1
|
Bednarczyk M, Bolduan V, Haist M, Stege H, Hieber C, Johann L, Schelmbauer C, Blanfeld M, Karram K, Schunke J, Klaus T, Tubbe I, Montermann E, Röhrig N, Hartmann M, Schlosser J, Bopp T, Clausen BE, Waisman A, Bros M, Grabbe S. β2 Integrins on Dendritic Cells Modulate Cytokine Signaling and Inflammation-Associated Gene Expression, and Are Required for Induction of Autoimmune Encephalomyelitis. Cells 2022; 11:cells11142188. [PMID: 35883631 PMCID: PMC9322999 DOI: 10.3390/cells11142188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023] Open
Abstract
Heterodimeric β2 integrin surface receptors (CD11a-d/CD18) are specifically expressed by leukocytes that contribute to pathogen uptake, cell migration, immunological synapse formation and cell signaling. In humans, the loss of CD18 expression results in leukocyte adhesion deficiency syndrome (LAD-)1, largely characterized by recurrent severe infections. All available mouse models display the constitutive and ubiquitous knockout of either α or the common β2 (CD18) subunit, which hampers the analysis of the cell type-specific role of β2 integrins in vivo. To overcome this limitation, we generated a CD18 gene floxed mouse strain. Offspring generated from crossing with CD11c-Cre mice displayed the efficient knockdown of β2 integrins, specifically in dendritic cells (DCs). Stimulated β2-integrin-deficient splenic DCs showed enhanced cytokine production and the concomitantly elevated activity of signal transducers and activators of transcription (STAT) 1, 3 and 5, as well as the impaired expression of suppressor of cytokine signaling (SOCS) 2–6 as assessed in bone marrow-derived (BM) DCs. Paradoxically, these BMDCs also showed the attenuated expression of genes involved in inflammatory signaling. In line, in experimental autoimmune encephalomyelitis mice with a conditional DC-specific β2 integrin knockdown presented with a delayed onset and milder course of disease, associated with lower frequencies of T helper cell populations (Th)1/Th17 in the inflamed spinal cord. Altogether, our mouse model may prove to be a valuable tool to study the leukocyte-specific functions of β2 integrins in vivo.
Collapse
Affiliation(s)
- Monika Bednarczyk
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Vanessa Bolduan
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Maximilian Haist
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Henner Stege
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Christoph Hieber
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Lisa Johann
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (L.J.); (C.S.); (M.B.); (K.K.); (B.E.C.); (A.W.)
| | - Carsten Schelmbauer
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (L.J.); (C.S.); (M.B.); (K.K.); (B.E.C.); (A.W.)
| | - Michaela Blanfeld
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (L.J.); (C.S.); (M.B.); (K.K.); (B.E.C.); (A.W.)
| | - Khalad Karram
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (L.J.); (C.S.); (M.B.); (K.K.); (B.E.C.); (A.W.)
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
| | - Jenny Schunke
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Tanja Klaus
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Ingrid Tubbe
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Evelyn Montermann
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Nadine Röhrig
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Maike Hartmann
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Jana Schlosser
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Tobias Bopp
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
- Institute of Immunology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Björn E Clausen
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (L.J.); (C.S.); (M.B.); (K.K.); (B.E.C.); (A.W.)
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (L.J.); (C.S.); (M.B.); (K.K.); (B.E.C.); (A.W.)
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
| | - Matthias Bros
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
- Correspondence: ; Tel.: +49-61-3117-4412
| |
Collapse
|
2
|
Bobe JR, Jutras BL, Horn EJ, Embers ME, Bailey A, Moritz RL, Zhang Y, Soloski MJ, Ostfeld RS, Marconi RT, Aucott J, Ma'ayan A, Keesing F, Lewis K, Ben Mamoun C, Rebman AW, McClune ME, Breitschwerdt EB, Reddy PJ, Maggi R, Yang F, Nemser B, Ozcan A, Garner O, Di Carlo D, Ballard Z, Joung HA, Garcia-Romeu A, Griffiths RR, Baumgarth N, Fallon BA. Recent Progress in Lyme Disease and Remaining Challenges. Front Med (Lausanne) 2021; 8:666554. [PMID: 34485323 PMCID: PMC8416313 DOI: 10.3389/fmed.2021.666554] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Lyme disease (also known as Lyme borreliosis) is the most common vector-borne disease in the United States with an estimated 476,000 cases per year. While historically, the long-term impact of Lyme disease on patients has been controversial, mounting evidence supports the idea that a substantial number of patients experience persistent symptoms following treatment. The research community has largely lacked the necessary funding to properly advance the scientific and clinical understanding of the disease, or to develop and evaluate innovative approaches for prevention, diagnosis, and treatment. Given the many outstanding questions raised into the diagnosis, clinical presentation and treatment of Lyme disease, and the underlying molecular mechanisms that trigger persistent disease, there is an urgent need for more support. This review article summarizes progress over the past 5 years in our understanding of Lyme and tick-borne diseases in the United States and highlights remaining challenges.
Collapse
Affiliation(s)
- Jason R. Bobe
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Brandon L. Jutras
- Department of Biochemistry, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | | | - Monica E. Embers
- Tulane University Health Sciences, New Orleans, LA, United States
| | - Allison Bailey
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mark J. Soloski
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - John Aucott
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Avi Ma'ayan
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Kim Lewis
- Department of Biology, Northeastern University, Boston, MA, United States
| | | | - Alison W. Rebman
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mecaila E. McClune
- Department of Biochemistry, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Edward B. Breitschwerdt
- Department of Clinical Sciences, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | | | - Ricardo Maggi
- Department of Clinical Sciences, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bennett Nemser
- Steven & Alexandra Cohen Foundation, Stamford, CT, United States
| | - Aydogan Ozcan
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Omai Garner
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Dino Di Carlo
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Zachary Ballard
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Hyou-Arm Joung
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Albert Garcia-Romeu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Roland R. Griffiths
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicole Baumgarth
- Center for Immunology and Infectious Diseases and the Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Brian A. Fallon
- Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
3
|
Barriales D, Martín-Ruiz I, Carreras-González A, Montesinos-Robledo M, Azkargorta M, Iloro I, Escobés I, Martín-Mateos T, Atondo E, Palacios A, Gonzalez-Lopez M, Bárcena L, Cortázar AR, Cabrera D, Peña-Cearra A, van Liempd SM, Falcón-Pérez JM, Pascual-Itoiz MA, Flores JM, Abecia L, Pellon A, Martínez-Chantar ML, Aransay AM, Pascual A, Elortza F, Berra E, Lavín JL, Rodríguez H, Anguita J. Borrelia burgdorferi infection induces long-term memory-like responses in macrophages with tissue-wide consequences in the heart. PLoS Biol 2021; 19:e3001062. [PMID: 33395408 PMCID: PMC7808612 DOI: 10.1371/journal.pbio.3001062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/14/2021] [Accepted: 12/22/2020] [Indexed: 11/19/2022] Open
Abstract
Lyme carditis is an extracutaneous manifestation of Lyme disease characterized by episodes of atrioventricular block of varying degrees and additional, less reported cardiomyopathies. The molecular changes associated with the response to Borrelia burgdorferi over the course of infection are poorly understood. Here, we identify broad transcriptomic and proteomic changes in the heart during infection that reveal a profound down-regulation of mitochondrial components. We also describe the long-term functional modulation of macrophages exposed to live bacteria, characterized by an augmented glycolytic output, increased spirochetal binding and internalization, and reduced inflammatory responses. In vitro, glycolysis inhibition reduces the production of tumor necrosis factor (TNF) by memory macrophages, whereas in vivo, it produces the reversion of the memory phenotype, the recovery of tissue mitochondrial components, and decreased inflammation and spirochetal burdens. These results show that B. burgdorferi induces long-term, memory-like responses in macrophages with tissue-wide consequences that are amenable to be manipulated in vivo. Lyme carditis is a manifestation of Lyme disease characterized by episodes of atrioventricular block and additional cardiomyopathies. This study describes the proteomic and transcriptomic changes in the heart upon infection with Borrelia burgdorferi, and identifies innate immune memory hallmarks specific to the response to the spirochete that are amenable to therapeutic manipulation.
Collapse
Affiliation(s)
- Diego Barriales
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Derio, Spain
| | - Itziar Martín-Ruiz
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Derio, Spain
| | - Ana Carreras-González
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Derio, Spain
| | - Marta Montesinos-Robledo
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Derio, Spain
| | - Mikel Azkargorta
- Proteomics Platform, ProteoRed-ISCIII, CIC bioGUNE-BRTA, Derio, Spain
| | - Ibon Iloro
- Proteomics Platform, ProteoRed-ISCIII, CIC bioGUNE-BRTA, Derio, Spain
| | - Iraide Escobés
- Proteomics Platform, ProteoRed-ISCIII, CIC bioGUNE-BRTA, Derio, Spain
| | - Teresa Martín-Mateos
- Physiopathology of the Hypoxia-Signaling Pathway Laboratory, CIC bioGUNE-BRTA, Derio, Spain
| | - Estibaliz Atondo
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Derio, Spain
| | - Ainhoa Palacios
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Derio, Spain
| | | | - Laura Bárcena
- Genomic Analysis Platform, CIC bioGUNE-BRTA, Derio, Spain
| | | | - Diana Cabrera
- Metabolomics Platform, CIC bioGUNE-BRTA, Derio, Spain
| | - Ainize Peña-Cearra
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Derio, Spain
| | | | - Juan M. Falcón-Pérez
- Metabolomics Platform, CIC bioGUNE-BRTA, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Miguel A. Pascual-Itoiz
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Derio, Spain
| | - Juana María Flores
- Department of Animal Medicine and Surgery, Veterinary Faculty, Universidad Complutense de Madrid, Madrid, Spain
| | - Leticia Abecia
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Derio, Spain
| | - Aize Pellon
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Derio, Spain
| | | | - Ana M. Aransay
- Genomic Analysis Platform, CIC bioGUNE-BRTA, Derio, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Felix Elortza
- Proteomics Platform, ProteoRed-ISCIII, CIC bioGUNE-BRTA, Derio, Spain
| | - Edurne Berra
- Physiopathology of the Hypoxia-Signaling Pathway Laboratory, CIC bioGUNE-BRTA, Derio, Spain
| | | | - Héctor Rodríguez
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Derio, Spain
| | - Juan Anguita
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- * E-mail:
| |
Collapse
|
4
|
Bockenstedt LK, Wooten RM, Baumgarth N. Immune Response to Borrelia: Lessons from Lyme Disease Spirochetes. Curr Issues Mol Biol 2020; 42:145-190. [PMID: 33289684 PMCID: PMC10842262 DOI: 10.21775/cimb.042.145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The mammalian host responds to infection with Borrelia spirochetes through a highly orchestrated immune defense involving innate and adaptive effector functions aimed toward limiting pathogen burdens, minimizing tissue injury, and preventing subsequent reinfection. The evolutionary adaptation of Borrelia spirochetes to their reservoir mammalian hosts may allow for its persistence despite this immune defense. This review summarizes our current understanding of the host immune response to B. burgdorferi sensu lato, the most widely studied Borrelia spp. and etiologic agent of Lyme borreliosis. Pertinent literature will be reviewed with emphasis on in vitro, ex vivo and animal studies that influenced our understanding of both the earliest responses to B. burgdorferi as it enters the mammalian host and those that evolve as spirochetes disseminate and establish infection in multiple tissues. Our focus is on the immune response of inbred mice, the most commonly studied animal model of B. burgdorferi infection and surrogate for one of this pathogen's principle natural reservoir hosts, the white-footed deer mouse. Comparison will be made to the immune responses of humans with Lyme borreliosis. Our goal is to provide an understanding of the dynamics of the mammalian immune response during infection with B. burgdorferi and its relation to the outcomes in reservoir (mouse) and non-reservoir (human) hosts.
Collapse
Affiliation(s)
- Linda K. Bockenstedt
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8031, USA
| | - R. Mark Wooten
- Department of Medical Microbiology and Immunology, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Nicole Baumgarth
- Center for Immunology and Infectious Diseases and Dept. Pathology, Microbiology and Immunology, University of California, Davis, Davis CA 95616, USA
| |
Collapse
|
5
|
A combined transcriptomic approach to identify candidates for an anti-tick vaccine blocking B. afzelii transmission. Sci Rep 2020; 10:20061. [PMID: 33208766 PMCID: PMC7674437 DOI: 10.1038/s41598-020-76268-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Ixodes ricinus is the vector for Borrelia afzelii, the predominant cause of Lyme borreliosis in Europe, whereas Ixodes scapularis is the vector for Borrelia burgdorferi in the USA. Transcription of several I. scapularis genes changes in the presence of B. burgdorferi and contributes to successful infection. To what extend B. afzelii influences gene expression in I. ricinus salivary glands is largely unknown. Therefore, we measured expression of uninfected vs. infected tick salivary gland genes during tick feeding using Massive Analysis of cDNA Ends (MACE) and RNAseq, quantifying 26.179 unique transcripts. While tick feeding was the main differentiator, B. afzelii infection significantly affected expression of hundreds of transcripts, including 465 transcripts after 24 h of tick feeding. Validation of the top-20 B. afzelii-upregulated transcripts at 24 h of tick feeding in ten biological genetic distinct replicates showed that expression varied extensively. Three transcripts could be validated, a basic tail protein, a lipocalin and an ixodegrin, and might be involved in B. afzelii transmission. However, vaccination with recombinant forms of these proteins only marginally altered B. afzelii infection in I. ricinus-challenged mice for one of the proteins. Collectively, our data show that identification of tick salivary genes upregulated in the presence of pathogens could serve to identify potential pathogen-blocking vaccine candidates.
Collapse
|
6
|
Bednarczyk M, Stege H, Grabbe S, Bros M. β2 Integrins-Multi-Functional Leukocyte Receptors in Health and Disease. Int J Mol Sci 2020; 21:E1402. [PMID: 32092981 PMCID: PMC7073085 DOI: 10.3390/ijms21041402] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022] Open
Abstract
β2 integrins are heterodimeric surface receptors composed of a variable α (CD11a-CD11d) and a constant β (CD18) subunit and are specifically expressed by leukocytes. The α subunit defines the individual functional properties of the corresponding β2 integrin, but all β2 integrins show functional overlap. They mediate adhesion to other cells and to components of the extracellular matrix (ECM), orchestrate uptake of extracellular material like complement-opsonized pathogens, control cytoskeletal organization, and modulate cell signaling. This review aims to delineate the tremendous role of β2 integrins for immune functions as exemplified by the phenotype of LAD-I (leukocyte adhesion deficiency 1) patients that suffer from strong recurrent infections. These immune defects have been largely attributed to impaired migratory and phagocytic properties of polymorphonuclear granulocytes. The molecular base for this inherited disease is a functional impairment of β2 integrins due to mutations within the CD18 gene. LAD-I patients are also predisposed for autoimmune diseases. In agreement, polymorphisms within the CD11b gene have been associated with autoimmunity. Consequently, β2 integrins have received growing interest as targets in the treatment of autoimmune diseases. Moreover, β2 integrin activity on leukocytes has been implicated in tumor development.
Collapse
Affiliation(s)
| | | | | | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (H.S.); (S.G.)
| |
Collapse
|
7
|
Carreras-González A, Barriales D, Palacios A, Montesinos-Robledo M, Navasa N, Azkargorta M, Peña-Cearra A, Tomás-Cortázar J, Escobes I, Pascual-Itoiz MA, Hradiská J, Kopecký J, Gil-Carton D, Prados-Rosales R, Abecia L, Atondo E, Martín I, Pellón A, Elortza F, Rodríguez H, Anguita J. Regulation of macrophage activity by surface receptors contained within Borrelia burgdorferi-enriched phagosomal fractions. PLoS Pathog 2019; 15:e1008163. [PMID: 31738806 PMCID: PMC6886865 DOI: 10.1371/journal.ppat.1008163] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/02/2019] [Accepted: 10/29/2019] [Indexed: 11/19/2022] Open
Abstract
Macrophages mediate the elimination of pathogens by phagocytosis resulting in the activation of specific signaling pathways that lead to the production of cytokines, chemokines and other factors. Borrelia burgdorferi, the causative agent of Lyme disease, causes a wide variety of pro-inflammatory symptoms. The proinflammatory capacity of macrophages is intimately related to the internalization of the spirochete. However, most receptors mediating this process are largely unknown. We have applied a multiomic approach, including the proteomic analysis of B. burgdorferi-containing phagosome-enriched fractions, to identify surface receptors that are involved in the phagocytic capacity of macrophages as well as their inflammatory output. Sucrose gradient protein fractions of human monocyte-derived macrophages exposed to B. burgdorferi contained the phagocytic receptor, CR3/CD14 highlighting the major role played by these proteins in spirochetal phagocytosis. Other proteins identified in these fractions include C-type lectins, scavenger receptors or Siglecs, of which some are directly involved in the interaction with the spirochete. We also identified the Fc gamma receptor pathway, including the binding receptor, CD64, as involved both in the phagocytosis of, and TNF induction in response to B. burgdorferi in the absence of antibodies. The common gamma chain, FcγR, mediates the phagocytosis of the spirochete, likely through Fc receptors and C-type lectins, in a process that involves Syk activation. Overall, these findings highlight the complex array of receptors involved in the phagocytic response of macrophages to B. burgdorferi. Macrophages eliminate infecting microorganisms through the concerted action of surface receptors and signaling molecules. As a consequence, these cells produce a series of soluble factors that participate in the inflammatory response during infections. The composition of the full complement of receptors that participate in the recognition and internalization of the causative agent of Lyme disease, Borrelia burgdorferi, is largely unknown. We have analyzed the protein composition of phagosomes containing B. burgdorferi from human macrophages and identified a series of surface proteins that may be involved in the process. Through the use of gene silencing techniques, we have determined the participation of several of these receptors both in the internalization of the bacterium and the subsequent inflammatory response. Among these, we have identified the Fc gamma receptor pathway as involved in this process in the absence of antibodies. We have also identified receptors that are directly involved in the attachment of B. burgdorferi, while others seem to have an accessory role in the internalization and/or induction of proinflammatory cytokines in response to the spirochete. These data clarify the complex array of interactions between macrophages and B. burgdorferi and shed light on the overall response to this infectious agent.
Collapse
Affiliation(s)
- Ana Carreras-González
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Diego Barriales
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Ainhoa Palacios
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain
| | | | - Nicolás Navasa
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIBERehd, ProteoRed-ISCIII, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Ainize Peña-Cearra
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Julen Tomás-Cortázar
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Iraide Escobes
- Proteomics Platform, CIBERehd, ProteoRed-ISCIII, CIC bioGUNE, Derio, Bizkaia, Spain
| | | | - Jana Hradiská
- Faculty of Science, University of South Bohemia, Branišovská, České Budějovice, Czech Republic
| | - Jan Kopecký
- Faculty of Science, University of South Bohemia, Branišovská, České Budějovice, Czech Republic
| | | | - Rafael Prados-Rosales
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Leticia Abecia
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Estíbaliz Atondo
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Itziar Martín
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Aize Pellón
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Félix Elortza
- Proteomics Platform, CIBERehd, ProteoRed-ISCIII, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Héctor Rodríguez
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Juan Anguita
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
- * E-mail:
| |
Collapse
|
8
|
Lausen M, Christiansen G, Karred N, Winther R, Poulsen TBG, Palarasah Y, Birkelund S. Complement C3 opsonization of Chlamydia trachomatis facilitates uptake in human monocytes. Microbes Infect 2018; 20:328-336. [PMID: 29729435 DOI: 10.1016/j.micinf.2018.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 03/13/2018] [Accepted: 04/23/2018] [Indexed: 01/08/2023]
Abstract
Chlamydia trachomatis is an obligate intracellular bacterium that causes severe infections, which can lead to infertility and ectopic pregnancy. Although both innate and adaptive immune responses are elicited during chlamydial infection the bacterium succeeds to evade host defense mechanisms establishing chronic infections. Thus, studying the host-pathogen interaction during chlamydial infection is of importance to understand how C. trachomatis can cause chronic infections. Both the complement system and monocytes play essential roles in anti-bacterial defense, and, therefore, we investigated the interaction between the complement system and the human pathogens C. trachomatis D and L2. Complement competent serum facilitated rapid uptake of both chlamydial serovars into monocytes. Using immunoelectron microscopy, we showed that products of complement C3 were loosely deposited on the bacterial surface in complement competent serum and further characterization demonstrated that the deposited C3 product was the opsonin iC3b. Using C3-depleted serum we confirmed that complement C3 facilitates rapid uptake of chlamydiae into monocytes in complement competent serum. Complement facilitated uptake did not influence intracellular survival of C. trachomatis or C. trachomatis-induced cytokine secretion. Hence, C. trachomatis D and L2 activate the complement system leading to chlamydial opsonization by iC3b and subsequent phagocytosis, activation and bacterial elimination by human monocytes.
Collapse
Affiliation(s)
- Mads Lausen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark
| | - Gunna Christiansen
- Department of Biomedicine, Aarhus University, Wilhelms Meyers Allé 4, 8000, Aarhus, Denmark
| | - Nichlas Karred
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark
| | - Robert Winther
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark
| | - Thomas Bouet Guldbæk Poulsen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark
| | - Yaseelan Palarasah
- Unit for Thrombosis Research, Institute of Public Health, University of Southern Denmark, Esbjerg, Denmark
| | - Svend Birkelund
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark.
| |
Collapse
|
9
|
Javid A, Zlotnikov N, Pětrošová H, Tang TT, Zhang Y, Bansal AK, Ebady R, Parikh M, Ahmed M, Sun C, Newbigging S, Kim YR, Santana Sosa M, Glogauer M, Moriarty TJ. Hyperglycemia Impairs Neutrophil-Mediated Bacterial Clearance in Mice Infected with the Lyme Disease Pathogen. PLoS One 2016; 11:e0158019. [PMID: 27340827 PMCID: PMC4920391 DOI: 10.1371/journal.pone.0158019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/08/2016] [Indexed: 12/15/2022] Open
Abstract
Insulin-insufficient type 1 diabetes is associated with attenuated bactericidal function of neutrophils, which are key mediators of innate immune responses to microbes as well as pathological inflammatory processes. Neutrophils are central to immune responses to the Lyme pathogen Borrelia burgdorferi. The effect of hyperglycemia on host susceptibility to and outcomes of B. burgdorferi infection has not been examined. The present study investigated the impact of sustained obesity-independent hyperglycemia in mice on bacterial clearance, inflammatory pathology and neutrophil responses to B. burgdorferi. Hyperglycemia was associated with reduced arthritis incidence but more widespread tissue colonization and reduced clearance of bacterial DNA in multiple tissues including brain, heart, liver, lung and knee joint. B. burgdorferi uptake and killing were impaired in neutrophils isolated from hyperglycemic mice. Thus, attenuated neutrophil function in insulin-insufficient hyperglycemia was associated with reduced B. burgdorferi clearance in target organs. These data suggest that investigating the effects of comorbid conditions such as diabetes on outcomes of B. burgdorferi infections in humans may be warranted.
Collapse
Affiliation(s)
- Ashkan Javid
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Room 241, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | - Nataliya Zlotnikov
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Room 241, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | - Helena Pětrošová
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Room 241, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | - Tian Tian Tang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Room 241, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | - Yang Zhang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Room 241, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | - Anil K. Bansal
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Room 241, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | - Rhodaba Ebady
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Room 241, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | - Maitry Parikh
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Room 241, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | - Mijhgan Ahmed
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Room 241, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | - Chunxiang Sun
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Room 241, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | - Susan Newbigging
- Mount Sinai Hospital/Research Institute, The Toronto Centre for Phenogenomics, 25 Orde Street, Toronto, Ontario, M5T 3H7, Canada
| | - Yae Ram Kim
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Room 241, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | - Marianna Santana Sosa
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Room 241, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | - Michael Glogauer
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Room 241, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | - Tara J. Moriarty
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Room 241, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| |
Collapse
|