1
|
Tariq U, Sarkar S, Malladi N, Kumar R, Bugga P, Chakraborty P, Banerjee SK. Knockdown of SCN5A alters metabolic-associated genes and aggravates hypertrophy in the cardiomyoblast. Mol Biol Rep 2024; 51:661. [PMID: 38758505 DOI: 10.1007/s11033-024-09594-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
SCN5A mutations have been reported to cause various cardiomyopathies in humans. Most of the SCN5A mutations causes loss of function and thereby, alters the overall cellular function. Therefore, to understand the loss of SCN5A function in cardiomyocytes, we have knocked down the SCN5A gene (SCN5A-KD) in H9c2 cells and explored the cell phenotype and molecular behaviors in the presence and absence of isoproterenol (ISO), an adrenergic receptor agonist that induces cardiac hypertrophy. Expression of several genes related to hypertrophy, inflammation, fibrosis, and energy metabolism pathways were evaluated. It was found that the mRNA expression of hypertrophy-related gene, brain (B-type) natriuretic peptide (BNP) was significantly increased in SCN5A-KD cells as compared to 'control' H9c2 cells. There was a further increase in the mRNA expressions of BNP and βMHC in SCN5A-KD cells after ISO treatment compared to their respective controls. Pro-inflammatory cytokine, tumor necrosis factor-alpha expression was significantly increased in 'SCN5A-KD' H9c2 cells. Further, metabolism-related genes like glucose transporter type 4, cluster of differentiation 36, peroxisome proliferator-activated receptor alpha, and peroxisome proliferator-activated receptor-gamma were significantly elevated in the SCN5A-KD cells as compared to the control cells. Upregulation of these metabolic genes is associated with increased ATP production. The study revealed that SCN5A knock-down causes alteration of gene expression related to cardiac hypertrophy, inflammation, and energy metabolism pathways, which may promote cardiac remodelling and cardiomyopathy.
Collapse
Affiliation(s)
- Ubaid Tariq
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, 121001, India
| | - Soumalya Sarkar
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, 121001, India
| | - Navya Malladi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India
| | - Roshan Kumar
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, 121001, India
| | - Paramesha Bugga
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, 121001, India
| | - Praloy Chakraborty
- Department of Cardiac Electrophysiology, Adult Cardiology, Toronto General Hospital, Toronto, ON, Canada
| | - Sanjay K Banerjee
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, 121001, India.
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India.
| |
Collapse
|
2
|
Yang S, Zhou P, Qi L, Wang Y, Li Y, Wang X. Promoting proliferation and tumorigenesis of breast cancer: KCND2's significance as a prognostic factor. Funct Integr Genomics 2023; 23:257. [PMID: 37522982 DOI: 10.1007/s10142-023-01183-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
In recent years, the potassium voltage-gated channel subfamily D (KCND) channels, particularly KCND2 (also known as Kv4.2), have been suggested to play a role in a variety of cancers, but their role in breast cancer has not yet been revealed. We analyzed RNA sequencing data from The Cancer Genome Atlas database and the Genotype-Tissue Expression database to investigate the differential expression of KCND2 in breast cancer and normal breast tissue. In addition, we leveraged GO and KEGG analysis techniques to gain a better understanding of the potential functional enrichment of 500 genes related to KCND2. Our findings were validated using collected tissue samples and clinical data from hospitals showed that KCND2 is a crucial independent factor in the prognosis of breast cancer patients. The higher the expression of KCND2, the shorter the survival time of breast cancer patients. Colony formation assay confirmed that KCND2 promotes the proliferation of breast cancer cells, whereas transwell assay and wound healing assay verified that KCND2 promoted breast cancer invasion and migration. In addition, 5-Ethynyl-2'-deoxyuridine (EdU) and flow cytometry revealed that KCND2 affected the cycle changes of breast cancer cells and contributed to the G1/S phase transition of breast cancer cells. Overall, our study demonstrates that KCND2 holds a promising potential as a significant target for breast cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Shengjie Yang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Pengpeng Zhou
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
- Department of Minimally Invasive Interventional Radiology, Shandong Second Provincial General Hospital, Jinan, 250117, China
| | - Lu Qi
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Yu Wang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Yang Li
- Clinical Laboratory, Zhangqiu People's Hospital, Jinan, 250200, China
| | - Xinghe Wang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| |
Collapse
|
3
|
Chen C, Zhu X, Xie J, Li X, Wan R, Hong K. Human leukocyte antigen F-associated transcript 10 regulates the IKs potassium channel by competing for Kv7.1 ubiquitination. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220167. [PMID: 37122222 PMCID: PMC10150200 DOI: 10.1098/rstb.2022.0167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/28/2022] [Indexed: 05/02/2023] Open
Abstract
The protein expression and function changes from the slow-delayed rectifying K+ current, IKs, are tightly associated with ventricular cardiac arrhythmias. Human leukocyte antigen F-associated transcript 10 (FAT10), a member of the ubiquitin-like-modifier family, exerts a protective effect against myocardial ischaemia. However, whether or how FAT10 influences the function of IKs remains unclear. Here, human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and Fat10 knockout HEK293 (Fat10-/-) cells through CRISPR-Cas9 technology were used to evaluate the novel modulation of FAT10 in IKs function. Patch-clamp studies showed that the overexpression of FAT10 significantly enhanced the current density of IKs both in hiPSC-CMs and HEK293-Fat10-/- cells. In addition, a shortened action potential duration (APD) was seen from hiPSC-CMs transfected with the ad-Fat10 virus. Then, a series of molecular approaches from neonatal rat cardiomyocytes, H9C2 cells and HEK293 cells were used to determine the regulatory mechanism of FAT10 in IKs. First, western blot assays indicated that the expression of Kv7.1, the alpha-subunit of IKs, was increased when FAT10 was overexpressed. Furthermore, immunofluorescence and co-immunoprecipitation assays demonstrated that FAT10 could interact with Kv7.1. Notably, FAT10 impedes Kv7.1 ubiquitination and degradation, thereby stabilizing its expression. Finally, a hypoxia model of hiPSC-CMs was established, and the overexpression of FAT10 showed a protective effect against hypoxia-induced decreases in the current density of IKs. Taken together, these findings revealed a novel role of FAT10 in the regulation of the IKs potassium channel by competing for Kv7.1 ubiquitination, which provides a new electrophysiological insight that FAT10 could modulate Kv7.1. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Chen Chen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi 330006, People's Republic of China
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang of Jiangxi 330006, People's Republic of China
| | - Xin Zhu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi 330006, People's Republic of China
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang of Jiangxi 330006, People's Republic of China
| | - Jinyan Xie
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang of Jiangxi 330006, People's Republic of China
| | - Xiaoqing Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi 330006, People's Republic of China
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang of Jiangxi 330006, People's Republic of China
| | - Rong Wan
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang of Jiangxi 330006, People's Republic of China
| | - Kui Hong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi 330006, People's Republic of China
- Department of Genetic Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi 330006, People's Republic of China
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang of Jiangxi 330006, People's Republic of China
| |
Collapse
|
4
|
Ahammed MR, Ananya FN. Association of Cardiac Electrical Disorders With KCND3 Gene Mutation. Cureus 2023; 15:e34597. [PMID: 36883079 PMCID: PMC9985904 DOI: 10.7759/cureus.34597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2023] [Indexed: 02/05/2023] Open
Abstract
Globally, cardiac channelopathies leading to electrical disorders are responsible for a significant number of sudden cardiac deaths without structural heart disease. Many genes encoding different ion channels in the heart were identified and their impairment was found to be associated with life-threatening cardiac abnormalities. KCND3, one of the genes expressed both in the heart and brain, is reported to have an association with Brugada syndrome, early-onset atrial fibrillation, early repolarization syndrome, and sudden unexplained death syndrome. KCND3 genetic screening could be a promising tool for functional studies for an understanding of the pathogenesis and genetic determinants of the above-mentioned electrical disorders.
Collapse
Affiliation(s)
- Md Ripon Ahammed
- Internal Medicine, Icahn School of Medicine at Mount Sinai, Queens Hospital Center, New York, USA
| | | |
Collapse
|
5
|
Reduced Expression of Voltage-Gated Sodium Channel Beta 2 Restores Neuronal Injury and Improves Cognitive Dysfunction Induced by A β1-42. Neural Plast 2022; 2022:3995227. [PMID: 36406589 PMCID: PMC9671742 DOI: 10.1155/2022/3995227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2022] Open
Abstract
Voltage-gated sodium channel beta 2 (Nav2.2 or Navβ2, coded by SCN2B mRNA), a gene involved in maintaining normal physiological functions of the prefrontal cortex and hippocampus, might be associated with prefrontal cortex aging and memory decline. This study investigated the effects of Navβ2 in amyloid-β 1-42- (Aβ1-42-) induced neural injury model and the potential underlying molecular mechanism. The results showed that Navβ2 knockdown restored neuronal viability of Aβ1-42-induced injury in neurons; increased the contents of brain-derived neurotrophic factor (BDNF), enzyme neprilysin (NEP) protein, and NEP enzyme activity; and effectively altered the proportions of the amyloid precursor protein (APP) metabolites including Aβ42, sAPPα, and sAPPβ, thus ameliorating cognitive dysfunction. This may be achieved through regulating NEP transcription and APP metabolism, accelerating Aβ degradation, alleviating neuronal impairment, and regulating BDNF-related signal pathways to repair neuronal synaptic efficiency. This study provides novel evidence indicating that Navβ2 plays crucial roles in the repair of neuronal injury induced by Aβ1-42 both in vivo and in vitro.
Collapse
|
6
|
Linz D, Verheule S, Isaacs A, Schotten U. Considerations for the Assessment of Substrates, Genetics and Risk Factors in Patients with Atrial Fibrillation. Arrhythm Electrophysiol Rev 2021; 10:132-139. [PMID: 34777816 PMCID: PMC8576487 DOI: 10.15420/aer.2020.51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022] Open
Abstract
Successful translation of research focussing on atrial arrhythmogenic mechanisms has potential to provide a mechanism-tailored classification and to support personalised treatment approaches in patients with AF. The clinical uptake and clinical implementation of new diagnostic techniques and treatment strategies require translational research approaches on various levels. Diagnostic translation involves the development of clinical diagnostic tools. Additionally, multidisciplinary teams are required for collaborative translation to describe genetic mechanisms, molecular pathways, electrophysiological characteristics and concomitant risk factors. In this article, current approaches for AF substrate characterisation, analysis of genes potentially involved in AF and strategies for AF risk factor assessment are summarised. The authors discuss challenges and obstacles to clinical translation and implementation into clinical practice.
Collapse
Affiliation(s)
- Dominik Linz
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University and Maastricht University Medical Center+, Maastricht, the Netherlands.,Department of Cardiology, Radboud University Medical Centre, Nijmegen, the Netherlands.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Sander Verheule
- Department of Physiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Aaron Isaacs
- Department of Physiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
7
|
Zequn Z, Jiangfang L. Molecular Insights Into the Gating Kinetics of the Cardiac hERG Channel, Illuminated by Structure and Molecular Dynamics. Front Pharmacol 2021; 12:687007. [PMID: 34168566 PMCID: PMC8217747 DOI: 10.3389/fphar.2021.687007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
The rapidly activating delayed rectifier K+ current generated by the cardiac hERG potassium channel encoded by KCNH2 is the most important reserve current for cardiac repolarization. The unique inward rectification characteristics of the hERG channel depend on the gating regulation, which involves crucial structural domains and key single amino acid residues in the full-length hERG channel. Identifying critical molecules involved in the regulation of gating kinetics for the hERG channel requires high-resolution structures and molecular dynamics simulation models. Based on the latest progress in hERG structure and molecular dynamics simulation research, summarizing the molecules involved in the changes in the channel state helps to elucidate the unique gating characteristics of the channel and the reason for its high affinity to cardiotoxic drugs. In this review, we aim to summarize the significant advances in understanding the voltage gating regulation of the hERG channel based on its structure obtained from cryo-electron microscopy and computer simulations, which reveal the critical roles of several specific structural domains and amino acid residues.
Collapse
Affiliation(s)
- Zheng Zequn
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China
| | - Lian Jiangfang
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
| |
Collapse
|
8
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
9
|
Tourki B, Kain V, Shaikh SR, Leroy X, Serhan CN, Halade GV. Deficit of resolution receptor magnifies inflammatory leukocyte directed cardiorenal and endothelial dysfunction with signs of cardiomyopathy of obesity. FASEB J 2020; 34:10560-10573. [PMID: 32543720 DOI: 10.1096/fj.202000495rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
Chronic unresolved inflammation is the primary determinant of cardiovascular disease. Precise mechanisms that define the genesis of unresolved inflammation in heart failure with preserved ejection fraction (HFpEF) are of interest due to the obesity epidemic. To examine the obesity phenotype and its direct/indirect consequences, multiple approaches were employed using the lipoxin receptor (abbreviated as ALX) dysfunction mouse model. Indirect calorimetry analyses revealed that the deletion of ALX dysregulated energy metabolism driving toward age-related obesity. Heart function data suggest that obesity-prone ALX deficient mice had impaired myocardium strain. Comprehensive measurement of chemokines, extracellular matrix, and arrhythmogenic arrays confirmed the dysregulation of multiple ion channels gene expression with amplified inflammatory chemokines and cytokines response at the age of 4 months compared with WT counterparts. Quantitative analyses of leukocytes demonstrated an increase of proinflammatory Ly6Chi CCR2+ macrophages in the spleen and heart at a steady-state resulting in an inflamed splenocardiac axis. Signs of subtle inflammation were marked with cardiorenal, endothelial defects with decreased CD31 and eNOS and an increased iNOS and COX2 expression. Thus, ALX receptor deficiency serves as an experimental model that defines multiple cellular and molecular mechanisms in HFpEF that could be a target for the development of HFpEF therapy in cardiovascular medicine.
Collapse
Affiliation(s)
- Bochra Tourki
- Division of Cardiovascular Sciences, Department of Medicine, University of South Florida, Tampa, FL, USA
| | - Vasundhara Kain
- Division of Cardiovascular Sciences, Department of Medicine, University of South Florida, Tampa, FL, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ganesh V Halade
- Division of Cardiovascular Sciences, Department of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
10
|
Brewer KR, Kuenze G, Vanoye CG, George AL, Meiler J, Sanders CR. Structures Illuminate Cardiac Ion Channel Functions in Health and in Long QT Syndrome. Front Pharmacol 2020; 11:550. [PMID: 32431610 PMCID: PMC7212895 DOI: 10.3389/fphar.2020.00550] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
The cardiac action potential is critical to the production of a synchronized heartbeat. This electrical impulse is governed by the intricate activity of cardiac ion channels, among them the cardiac voltage-gated potassium (Kv) channels KCNQ1 and hERG as well as the voltage-gated sodium (Nav) channel encoded by SCN5A. Each channel performs a highly distinct function, despite sharing a common topology and structural components. These three channels are also the primary proteins mutated in congenital long QT syndrome (LQTS), a genetic condition that predisposes to cardiac arrhythmia and sudden cardiac death due to impaired repolarization of the action potential and has a particular proclivity for reentrant ventricular arrhythmias. Recent cryo-electron microscopy structures of human KCNQ1 and hERG, along with the rat homolog of SCN5A and other mammalian sodium channels, provide atomic-level insight into the structure and function of these proteins that advance our understanding of their distinct functions in the cardiac action potential, as well as the molecular basis of LQTS. In this review, the gating, regulation, LQTS mechanisms, and pharmacological properties of KCNQ1, hERG, and SCN5A are discussed in light of these recent structural findings.
Collapse
Affiliation(s)
- Kathryn R. Brewer
- Center for Structural Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Georg Kuenze
- Center for Structural Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Carlos G. Vanoye
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Alfred L. George
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Charles R. Sanders
- Center for Structural Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
11
|
Shao Z, Koh W, Ni Y, Li W, Agatisa-Boyle B, Merkurjev D, Tang WHW. RNA Sequence Analyses throughout the Course of Mouse Cardiac Laminopathy Identify Differentially Expressed Genes for Cell Cycle Control and Mitochondrial Function. Sci Rep 2020; 10:6632. [PMID: 32313136 PMCID: PMC7170950 DOI: 10.1038/s41598-020-63563-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/30/2020] [Indexed: 12/03/2022] Open
Abstract
Lamin A/C (LMNA) gene mutations are a known cause of familial dilated cardiomyopathy, but the precise mechanisms triggering disease progression remain unknown. We hypothesize that analysis of differentially expressed genes (DEGs) throughout the course of Lmna knockout (Lmna-/-)-induced cardiomyopathy may reveal novel Lmna-mediated alterations of signaling pathways leading to dilated cardiomyopathy. Although Lmna was the only DEG down-regulated at 1 week of age, we identified 730 and 1004 DEGs in Lmna-/- mice at 2 weeks and 1 month of age, respectively. At 2 weeks, Lmna-/- mice demonstrated both down- and up-regulation of the key genes involving cell cycle control, mitochondrial dysfunction, and oxidative phosphorylation, as well as down-regulated genes governing DNA damage repair and up-regulated genes involved in oxidative stress response, cell survival, and cardiac hypertrophy. At 1 month, the down-regulated genes included those involved in oxidative phosphorylation, mitochondrial dysfunction, nutrient metabolism, cardiac β-adrenergic signaling, action potential generation, and cell survival. We also found 96 overlapping DEGs at both ages involved in oxidative phosphorylation, mitochondrial function, and calcium signaling. Impaired oxidative phosphorylation was observed at early disease stage, even before the appearance of disease phenotypes, and worsened with disease progression, suggesting its importance in the pathogenesis and progression of LMNA cardiomyopathy. Reduction of oxidative stress might therefore prevent or delay the development from Lmna mutation to LMNA cardiomyopathy.
Collapse
Affiliation(s)
- Zhili Shao
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Wonshill Koh
- Department of Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ying Ni
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Wei Li
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Brendan Agatisa-Boyle
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Daria Merkurjev
- Division of Cardiology, Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Wai Hong Wilson Tang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Kaufman Center for Heart Failure Treatment and Recovery, Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
12
|
Imoto K, Aratani M, Koyama T, Okada M, Yamawaki H. Thrombospondin-4 induces prolongation of action potential duration in rat isolated ventricular myocytes. J Vet Med Sci 2020; 82:707-712. [PMID: 32249254 PMCID: PMC7324826 DOI: 10.1292/jvms.20-0038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Expression of thrombospondin-4 (TSP-4), a matricellular protein, is increased in the
heart tissue of various cardiac disease models. In dorsal root ganglion neurons, TSP-4
inhibits L-type Ca2+ channel (LTCC) activity. Although TSP-4 might be related
to the electrophysiological properties in heart, it remains to be clarified. The present
study aimed to clarify the effects of TSP-4 on action potential (AP), LTCC current
(ICaL) and voltage-dependent K+ (Kv) channel
current (IKv) in rat isolated ventricular myocytes by a patch
clamp technique. Ventricular myocytes were isolated from the heart of adult male Wistar
rats. The ventricular myocytes were treated with TSP-4 (5 nM) or its vehicle for 4 hr.
Then, whole-cell patch clamp technique was performed to measure AP (current-clamp mode)
and ICaL and IKv (voltage-clamp
mode). The mRNA expression of Kv channels was examined by reverse transcription-polymerase
chain reaction. TSP-4 had no effect on the resting membrane potential and peak amplitude
of AP. On the other hand, TSP-4 significantly prolonged AP duration (APD) at 50% and 90%
repolarization. TSP-4 significantly inhibited the peak amplitudes of
ICaL and IKv. TSP-4 had no
effect on mRNA expression of Kv channels (Kcna4, Kcna5,
Kcnb1, Kcnd2 and Kcnd3). The present
study for the first time demonstrated that TSP-4 prolongs APD in rat ventricular myocytes,
which is possibly mediated through the suppression of Kv channel activity.
Collapse
Affiliation(s)
- Keisuke Imoto
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada-shi, Aomori 034-8628, Japan
| | - Momoko Aratani
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada-shi, Aomori 034-8628, Japan
| | - Takahiro Koyama
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada-shi, Aomori 034-8628, Japan
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada-shi, Aomori 034-8628, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada-shi, Aomori 034-8628, Japan
| |
Collapse
|
13
|
Tsai IT, Hsu CC, Hung WC, Wang CP, Yu TH, Houng JY, Lee KT, Tang WH. The Arrhythmogenic Effect of Protein-Bound Uremic Toxin p-Cresylsulfate: An In Vitro Study. ACTA CARDIOLOGICA SINICA 2019; 35:641-648. [PMID: 31879517 PMCID: PMC6859092 DOI: 10.6515/acs.201911_35(6).20190423c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND p-Cresylsulfate (PCS) is a protein-bound uremic toxin that accumulates in patients with chronic kidney disease. Previous studies have indicated that serum total PCS levels are significantly increased in the presence of abnormal corrected QT (QTc) intervals, and that they are associated with QTc prolongation. However, the QTc prolongation effect of PCS remains unclear. The current study aimed to investigate the arrhythmogenic effect of PCS using in vitro experiments and computer simulation. METHODS The arrhythmogenic effect of PCS was evaluated by incubating H9c2 rat ventricular cardiomyocytes in vitro with increasing concentrations of PCS. Electrophysiological studies and mathematical computer simulations were performed. RESULTS in vitro, the delayed rectifier potassium current (IK ) was significantly decreased in a dose-dependent manner after treatment with PCS. The modulation of PCS on IK was through regulation of the phosphorylation of the major potassium ion channel protein Kv2.1. In computer simulations, the decrease in IK induced by PCS prolonged the action potential duration (APD) and sped up the re-entrant wave, which is known to be a trigger mechanism for lethal ventricular arrhythmias. CONCLUSIONS PCS significantly downregulated the phosphorylation of the IK channel protein Kv2.1 and IK current activity, which increased the cardiomyocyte APD. This was observed both in vitro and in the computer O'Hara-Rudy dynamic human ventricular model. These findings suggest that PCS may play a key role in the development of cardiac arrhythmias.
Collapse
Affiliation(s)
| | | | - Wei-Chin Hung
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University
| | - Chao-Ping Wang
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University;
,
School of Medicine for International Students
| | - Teng-Hung Yu
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University
| | - Jer-Yiing Houng
- Department of Nutrition, Institute of Biotechnology and Chemical Engineering, I-Shou University
| | - Kun-Tai Lee
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
| | - Wei-Hua Tang
- Division of Cardiology, Department of Internal Medicine, National Yang-Ming University Hospital, Yilan, Taiwan
| |
Collapse
|