1
|
Bunprakob S, Hemachudha P, Ruchisrisarod C, Supharatpariyakorn T, Hemachudha T. IP-10 and complement activation as friend or foe in COVID-19. Int J Immunopathol Pharmacol 2022; 36:3946320221096202. [PMID: 35531750 PMCID: PMC9092585 DOI: 10.1177/03946320221096202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction The Innate immune system senses danger signals of COVID-19 infection and produce an orchestration of cellular, complement and cytokines cascades. These led to the approach using immunosuppressive agents. It is intriguing whether certain biomarkers can aid the proper administration of such drugs. Methods Plasma specimens of 58 COVID-19 patients with differing severity, from very mild illness (group A), mild (group B), moderate (group C), and severe/critical illness (group D) were assayed for cyto-chemokines and terminal complement complex (SC5b-9) during the course of diseases. None received anti-IL-6 therapy, there was no mortality in this cohort. Results IP-10 and RANTES levels were dominant cytokines. IP-10 levels increased significantly in all groups when compared between pre-nadir and nadir phases (group A, p =0.428; group B =0.034; group C =0.159; group D <0.001) and in groups B and D when compared between nadir and recovery phases ( p <0.001). RANTES levels were elevated in all groups across all phases with no significant differences. SC5b-9 levels increased significantly as compared to healthy controls [pre-nadir- group A versus healthy, p =0.122; group B-D versus healthy, p =0.021); nadir-group A versus healthy, p =0.003; group B-D versus healthy, p <0.001; recovery phase ( p <0.001)] but not between groups A and B-D at pre-nadir ( p=0.606). Conclusion The absence of significant pro-inflammatory responses and early elevation of IP-10 levels and complement activation may be favorable and necessary for viral elimination in COVID-19 patients. Expression of distinct cyto-chemokines during each clinical phase may be useful for guiding proper therapeutic interventions on alleviating thrombo-inflammation responses to COVID-19 infection.
Collapse
Affiliation(s)
- Saowalak Bunprakob
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Pasin Hemachudha
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Division of Neurology, Department of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Chanida Ruchisrisarod
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Thirawat Supharatpariyakorn
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Thiravat Hemachudha
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Division of Neurology, Department of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
2
|
Signorini L, Ceruso FM, Aiello E, Zullo MJ, De Vito D. Vaccine Efficacy Denial: A Growing Concern Affecting Modern Science, and Impacting Public Health. Endocr Metab Immune Disord Drug Targets 2022; 22:935-943. [PMID: 35306998 DOI: 10.2174/1871530322666220318092909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/29/2022] [Accepted: 02/04/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The discovery of the vaccination technique has been revealed by Edward Jenner in 1796: undoubtedly, it represents the first scientific attempt to control an infectious disease by vaccines, followed by other important studies carried out by Pasteur and Koch, and Sabin, who developed the first technique to attenuate the virus. In recent decades, numerous scholars have begun to create dangerous theories against the effectiveness of vaccines through scientifically invalid or fraudulent studies. AIM This critical review of the literature aims to analyse the main factors that have undermined the credibility of vaccines in the general population, to disprove false information and, on the other hand, emphasize the benefits of vaccines over the last 200 years. DISCUSSIONS Unfortunately, several studies have been carried out without the proper scientific rigour. The most impacting example is the study published by Andrew Wakefield in the Lancet journal that tried to correlate vaccines with the development of autism: this publication was withdrawn from the journal a few years after its publication, but the impact of incorrect scientific studies, fake news, and ambiguous healthcare policies has led to an adverse general opinion about the effectiveness of vaccines. CONCLUSION The excess of uncontrolled information is a serious concerning in the Coronavirus pandemic. The modern science must tackle this problem with a better willingness to communicate even the clinical studies to those people not able to understand the medical information autonomously. Nevertheless, a reliable science must also limit the dissemination of studies that do not meet the basic criteria of a methodological rigor and certainty of results, in order not to feed confusion in the scientific community.
Collapse
Affiliation(s)
- Luca Signorini
- Private practice, Rome, Italy; Professor, Saint Camillus University of Health Science, 00100 Rome, Italy
| | - Francesco Maria Ceruso
- Department of Dentistry, "Fra G.B. Orsenigo-Ospedale San Pietro F.B.F.", 00100 Rome, Italy
| | - Elisabetta Aiello
- Marrelli Health - Tecnologica Research institute - Via E. Fermi, 88900 Crotone, Italy; Azienda Ospedaliera Pugliese Ciaccio, Catanzaro, Italy
| | - Maria Josephine Zullo
- Department of Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Danila De Vito
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
3
|
Hsu TW, Chu CS, Tsai SJ, Cheng CM, Su TP, Chen TJ, Bai YM, Liang CS, Chen MH. Dengue Virus Infection and Risk of Parkinson's Disease: A Nationwide Longitudinal Study. JOURNAL OF PARKINSON'S DISEASE 2022; 12:679-687. [PMID: 34864691 DOI: 10.3233/jpd-212938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Background: Increasing evidence suggests a potential relationship between viral infection and Parkinson’s disease (PD). Objective: Herein, we explore the association between infection by dengue virus and PD. Methods: Between 1997 and 2012, we recruited 1,422 patients with dengue fever and 14,220 matched controls (age, sex, time of enrollment, and medical and mental comorbidities) from the Taiwan National Health Insurance Research Database. We identified new onset of PD to the end of 2013. The Kaplan-Meier method was used to estimate the incidence rate of PD. Cox-regression analysis was applied to calculate the hazard ratios (HRs) with 95% confidence intervals (CIs) after adjustment for confounders. Results: During the follow up period, the dengue group had higher incidence of PD than the control group (1.2% vs. 0.4% , p = 0.001). Patients with dengue fever had a significantly higher risk of developing PD [HR, 2.59; 95% CI, 1.51–4.44] compared with the controls, after adjustments for demographic data, PD-related comorbidities, and all-cause clinical visits. The subgroup analysis, stratified by age and sex, found that higher risk for PD was statistically significant for male (HR, 3.51; 95% CI, 1.76–7.00) and patients aged >60 years (HR, 2.96; 95% CI, 1.62–5.41). Conclusion: The risk of PD was 2.59-fold higher in patients with dengue fever than in non-infected controls during the follow-up period. Clinicians need to monitor signs of PD during patient recovery from dengue fever. Additional studies are needed to confirm our results and investigate the mechanisms linking PD and dengue virus infection.
Collapse
Affiliation(s)
- Tien-Wei Hsu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
| | - Che-Sheng Chu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
- Center for Geriatric and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
- Non-invasive Neuromodulation Consortium for Mental Disorders, Society of Psychophysiology, Taipei, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Ming Cheng
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, General Cheng Hsin Hospital, Taipei, Taiwan
| | - Tzeng-Ji Chen
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Hospital and Health Care Administration, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, Taipei, Taiwan
- Department of Psychiatry, National Defense Medical Center, Taipei, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
4
|
Niranjan R, Kishor S, Kumar A. Matrix metalloproteinases in the pathogenesis of dengue viral disease: Involvement of immune system and newer therapeutic strategies. J Med Virol 2021; 93:4629-4637. [PMID: 33634515 DOI: 10.1002/jmv.26903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022]
Abstract
Globally, the burden due to dengue infection is increasing with a recent estimate of 96 million progressing to the disease every year. Dengue pathogenesis and the factors influencing it are not completely known. It is now widely speculated that there is an important role of matrix metalloproteinases (MMPs) in the initiation and progression of dengue pathogenesis; however, their exact roles are not fully understood. Overactivation of matrix metalloproteinases may contribute to the severity of dengue pathogenesis. Cytokines and various other mediators of inflammation interact with the vascular endothelium and matrix metalloproteinases may be one of the components among them. Extensive plasma leakage into tissue spaces may result in a shock. It is evident in the literature that MMP2 and MMP9 increase in dengue patients is correlated with the severity of the disease; however, the underlying mechanism is still unknown. Activation of innate cells and adaptive immune cells which include, B and T cells, macrophages or monocytes and dendritic cells also contribute to the dengue pathology. Newer therapeutic strategies include microRNAs, such as miR-134 (targets MMP3 and MMP1) and MicroRNA-320d, (targets MMP/TIMP proteolytic system). The use of antibodies-based therapeutics like (Andecaliximab; anti-matrix metalloproteinase-9 antibody) is also suggested against MMPs in dengue. In this review, we summarize some recent developments associated with the involvement of immune cells and their mediators associated with the matrix metalloproteinases mediated dengue pathogenesis. We highlight that, there is still very little knowledge about the MMPs in dengue pathogenesis which needs attention and extensive investigations.
Collapse
Affiliation(s)
- Rituraj Niranjan
- Immunology Laboratory, ICMR-Vector Control Research Center, Puducherry, India
| | - Sumitha Kishor
- Immunology Laboratory, ICMR-Vector Control Research Center, Puducherry, India
| | - Ashwani Kumar
- Immunology Laboratory, ICMR-Vector Control Research Center, Puducherry, India
| |
Collapse
|
5
|
Chiappell F. Putative Natural History of CoViD-19. Bioinformation 2020; 16:398-403. [PMID: 32831521 PMCID: PMC7434958 DOI: 10.6026/97320630016398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022] Open
Abstract
The Severe Acute Respiratory Syndrome Corona Virus2 (SARS-CoV2) is responsible for Corona Virus Disease 2019 (CoViD-19), the pandemic that has afflicted close to two million people worldwide, and has taken the lives of over 120,000 patients since its first report in late December 2019. Per million people globally, the infection rate is close to 250 with a death rate of close to 14 (death rate average global death rate: 6.06%; for comparison, revised estimate of the 1918 influenza pandemic had an average global death rate of 5.4% [1]). About 400,000 SARS-CoV2-positive patients have been declared 'recovered', although it is not clear to date what exactly that entails. To be clear, the natural history of SARS-CoV2 infection and of the patho-physiology of CoViD-19 remains shrouded in relative confusion, in part due to the exceedingly virulent nature of the virus, as manifest by its elevated morbidity and mortality, and the fast accumulation of clinical observations and research evidence. Many pieces of a complex puzzle are emerging all at once and their organization into a coherent and cogent picture of the natural history of CoViD-19 is arduous and still wanting. Here, we discuss the recent findings in the context of the available evidence. We propose a putative prediction model of the natural history of CoViD-19. We highlight putative loci and modes of therapeutic intervention that may become beneficial preventive and treatment modalities for individuals at risk of SARS-CoV2 infection and CoViD-19 patients.
Collapse
|
6
|
Satterfield BA, Borisevich V, Foster SL, Rodriguez SE, Cross RW, Fenton KA, Agans KN, Basler CF, Geisbert TW, Mire CE. Antagonism of STAT1 by Nipah virus P gene products modulates disease course but not lethal outcome in the ferret model. Sci Rep 2019; 9:16710. [PMID: 31723221 PMCID: PMC6853903 DOI: 10.1038/s41598-019-53037-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 10/22/2019] [Indexed: 12/19/2022] Open
Abstract
Nipah virus (NiV) is a pathogenic paramyxovirus and zoononis with very high human fatality rates. Previous protein over-expression studies have shown that various mutations to the common N-terminal STAT1-binding motif of the NiV P, V, and W proteins affected the STAT1-binding ability of these proteins thus interfering with he JAK/STAT pathway and reducing their ability to inhibit type-I IFN signaling, but due to differing techniques it was unclear which amino acids were most important in this interaction or what impact this had on pathogenesis in vivo. We compared all previously described mutations in parallel and found the amino acid mutation Y116E demonstrated the greatest reduction in binding to STAT1 and the greatest reduction in interferon antagonism. A similar reduction in binding and activity was seen for a deletion of twenty amino acids constituting the described STAT1-binding domain. To investigate the contribution of this STAT1-binding motif in NiV-mediated disease, we produced rNiVs with complete deletion of the STAT1-binding motif or the Y116E mutation for ferret challenge studies (rNiVM-STAT1blind). Despite the reduced IFN inhibitory function, ferrets challenged with these rNiVM-STAT1blind mutants had a lethal, albeit altered, NiV-mediated disease course. These data, together with our previously published data, suggest that the major role of NiV P, V, and W in NiV-mediated disease in the ferret model are likely to be in the inhibition of viral recognition/innate immune signaling induction with a minor role for inhibition of IFN signaling.
Collapse
Affiliation(s)
- Benjamin A Satterfield
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Mayo Clinic, Department of Medicine, Rochester, MN, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Stephanie L Foster
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Sergio E Rodriguez
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Robert W Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Karla A Fenton
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Krystle N Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Chad E Mire
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
7
|
Niranjan R, Muthukumaravel S, Jambulingam P. The Involvement of Neuroinflammation in Dengue Viral Disease: Importance of Innate and Adaptive Immunity. Neuroimmunomodulation 2019; 26:111-118. [PMID: 31352457 DOI: 10.1159/000501209] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/23/2019] [Indexed: 11/19/2022] Open
Abstract
Neuroinflammation (inflammation in brain) has been known to play an important role in the development of dengue virus disease. Recently, studies from both clinical and experimental models suggest the involvement of neuroinflammation in dengue viral disease. Studies in clinical setup demonstrated that, microglial cells are actively involved in the patients having dengue virus infection, showing involvement of innate immune response in neuroinflammation. It was further proved that, clinical isolates of dengue-2 virus were able to initiate the pathologic response when injected in the mice brain. Natural killer cells were also found to play a crucial role to activate adaptive immune response. Notably, CXCL10/IFN-inducible protein 10 and CXCR3 are involved in dengue virus-mediated pathogenesis and play an important role in the development of dengue virus-mediated paralysis. In a latest report, it was seen that intracranial injection of dengue virus increases the CD8+ T-cell infiltration in brain, showing an important mechanism of neuroinflammation during the dengue virus infection. A similar study has described that, when DENV-3 is injected into the mice, it enhances the infiltration of CD8+ and CD4+ T cells as well as neutrophils. Cells immune-reactive against NS3 antigen were found throughout the brain. In conclusion, we focus on the various molecular mechanisms which contribute to the basic understanding about the role of neuroinflammation in dengue fever. These mechanisms will help in better understanding dengue pathophysiology and thus help in the development of possible therapeutics.
Collapse
Affiliation(s)
- Rituraj Niranjan
- Unit of Microbiology and Molecular Biology, ICMR-Vector Control Research Center, Puducherry, India,
| | | | | |
Collapse
|
8
|
|
9
|
Conti P, Caraffa A, Mastrangelo F, Tettamanti L, Ronconi G, Frydas I, Kritas SK, Theoharides TC. Critical role of inflammatory mast cell in fibrosis: Potential therapeutic effect of IL-37. Cell Prolif 2018; 51:e12475. [PMID: 30062695 DOI: 10.1111/cpr.12475] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/21/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fibrosis involves the activation of inflammatory cells, leading to a decrease in physiological function of the affected organ or tissue. AIMS To update and synthesize relevant information concerning fibrosis into a new hypothesis to explain the pathogenesis of fibrosis and propose potential novel therapeutic approaches. MATERIALS AND METHODS Literature was reviewed and relevant information is discussed in the context of the pathogenesis of fibrosis. RESULTS A number of cytokines and their mRNA are involved in the circulatory system and in organs of patients with fibrotic tissues. The profibrotic cytokines are generated by several activated immune cells, including fibroblasts and mast cells (MCs), which are important for tissue inflammatory responses to different types of injury. MC-derived TNF, IL-1, and IL-33 contribute crucially to the initiation of a cascade of the host defence mechanism(s), leading to the fibrosis process. Inhibition of TNF and inflammatory cytokines may slow the progression of fibrosis and improve the pathological status of the affected subject. IL-37 is generated by various types of immune cells and is an IL-1 family member protein. IL-37 is not a receptor antagonist; it binds IL-18 receptor alpha (IL-18Rα) and delivers the inhibitory signal by using TIR8. It has been shown that IL-37 can be protective in inflammation and injury, and inhibits both innate and adaptive immunity. DISCUSSION IL-37 may be useful for suppression of inflammatory diseases induced by inhibiting MyD88-dependent TLR signalling. In addition, IL-37 downregulates NF-κB induced by TLR2 or TLR4 through a mechanism dependent on IL-18Rα. CONCLUSION This review summarizes current knowledge on the role of MC in inflammation and tissue/organ fibrosis, with a focus on the therapeutic potential of IL-37-targeting cytokines.
Collapse
Affiliation(s)
- P Conti
- Postgraduate Medical School, University of Chieti, Chieti, Italy
| | - Al Caraffa
- Department of Pharmacy, University of Perugia, Perugia, Italy
| | - F Mastrangelo
- Department of Medical Science and Biotechnology, University of Foggia, Foggia, Italy
| | - L Tettamanti
- Department of Medical and Morphological Science, University of Insubria, Varese, Italy
| | - G Ronconi
- UOS Clinica dei Pazienti del Territorio, Policlinico Gemelli, Rome, Italy
| | - I Frydas
- Faculty of Parasitology, Aristotle University of Thessaloniki, Macedonia, Greece
| | - S K Kritas
- Department of Microbiology, University of Thessaloniki, Thessaloniki, Greece
| | - T C Theoharides
- Department of Integrative Physiology and Pathobiology, Molecular Immunopharmacology and Drug Discovery Laboratory, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
10
|
Chiappelli F, Balenton N, Khakshooy A. Future Innovations in Viral Immune Surveillance: A Novel Place for Bioinformation and Artificial Intelligence in the Administration of Health Care. Bioinformation 2018; 14:201-205. [PMID: 30108416 PMCID: PMC6077824 DOI: 10.6026/97320630014201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/09/2018] [Accepted: 05/19/2018] [Indexed: 12/21/2022] Open
Abstract
Novel developments in bioinformation, bioinformatics and biostatistics, including artificial intelligence (AI), play a timely and critical role in translational care. Case in point, the extent to which viral immune surveillance is regulated by immune cells and soluble factors, and by non-immune factors informs the administration of health care. The events by which health is regained following viral infection is an allostatic process, which can be modeled using Hilbert's and Volterra's mathematical biology criteria, and biostatistical methodologies such as linear multiple regression. Health regained following viral infection can be given as Y being the sum-total of the positive factors and events (∏) that inherently push allostasis forward (i.e., the orderly process of immune activation and maturation) and the negative (N) factors and events that, allostatically speaking, interfere with regaining health. Any gaps in knowledge are filled by AI-aided immune tweening. Proof of concept can be tested with the fast-gaining infection using tick-borne Bunyavirus that cause severe fever with thrombocytopenia syndrome (SFTS).
Collapse
Affiliation(s)
- Francesco Chiappelli
- UCLA Center for the Health Sciences, School of Dentistry, Los Angeles, CA
- CSUN Department of the Health Sciences, Northridge, CA
| | - Nicole Balenton
- UCLA Center for the Health Sciences, School of Dentistry, Los Angeles, CA
- CSUN Department of the Health Sciences, Northridge, CA
- UCLA School of Nursing
| | - Allen Khakshooy
- UCLA Center for the Health Sciences, School of Dentistry, Los Angeles, CA
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel 3109601
| |
Collapse
|
11
|
Molecular characterization and expression analysis of WRKY family genes in Dendrobium officinale. Genes Genomics 2017; 40:265-279. [DOI: 10.1007/s13258-017-0602-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/03/2017] [Indexed: 10/18/2022]
|
12
|
Chiappelli F, Khakshooy A, Balenton N. Clinical Immunology of Cholera - Current Trends and Directions for Future Advancement. Bioinformation 2017; 13:352-355. [PMID: 29162969 PMCID: PMC5680718 DOI: 10.6026/97320630013352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 12/04/2022] Open
Abstract
Cholera remains a feared, aggressive, infectious and lethal disease today, despite several decades of intense research, concerted public health modalities designed to prevent, and to control outbreaks, availability of efficacious vaccines aimed at containing its contagious spread, and effective patient-centered medical interventions for reducing morbidity and mortality. Despite these advances, cholera still strikes communities around the world, especially in countries and regions of the globe where medical and nursing care cannot be as effectively proffered to the population at risk as in First World economies. Case in point, the number of suspected cholera cases that currently afflicts Yemen escalates at an "unprecedented rate", according to the World Health Organization. Here, following a brief introduction of the history of the medical knowledge about cholera, we discuss current trends of our understanding of clinical immune surveillance against the bacillus that causes cholera, vibrio Cholera (vCh). We cite the current state of best available evidence about anticholera vaccines, and outline certain directions for future study to characterize the clinical immunology of cholera.
Collapse
Affiliation(s)
- Francesco Chiappelli
- Laboratory of Human Psychoneuroendocrine-Osteoimmunology; School of Dentistry, UCLA Center for the Health Sciences, Los Angeles, CA 90095-1668
- Evidence-Based Decision Practice-Based Research Network, DGSO, Los Angeles, CA 91403
- Department of the Health Sciences, CSUN, Northridge, CA 91330
| | - Allen Khakshooy
- Laboratory of Human Psychoneuroendocrine-Osteoimmunology; School of Dentistry, UCLA Center for the Health Sciences, Los Angeles, CA 90095-1668
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel 3109601
| | - Nicole Balenton
- Laboratory of Human Psychoneuroendocrine-Osteoimmunology; School of Dentistry, UCLA Center for the Health Sciences, Los Angeles, CA 90095-1668
- Department of the Health Sciences, CSUN, Northridge, CA 91330
| |
Collapse
|
13
|
Kamali A, Jamieson DJ, Kpaduwa J, Schrier S, Kim M, Green NM, Ströher U, Muehlenbachs A, Bell M, Rollin PE, Mascola L. Pregnancy, Labor, and Delivery after Ebola Virus Disease and Implications for Infection Control in Obstetric Services, United States. Emerg Infect Dis 2016; 22. [PMID: 27191253 PMCID: PMC4918171 DOI: 10.3201/eid2207.160269] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Many of the survivors of the 2014-2015 epidemic of Ebola virus disease (EVD) in western Africa were women of childbearing age. Limited clinical and laboratory data exist that describe these women's pregnancies and outcomes. We report the case of an EVD survivor who became pregnant and delivered her child in the United States, and we discuss implications of this case for infection control practices in obstetric services. Hospitals in the United States must be prepared to care for EVD survivors.
Collapse
|
14
|
Nipah Virus C and W Proteins Contribute to Respiratory Disease in Ferrets. J Virol 2016; 90:6326-6343. [PMID: 27147733 DOI: 10.1128/jvi.00215-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/21/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Nipah virus (NiV) is a highly lethal paramyxovirus that recently emerged as a causative agent of febrile encephalitis and severe respiratory disease in humans. The ferret model has emerged as the preferred small-animal model with which to study NiV disease, but much is still unknown about the viral determinants of NiV pathogenesis, including the contribution of the C protein in ferrets. Additionally, studies have yet to examine the synergistic effects of the various P gene products on pathogenesis in animal models. Using recombinant NiVs (rNiVs), we examine the sole contribution of the NiV C protein and the combined contributions of the C and W proteins in the ferret model of NiV pathogenesis. We show that an rNiV void of C expression resulted in 100% mortality, though with limited respiratory disease, like our previously reported rNiV void of W expression; this finding is in stark contrast to the attenuated phenotype observed in previous hamster studies utilizing rNiVs void of C expression. We also observed that an rNiV void of both C and W expression resulted in limited respiratory disease; however, there was severe neurological disease leading to 60% mortality, and the surviving ferrets demonstrated sequelae similar to those for human survivors of NiV encephalitis. IMPORTANCE Nipah virus (NiV) is a human pathogen capable of causing lethal respiratory and neurological disease. Many human survivors have long-lasting neurological impairment. Using a ferret model, this study demonstrated the roles of the NiV C and W proteins in pathogenesis, where lack of either the C or the W protein independently decreased the severity of clinical respiratory disease but did not decrease lethality. Abolishing both C and W expression, however, dramatically decreased the severity of respiratory disease and the level of destruction of splenic germinal centers. These ferrets still suffered severe neurological disease: 60% succumbed to disease, and the survivors experienced long-term neurological impairment, such as that seen in human survivors. This new ferret NiV C and W knockout model may allow, for the first time, the examination of interventions to prevent or mitigate the neurological damage and sequelae experienced by human survivors.
Collapse
|
15
|
Abstract
Use of highly pure antigens to improve vaccine safety has led to reduced vaccine immunogenicity and efficacy. This has led to the need to use adjuvants to improve vaccine immunogenicity. The ideal adjuvant should maximize vaccine immunogenicity without compromising tolerability or safety. Unfortunately, adjuvant research has lagged behind other vaccine areas such as antigen discovery, with the consequence that only a very limited number of adjuvants based on aluminium salts, monophosphoryl lipid A and oil emulsions are currently approved for human use. Recent strategic initiatives to support adjuvant development by the National Institutes of Health should translate into greater adjuvant choices in the future. Mechanistic studies have been valuable for better understanding of adjuvant action, but mechanisms of adjuvant toxicity are less well understood. The inflammatory or danger-signal model of adjuvant action implies that increased vaccine reactogenicity is the inevitable price for improved immunogenicity. Hence, adjuvant reactogenicity may be avoidable only if it is possible to separate inflammation from adjuvant action. The biggest remaining challenge in the adjuvant field is to decipher the potential relationship between adjuvants and rare vaccine adverse reactions, such as narcolepsy, macrophagic myofasciitis or Alzheimer's disease. While existing adjuvants based on aluminium salts have a strong safety record, there are ongoing needs for new adjuvants and more intensive research into adjuvants and their effects.
Collapse
Affiliation(s)
- Nikolai Petrovsky
- Department of Endocrinology and Diabetes, Flinders University, Adelaide, SA, 5042, Australia.
- Vaxine Pty Ltd, Adelaide, SA, Australia.
| |
Collapse
|