxic. In vivo, ginseng is known to inhibit CYP3A4, the primary enzyme involved in the metabolism of imatinib. We propose that our patient's late-onset imatinib-associated hepatotoxicity was due to an interaction between ginseng and imatinib through CYP3A4. Based on the Naranjo probability scale, it is probable that imatinib caused this patient's hepatotoxicity, and the Horn drug interaction probability scale also indicates a probable interaction between imatinib and ginseng. CONCLUSIONS This case emphasizes the importance of continuous monitoring of liver function tests even after several years of imatinib therapy and the importance of advising patients to avoid ginseng and any other over-the-counter herbal supplements that may interact with imatinib.
Collapse
Affiliation(s)
- Naveen Bilgi
- Division of Internal Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | |
Collapse
|