1
|
Koh CMM, Hwang SS, Lau BT, Palombo EA, Ginjom IRH, Ha CHX, Rahman T, Chee Wezen X. Virtual Screening Uncovers DspS Activators That Disperse Pseudomonas aeruginosa Biofilms. ACS Infect Dis 2024. [PMID: 39423324 DOI: 10.1021/acsinfecdis.4c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Pseudomonas aeruginosa is the predominant bacterium found in many chronic biofilm infections. Over the past few decades, biofilm-related infections have posed a significant challenge to medical practice due to the increasing emergence of multidrug resistance. Cis-2-decenoic acid (CDA), a small molecule found in P. aeruginosa, has been shown to disperse biofilms formed by various bacteria and to work in synergy with common antibiotics. Despite that, the binding mechanism between CDA and the predicted cyclases/histidine kinases associated sensory extracellular (CHASE) domain of sensor protein DspS remains unknown in the absence of a crystallized protein structure. Moreover, the therapeutic potential of CDA is limited by its susceptibility to oxidative degradation and isomerization. In this work, we propose a structural model for the DspS CHASE domain. The resulting model displays an overall topology reminiscent of the sensor protein PcrK in Xanthomonas campestris. Through molecular dynamics simulations, a stable potential binding site for CDA was further identified. Virtual screening against the predicted site of DspS CHASE using our developed pipeline discovered two promising compounds, compounds 2 and 9, capable of dislodging 7-day P. aeruginosa biofilms at 50 μM without affecting bacterial growth. These compounds also enhanced the effects of ciprofloxacin against P. aeruginosa, reduced the survival of dispersed cells, and increased the expression of matrix-degrading enzyme genes pelA, pslG, and eddA. This study provides insights into CDA recognition by DspS and represents the first large-scale effort to uncover first-in-class DspS activators. At the same time, this work also underscores the effectiveness of a computational-aided drug discovery process in finding new activators, even without a known protein structure.
Collapse
Affiliation(s)
- Christabel Ming Ming Koh
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology Sarawak, Kuching, Sarawak 93350, Malaysia
| | - Siaw San Hwang
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology Sarawak, Kuching, Sarawak 93350, Malaysia
| | - Bee Theng Lau
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology Sarawak, Kuching, Sarawak 93350, Malaysia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Irine Runnie Henry Ginjom
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology Sarawak, Kuching, Sarawak 93350, Malaysia
| | - Christopher Heng Xuan Ha
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology Sarawak, Kuching, Sarawak 93350, Malaysia
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Xavier Chee Wezen
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology Sarawak, Kuching, Sarawak 93350, Malaysia
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
2
|
Akilandeswari G, Varshashankari V, Muthusamy S, Aarthy M, Thamizhvani K, Mercyjayapriya J, Ashokraj S, Mohandass P, Prem S, Ayyadurai N. Photocrosslinkable triple helical protein with enhanced higher-order formation for biomaterial applications. J Biomed Mater Res A 2024; 112:1632-1645. [PMID: 38553971 DOI: 10.1002/jbm.a.37716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/17/2024] [Accepted: 03/23/2024] [Indexed: 08/02/2024]
Abstract
Bacterial collagen, produced via recombinant DNA methods, offers advantages including consistent purity, customizable properties, and reduced allergy potential compared to animal-derived collagen. Its controlled production environment enables tailored features, making it more sustainable, non-pathogenic, and compatible with diverse applications in medicine, cosmetics, and other industries. Research has focused on the engineering of collagen-like proteins to improve their structure and function. The study explores the impact of introducing tyrosine, an amino acid known for its role in fibril formation across diverse proteins, into a newly designed bacterial collagen-like protein (Scl2), specifically examining its effect on self-assembly and fibril formation. Biophysical analyses reveal that the introduction of tyrosine residues didn't compromise the protein's structural stability but rather promoted self-assembly, resulting in the creation of nanofibrils-a phenomenon absent in the native Scl2 protein. Additionally, stable hydrogels are formed when the engineered protein undergoes di-tyrosine crosslinking under light exposure. The hydrogels, shown to support cell viability, also facilitate accelerated wound healing in mouse fibroblast (NIH/3T3) cells. These outcomes demonstrate that the targeted inclusion of functional residues in collagen-like proteins enhances fibril formation and facilitates the generation of robust hydrogels using riboflavin chemistry, presenting promising paths for research in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Gopalan Akilandeswari
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
| | - Vijayakumar Varshashankari
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
| | - Shalini Muthusamy
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Department of Leather Technology (Housed at CSIR-Central Leather Research Institute), Alagappa College of Technology, Anna University, Chennai, India
| | - Mayilvahanan Aarthy
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
| | - Karthigeyan Thamizhvani
- Department of Biotechnology, National Institute of Technology Warangal, Hanamkonda, Telangana, India
| | - Jebakumar Mercyjayapriya
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sundarapandian Ashokraj
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pachaiyappan Mohandass
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suresh Prem
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Niraikulam Ayyadurai
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Department of Leather Technology (Housed at CSIR-Central Leather Research Institute), Alagappa College of Technology, Anna University, Chennai, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Li X, Tao Q, Hu Q, Ma N, Ma G. In vitro gastrointestinal digestion and fecal fermentation of Pleurotus eryngii proteins extracted using different methods: insights for the utilization of edible mushroom-based proteins as novel nutritional and functional components. Food Funct 2024; 15:8865-8877. [PMID: 39120615 DOI: 10.1039/d4fo02604g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Pleurotus eryngii (P. eryngii) protein is considered a high-quality protein because it is rich in essential amino acids and displays multiple significant functional characterizations that vary with its fabrication processes. We aimed to investigate the differences in P. eryngii protein extracted via alkaline extraction and acid precipitation (AA), cellulase complex alkaline extraction and acid precipitation (CAA), ultrasound-assisted alkaline extraction and acid precipitation (UAA), and salt dissolution (S) in terms of gastrointestinal digestion and fecal fermentation consequences. Protein hydrolysis and structural analysis were performed after in vitro gastrointestinal digestion, and it was found that AA showed the highest hydrolysis degree, whereas CAA showed the lowest. The results of fluorescence chromatography and infrared chromatography indicated that the reasons for the digestion difference might be the unfolding degrees of the protein tertiary structure and polysaccharide content, which is the major component of crude proteins and can prevent protein hydrolysis. Metagenomic analysis suggested that compared with other groups, AA had excellent biological functions, including regulating obesity and insulin-related microbiota. This study could provide a new theoretical basis for the P. eryngii protein as a novel type of nutritional and functional component and contributes to the development of a diversified emerging food protein supply system.
Collapse
Affiliation(s)
- Xinyi Li
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China.
| | - Qi Tao
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China.
| | - Qiuhui Hu
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China.
| | - Ning Ma
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China.
| | - Gaoxing Ma
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China.
| |
Collapse
|
4
|
Wang B, Li WL. Revisiting the quasi-aromaticity in polynuclear metal chalcogenide clusters and their derivative "cluster-assembly" crystalline structures. Phys Chem Chem Phys 2024; 26:17370-17382. [PMID: 38860760 DOI: 10.1039/d4cp01022a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The concept of aromaticity is primarily invented to account for the high stability of conjugated organic compounds that possess a specific structural and chemical stability with (4n + 2) π electrons. In 1988, quasi-aromaticity was theoretically proposed for the Mo3S44+ core in the Mo3(μ3-S)(μ-S)3(χ-dtp)3(μ-dtp) L compound (χ: chelating ligand; dtp: (EtO)2PS2-) illustrated by canonical molecular orbitals. However, the origin of the quasi-aromaticity and chemical bonding remains ambiguous, lacking a thorough analysis in terms of stability and quantitative measurement of the aromatic character. Thus, in this work, we systematically reported the electronic structure and aromaticity of a series of polynuclear metal chalcogenide clusters [M3X4(H2O)9]4+ (M = Cr, Mo, W, and Sg; X = O, S, Se, and Te) to explore an efficient tool of NICS index values at specific points to measure the quasi-aromaticity and to figure out the (d-p-d) π three-center bonding as the predominant origin from the arrangement of three Mo atoms and three bridged X atoms. Interestingly, derived from the Mo3⋯S3 quasi-plane, the extended sandwich cluster model of a S3⋯Mo3⋯S3 (Mo3S6) structure can be seen as the seed unit of the popular MoS2 nanomaterials, with the resemblance between both molecular and periodic systems regarding geometries, electronic structures, and chemical bonding. Additionally, the highly symmetric Mo3S4 core in [Mo3X4(H2O)9]4+ can be arranged in a staggered and stacked manner to create the Mo6S82- building block, corresponding to the crystalline structures in BaMo6S8 Chevrel phases, albeit with slight deformations. But the neutral Mo6S8 cluster can be seen as the seed structure for the Mo3S4 periodic materials for the high resemblance in terms of geometry, electronic structures and chemical bonding. Drawing upon the observed similarities between cluster models and materials, we propose a new concept termed "cluster-assembly" materials. This concept involves the expansion from a high-symmetry and/or aromatic stable cluster seed unit to form the corresponding derivative materials, presenting an alternative paradigm for investigating crystals and enriching our comprehension of the stabilities exhibited by both gas-phase clusters and solid-state materials. The concept of "cluster-assembly" materials not only contributes to the formulation of design strategies for novel materials or stable clusters but also provides valuable insights into the extension of periodic aromaticity.
Collapse
Affiliation(s)
- Bochu Wang
- Department of NanoEngineering, University of California San Diego, CA 92093, USA.
- Department of Chemistry and Biochemistry, University of California San Diego, CA 92093, USA
| | - Wan-Lu Li
- Department of NanoEngineering, University of California San Diego, CA 92093, USA.
- Program of Materials Science and Engineering, University of California San Diego, CA 92093, USA
| |
Collapse
|
5
|
Nguyen TA, Lee C. Thr-to-Ala Mutation Leads to a Larger Aromatic Pair and Reduced Packing Density in α1,α3-Helices during Thioredoxin Cold Adaptation. ACS OMEGA 2024; 9:10812-10824. [PMID: 38463323 PMCID: PMC10918799 DOI: 10.1021/acsomega.3c09806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/18/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024]
Abstract
This study investigates the impact of aromatic-aromatic interactions on the cold adaptation of thioredoxin (Trx), a small redox protein with a conserved Trx-fold structure. Two Trx orthologs, one from the psychrophilic Arctic bacterium Sphingomonas sp. (SpTrx) and the other from the mesophilic Escherichia coli (EcTrx), display distinct aromatic interactions in their α1,α3-helices. SpTrx features a larger Trp11-Phe69 pair, while EcTrx employs a smaller Phe12-Tyr70 pair along with an additional Asp9-Thr66 hydrogen bond. Smaller aromatic residues in SpTrx (Phe-Phe or Phe-Tyr pair) lead to decreased thermal and thermodynamic stabilities, increased conformational flexibility, and reduced enzyme activity. In contrast, EcTrx's thermal stability is primarily influenced by the larger Trp residue, especially in the more hydrophobic Trp-Phe pair compared to the Trp-Tyr pair. Both SpTrx and EcTrx exhibit a strengthening of the Asp-Thr hydrogen bond by a Phe-Tyr pair and a weakening by a Trp-Phe pair. Additionally, the Asp8-Thr65 hydrogen bond in SpTrx contributes to the destabilization of the Phe-Phe pair. Molecular dynamics simulations of SpTrx indicate that a smaller aromatic pair or the Asp-Thr hydrogen bond in the α1,α3-helices further destabilizes the α2-helix across the central β-sheet. Our results suggest that the Thr-to-Ala mutation destabilizes the α1,α3-helices, resulting in a larger aromatic pair and reduced packing density in psychrophilic Trxs during cold adaptation. These findings enhance our understanding of Trx's adaptation to colder temperatures.
Collapse
Affiliation(s)
- Tu Anh Nguyen
- Department of Biomedical
Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan 38453, South Korea
| | - ChangWoo Lee
- Department of Biomedical
Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan 38453, South Korea
| |
Collapse
|
6
|
Lin LL, Wang HH, Pederson B, Wei X, Torres M, Lu Y, Li ZJ, Liu X, Mao H, Wang H, Zhou LE, Zhao Z, Sun S, Qi L. SEL1L-HRD1 interaction is required to form a functional HRD1 ERAD complex. Nat Commun 2024; 15:1440. [PMID: 38365914 PMCID: PMC10873344 DOI: 10.1038/s41467-024-45633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
The SEL1L-HRD1 protein complex represents the most conserved branch of endoplasmic reticulum (ER)-associated degradation (ERAD). Despite recent advances in both mouse models and humans, in vivo evidence for the importance of SEL1L in the ERAD complex formation and its (patho-)physiological relevance in mammals remains limited. Here we report that SEL1L variant p.Ser658Pro (SEL1LS658P) is a pathogenic hypomorphic mutation, causing partial embryonic lethality, developmental delay, and early-onset cerebellar ataxia in homozygous mice carrying the bi-allelic variant. Biochemical analyses reveal that SEL1LS658P variant not only reduces the protein stability of SEL1L, but attenuates the SEL1L-HRD1 interaction, likely via electrostatic repulsion between SEL1L F668 and HRD1 Y30 residues. Proteomic screens of SEL1L and HRD1 interactomes reveal that SEL1L-HRD1 interaction is a prerequisite for the formation of a functional HRD1 ERAD complex, as SEL1L is required for the recruitment of E2 enzyme UBE2J1 as well as DERLIN to HRD1. These data not only establish the disease relevance of SEL1L-HRD1 ERAD, but also provide additional insight into the formation of a functional HRD1 ERAD complex.
Collapse
Affiliation(s)
- Liangguang Leo Lin
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Huilun Helen Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Brent Pederson
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Xiaoqiong Wei
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Mauricio Torres
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - You Lu
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Zexin Jason Li
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Xiaodan Liu
- Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Hancheng Mao
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Hui Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Linyao Elina Zhou
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Shengyi Sun
- Department of Pharmacology, University of Virginia, School of Medicine, Charlottesville, VA, 22908, USA.
| | - Ling Qi
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA.
| |
Collapse
|
7
|
Buscaglia M, Iriarte JL, Schulz F, Díez B. Adaptation strategies of giant viruses to low-temperature marine ecosystems. THE ISME JOURNAL 2024; 18:wrae162. [PMID: 39178288 PMCID: PMC11512752 DOI: 10.1093/ismejo/wrae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/16/2024] [Accepted: 08/22/2024] [Indexed: 08/25/2024]
Abstract
Microbes in marine ecosystems have evolved their gene content to thrive successfully in the cold. Although this process has been reasonably well studied in bacteria and selected eukaryotes, less is known about the impact of cold environments on the genomes of viruses that infect eukaryotes. Here, we analyzed cold adaptations in giant viruses (Nucleocytoviricota and Mirusviricota) from austral marine environments and compared them with their Arctic and temperate counterparts. We recovered giant virus metagenome-assembled genomes (98 Nucleocytoviricota and 12 Mirusviricota MAGs) from 61 newly sequenced metagenomes and metaviromes from sub-Antarctic Patagonian fjords and Antarctic seawater samples. When analyzing our data set alongside Antarctic and Arctic giant viruses MAGs already deposited in the Global Ocean Eukaryotic Viral database, we found that Antarctic and Arctic giant viruses predominantly inhabit sub-10°C environments, featuring a high proportion of unique phylotypes in each ecosystem. In contrast, giant viruses in Patagonian fjords were subject to broader temperature ranges and showed a lower degree of endemicity. However, despite differences in their distribution, giant viruses inhabiting low-temperature marine ecosystems evolved genomic cold-adaptation strategies that led to changes in genetic functions and amino acid frequencies that ultimately affect both gene content and protein structure. Such changes seem to be absent in their mesophilic counterparts. The uniqueness of these cold-adapted marine giant viruses may now be threatened by climate change, leading to a potential reduction in their biodiversity.
Collapse
Affiliation(s)
- Marianne Buscaglia
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
- Millennium Institute Center for Genome Regulation (CGR), Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
- Center for Climate and Resilience Research (CR)2, Universidad de Chile, Av. Blanco Encalada 2002, Santiago 8370449, Chile
| | - José Luis Iriarte
- Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Avda. El Bosque 01789, Punta Arenas 6210445, Chile
- Instituto de Acuicultura y Medio Ambiente, Universidad Austral de Chile, Los Pinos s/n Balneario Pelluco, Puerto Montt 5500000, Chile
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Beatriz Díez
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
- Center for Climate and Resilience Research (CR)2, Universidad de Chile, Av. Blanco Encalada 2002, Santiago 8370449, Chile
| |
Collapse
|
8
|
Jiao L, Jing Z, Zhang W, Su X, Yan H, Tian S. Codon Pattern and Context Analysis in Genes Triggering Alzheimer's Disease and Latent Tau Protein Aggregation Post-Anesthesia Exhibited Unique Molecular Patterns Associated with Functional Aspects. J Alzheimers Dis 2024; 97:1645-1660. [PMID: 38306048 DOI: 10.3233/jad-231142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Background Previous reports have demonstrated post-operative dementia and Alzheimer's disease (AD), and increased amyloid-β levels and tau hyperphosphorylation have been observed in animal models post-anesthesia. Objective After surgical interventions, loss in memory has been observed that has been found linked with genes modulated after anesthesia. Present study aimed to study molecular pattern present in genes modulated post anesthesia and involved in characters progressing towards AD. Methods In the present study, 17 transcript variants belonging to eight genes, which have been found to modulate post-anesthesia and contribute to AD progression, were envisaged for their compositional features, molecular patterns, and codon and codon context-associated studies. Results The sequences' composition was G/C rich, influencing dinucleotide preference, codon preference, codon usage, and codon context. The G/C nucleotides being highly occurring nucleotides, CpGdinucleotides were also preferred; however, CpG was highly disfavored at p3-1 at the codon junction. The nucleotide composition of Cytosine exhibited a unique feature, and unlike other nucleotides, it did not correlate with codon bias. Contrarily, it correlated with the sequence lengths. The sequences were leucine-rich, and multiple leucine repeats were present, exhibiting the functional role of neuroprotection from neuroinflammation post-anesthesia. Conclusions The analysis pave the way to elucidate unique molecular patterns in genes modulated during anesthetic treatment and might help ameliorate the ill effects of anesthetics in the future.
Collapse
Affiliation(s)
- Liyuan Jiao
- Department of Anesthesiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ziye Jing
- Department of Anesthesiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenjie Zhang
- Department of Anesthesiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuesen Su
- Department of Anesthesiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hualei Yan
- Department of Anesthesiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shouyuan Tian
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, China
| |
Collapse
|
9
|
Lopez-Martinez E, Manteca A, Ferruz N, Cortajarena AL. Statistical Analysis and Tokenization of Epitopes to Construct Artificial Neoepitope Libraries. ACS Synth Biol 2023; 12:2812-2818. [PMID: 37703075 PMCID: PMC10594869 DOI: 10.1021/acssynbio.3c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 09/14/2023]
Abstract
Epitopes are specific regions on an antigen's surface that the immune system recognizes. Epitopes are usually protein regions on foreign immune-stimulating entities such as viruses and bacteria, and in some cases, endogenous proteins may act as antigens. Identifying epitopes is crucial for accelerating the development of vaccines and immunotherapies. However, mapping epitopes in pathogen proteomes is challenging using conventional methods. Screening artificial neoepitope libraries against antibodies can overcome this issue. Here, we applied conventional sequence analysis and methods inspired in natural language processing to reveal specific sequence patterns in the linear epitopes deposited in the Immune Epitope Database (www.iedb.org) that can serve as building blocks for the design of universal epitope libraries. Our results reveal that amino acid frequency in annotated linear epitopes differs from that in the human proteome. Aromatic residues are overrepresented, while the presence of cysteines is practically null in epitopes. Byte pair encoding tokenization shows high frequencies of tryptophan in tokens of 5, 6, and 7 amino acids, corroborating the findings of the conventional sequence analysis. These results can be applied to reduce the diversity of linear epitope libraries by orders of magnitude.
Collapse
Affiliation(s)
- Elena Lopez-Martinez
- Centre
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014 Spain
| | - Aitor Manteca
- Centre
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014 Spain
| | - Noelia Ferruz
- Molecular
Biology Institute of Barcelona (IBMB-CSIC), Barcelona Science Park, Baldiri Reixac, 15-21, 08028, Barcelona, Spain
| | - Aitziber L. Cortajarena
- Centre
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014 Spain
- IKERBASQUE, Basque
Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
10
|
Carbone L, Bůžková P, Fink HA, Robbins JA, Barzilay JI, Elam RE, Isales C. The Association of Tryptophan and Its Metabolites With Incident Hip Fractures, Mortality, and Prevalent Frailty in Older Adults: The Cardiovascular Health Study. JBMR Plus 2023; 7:e10801. [PMID: 37808397 PMCID: PMC10556266 DOI: 10.1002/jbm4.10801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/21/2023] [Accepted: 07/12/2023] [Indexed: 10/10/2023] Open
Abstract
Amino acids are the building blocks of proteins, and sufficient protein intake is important for skeletal health. We utilized stored serum from the Cardiovascular Health Study in 1992-1993 to examine the relationship between levels of the essential amino acid tryptophan (trp) and its oxidized and nonoxidized metabolites to risk for incident hip fractures and mortality over 12 years of follow-up. We included 131 persons who sustained a hip fracture during this time period and 131 without a hip fracture over these same 12 years of follow-up; 58% female and 95% White. Weighted multivariable Cox hazards models were used to estimate the hazard ratios (HR) and 95% confidence intervals (CI) of incident hip fracture associated with a one standard deviation (SD) higher trp or its metabolites exposure. Relative risk regression was used to evaluate the cross-sectional association of trp and its metabolites with frailty. Higher serum levels of trp were significantly associated with lower risk of incident hip fractures (HR = 0.75 per SD of trp (95% CI 0.57-0.99) but were not significantly associated with mortality or frailty status by Freid's frailty index. There were no statistically significant associations between any of the oxidized or nonoxidized products of trp with incident hip fractures (p ≥ 0.64), mortality (p ≥ 0.20), or cross-sectional frailty status (p ≥ 0.13) after multiple testing adjustment. Randomized clinical trials examining whether increasing trp intake is beneficial for osteoporosis are needed. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Laura Carbone
- Division of Rheumatology, Department of MedicineAugusta UniversityAugustaGAUSA
- Charlie Norwood Veterans Affairs Medical CenterVeterans Affairs Health Care SystemAugustaGAUSA
| | - Petra Bůžková
- Department of BiostatisticsUniversity of WashingtonSeattleWAUSA
| | - Howard A Fink
- Geriatric Research Education and Clinical CenterVeterans Affairs Health Care SystemMinneapolisMNUSA
| | - John A Robbins
- Department of MedicineUniversity of California DavisDavisCAUSA
| | - Joshua I Barzilay
- Division of Endocrinology, Kaiser Permanente of GeorgiaEmory University School of MedicineAtlantaGAUSA
| | - Rachel E Elam
- Division of Rheumatology, Department of MedicineAugusta UniversityAugustaGAUSA
- Charlie Norwood Veterans Affairs Medical CenterVeterans Affairs Health Care SystemAugustaGAUSA
| | - Carlos Isales
- Charlie Norwood Veterans Affairs Medical CenterVeterans Affairs Health Care SystemAugustaGAUSA
- Division of Endocrinology, Department of MedicineAugusta UniversityAugustaGAUSA
| |
Collapse
|
11
|
Patel HP, Martinez‐Ramirez G, Dobrzynski E, Iglesias AA, Liu D, Ballicora MA. A critical inter-subunit interaction for the transmission of the allosteric signal in the Agrobacterium tumefaciens ADP-glucose pyrophosphorylase. Protein Sci 2023; 32:e4747. [PMID: 37551561 PMCID: PMC10461462 DOI: 10.1002/pro.4747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
ADP-glucose pyrophosphorylase is a key regulatory enzyme involved in starch and glycogen synthesis in plants and bacteria, respectively. It has been hypothesized that inter-subunit communications are important for the allosteric effect in this enzyme. However, no specific interactions have been identified as part of the regulatory signal. The enzyme from Agrobacterium tumefaciens is a homotetramer allosterically regulated by fructose 6-phosphate and pyruvate. Three pairs of distinct subunit-subunit interfaces are present. Here we focus on an interface that features two symmetrical interactions between Arg11 and Asp141 from one subunit with residues Asp141 and Arg11 of the neighbor subunit, respectively. Previously, scanning mutagenesis showed that a mutation at the Arg11 position disrupted the activation of the enzyme. Considering the distance of these residues from the allosteric and catalytic sites, we hypothesized that the interaction between Arg11 and Asp141 is critical for allosteric signaling rather than effector binding. To prove our hypothesis, we mutated those two sites (D141A, D141E, D141N, D141R, R11D, and R11K) and performed kinetic and binding analysis. Mutations that altered the charge affected the regulation the most. To prove that the interaction per se (rather than the presence of specific residues) is critical, we partially rescued the R11D protein by introducing a second mutation (R11D/D141R). This could not restore the activator effect on kcat , but it did rescue the effect on substrate affinity. Our results indicate the critical functional role of Arg11 and Asp141 to relay the allosteric signal in this subunit interface.
Collapse
Affiliation(s)
- Hiral P. Patel
- Department of Chemistry and BiochemistryLoyola University ChicagoChicagoIllinoisUSA
| | | | - Emily Dobrzynski
- Department of Chemistry and BiochemistryLoyola University ChicagoChicagoIllinoisUSA
| | | | - Dali Liu
- Department of Chemistry and BiochemistryLoyola University ChicagoChicagoIllinoisUSA
| | - Miguel A. Ballicora
- Department of Chemistry and BiochemistryLoyola University ChicagoChicagoIllinoisUSA
| |
Collapse
|
12
|
Lin LL, Wei X, Wang HH, Pederson B, Torres M, Lu Y, Li ZJ, Liu X, Mao H, Wang H, Zhao Z, Sun S, Qi L. SEL1L-HRD1 interaction is prerequisite for the formation of a functional HRD1 ERAD complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.13.536796. [PMID: 37333389 PMCID: PMC10274661 DOI: 10.1101/2023.04.13.536796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The SEL1L-HRD1 protein complex represents the most conserved branch of endoplasmic reticulum (ER)-associated degradation (ERAD); however, definitive evidence for the importance of SEL1L in HRD1 ERAD is lacking. Here we report that attenuation of the interaction between SEL1L and HRD1 impairs HRD1 ERAD function and has pathological consequences in mice. Our data show that SEL1L variant p.Ser658Pro ( SEL1L S 658 P ) previously identified in Finnish Hound suffering cerebellar ataxia is a recessive hypomorphic mutation, causing partial embryonic lethality, developmental delay, and early-onset cerebellar ataxia in homozygous mice carrying the bi-allelic variant. Mechanistically, SEL1L S 658 P variant attenuates the SEL1L-HRD1 interaction and causes HRD1 dysfunction by generating electrostatic repulsion between SEL1L F668 and HRD1 Y30 residues. Proteomic screens of SEL1L and HRD1 interactomes revealed that the SEL1L-HRD1 interaction is prerequisite for the formation of a functional HRD1 ERAD complex, as SEL1L recruits not only the lectins OS9 and ERLEC1, but the E2 UBE2J1 and retrotranslocon DERLIN, to HRD1. These data underscore the pathophysiological importance and disease relevance of the SEL1L-HRD1 complex, and identify a key step in organizing the HRD1 ERAD complex.
Collapse
|
13
|
Chang C, Sung H, Lee C, Lee G. Synthesis of aryl‐functionalized, 1,5‐disubstituted 1,2,3‐triazoles and derivatives by arylation of zwitterionic ruthenium triazolato complexes. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202300044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Chao‐Wan Chang
- Division of Preparatory Programs for Overseas Chinese Students National Taiwan Normal University New Taipei City Taiwan
| | - Hui‐Ling Sung
- Division of Preparatory Programs for Overseas Chinese Students National Taiwan Normal University New Taipei City Taiwan
| | - Chi‐Rung Lee
- Department of Applied Materials Science and Technology Minghsin University of Science and Technology Hsinchu Taiwan
| | - Gene‐Hsiang Lee
- Instrumentation Center National Taiwan University Taipei Taiwan
| |
Collapse
|
14
|
Ganapathi D, Akinlemibola W, Baclig A, Penn E, Chueh WC. A Comparison of Key Features in Melting Point Prediction Models for Quinones and Hydroquinones. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
15
|
Žganec M, Taler Verčič A, Muševič I, Škarabot M, Žerovnik E. Amyloid Fibrils of Stefin B Show Anisotropic Properties. Int J Mol Sci 2023; 24:ijms24043737. [PMID: 36835149 PMCID: PMC9962164 DOI: 10.3390/ijms24043737] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Human stefin B, a member of the cystatin family of cysteine protease inhibitors, tends to form amyloid fibrils under relatively mild conditions, which is why it is used as a model protein to study amyloid fibrillation. Here, we show for the first time that bundles of amyloid fibrils, i.e., helically twisted ribbons, formed by human stefin B exhibit birefringence. This physical property is commonly observed in amyloid fibrils when stained with Congo red. However, we show that the fibrils arrange in regular anisotropic arrays and no staining is required. They share this property with anisotropic protein crystals, structured protein arrays such as tubulin and myosin, and other anisotropic elongated materials, such as textile fibres and liquid crystals. In certain macroscopic arrangements of amyloid fibrils, not only birefringence is observed, but also enhanced emission of intrinsic fluorescence, implying a possibility to detect amyloid fibrils with no labels by using optical microscopy. In our case, no enhancement of intrinsic tyrosine fluorescence was observed at 303 nm; instead, an additional fluorescence emission peak appeared at 425 to 430 nm. We believe that both phenomena, birefringence and fluorescence emission in the deep blue, should be further explored with this and other amyloidogenic proteins. This may allow the development of label-free detection methods for amyloid fibrils of different origins.
Collapse
Affiliation(s)
- Matjaž Žganec
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Ajda Taler Verčič
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Igor Muševič
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
- Department of Condensed Matter Physics, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Miha Škarabot
- Department of Condensed Matter Physics, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Eva Žerovnik
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
16
|
Delineation of a T-cell receptor CDR3-cancer mutanome aromaticity factor, assessable via blood samples, that facilitates the establishment of survival distinctions in bladder cancer. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04339-w. [PMID: 36098856 DOI: 10.1007/s00432-022-04339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE A very large and still expanding collection of adaptive immune receptor (IR) recombination reads, representing many diseases, is becoming available for downstream analyses. Among the most productive approaches has been to establish risk stratification parameters via the chemical features of the IR complementarity determining region-3 (CDR3) amino acid (AA) sequences, particularly for large datasets where clinical information is available. Because the IR CDR3 AA sequences often play a large role in antigen binding, the chemistry of these AAs has the likelihood of representing a disease-related fingerprint as well as providing pre-screening information for candidate antigens. To approach this issue in a novel manner, we developed a bladder cancer, case evaluation approach based on CDR3 aromaticity. METHODS We developed and applied a simple and efficient algorithm for assessing aromatic, chemical complementarity between T-cell receptor (TCR) CDR3 AA sequences and the cancer specimen mutanome. RESULTS Results indicated a survival distinction for aromatic CDR3-aromatic mutanome complementary, versus non-complementary, bladder cancer case sets. This result applied to both tumor resident and blood TCR CDR3 AA sequences and was supported by CDR3 AA sequences represented by both exome and RNAseq files. CONCLUSION The described aromaticity factor algorithm has the potential of assisting in prognostic assessments and guiding immunotherapies for bladder cancer.
Collapse
|
17
|
Chang CW, Lee CR, Lee GH, Lu KL. The straightforward synthesis of N-coordinated ruthenium 4-aryl-1,2,3-triazolato complexes by [3 + 2] cycloaddition reactions of a ruthenium azido complex with terminal phenylacetylenes and non-covalent aromatic interactions in structures. RSC Adv 2022; 12:24830-24838. [PMID: 36128372 PMCID: PMC9430631 DOI: 10.1039/d2ra04835c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
The straightforward preparation of N-coordinated ruthenium triazolato complexes by [3 + 2] cycloaddition reactions of a ruthenium azido complex [Ru]-N3 (1, [Ru] = (η5-C5H5)(dppe)Ru, dppe = Ph2PCH2CH2PPh2) with a series of terminal phenylacetylenes is reported. The reaction products, N(2)-bound ruthenium 4-aryl-1,2,3-triazolato complexes such as [Ru]N3C2H(4-C6H4CN) (2), [Ru]N3C2H(4-C6H4CHO) (3), [Ru]N3C2H(4-C6H4F) (4), [Ru]N3C2H(Ph) (5) and [Ru]N3C2H(4-C6H4CH3) (6) were produced from 4-ethynylbenzonitrile, 4-ethynylbenzaldehyde, 1-ethynyl-4-fluorobenzene, phenylacetylene and 4-ethynyltoluene, respectively, at 80 °C or above under an atmosphere of air. To the best of our knowledge, this is the first example of the preparation of N-coordinated ruthenium aryl-substituted 1,2,3-triazolato complexes by the [3 + 2] cycloaddition of a metal-coordinated azido ligand and a terminal aryl acetylene, less electron-deficient terminal aryl alkynes. All of the compounds have been fully characterized and the structures of complexes 2, 3, 5 and 6 were confirmed by single-crystal X-ray diffraction analysis. Each compound participates in non-covalent aromatic interactions in the solid-state structure which can be favorable in the binding of DNA/biomolecular targets and has shown great potential in the development of biologically active anticancer drugs.
Collapse
Affiliation(s)
- Chao-Wan Chang
- Division of Preparatory Programs for Overseas Chinese Students, National Taiwan Normal University Linkou New Taipei City 24449 Taiwan
| | - Chi-Rung Lee
- Department of Applied Materials Science and Technology, Minghsin University of Science and Technology Hsinchu 30401 Taiwan
| | - Gene-Hsiang Lee
- Instrumentation Center, National Taiwan University Taipei 10617 Taiwan
| | - Kuang-Lieh Lu
- Department of Chemistry, Fu Jen Catholic University New Taipei City 242 Taiwan
| |
Collapse
|
18
|
Paul S, Nadendla S, Sobhia ME. Identification of Potential ACE2-Derived Peptide Mimetics in SARS-CoV-2 Omicron Variant Therapeutics using Computational Approaches. J Phys Chem Lett 2022; 13:7420-7428. [PMID: 35929665 PMCID: PMC9396968 DOI: 10.1021/acs.jpclett.2c01155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The COVID-19 pandemic has become a global health challenge because of the emergence of distinct variants. Omicron, a new variant, is recognized as a variant of concern (VOC) by the World Health Organization (WHO) because of its higher mutations and accelerated human infection. The infection rate is strongly dependent on the binding rate of the receptor binding domain (RBD) against human angiotensin converting enzyme-2 (ACE2human) receptor. Inhibition of protein-protein (RBDs(SARS-CoV-2/omicron)-ACE2human) interaction has been already proven to inhibit viral infection. We have systematically designed ACE2human-derived peptides and peptide mimetics that have high binding affinity toward RBDomicron. Our peptide mutational analysis indicated the influence of canonical amino acids on the peptide binding process. Herein, efforts have been made to explore the atomistic details and events of RBDs(SARS-CoV-2/omicron)-ACE2human interactions by using molecular dynamics simulation. Our studies pave a path for developing therapeutic peptidomimetics against omicron.
Collapse
Affiliation(s)
- Stanly Paul
- Institute
of Pharmaceutical Analysis, University of
Szeged, Eotvos u. 6, G-6720 Szeged, Hungary
| | - Swathi Nadendla
- Department
of Pharmacoinformatics, National Institute
of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Mohali 160062, India
| | - M Elizabeth Sobhia
- Department
of Pharmacoinformatics, National Institute
of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Mohali 160062, India
| |
Collapse
|
19
|
Baldwin ET, Götte M, Tchesnokov EP, Arnold E, Hagel M, Nichols C, Dossang P, Lamers M, Wan P, Steinbacher S, Romero DL. Human endogenous retrovirus-K (HERV-K) reverse transcriptase (RT) structure and biochemistry reveals remarkable similarities to HIV-1 RT and opportunities for HERV-K-specific inhibition. Proc Natl Acad Sci U S A 2022; 119:e2200260119. [PMID: 35771941 PMCID: PMC9271190 DOI: 10.1073/pnas.2200260119] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022] Open
Abstract
Human endogenous retroviruses (HERVs) comprise nearly 8% of the human genome and are derived from ancient integrations of retroviruses into the germline. The biology of HERVs is poorly defined, but there is accumulating evidence supporting pathological roles in diverse diseases, such as cancer, autoimmune, and neurodegenerative diseases. Functional proteins are produced by HERV-encoded genes, including reverse transcriptases (RTs), which could be a contributor to the pathology attributed to aberrant HERV-K expression. To facilitate the discovery and development of HERV-K RT potent and selective inhibitors, we expressed active HERV-K RT and determined the crystal structure of a ternary complex of this enzyme with a double-stranded DNA substrate. We demonstrate a range of RT inhibition with antiretroviral nucleotide analogs, while classic nonnucleoside analogs do not inhibit HERV-K RT. Detailed comparisons of HERV-K RT with other known RTs demonstrate similarities to diverse RT families and a striking similarity to the HIV-1 RT asymmetric heterodimer. Our analysis further reveals opportunities for selective HERV-K RT inhibition.
Collapse
Affiliation(s)
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Egor P. Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854
| | | | - Charles Nichols
- Charles River Laboratory, Chesterford Research Park, Saffron Walden CB10 1XL, United Kingdom
| | - Pam Dossang
- Charles River Laboratory, Chesterford Research Park, Saffron Walden CB10 1XL, United Kingdom
| | - Marieke Lamers
- Charles River Laboratory, Chesterford Research Park, Saffron Walden CB10 1XL, United Kingdom
- DomainEx, Chesterford Research Park, Saffron Walden CB10 1XL United Kingdom
| | - Paul Wan
- Charles River Laboratory, Chesterford Research Park, Saffron Walden CB10 1XL, United Kingdom
| | | | | |
Collapse
|
20
|
Mouli MSSV, Agrawal HG, Kumar M, Mishra AK. Luminescent and morphological behavior of the aromatic dipeptide pair having singular structural variability. LUMINESCENCE 2022. [PMID: 35560861 DOI: 10.1002/bio.4275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/15/2022] [Accepted: 05/07/2022] [Indexed: 11/07/2022]
Abstract
In the present manuscript, the luminescence and the self-assembly behavior of the two aromatic dipeptides having singular structure variable are investigated. The terminally protected dipeptides tryptophan-tyrosine (WYp ) and tryptophan-phenylalanine (WFp ) were synthesized using standard solution phase procedure. Significant solvatochromic effect was observed for both the dipeptidyl entities; while the influence was more pronounced in case of the WYp entity when compared to WFp . Interesting morphological variation was observed for WFp and WYp , wherein discrete and interconnected nanospheres were observed for the respective dipeptides. The results obtained signifies the influence of the singular structural variation on modulating the overall functional behavior of the short peptides motifs.
Collapse
Affiliation(s)
- M S S Vinod Mouli
- Department of chemistry, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Harsha Gopal Agrawal
- Department of chemistry, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Mohit Kumar
- Department of chemistry, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Ashutosh Kumar Mishra
- Department of chemistry, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| |
Collapse
|
21
|
Kimura S, Kamishina H, Hirata Y, Furuta K, Furukawa Y, Yamato O, Maeda S, Kamatari YO. Novel oxindole compounds inhibit the aggregation of amyloidogenic proteins associated with neurodegenerative diseases. Biochim Biophys Acta Gen Subj 2022; 1866:130114. [PMID: 35217127 DOI: 10.1016/j.bbagen.2022.130114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022]
Abstract
Amyloidogenic proteins form aggregates in cells, thereby leading to neurodegenerative disorders, including Alzheimer's and prion's disease, amyotrophic lateral sclerosis (ALS) in humans, and degenerative myelopathy (DM) and cognitive dysfunction in dogs. Hence, many small-molecule compounds have been screened to examine their inhibitory effects on amyloidogenic protein aggregation. However, no effective drug suitable for transition to clinical use has been found. Here we examined several novel oxindole compounds (GIF compounds) for their inhibitory effects on aggregate formation of the canine mutant superoxide dismutase 1 (cSOD1 E40K), a causative mutation resulting in DM, using Thioflavin-T fluorescence. Most GIF compounds inhibited the aggregation of cSOD1 E40K. Among the compounds, GIF-0854-r and GIF-0890-r were most effective. Their inhibitory effects were also observed in cSOD1 E40K-transfected cells. Additionally, GIF-0890-r effectively inhibited the aggregate formation of human SOD1 G93A, a causative mutation of ALS. GIF-0827-r and GIF-0856-r also effectively inhibited aggregate formation of human prion protein (hPrP). Subsequently, the correlation between their inhibitory effects on cSOD1 and hPrP aggregation was shown, indicating GIF compounds inhibited the aggregate formation of multiple amyloidogenic proteins. Conclusively, the novel oxindole compounds (GIF-0827-r, GIF-0854-r, GIF-0856-r, and GIF-0890-r) are proposed as useful therapeutic candidates for amyloidogenic neurodegenerative disorders.
Collapse
Affiliation(s)
- Shintaro Kimura
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Hiroaki Kamishina
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Yoko Hirata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Kyoji Furuta
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Yoshiaki Furukawa
- Department of Chemistry, Laboratory for Mechanistic Chemistry of Biomolecules, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa 223-8522, Japan.
| | - Osamu Yamato
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| | - Sadatoshi Maeda
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Yuji O Kamatari
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Life Science Research Center, Gifu University,1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
22
|
Karnati P, Gonuguntala R, Barbadikar KM, Mishra D, Jha G, Prakasham V, Chilumula P, Shaik H, Pesari M, Sundaram RM, Chinnaswami K. Performance of Novel Antimicrobial Protein Bg_9562 and In Silico Predictions on Its Properties with Reference to Its Antimicrobial Efficiency against Rhizoctonia solani. Antibiotics (Basel) 2022; 11:363. [PMID: 35326826 PMCID: PMC8944631 DOI: 10.3390/antibiotics11030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 02/01/2023] Open
Abstract
Bg_9562 is a potential broad-spectrum antifungal effector protein derived from the bacteria Burkholderia gladioli strain NGJ1 and is effective against Rhizoctonia solani, the causal agent of sheath blight in rice. In the present study, in vitro antifungal assays showed that Bg_9562 was efficient at 35 °C and 45 °C and ineffective either at high acidic pH (3.0) or alkaline pH (9.5) conditions. Compatibility studies between the native bioagents Trichoderma asperellum TAIK1 and Bacillus subtilis BIK3 indicated that Bg_9562 was compatible with the bioagents. A field study using foliar spray of the Bg_9562 protein indicated the need of formulating the protein before its application. In silico analysis predicted that Bg_9562 possess 111 amino acid residues (46 hydrophobic residues, 12 positive and 8 negative residues) with the high aliphatic index of 89.92, attributing to its thermostability with a half-life of 30 h. Bg_9562 (C491H813N137O166S5) possessed a protein binding potential of 1.27 kcal/mol with a better possibility of interacting and perturbing the membrane, the main target for antimicrobial proteins. The secondary structure revealed the predominance of random coils in its structure, and the best 3D model of Bg_9562 was predicted using an ab initio method with Robetta and AlphaFold 2. The predicted binding ligands were nucleic acids and zinc with confidence scores of 0.07 and 0.05, respectively. The N-terminal region (1-14 residues) and C-terminal region (101 to 111) of Bg_9562 residues were predicted to be disordered regions. Stability and binding properties of the protein from the above studies would help to encapsulate Bg_9562 using a suitable carrier to maintain efficiency and improve delivery against Rhizoctonia solani in the most challenging rice ecosphere.
Collapse
Affiliation(s)
- Pranathi Karnati
- Department of Pathology, Indian Institute of Rice Research, Hyderabad 500030, India; (P.K.); (R.G.); (K.M.B.); (D.M.); (V.P.); (P.C.); (H.S.); (M.P.)
| | - Rekha Gonuguntala
- Department of Pathology, Indian Institute of Rice Research, Hyderabad 500030, India; (P.K.); (R.G.); (K.M.B.); (D.M.); (V.P.); (P.C.); (H.S.); (M.P.)
| | - Kalyani M. Barbadikar
- Department of Pathology, Indian Institute of Rice Research, Hyderabad 500030, India; (P.K.); (R.G.); (K.M.B.); (D.M.); (V.P.); (P.C.); (H.S.); (M.P.)
| | - Divya Mishra
- Department of Pathology, Indian Institute of Rice Research, Hyderabad 500030, India; (P.K.); (R.G.); (K.M.B.); (D.M.); (V.P.); (P.C.); (H.S.); (M.P.)
| | - Gopaljee Jha
- Plant Microbe Interactions Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India;
| | - Vellaisamy Prakasham
- Department of Pathology, Indian Institute of Rice Research, Hyderabad 500030, India; (P.K.); (R.G.); (K.M.B.); (D.M.); (V.P.); (P.C.); (H.S.); (M.P.)
| | - Priyanka Chilumula
- Department of Pathology, Indian Institute of Rice Research, Hyderabad 500030, India; (P.K.); (R.G.); (K.M.B.); (D.M.); (V.P.); (P.C.); (H.S.); (M.P.)
| | - Hajira Shaik
- Department of Pathology, Indian Institute of Rice Research, Hyderabad 500030, India; (P.K.); (R.G.); (K.M.B.); (D.M.); (V.P.); (P.C.); (H.S.); (M.P.)
| | - Maruthi Pesari
- Department of Pathology, Indian Institute of Rice Research, Hyderabad 500030, India; (P.K.); (R.G.); (K.M.B.); (D.M.); (V.P.); (P.C.); (H.S.); (M.P.)
| | - Raman Meenakshi Sundaram
- Department of Pathology, Indian Institute of Rice Research, Hyderabad 500030, India; (P.K.); (R.G.); (K.M.B.); (D.M.); (V.P.); (P.C.); (H.S.); (M.P.)
| | - Kannan Chinnaswami
- Department of Pathology, Indian Institute of Rice Research, Hyderabad 500030, India; (P.K.); (R.G.); (K.M.B.); (D.M.); (V.P.); (P.C.); (H.S.); (M.P.)
| |
Collapse
|
23
|
Bello F, Orozco E, Benítez-Cardoza CG, Zamorano-Carrillo A, Reyes-López CA, Pérez-Ishiwara DG, Gómez-García C. The novel EhHSTF7 transcription factor displays an oligomer state and recognizes a heat shock element in the Entamoeba histolytica parasite. Microb Pathog 2021; 162:105349. [PMID: 34864144 DOI: 10.1016/j.micpath.2021.105349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 01/09/2023]
Abstract
The heat shock response is a conserved mechanism that allows cells to respond and survive stress damage and is transcriptionally regulated by the heat shock factors and heat shock elements. The P-glycoprotein confer the multidrug resistance phenotype; Entamoeba histolytica has the largest multidrug resistance gene family described so far; one of these genes, the EhPgp5 gene, has an emetine-inducible expression. A functional heat shock element was localized in the EhPgp5 gene promoter, indicating transcriptional regulation by heat shock factors. In this work, we determined the oligomer state of EhHSTF7 and the recognition of the heat shock element of the EhPgp5 gene. The EhHSTF7 recombinant protein was obtained as monomer and oligomer. In silico molecular docking predicts protein-DNA binding between EhHSTF7 and 5'-GAA-3' complementary bases. The rEhHSTF7 protein specifically binds to the heat shock element of the EhPgp5 gene in gel shift assays. The competition assays with heat shock element mutants indicate that 5'-GAA-3' complementary bases are necessary for the rEhHSTF7 binding. Finally, the siRNA-mediated knockdown of Ehhstf7 expression causes downregulation of EhPgp5 expression, suggesting that EhHSTF7 is likely to play a key role in the E. histolytica multidrug resistance. This is the first report of a transcription factor that recognizes a heat shock element from a gene involved in drug resistance in parasites. However, further analysis needs to demonstrate the biological relevance of the EhHSTF7 and the rest of the heat shock factors of E. histolytica, to understand the underlying regulation of transcriptional control in response to stress.
Collapse
Affiliation(s)
- Fabiola Bello
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico
| | - Claudia G Benítez-Cardoza
- Programa Institucional en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, La Escalera, Gustavo A. Madero, 07320, Mexico City, Mexico
| | - Absalom Zamorano-Carrillo
- Programa Institucional en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, La Escalera, Gustavo A. Madero, 07320, Mexico City, Mexico
| | - César A Reyes-López
- Programa Institucional en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, La Escalera, Gustavo A. Madero, 07320, Mexico City, Mexico
| | - D Guillermo Pérez-Ishiwara
- Programa Institucional en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, La Escalera, Gustavo A. Madero, 07320, Mexico City, Mexico
| | - Consuelo Gómez-García
- Programa Institucional en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, La Escalera, Gustavo A. Madero, 07320, Mexico City, Mexico.
| |
Collapse
|
24
|
The Methionine 549 and Leucine 552 Residues of Friedelin Synthase from Maytenus ilicifolia Are Important for Substrate Binding Specificity. Molecules 2021; 26:molecules26226806. [PMID: 34833897 PMCID: PMC8617677 DOI: 10.3390/molecules26226806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
Friedelin, a pentacyclic triterpene found in the leaves of the Celastraceae species, demonstrates numerous biological activities and is a precursor of quinonemethide triterpenes, which are promising antitumoral agents. Friedelin is biosynthesized from the cyclization of 2,3-oxidosqualene, involving a series of rearrangements to form a ketone by deprotonation of the hydroxylated intermediate, without the aid of an oxidoreductase enzyme. Mutagenesis studies among oxidosqualene cyclases (OSCs) have demonstrated the influence of amino acid residues on rearrangements during substrate cyclization: loss of catalytic activity, stabilization, rearrangement control or specificity changing. In the present study, friedelin synthase from Maytenus ilicifolia (Celastraceae) was expressed heterologously in Saccharomyces cerevisiae. Site-directed mutagenesis studies were performed by replacing phenylalanine with tryptophan at position 473 (Phe473Trp), methionine with serine at position 549 (Met549Ser) and leucine with phenylalanine at position 552 (Leu552Phe). Mutation Phe473Trp led to a total loss of function; mutants Met549Ser and Leu552Phe interfered with the enzyme specificity leading to enhanced friedelin production, in addition to α-amyrin and β-amyrin. Hence, these data showed that methionine 549 and leucine 552 are important residues for the function of this synthase.
Collapse
|
25
|
Peña-Guerrero J, Fernández-Rubio C, Burguete-Mikeo A, El-Dirany R, García-Sosa AT, Nguewa P. Discovery and Validation of Lmj_04_BRCT Domain, a Novel Therapeutic Target: Identification of Candidate Drugs for Leishmaniasis. Int J Mol Sci 2021; 22:ijms221910493. [PMID: 34638841 PMCID: PMC8508789 DOI: 10.3390/ijms221910493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 01/09/2023] Open
Abstract
Since many of the currently available antileishmanial treatments exhibit toxicity, low effectiveness, and resistance, search and validation of new therapeutic targets allowing the development of innovative drugs have become a worldwide priority. This work presents a structure-based drug discovery strategy to validate the Lmj_04_BRCT domain as a novel therapeutic target in Leishmania spp. The structure of this domain was explored using homology modeling, virtual screening, and molecular dynamics studies. Candidate compounds were validated in vitro using promastigotes of Leishmania major, L. amazonensis, and L. infantum, as well as primary mouse macrophages infected with L. major. The novel inhibitor CPE2 emerged as the most active of a group of compounds against Leishmania, being able to significantly reduce the viability of promastigotes. CPE2 was also active against the intracellular forms of the parasites and significantly reduced parasite burden in murine macrophages without exhibiting toxicity in host cells. Furthermore, L. major promastigotes treated with CPE2 showed significant lower expression levels of several genes (α-tubulin, Cyclin CYCA, and Yip1) related to proliferation and treatment resistance. Our in silico and in vitro studies suggest that the Lmj_04_BRCT domain and its here disclosed inhibitors are new potential therapeutic options against leishmaniasis.
Collapse
Affiliation(s)
- José Peña-Guerrero
- Department of Microbiology and Parasitology, ISTUN Instituto de Salud Tropical, IdiSNA, Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, E-31008 Pamplona, Spain; (J.P.-G.); (C.F.-R.); (A.B.-M.); (R.E.-D.)
| | - Celia Fernández-Rubio
- Department of Microbiology and Parasitology, ISTUN Instituto de Salud Tropical, IdiSNA, Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, E-31008 Pamplona, Spain; (J.P.-G.); (C.F.-R.); (A.B.-M.); (R.E.-D.)
| | - Aroia Burguete-Mikeo
- Department of Microbiology and Parasitology, ISTUN Instituto de Salud Tropical, IdiSNA, Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, E-31008 Pamplona, Spain; (J.P.-G.); (C.F.-R.); (A.B.-M.); (R.E.-D.)
| | - Rima El-Dirany
- Department of Microbiology and Parasitology, ISTUN Instituto de Salud Tropical, IdiSNA, Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, E-31008 Pamplona, Spain; (J.P.-G.); (C.F.-R.); (A.B.-M.); (R.E.-D.)
| | - Alfonso T. García-Sosa
- Department of Molecular Technology, Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia
- Correspondence: (A.T.G.-S.); (P.N.); Tel.: +372-737-5270 (A.T.G.-S.); +34-948-425-600 (ext. 6434) (P.N.)
| | - Paul Nguewa
- Department of Microbiology and Parasitology, ISTUN Instituto de Salud Tropical, IdiSNA, Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, E-31008 Pamplona, Spain; (J.P.-G.); (C.F.-R.); (A.B.-M.); (R.E.-D.)
- Correspondence: (A.T.G.-S.); (P.N.); Tel.: +372-737-5270 (A.T.G.-S.); +34-948-425-600 (ext. 6434) (P.N.)
| |
Collapse
|
26
|
Aromatic Side Chain at Position 412 of SERINC5 Exerts Restriction Activity toward HIV-1 and Other Retroviruses. J Virol 2021; 95:e0063421. [PMID: 34190600 DOI: 10.1128/jvi.00634-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The host transmembrane protein SERINC5 is incorporated into viral particles and restricts infection by certain retroviruses. However, what motif of SERINC5 mediates this process remains elusive. By conducting mutagenesis analyses, we found that the substitution of phenylalanine with alanine at position 412 (F412A) resulted in a >75-fold reduction in SERINC5's restriction function. The F412A substitution also resulted in the loss of SERINC5's function to sensitize HIV-1 neutralization by antibodies recognizing the envelope's membrane proximal region. A series of biochemical analyses revealed that F412A showed steady-state protein expression, localization at the cellular membrane, and incorporation into secreted virus particles to a greater extent than in the wild type. Furthermore, introduction of several amino acid mutations at this position revealed that the aromatic side chains, including phenylalanine, tyrosine, and tryptophan, were required to maintain SERINC5 functions to impair the virus-cell fusion process and virion infectivity. Moreover, the wild-type SERINC5 restricted infection of lentiviruses pseudotyped with envelopes of murine leukemia viruses, simian immunodeficiency virus, and HIV-2, and F412A abrogated this function. Taken together, our results highlight the importance of the aromatic side chain at SERINC5 position 412 to maintain its restriction function against diverse retrovirus envelopes. IMPORTANCE The host protein SERINC5 is incorporated into progeny virions of certain retroviruses and restricts the infectivity of these viruses or sensitizes the envelope glycoprotein to a class of neutralizing antibodies. However, how and which part of SERINC5 engages with the diverse array of retroviral envelopes and exerts its antiretroviral functions remain elusive. During mutagenesis analyses, we eventually found that the single substitution of phenylalanine with alanine, but not with tyrosine or tryptophan, at position 412 (F412A) resulted in the loss of SERINC5's functions toward diverse retroviruses, whereas F412A showed steady-state protein expression, localization at the cellular membrane, and incorporation into progeny virions to a greater extent than the wild type. Results suggest that the aromatic side chain at position 412 of SERINC5 plays a critical role in mediating antiviral functions toward various retroviruses, thus providing additional important information regarding host and retrovirus interaction.
Collapse
|
27
|
Point-Substitution of Phenylalanine Residues of 26RFa Neuropeptide: A Structure-Activity Relationship Study. Molecules 2021; 26:molecules26144312. [PMID: 34299587 PMCID: PMC8307317 DOI: 10.3390/molecules26144312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/02/2022] Open
Abstract
26RFa is a neuropeptide that activates the rhodopsin-like G protein-coupled receptor QRFPR/GPR103. This peptidergic system is involved in the regulation of a wide array of physiological processes including feeding behavior and glucose homeostasis. Herein, the pharmacological profile of a homogenous library of QRFPR-targeting peptide derivatives was investigated in vitro on human QRFPR-transfected cells with the aim to provide possible insights into the structural determinants of the Phe residues to govern receptor activation. Our work advocates to include in next generations of 26RFa(20–26)-based QRFPR agonists effective substitutions for each Phe unit, i.e., replacement of the Phe22 residue by a constrained 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid moiety, and substitution of both Phe24 and Phe26 by their para-chloro counterpart. Taken as a whole, this study emphasizes that optimized modifications in the C-terminal part of 26RFa are mandatory to design selective and potent peptide agonists for human QRFPR.
Collapse
|
28
|
Comprehensive Assessment of the Relationship Between Site -2 Specificity and Helix α2 in the Erbin PDZ Domain. J Mol Biol 2021; 433:167115. [PMID: 34171344 DOI: 10.1016/j.jmb.2021.167115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/27/2021] [Accepted: 06/16/2021] [Indexed: 11/20/2022]
Abstract
PDZ domains are key players in signalling pathways. These modular domains generally recognize short linear C-terminal stretches of sequences in proteins that organize the formation of complex multi-component assemblies. The development of new methodologies for the characterization of the molecular principles governing these interactions is critical to fully understand the functional diversity of the family and to elucidate biological functions for family members. Here, we applied an in vitro evolution strategy to explore comprehensively the capacity of PDZ domains for specific recognition of different amino acids at a key position in C-terminal peptide ligands. We constructed a phage-displayed library of the Erbin PDZ domain by randomizing the binding site-2 and adjacent residues, which are all contained in helix α2, and we selected for variants binding to a panel of peptides representing all possible position-2 residues. This approach generated insights into the basis for the common natural class I and II specificities, demonstrated an alternative basis for a rare natural class III specificity for Asp-2, and revealed a novel specificity for Arg-2 that has not been reported in natural PDZ domains. A structure of a PDZ-peptide complex explained the minimum requirement for switching specificity from class I ligands containing Thr/Ser-2 to class II ligands containing hydrophobic residues at position-2. A second structure explained the molecular basis for the specificity for ligands containing Arg-2. Overall, the evolved PDZ variants greatly expand our understanding of site-2 specificities and the variants themselves may prove useful as building blocks for synthetic biology.
Collapse
|
29
|
Wang H, Yan K, Wang R, Yang Y, Shen Y, Yu C, Chen L. Antibody heavy chain CDR3 length-dependent usage of human IGHJ4 and IGHJ6 germline genes. Antib Ther 2021; 4:101-108. [PMID: 34195544 PMCID: PMC8237691 DOI: 10.1093/abt/tbab010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/26/2022] Open
Abstract
Therapeutic antibody discovery using synthetic diversity has been proved productive, especially for target proteins not suitable for traditional animal immunization-based antibody discovery approaches. Recently, many lines of evidences suggest that the quality of synthetic diversity design limits the development success of synthetic antibody hits. The aim of our study is to understand the quality limitation and to properly address the challenges with a better design. Using VH3–23 as a model framework, we observed and quantitatively mapped CDR-H3 loop length-dependent usage of human IGHJ4 and IGHJ6 germline genes in the natural human immune repertoire. Skewed usage of DH2-JH6 and DH3-JH6 rearrangements was quantitatively determined in a CDR-H3 length-dependent manner in natural human antibodies with long CDR-H3 loops. Structural modeling suggests choices of JH help to stabilize antibody CDR-H3 loop and JH only partially contributes to the paratope. Our observations shed light on the design of next-generation synthetic diversity with improved probability of success.
Collapse
Affiliation(s)
- Huimin Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, #15 Beisanhuandong Rd, Chaoyang District, Beijing 100029, China
| | - Kai Yan
- Biotherapeutics, Biocytogen Pharmaceuticals (Beijing) Co. Ltd., #12 Baoshennan St, Daxing District, Beijing 102629, China
| | - Ruixue Wang
- Biotherapeutics, Biocytogen Pharmaceuticals (Beijing) Co. Ltd., #12 Baoshennan St, Daxing District, Beijing 102629, China
| | - Yi Yang
- Biotherapeutics, Biocytogen Pharmaceuticals (Beijing) Co. Ltd., #12 Baoshennan St, Daxing District, Beijing 102629, China
| | - Yuelei Shen
- Biotherapeutics, Biocytogen Pharmaceuticals (Beijing) Co. Ltd., #12 Baoshennan St, Daxing District, Beijing 102629, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, #15 Beisanhuandong Rd, Chaoyang District, Beijing 100029, China
| | - Lei Chen
- Biotherapeutics, Biocytogen Pharmaceuticals (Beijing) Co. Ltd., #12 Baoshennan St, Daxing District, Beijing 102629, China
| |
Collapse
|
30
|
Bera S, Dong X, Krishnarjuna B, Raab SA, Hales DA, Ji W, Tang Y, Shimon LJ, Ramamoorthy A, Clemmer DE, Wei G, Gazit E. Solid-state packing dictates the unexpected solubility of aromatic peptides. CELL REPORTS. PHYSICAL SCIENCE 2021; 2:100391. [PMID: 33928264 PMCID: PMC8063180 DOI: 10.1016/j.xcrp.2021.100391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/11/2021] [Accepted: 03/12/2021] [Indexed: 05/10/2023]
Abstract
The understanding and prediction of the solubility of biomolecules, even of the simplest ones, reflect an open question and unmet need. Short aromatic tripeptides are among the most highly aggregative biomolecules. However, in marked contrast, Ala-Phe-Ala (AFA) was surprisingly found to be non-aggregative and could be solubilized at millimolar concentrations. Here, aiming to uncover the underlying molecular basis of its high solubility, we explore in detail the solubility, aggregation propensity, and atomic-level structure of the tripeptide. We demonstrate an unexpectedly high water solubility of AFA reaching 672 mM, two orders of magnitude higher than reported previously. The single crystal structure reveals an anti-parallel β sheet conformation devoid of any aromatic interactions. This study provides clear mechanistic insight into the structural basis of solubility and suggests a simple and feasible tool for its estimation, bearing implications for design of peptide drugs, peptides materials, and advancement of peptide nanotechnology.
Collapse
Affiliation(s)
- Santu Bera
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Xuewei Dong
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), Fudan University, Shanghai, 200433, People’s Republic of China
| | - Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Shannon A. Raab
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN 47401, USA
| | - David A. Hales
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN 47401, USA
- Department of Chemistry, Hendrix College, Conway, AR 72032, USA
| | - Wei Ji
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), Fudan University, Shanghai, 200433, People’s Republic of China
| | - Linda J.W. Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - David E. Clemmer
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN 47401, USA
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), Fudan University, Shanghai, 200433, People’s Republic of China
| | - Ehud Gazit
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
31
|
Mitra D, Das Mohapatra PK. Discovery of Novel Cyclic Salt Bridge in Thermophilic Bacterial Protease and Study of its Sequence and Structure. Appl Biochem Biotechnol 2021; 193:1688-1700. [PMID: 33683551 DOI: 10.1007/s12010-021-03547-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/26/2021] [Indexed: 11/30/2022]
Abstract
The plausible explanation behind the stability of thermophilic protein is still yet to be defined more clearly. Here, an in silico study has been undertaken by investigating the sequence and structure of protease from thermophilic (tPro) bacteria and mesophilic (mPro) bacteria. Results showed that charged and uncharged polar residues have higher abundance in tPro. In extreme environment, the tPro is stabilized by high number of isolated and network salt bridges. A novel cyclic salt bridge is also found in a structure of tPro. High number of metal ion-binding site also helps in protein stabilization of thermophilic protease. Aromatic-aromatic interactions also play a crucial role in tPro stabilization. Formation of long network aromatic-aromatic interactions also first time reported here. Finally, the present study provides a major insight with a newly identified cyclic salt bridge in the stability of the enzyme, which may be helpful for protein engineering. It is also used in industrial applications for human welfare.
Collapse
Affiliation(s)
- Debanjan Mitra
- Department of Microbiology, Raiganj University, Raiganj, WB, India
| | | |
Collapse
|
32
|
Kerth CM, Hautvast P, Körner J, Lampert A, Meents JE. Phosphorylation of a chronic pain mutation in the voltage-gated sodium channel Nav1.7 increases voltage sensitivity. J Biol Chem 2021; 296:100227. [PMID: 33361158 PMCID: PMC7948457 DOI: 10.1074/jbc.ra120.014288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022] Open
Abstract
Mutations in voltage-gated sodium channels (Navs) can cause alterations in pain sensation, such as chronic pain diseases like inherited erythromelalgia. The mutation causing inherited erythromelalgia, Nav1.7 p.I848T, is known to induce a hyperpolarized shift in the voltage dependence of activation in Nav1.7. So far, however, the mechanism to explain this increase in voltage sensitivity remains unknown. In the present study, we show that phosphorylation of the newly introduced Thr residue explains the functional change. We expressed wildtype human Nav1.7, the I848T mutant, or other mutations in HEK293T cells and performed whole-cell patch-clamp electrophysiology. As the insertion of a Thr residue potentially creates a novel phosphorylation site for Ser/Thr kinases and because Nav1.7 had been shown in Xenopus oocytes to be affected by protein kinases C and A, we used different nonselective and selective kinase inhibitors and activators to test the effect of phosphorylation on Nav1.7 in a human system. We identify protein kinase C, but not protein kinase A, to be responsible for the phosphorylation of T848 and thereby for the shift in voltage sensitivity. Introducing a negatively charged amino acid instead of the putative phosphorylation site mimics the effect on voltage gating to a lesser extent. 3D modeling using the published cryo-EM structure of human Nav1.7 showed that introduction of this negatively charged site seems to alter the interaction of this residue with the surrounding amino acids and thus to influence channel function. These results could provide new opportunities for the development of novel treatment options for patients with chronic pain.
Collapse
Affiliation(s)
- Clara M Kerth
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Petra Hautvast
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Jannis Körner
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany; Department of Anesthesiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Angelika Lampert
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Jannis E Meents
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
33
|
Jaramillo-Martinez V, Urbatsch IL, Ganapathy V. Functional Distinction between Human and Mouse Sodium-Coupled Citrate Transporters and Its Biologic Significance: An Attempt for Structural Basis Using a Homology Modeling Approach. Chem Rev 2020; 121:5359-5377. [PMID: 33040525 DOI: 10.1021/acs.chemrev.0c00529] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
NaCT (SLC13A5; mINDY), a sodium-coupled citrate transporter, is the mammalian ortholog of Drosophila INDY. Loss-of-function mutations in human NaCT cause severe complications with neonatal epilepsy and encephalopathy (EIEE25). Surprisingly, mice lacking this transporter do not have this detrimental brain phenotype. The marked differences in transport kinetics between mouse and human NaCTs provide at least a partial explanation for this conundrum, but a structural basis for the differences is lacking. Neither human nor mouse NaCT has been crystallized, and any information known on their structures is based entirely on what was inferred from the structure of VcINDY, a related transporter in bacteria. Here, we highlight the functional features of human and mouse NaCTs and provide a plausible molecular basis for the differences based on a full-length homology modeling approach. The transport characteristics of human NaCT markedly differ from those of VcINDY. Therefore, the modeling with VcINDY as the template is flawed, but this is the best available option at this time. With the newly deduced model, we determined the likely locations of the disease-causing mutations and propose a new classification for the mutations based on their location and potential impact on transport function. This new information should pave the way for future design and development of novel therapeutics to restore the lost function of the mutant transporters as a treatment strategy for patients with EIEE25.
Collapse
Affiliation(s)
- Valeria Jaramillo-Martinez
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Ina L Urbatsch
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States.,Center for Membrane Protein Research and Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States.,Center for Membrane Protein Research and Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| |
Collapse
|
34
|
Rivas Marquina A, Movilla F, Sánchez Montilva OC, Rentschler E, Carrella L, Albores P, Di Salvo F. Nickel(II) complexes based on L-amino-acid-derived ligands: synthesis, characterization and study of the role of the supramolecular structure in carbon dioxide capture. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2020; 76:825-838. [PMID: 33017316 PMCID: PMC7535065 DOI: 10.1107/s2052520620010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
The formation of the symmetrical μ3-carbonate-bridged self-assembled trinuclear NiII complex Na2{[Ni(LO)2(H2O)]3(μ3-CO3)} (LO is the carboxylate anion of a L-tyrosine derivative), involves atmospheric CO2 uptake. The asymmetric unit of the complex comprises an octahedral coordination for the NiII with two L-tyrosine-based ligands, a water molecule and one O atom of the carbonate bridge. The Ni3-μ3-CO3 core in this compound is the first reported of this kind according to the Cambridge Structural Database (CSD). The supramolecular structure is mainly sustained by hydrogen bonds developed by the phenolic functionality of the L-tyrosine moiety of one ligand and the carboxylate group of a neighbouring ligand. The crystal packing is then characterized by three interpenetrated supramolecular helices associated with a diastereoisomer of the type R-supP, which is essential for the assembly process. Magnetic susceptibility and magnetization data support weak ferromagnetic exchange interactions within the novel Ni3-μ3-CO3 core. The NiII complex obtained under the same synthetic conditions but using the analogous ligand derived from the amino acid L-phenylalanine instead of L-tyrosine gives rise to to a mononuclear octahedral system. The results obtained for the different complexes demonstrate the role of the supramolecular structure regarding the CO2 uptake property for these NiII-amino-acid-based systems.
Collapse
Affiliation(s)
- Andrea Rivas Marquina
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón 2, Piso 3, Ciudad Universitaria, Ciudad de Buenos Aires, C1428EGA, Argentina
| | - Federico Movilla
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón 2, Piso 3, Ciudad Universitaria, Ciudad de Buenos Aires, C1428EGA, Argentina
| | - Olga Carolina Sánchez Montilva
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón 2, Piso 3, Ciudad Universitaria, Ciudad de Buenos Aires, C1428EGA, Argentina
| | - Eva Rentschler
- Institute of Inorganic and Analytical Chemistry, Duesbergweg 10-12, Mainz, 55128, Germany
| | - Luca Carrella
- Institute of Inorganic and Analytical Chemistry, Duesbergweg 10-12, Mainz, 55128, Germany
| | - Pablo Albores
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón 2, Piso 3, Ciudad Universitaria, Ciudad de Buenos Aires, C1428EGA, Argentina
| | - Florencia Di Salvo
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón 2, Piso 3, Ciudad Universitaria, Ciudad de Buenos Aires, C1428EGA, Argentina
| |
Collapse
|
35
|
Meshram RJ, Bagul KT, Aouti SU, Shirsath AM, Duggal H, Gacche RN. Modeling and simulation study to identify threonine synthase as possible drug target in Leishmania major. Mol Divers 2020; 25:1679-1700. [PMID: 32737682 DOI: 10.1007/s11030-020-10129-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/22/2020] [Indexed: 01/16/2023]
Abstract
Leishmaniasis is one of the most neglected tropical diseases that demand immediate attention to the identification of new drug targets and effective drug candidates. The present study demonstrates the possibility of using threonine synthase (TS) as a putative drug target in leishmaniasis disease management. We report the construction of an effective homology model of the enzyme that appears to be structurally as well as functionally well conserved. The 200 nanosecond molecular dynamics data on TS with and without pyridoxal phosphate (PLP) shed light on mechanistic details of PLP-induced conformational changes. Moreover, we address some important structural and dynamic interactions in the PLP binding region of TS that are in good agreement with previously speculated crystallographic estimations. Additionally, after screening more than 44,000 compounds, we propose 10 putative inhibitor candidates for TS based on virtual screening data and refined Molecular Mechanics Generalized Born Surface Area calculations. We expect that structural and functional dynamics data disclosed in this study will help initiate experimental endeavors toward establishing TS as an effective antileishmanial drug target.
Collapse
Affiliation(s)
- Rohan J Meshram
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
| | - Kamini T Bagul
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Snehal U Aouti
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Akshay M Shirsath
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Harleen Duggal
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Rajesh N Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| |
Collapse
|
36
|
Park JY, Kim HJ, Pathak C, Yoon HJ, Kim DH, Park SJ, Lee BJ. Induced DNA bending by unique dimerization of HigA antitoxin. IUCRJ 2020; 7:748-760. [PMID: 32695421 PMCID: PMC7340258 DOI: 10.1107/s2052252520006466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
The bacterial toxin-antitoxin (TA) system regulates cell growth under various environmental stresses. Mycobacterium tuberculosis, the causative pathogen of tuberculosis (TB), has three HigBA type II TA systems with reverse gene organization, consisting of the toxin protein HigB and labile antitoxin protein HigA. Most type II TA modules are transcriptionally autoregulated by the antitoxin itself. In this report, we first present the crystal structure of the M. tuberculosis HigA3 antitoxin (MtHigA3) and MtHigA3 bound to its operator DNA complex. We also investigated the interaction between MtHigA3 and DNA using NMR spectroscopy. The MtHigA3 antitoxin structure is a homodimer that contains a structurally well conserved DNA-binding domain at the N-terminus and a dimerization domain at the C-terminus. Upon comparing the HigA homologue structures, a distinct difference was found in the C-terminal region that possesses the β-lid, and diverse orientations of two helix-turn-helix (HTH) motifs from HigA homologue dimers were observed. The structure of MtHigA3 bound to DNA reveals that the promoter DNA is bound to two HTH motifs of the MtHigA3 dimer presenting 46.5° bending, and the distance between the two HTH motifs of each MtHigA3 monomer was increased in MtHigA3 bound to DNA. The β-lid, which is found only in the tertiary structure of MtHigA3 among the HigA homologues, causes the formation of a tight dimerization network and leads to a unique arrangement for dimer formation that is related to the curvature of the bound DNA. This work could contribute to the understanding of the HigBA system of M. tuberculosis at the atomic level and may contribute to the development of new antibiotics for TB treatment.
Collapse
Affiliation(s)
- Jin-Young Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyo Jung Kim
- College of Pharmacy, Woosuk University, Wanju 55338, Republic of Korea
| | - Chinar Pathak
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Leicester Institute of Structural and Chemical Biology, University of Leicester, United Kingdom
| | - Hye-Jin Yoon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Do-Hee Kim
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, 534-2 Yeonsu-dong,Yeonsu-gu, Incheon 13120, Republic of Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
37
|
Sharma V, Wakode S. Investigating the role of N-terminal domain in phosphodiesterase 4B-inhibition by molecular dynamics simulation. J Biomol Struct Dyn 2020; 39:4270-4278. [PMID: 32552529 DOI: 10.1080/07391102.2020.1780154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Phosphodiesterase 4B (PDE4B) is a potential therapeutic target for the inflammatory respiratory diseases such as congestive obstructive pulmonary disease (COPD) and asthma. The sequence identity of ∼88% with its isoform PDE4D is the key barrier in developing selective PDE4B inhibitors which may help to overcome associated side effects. Despite high sequence identity, both isoforms differ in few residues present in N-terminal (UCR2) and C-terminal (CR3) involved in catalytic site formation. Previously, we designed and tested specific PDE4B inhibitors considering N-terminal residues as a part of the catalytic cavity. In continuation, current work thoroughly presents an MD simulation-based analysis of N-terminal residues and their role in ligand binding. The various parameters viz. root mean square deviation (RMSD), radius of gyration (Rg), root mean square fluctuation (RMSF), principal component analysis (PCA), dynamical cross-correlation matrix (DCCM) analysis, secondary structure analysis and residue interaction mapping were investigated to establish rational. Results showed that UCR2 reduced RMSF values for the metal binding pocket (31.5 ± 11 to 13.12 ± 6 Å2) and the substrate-binding pocket (38.8 ± 32 to 17.3 ± 11 Å2). UCR2 enhanced anti-correlated motion at the active site region that led to the improved ligand-binding affinity of PDE4B from -24.57 ± 3 to -35.54 ± 2 kcal/mol. Further, the atomic-level analysis indicated that T-π and π-π interactions between inhibitors and residues are vital forces that regulate inhibitor association to PDE4B with high affinity. In conclusion, UCR2, the N-terminal domain, embraces the dynamics of PDE4B active site and stabilizes PDE4B inhibitor interactions. Therefore the N-terminal domain needs to be considered while designing next-generation, selective PDE4B-inhibitors as potential anti-inflammatory drugs. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vidushi Sharma
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences & Research, New Delhi, India
| | - Sharad Wakode
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences & Research, New Delhi, India
| |
Collapse
|
38
|
Raja M, Kinne RKH. Mechanistic Insights into Protein Stability and Self-aggregation in GLUT1 Genetic Variants Causing GLUT1-Deficiency Syndrome. J Membr Biol 2020; 253:87-99. [PMID: 32025761 PMCID: PMC7150661 DOI: 10.1007/s00232-020-00108-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/14/2020] [Indexed: 12/23/2022]
Abstract
Human sodium-independent glucose cotransporter 1 (hGLUT1) has been studied for its tetramerization and multimerization at the cell surface. Homozygous or compound heterozygous mutations in hGLUT1 elicit GLUT1-deficiency syndrome (GLUT1-DS), a metabolic disorder, which results in impaired glucose transport into the brain. The reduced cell surface expression or loss of function have been shown for some GLUT1 mutants. However, the mechanism by which deleterious mutations affect protein structure, conformational stability and GLUT1 oligomerization is not known and require investigation. In this review, we combined previous knowledge of GLUT1 mutations with hGLUT1 crystal structure to analyze native interactions and several natural single-point mutations. The modeling of native hGLUT1 structure confirmed the roles of native residues in forming a range of side-chain interactions. Interestingly, the modeled mutants pointed to the formation of a variety of non-native novel interactions, altering interaction networks and potentially eliciting protein misfolding. Self-aggregation of the last part of hGLUT1 was predicted using protein aggregation prediction tool. Furthermore, an increase in aggregation potential in the aggregation-prone regions was estimated for several mutants suggesting increased aggregation of misfolded protein. Protein stability change analysis predicted that GLUT1 mutant proteins are unstable. Combining GLUT1 oligomerization behavior with our modeling, aggregation prediction, and protein stability analyses, this work provides state-of-the-art view of GLUT1 genetic mutations that could destabilize native interactions, generate novel interactions, trigger protein misfolding, and enhance protein aggregation in a disease state.
Collapse
Affiliation(s)
- Mobeen Raja
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
- Algonquin College, 1385 Woodroffe Avenue, Ottawa, ON K2G 1V8 Canada
| | - Rolf K. H. Kinne
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| |
Collapse
|
39
|
Ilyas H, Kim J, Lee D, Malmsten M, Bhunia A. Structural insights into the combinatorial effects of antimicrobial peptides reveal a role of aromatic-aromatic interactions in antibacterial synergism. J Biol Chem 2019; 294:14615-14633. [PMID: 31383740 DOI: 10.1074/jbc.ra119.009955] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/02/2019] [Indexed: 01/10/2023] Open
Abstract
The recent development of plants that overexpress antimicrobial peptides (AMPs) provides opportunities for controlling plant diseases. Because plants employ a broad-spectrum antimicrobial defense, including those based on AMPs, transgenic modification for AMP overexpression represents a potential way to utilize a defense system already present in plants. Herein, using an array of techniques and approaches, we report on VG16KRKP and KYE28, two antimicrobial peptides, which in combination exhibit synergistic antimicrobial effects against plant pathogens and are resistant against plant proteases. Investigating the structural origin of these synergistic antimicrobial effects with NMR spectroscopy of the complex formed between these two peptides and their mutated analogs, we demonstrate the formation of an unusual peptide complex, characterized by the formation of a bulky hydrophobic hub, stabilized by aromatic zippers. Using three-dimensional structure analyses of the complex in bacterial outer and inner membrane components and when bound to lipopolysaccharide (LPS) or bacterial membrane mimics, we found that this structure is key for elevating antimicrobial potency of the peptide combination. We conclude that the synergistic antimicrobial effects of VG16KRKP and KYE28 arise from the formation of a well-defined amphiphilic dimer in the presence of LPS and also in the cytoplasmic bacterial membrane environment. Together, these findings highlight a new application of solution NMR spectroscopy to solve complex structures to study peptide-peptide interactions, and they underscore the importance of structural insights for elucidating the antimicrobial effects of AMP mixtures.
Collapse
Affiliation(s)
- Humaira Ilyas
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - JaeWoong Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 139743, Korea
| | - DongKuk Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 139743, Korea
| | - Martin Malmsten
- Department of Pharmacy, Uppsala University, SE-75123 Uppsala, Sweden .,Department of Pharmacy, University of Copenhagen, DK 2100, Copenhagen, Denmark
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| |
Collapse
|
40
|
Kang SM, Kim DH, Jin C, Ahn HC, Lee BJ. The crystal structure of AcrR from Mycobacterium tuberculosis reveals a one-component transcriptional regulation mechanism. FEBS Open Bio 2019; 9:1713-1725. [PMID: 31369208 PMCID: PMC6768106 DOI: 10.1002/2211-5463.12710] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022] Open
Abstract
Transcriptional regulator proteins are closely involved in essential survival strategies in bacteria. AcrR is a one-component allosteric repressor of the genes associated with lipid transport and antibiotic resistance. When fatty acid ligands bind to the C-terminal ligand-binding cavity of AcrR, a conformational change in the N-terminal operator-binding region of AcrR is triggered, which releases the repressed DNA and initiates transcription. This paper focuses on the structural transition mechanism of AcrR of Mycobacterium tuberculosis upon DNA and ligand binding. AcrR loses its structural integrity upon ligand-mediated structural alteration and bends toward the promoter DNA in a more compact form, initiating a rotational motion. Our functional characterization of AcrR and description of the ligand- and DNA-recognition mechanism may facilitate the discovery of new therapies for tuberculosis.
Collapse
Affiliation(s)
- Sung-Min Kang
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Do-Hee Kim
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Chenglong Jin
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Hee-Chul Ahn
- Department of Pharmacy, Dongguk University-Seoul, Ilsandong-gu, Goyang, Korea
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|
41
|
Musa MSM, Sulaiman WRW, Majid ZA, Majid ZA, Idris AK, Rajaei K. Application of henna extract in minimizing surfactant adsorption on quartz sand in saline condition: A sacrificial agent approach. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0870-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
42
|
Sengupta P, Banerjee N, Roychowdhury T, Dutta A, Chattopadhyay S, Chatterjee S. Site-specific amino acid substitution in dodecameric peptides determines the stability and unfolding of c-MYC quadruplex promoting apoptosis in cancer cells. Nucleic Acids Res 2019; 46:9932-9950. [PMID: 30239898 PMCID: PMC6212778 DOI: 10.1093/nar/gky824] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022] Open
Abstract
c-MYC proto-oncogene harbours a transcription-inhibitory quadruplex-forming scaffold (Pu27) upstream P1 promoter providing anti-neoplastic therapeutic target. Previous reports showed the binding profile of human Cathelicidin peptide (LL37) and telomeric G-quadruplex. Here, we truncated the quadruplex-binding domain of LL37 to prepare a small library of peptides through site-specific amino acid substitution. We investigated the intracellular selectivity of peptides for Pu27 over other oncogenic quadruplexes and their role in c-MYC promoter repression by dual-luciferase assays. We analysed their thermodynamics of binding reactions with c-MYC quadruplex isomers (Pu27, Myc22, Pu19) by Isothermal Titration Calorimetry. We discussed how amino acid substitutions and peptide helicity enhanced/weakened their affinities for c-MYC quadruplexes and characterized specific non-covalent inter-residual interactions determining their selectivity. Solution NMR structure indicated that KR12C, the best peptide candidate, selectively stabilized the 5′-propeller loop of c-MYC quadruplex by arginine-driven electrostatic-interactions at the sugar-phosphate backbone while KR12A peptide destabilized the quadruplex inducing a single-stranded hairpin-like conformation. Chromatin immunoprecipitations envisaged that KR12C and KR12A depleted and enriched Sp1 and NM23-H2 (Nucleoside diphosphate kinase) occupancy at Pu27 respectively supporting their regulation in stabilizing and unfolding c-MYC quadruplex in MCF-7 cells. We deciphered that selective arresting of c-MYC transcription by KR12C triggered apoptotic-signalling pathway via VEGF-A-BCL-2 axis.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Nilanjan Banerjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Tanaya Roychowdhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Anindya Dutta
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Samit Chattopadhyay
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| |
Collapse
|
43
|
Musik JE, Zalucki YM, Day CJ, Jennings MP. Efficient function of signal peptidase 1 of Escherichia coli is partly determined by residues in the mature N-terminus of exported proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1018-1022. [PMID: 30849301 DOI: 10.1016/j.bbamem.2019.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 11/25/2022]
Abstract
Exported proteins require an N-terminal signal peptide to direct them from the cytoplasm to the periplasm. Once the protein has been translocated across the cytoplasmic membrane, the signal peptide is cleaved by a signal peptidase, allowing the remainder of the protein to fold into its mature state in the periplasm. Signal peptidase I (LepB) cleaves non-lipoproteins and recognises the sequence Ala-X-Ala. Amino acids present at the N-terminus of mature, exported proteins have been shown to affect the efficiency at which the protein is exported. Here we investigated a bias against aromatic amino acids at the second position in the mature protein (P2'). Maltose binding protein (MBP) was mutated to introduce aromatic amino acids (tryptophan, tyrosine and phenylalanine) at P2'. All mutants with aromatic amino acids at P2' were exported less efficiently as indicated by a slight increase in precursor protein in vivo. Binding of LepB to peptides that encompass the MBP cleavage site were analysed using surface plasmon resonance. These studies showed peptides with an aromatic amino acid at P2' had a slower off rate, due to a significantly higher binding affinity for LepB. These data are consistent with the accumulation of small amounts of preMBP in purified protein samples. Hence, the reason for the lack of aromatic amino acids at P2' in E. coli is likely due to interference with efficient LepB activity. These data and previous bioinformatics strongly suggest that aromatic amino acids are not preferred at P2' and this should be incorporated into signal peptide prediction algorithms.
Collapse
Affiliation(s)
- Joanna E Musik
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Yaramah M Zalucki
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia.
| | - Christopher J Day
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia.
| |
Collapse
|
44
|
Lee J, Ju M, Cho OH, Kim Y, Nam KT. Tyrosine-Rich Peptides as a Platform for Assembly and Material Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801255. [PMID: 30828522 PMCID: PMC6382316 DOI: 10.1002/advs.201801255] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/27/2018] [Indexed: 05/27/2023]
Abstract
The self-assembly of biomolecules can provide a new approach for the design of functional systems with a diverse range of hierarchical nanoarchitectures and atomically defined structures. In this regard, peptides, particularly short peptides, are attractive building blocks because of their ease of establishing structure-property relationships, their productive synthesis, and the possibility of their hybridization with other motifs. Several assembling peptides, such as ionic-complementary peptides, cyclic peptides, peptide amphiphiles, the Fmoc-peptide, and aromatic dipeptides, are widely studied. Recently, studies on material synthesis and the application of tyrosine-rich short peptide-based systems have demonstrated that tyrosine units serve as not only excellent assembly motifs but also multifunctional templates. Tyrosine has a phenolic functional group that contributes to π-π interactions for conformation control and efficient charge transport by proton-coupled electron-transfer reactions in natural systems. Here, the critical roles of the tyrosine motif with respect to its electrochemical, chemical, and structural properties are discussed and recent discoveries and advances made in tyrosine-rich short peptide systems from self-assembled structures to peptide/inorganic hybrid materials are highlighted. A brief account of the opportunities in design optimization and the applications of tyrosine peptide-based biomimetic materials is included.
Collapse
Affiliation(s)
- Jaehun Lee
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Misong Ju
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Ouk Hyun Cho
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Younghye Kim
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
45
|
Novakowski KE, Yap NVL, Yin C, Sakamoto K, Heit B, Golding GB, Bowdish DME. Human-Specific Mutations and Positively Selected Sites in MARCO Confer Functional Changes. Mol Biol Evol 2019; 35:440-450. [PMID: 29165618 DOI: 10.1093/molbev/msx298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Macrophage Receptor with COllagenous structure (MARCO) is a class A scavenger receptor that binds, phagocytoses, and modifies inflammatory responses to bacterial pathogens. Multiple candidate gene approach studies have shown that polymorphisms in MARCO are associated with susceptibility or resistance to Mycobacterium tuberculosis infection, but how these variants alter function is not known. To complement candidate gene approach studies, we previously used phylogenetic analyses to identify a residue, glutamine 452 (Q452), within the ligand-binding Scavenger Receptor Cysteine Rich domain as undergoing positive selection in humans. Herein, we show that Q452 is found in Denisovans, Neanderthals, and extant humans, but all other nonprimate, terrestrial, and aquatic mammals possess an aspartic acid (D452) residue. Further analysis of hominoid sequences of MARCO identified an additional human-specific mutation, phenylalanine 282 (F282), within the collagenous domain. We show that residue 282 is polymorphic in humans, but only 17% of individuals (rs6761637) possess the ancestral serine residue at position 282. We show that rs6761637 is in linkage disequilibrium with MARCO polymorphisms that have been previously linked to susceptibility to pulmonary tuberculosis. To assess the functional importance of sites Q452 and F282 in humans, we cloned the ancestral residues and loss-of-function mutations and investigated the role of these residues in binding and internalizing polystyrene microspheres and Escherichia coli. Herein, we show that the residues at sites 452 and 282 enhance receptor function.
Collapse
Affiliation(s)
- Kyle E Novakowski
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Nicholas V L Yap
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Charles Yin
- Department of Microbiology and Immunology and The Centre for Human Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Kaori Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Bryan Heit
- Department of Microbiology and Immunology and The Centre for Human Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - G Brian Golding
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Dawn M E Bowdish
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
46
|
Mahalakshmi R. Aromatic interactions in β-hairpin scaffold stability: A historical perspective. Arch Biochem Biophys 2018; 661:39-49. [PMID: 30395808 DOI: 10.1016/j.abb.2018.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 01/21/2023]
Abstract
Non-covalent interactions between naturally occurring aromatic residues have been widely exploited as scaffold stabilizing agents in de novo designed peptides and in Nature - inspired structures. Our understanding of the factors driving aromatic interactions and their observed interaction geometries have advanced remarkably with improvements in conventional structural studies, availability of novel molecular methods and in silico studies, which have together provided atomistic information on aromatic interactions and interaction strengths. This review attempts to recapitulate the early advances in our understanding of aromatic interactions as stabilizing agents of peptide β-hairpins.
Collapse
Affiliation(s)
- Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, 462066, India.
| |
Collapse
|
47
|
Xu Y, Da Silva WL, Qian Y, Gray SM. An aromatic amino acid and associated helix in the C-terminus of the potato leafroll virus minor capsid protein regulate systemic infection and symptom expression. PLoS Pathog 2018; 14:e1007451. [PMID: 30440046 PMCID: PMC6264904 DOI: 10.1371/journal.ppat.1007451] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 11/29/2018] [Accepted: 11/01/2018] [Indexed: 12/26/2022] Open
Abstract
The C-terminal region of the minor structural protein of potato leafroll virus (PLRV), known as the readthrough protein (RTP), is involved in efficient virus movement, tissue tropism and symptom development. Analysis of numerous C-terminal deletions identified a five-amino acid motif that is required for RTP function. A PLRV mutant expressing RTP with these five amino acids deleted (Δ5aa-RTP) was compromised in systemic infection and symptom expression. Although the Δ5aa-RTP mutant was able to move long distance, limited infection foci were observed in systemically infected leaves suggesting that these five amino acids regulate virus phloem loading in the inoculated leaves and/or unloading into the systemically infected tissues. The 5aa deletion did not alter the efficiency of RTP translation, nor impair RTP self-interaction or its interaction with P17, the virus movement protein. However, the deletion did alter the subcellular localization of RTP. When co-expressed with a PLRV infectious clone, a GFP tagged wild-type RTP was localized to discontinuous punctate spots along the cell periphery and was associated with plasmodesmata, although localization was dependent upon the developmental stage of the plant tissue. In contrast, the Δ5aa-RTP-GFP aggregated in the cytoplasm. Structural modeling indicated that the 5aa deletion would be expected to perturb an α-helix motif. Two of 30 plants infected with Δ5aa-RTP developed a wild-type virus infection phenotype ten weeks post-inoculation. Analysis of the virus population in these plants by deep sequencing identified a duplication of sequences adjacent to the deletion that were predicted to restore the α-helix motif. The subcellular distribution of the RTP is regulated by the 5-aa motif which is under strong selection pressure and in turn contributes to the efficient long distance movement of the virus and the induction of systemic symptoms.
Collapse
Affiliation(s)
- Yi Xu
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science, Cornell University, Ithaca, NY, United States of America
| | - Washington Luis Da Silva
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science, Cornell University, Ithaca, NY, United States of America
| | - Yajuan Qian
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Stewart M. Gray
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science, Cornell University, Ithaca, NY, United States of America
- Emerging Pest and Pathogens Research Unit, USDA, ARS, Ithaca, NY, United States of America
| |
Collapse
|
48
|
Zappi D, Masci G, Sadun C, Tortolini C, Antonelli ML, Bollella P. Evaluation of new cholinium-amino acids based room temperature ionic liquids (RTILs) as immobilization matrix for electrochemical biosensor development: Proof-of-concept with Trametes Versicolor laccase. Microchem J 2018. [DOI: 10.1016/j.microc.2018.05.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Critical Role of the Human T-Cell Leukemia Virus Type 1 Capsid N-Terminal Domain for Gag-Gag Interactions and Virus Particle Assembly. J Virol 2018; 92:JVI.00333-18. [PMID: 29695435 DOI: 10.1128/jvi.00333-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/24/2018] [Indexed: 01/28/2023] Open
Abstract
The retroviral Gag protein is the main structural protein responsible for virus particle assembly and release. Like human immunodeficiency virus type 1 (HIV-1) Gag, human T-cell leukemia virus type 1 (HTLV-1) has a structurally conserved capsid (CA) domain, including a β-hairpin turn and a centralized coiled-coil-like structure of six α helices in the CA amino-terminal domain (NTD), as well as four α-helices in the CA carboxy-terminal domain (CTD). CA drives Gag oligomerization, which is critical for both immature Gag lattice formation and particle production. The HIV-1 CA CTD has previously been shown to be a primary determinant for CA-CA interactions, and while both the HTLV-1 CA NTD and CTD have been implicated in Gag-Gag interactions, our recent observations have implicated the HTLV-1 CA NTD as encoding key determinants that dictate particle morphology. Here, we have conducted alanine-scanning mutagenesis in the HTLV-1 CA NTD nucleotide-encoding sequences spanning the loop regions and amino acids at the beginning and ends of α-helices due to their structural dissimilarity from the HIV-1 CA NTD structure. We analyzed both Gag subcellular distribution and efficiency of particle production for these mutants. We discovered several important residues (i.e., M17, Q47/F48, and Y61). Modeling implicated that these residues reside at the dimer interface (i.e., M17 and Y61) or at the trimer interface (i.e., Q47/F48). Taken together, these observations highlight the critical role of the HTLV-1 CA NTD in Gag-Gag interactions and particle assembly, which is, to the best of our knowledge, in contrast to HIV-1 and other retroviruses.IMPORTANCE Retrovirus particle assembly and release from infected cells is driven by the Gag structural protein. Gag-Gag interactions, which form an oligomeric lattice structure at a particle budding site, are essential to the biogenesis of an infectious virus particle. The CA domain of Gag is generally thought to possess the key determinants for Gag-Gag interactions, and the present study has discovered several critical amino acid residues in the CA domain of HTLV-1 Gag, an important cancer-causing human retrovirus, which are distinct from that of HIV-1 as well as other retroviruses studied to date. Altogether, our results provide important new insights into a poorly understood aspect of HTLV-1 replication that significantly enhances our understanding of the molecular nature of Gag-Gag interaction determinants crucial for virus particle assembly.
Collapse
|
50
|
Roy C, Datta S. ASBAAC: Automated Salt-Bridge and Aromatic-Aromatic Calculator. Bioinformation 2018; 14:164-166. [PMID: 29983486 PMCID: PMC6016756 DOI: 10.6026/97320630014164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 11/23/2022] Open
Abstract
Biological systems are made of complex networks non-covalent interactions observed among protein-protein, protein-DNA, proteinlipid complexes using hydrogen-bonds, salt-bridges, aromatic-aromatic, van der Waals (vdW), hydrophobic-interactions and several others using distance criteria. Hence, large-scale data analysis is required to understand the principles of biological complex formation. Therefore, it is of interest to analyze non-covalent interaction namely, salt-bridge and aromatic-aromatic contacts in known and modeled protein complex structures. Here, we describe ASBAAC for automatic calculation of salt-bridges and aromatic-aromatic contacts in protein complexes. This software tool is fast, robust and user-friendly for large-scale analysis of inter-chain salt bridges and aromatic-aromatic contact in protein complexes. AVAILABILITY ASBAAC is available for free at http://sourceforge.net/projects/asbaac.
Collapse
Affiliation(s)
- Chittran Roy
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, 4 Raja SC Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| | - Saumen Datta
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, 4 Raja SC Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| |
Collapse
|