1
|
Lorenzana GP, Figueiró HV, Coutinho LL, Villela PMS, Eizirik E. Comparative assessment of genotyping-by-sequencing and whole-exome sequencing for estimating genetic diversity and geographic structure in small sample sizes: insights from wild jaguar populations. Genetica 2024:10.1007/s10709-024-00212-5. [PMID: 39322785 DOI: 10.1007/s10709-024-00212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Biologists currently have an assortment of high-throughput sequencing techniques allowing the study of population dynamics in increasing detail. The utility of genetic estimates depends on their ability to recover meaningful approximations while filtering out noise produced by artifacts. In this study, we empirically compared the congruence of two reduced representation approaches (genotyping-by-sequencing, GBS, and whole-exome sequencing, WES) in estimating genetic diversity and population structure using SNP markers typed in a small number of wild jaguar (Panthera onca) samples from South America. Due to its targeted nature, WES allowed for a more straightforward reconstruction of loci compared to GBS, facilitating the identification of true polymorphisms across individuals. We therefore used WES-derived metrics as a benchmark against which GBS-derived indicators were compared, adjusting parameters for locus assembly and SNP filtering in the latter. We observed significant variation in SNP call rates across samples in GBS datasets, leading to a recurrent miscalling of heterozygous sites. This issue was further amplified by small sample sizes, ultimately impacting the consistency of summary statistics between genotyping methods. Recognizing that the genetic markers obtained from GBS and WES are intrinsically different due to varying evolutionary pressures, particularly selection, we consider that our empirical comparison offers valuable insights and highlights critical considerations for estimating population genetic attributes using reduced representation datasets. Our results emphasize the critical need for careful evaluation of missing data and stringent filtering to achieve reliable estimates of genetic diversity and differentiation in elusive wildlife species.
Collapse
Affiliation(s)
- Gustavo P Lorenzana
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, PUCRS, Porto Alegre, Brazil.
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA.
| | - Henrique V Figueiró
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, PUCRS, Porto Alegre, Brazil
- Environmental Genomics Group, Vale Institute of Technology, Belem, Brazil
| | | | - Priscilla M S Villela
- Centro de Genômica Funcional, ESALQ-USP, Piracicaba, Brazil
- EcoMol Consultoria e Projetos, Piracicaba, Brazil
| | - Eduardo Eizirik
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, PUCRS, Porto Alegre, Brazil
- Instituto Pró-Carnívoros, Atibaia, Brazil
| |
Collapse
|
2
|
Ünsal SG, Yeni O, Büyük U, Özden Çiftçi Y. A novel method of multiplex SNP genotyping assay through variable fragment length allele-specific polymerase chain reaction: Multiplex VFLASP-ARMS. Mol Cell Probes 2024; 75:101960. [PMID: 38583643 DOI: 10.1016/j.mcp.2024.101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Variable Fragment Length Allele-Specific Polymerase Chain Reaction (VFLASP) and Amplification Refractory Mutation System (ARMS) are reliable methods for detecting allelic variations resulting from single base changes within the genome. Due to their widespread application, allele variations caused by Single Nucleotide Polymorphisms (SNPs) can be readily detected using allele-specific primers. In the context of the current study, VFLASP was combined with ARMS method as a novel strategy to enhance the efficacy of both techniques. Clinically important base variations within SNP regions used in the study were detected by a fragment analysis method. To validate the accuracy of the developed VFLASP-ARMS method, specifically designed synthetic sequences were tested using a capillary electrophoresis system. Allele-specific primers exhibit differences solely at the 3' end based on the sequence of the SNP. Additionally, to increase the specificity of the primers, a base was intentionally added for incompatibility. Therefore, allele discrimination on fragment analysis has been made possible through the 3-6 bp differences in the amplicons. With the optimization of the system, designed synthetic sequences provided reliable and reproducible results in wild-type, heterozygous, and homozygous genotypes using the VFLASP-ARMS method. Hence, our results demonstrated that VFLASP-ARMS method, offers a novel design methodology that can be included in the content of SNP genotyping assays.
Collapse
Affiliation(s)
- Selin Gül Ünsal
- Department of Molecular Biology and Genetics, Institute of Science, Gebze Technical University, 41400, Gebze, Turkey.
| | - Oğuzhan Yeni
- Department of Molecular Biotechnology and Genetics, Institute of Science, Istanbul University, 34452, Istanbul, Turkey
| | - Umut Büyük
- Department of Molecular Biotechnology and Genetics, Institute of Science, Istanbul University, 34452, Istanbul, Turkey
| | - Yelda Özden Çiftçi
- Department of Molecular Biology and Genetics, Institute of Science, Gebze Technical University, 41400, Gebze, Turkey; Smart Agriculture Research and Application Center, Gebze Technical University, 41400, Gebze, Turkey; Central Research Laboratory (GTU-MAR), Gebze Technical University, 41400, Gebze, Turkey
| |
Collapse
|
3
|
Saini T, Chauhan A, Ahmad SF, Kumar A, Vaishnav S, Singh S, Mehrotra A, Bhushan B, Gaur GK, Dutt T. Elucidation of population stratifying markers and selective sweeps in crossbred Landlly pig population using genome-wide SNP data. Mamm Genome 2024; 35:170-185. [PMID: 38485788 DOI: 10.1007/s00335-024-10029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/23/2024] [Indexed: 05/29/2024]
Abstract
The present study was aimed at the identification of population stratifying markers from the commercial porcine SNP 60K array and elucidate the genome-wide selective sweeps in the crossbred Landlly pig population. Original genotyping data, generated on Landlly pigs, was merged in various combinations with global suid breeds that were grouped as exotic (global pig breeds excluding Indian and Chinese), Chinese (Chinese pig breeds only), and outgroup pig populations. Post quality control, the genome-wide SNPs were ranked for their stratifying power within each dataset in TRES (using three different criteria) and FIFS programs and top-ranked SNPs (0.5K, 1K, 2K, 3K, and 4K densities) were selected. PCA plots were used to assess the stratification power of low-density panels. Selective sweeps were elucidated in the Landlly population using intra- and inter-population haplotype statistics. Additionally, Tajima's D-statistics were calculated to determine the status of balancing selection in the Landlly population. PCA plots showed 0.5K marker density to effectively stratify Landlly from other pig populations. The A-score in DAPC program revealed the Delta statistic of marker selection to outperform other methods (informativeness and FST methods) and that 3000-marker density was suitable for stratification of Landlly animals from exotic pig populations. The results from selective sweep analysis revealed the Landlly population to be under selection for mammary (NAV2), reproductive efficiency (JMY, SERGEF, and MAP3K20), body conformation (FHIT, WNT2, ASRB, DMGDH, and BHMT), feed efficiency (CSRNP1 and ADRA1A), and immunity (U6, MYO3B, RBMS3, and FAM78B) traits. More than two methods suggested sweeps for immunity and feed efficiency traits, thus giving a strong indication for selection in this direction. The study is the first of its kind in Indian pig breeds with a comparison against global breeds. In conclusion, 500 markers were able to effectively stratify the breeds. Different traits under selective sweeps (natural or artificial selection) can be exploited for further improvement.
Collapse
Affiliation(s)
- Tapendra Saini
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - Anuj Chauhan
- Swine Production Farm, LPM Section, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, India.
| | - Sheikh Firdous Ahmad
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - Amit Kumar
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - Sakshi Vaishnav
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - Shivani Singh
- Swine Production Farm, LPM Section, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, India
| | | | - Bharat Bhushan
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - G K Gaur
- Swine Production Farm, LPM Section, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, India
- ADG Animal Production & Breeding, ICAR, New Delhi, 110001, India
| | - Triveni Dutt
- Indian Veterinary Research Institute, Izatnagar, 243122, India
| |
Collapse
|
4
|
Msimango T, Duvenage S, Du Plessis EM, Korsten L. Microbiological quality assessment of fresh produce: Potential health risk to children and urgent need for improved food safety in school feeding schemes. Food Sci Nutr 2023; 11:5501-5511. [PMID: 37701226 PMCID: PMC10494634 DOI: 10.1002/fsn3.3506] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/02/2023] [Accepted: 05/31/2023] [Indexed: 09/14/2023] Open
Abstract
About 388 million school-going children worldwide benefit from school feeding schemes, which make use of fresh produce to prepare meals. Fresh produce including leafy greens and other vegetables were served at 37% and 31% of school feeding programs, respectively, in Africa. This study aimed at assessing the microbiological quality of fresh produce grown onsite or supplied to South African schools that are part of the national school feeding programs that benefit over 9 million school-going children. Coliforms, Escherichia coli, Enterobacteriaceae, and Staphylococcus aureus were enumerated from fresh produce (n = 321) samples. The occurrence of E. coli, Listeria monocytogenes, Salmonella spp., and extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae was determined. Presumptive pathogens were tested for antimicrobial resistance. E. coli was further tested for diarrheagenic virulence genes. Enterobacteriaceae on 62.5% of fresh produce samples (200/321) exceeded previous microbiological guidelines for ready-to-eat food, while 86% (276/321 samples) and 31.6% (101/321 samples) exceeded coliform and E. coli criteria, respectively. A total of 76 Enterobacteriaceae were isolated from fresh produce including E. coli (n = 43), Enterobacter spp. (n = 15), and Klebsiella spp. (n = 18). Extended-spectrum β-lactamase production was confirmed in 11 E. coli, 13 Enterobacter spp., and 17 Klebsiella spp. isolates. No diarrheagenic virulence genes were detected in E. coli isolates. However, multidrug resistance (MDR) was found in 60.5% (26/43) of the E. coli isolates, while all (100%; n = 41) of the confirmed ESBL and AmpC Enterobacteriaceae showed MDR. Our study indicates the reality of the potential health risk that contaminated fresh produce may pose to school-going children, especially with the growing food safety challenges and antimicrobial resistance crisis globally. This also shows that improved food safety approaches to prevent foodborne illness and the spread of foodborne pathogens through the food served by school feeding schemes are necessary.
Collapse
Affiliation(s)
- Thabang Msimango
- Department of Plant and Soil SciencesUniversity of PretoriaPretoriaSouth Africa
- Department of Science and Innovation‐National Research Foundation Centre of Excellence in Food SecurityPretoriaSouth Africa
| | - Stacey Duvenage
- Natural Resources Institute, Faculty of Engineering and ScienceUniversity of GreenwichLondonUK
| | - Erika M. Du Plessis
- Department of Plant and Soil SciencesUniversity of PretoriaPretoriaSouth Africa
- Department of Science and Innovation‐National Research Foundation Centre of Excellence in Food SecurityPretoriaSouth Africa
| | - Lise Korsten
- Department of Plant and Soil SciencesUniversity of PretoriaPretoriaSouth Africa
- Department of Science and Innovation‐National Research Foundation Centre of Excellence in Food SecurityPretoriaSouth Africa
| |
Collapse
|
5
|
Abondio P, Cilli E, Luiselli D. Human Pangenomics: Promises and Challenges of a Distributed Genomic Reference. Life (Basel) 2023; 13:1360. [PMID: 37374141 DOI: 10.3390/life13061360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
A pangenome is a collection of the common and unique genomes that are present in a given species. It combines the genetic information of all the genomes sampled, resulting in a large and diverse range of genetic material. Pangenomic analysis offers several advantages compared to traditional genomic research. For example, a pangenome is not bound by the physical constraints of a single genome, so it can capture more genetic variability. Thanks to the introduction of the concept of pangenome, it is possible to use exceedingly detailed sequence data to study the evolutionary history of two different species, or how populations within a species differ genetically. In the wake of the Human Pangenome Project, this review aims at discussing the advantages of the pangenome around human genetic variation, which are then framed around how pangenomic data can inform population genetics, phylogenetics, and public health policy by providing insights into the genetic basis of diseases or determining personalized treatments, targeting the specific genetic profile of an individual. Moreover, technical limitations, ethical concerns, and legal considerations are discussed.
Collapse
Affiliation(s)
- Paolo Abondio
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
| | - Elisabetta Cilli
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
| | - Donata Luiselli
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
| |
Collapse
|
6
|
Herry F, Hérault F, Lecerf F, Lagoutte L, Doublet M, Picard-Druet D, Bardou P, Varenne A, Burlot T, Le Roy P, Allais S. Restriction site-associated DNA sequencing technologies as an alternative to low-density SNP chips for genomic selection: a simulation study in layer chickens. BMC Genomics 2023; 24:271. [PMID: 37208589 DOI: 10.1186/s12864-023-09321-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND To reduce the cost of genomic selection, a low-density (LD) single nucleotide polymorphism (SNP) chip can be used in combination with imputation for genotyping selection candidates instead of using a high-density (HD) SNP chip. Next-generation sequencing (NGS) techniques have been increasingly used in livestock species but remain expensive for routine use for genomic selection. An alternative and cost-efficient solution is to use restriction site-associated DNA sequencing (RADseq) techniques to sequence only a fraction of the genome using restriction enzymes. From this perspective, use of RADseq techniques followed by an imputation step on HD chip as alternatives to LD chips for genomic selection was studied in a pure layer line. RESULTS Genome reduction and sequencing fragments were identified on reference genome using four restriction enzymes (EcoRI, TaqI, AvaII and PstI) and a double-digest RADseq (ddRADseq) method (TaqI-PstI). The SNPs contained in these fragments were detected from the 20X sequence data of the individuals in our population. Imputation accuracy on HD chip with these genotypes was assessed as the mean correlation between true and imputed genotypes. Several production traits were evaluated using single-step GBLUP methodology. The impact of imputation errors on the ranking of the selection candidates was assessed by comparing a genomic evaluation based on ancestry using true HD or imputed HD genotyping. The relative accuracy of genomic estimated breeding values (GEBVs) was investigated by considering the GEBVs estimated on offspring as a reference. With AvaII or PstI and ddRADseq with TaqI and PstI, more than 10 K SNPs were detected in common with the HD SNP chip, resulting in an imputation accuracy greater than 0.97. The impact of imputation errors on genomic evaluation of the breeders was reduced, with a Spearman correlation greater than 0.99. Finally, the relative accuracy of GEBVs was equivalent. CONCLUSIONS RADseq approaches can be interesting alternatives to low-density SNP chips for genomic selection. With more than 10 K SNPs in common with the SNPs of the HD SNP chip, good imputation and genomic evaluation results can be obtained. However, with real data, heterogeneity between individuals with missing data must be considered.
Collapse
Affiliation(s)
- Florian Herry
- NOVOGEN, 5 rue des Compagnons, Secteur du Vau Ballier, Plédran, 22960, France
- PEGASE, INRAE, Institut Agro, Saint-Gilles, 35590, France
| | | | | | | | | | | | - Philippe Bardou
- SIGENAE, GenPhySE, Université de Toulouse, INRA, ENVT, 24 chemin de Borde-Rouge - Auzeville Tolosane, Castanet Tolosan, 31326, France
| | - Amandine Varenne
- NOVOGEN, 5 rue des Compagnons, Secteur du Vau Ballier, Plédran, 22960, France
| | - Thierry Burlot
- NOVOGEN, 5 rue des Compagnons, Secteur du Vau Ballier, Plédran, 22960, France
| | - Pascale Le Roy
- PEGASE, INRAE, Institut Agro, Saint-Gilles, 35590, France
| | - Sophie Allais
- PEGASE, INRAE, Institut Agro, Saint-Gilles, 35590, France.
| |
Collapse
|
7
|
Vaishnav S, Chauhan A, Ajay A, Saini BL, Kumar S, Kumar A, Bhushan B, Gaur GK. Allelic to genome wide perspectives of swine genetic variation to litter size and its component traits. Mol Biol Rep 2023; 50:3705-3721. [PMID: 36642776 DOI: 10.1007/s11033-022-08168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/01/2022] [Indexed: 01/17/2023]
Abstract
Litter size is a complex and sex limited trait that depends on various biological, managemental and environmental factors. Owing to its low heritability it is inefficaciously selected by traditional methods. However, due to higher heritability of ovulation rate and embryo survival, selection based on component traits of litter size is advocated. QTL analysis and candidate gene approach are among the various supplementary/alternate strategies for selection of litter size. QTL analysis is aimed at identifying genomic regions affecting trait of interest significantly. Candidate gene approach necessitates identification of genes potentially affecting the trait. There are various genes that significantly affect litter size and its component traits viz. ESR, LEP, BF, IGFBP, RBP4, PRLR, CTNNAL1, WNT10B, TCF12, DAZ, and RNF4. These genes affect litter size in a complex interacting manner. Lately, genome wide association study (GWAS) have been utilized to unveil the genetic and biological background of litter traits, and elucidate the genes governing litter size. Favorable SNPs in these genes have been identified and offers a scope for inclusion in selection programs thereby increasing breeding efficiency and profit in pigs. The review provides a comprehensive coverage of investigations carried out globally to unravel the genetic variation in litter size and its component traits in pigs, both at allelic and genome wide level. It offers a current perspective on different strategies including the profiling of candidate genes, QTLs, and genome wide association studies as an aid to efficient selection for litter size and its component traits.
Collapse
Affiliation(s)
| | - Anuj Chauhan
- Indian Veterinary Research Institute, Bareilly, India.
| | - Argana Ajay
- Indian Veterinary Research Institute, Bareilly, India
| | | | - Subodh Kumar
- Indian Veterinary Research Institute, Bareilly, India
| | - Amit Kumar
- Indian Veterinary Research Institute, Bareilly, India
| | | | | |
Collapse
|
8
|
Guo Z, Yao J, Cheng Y, Zhang W, Xu Z, Li M, Huang J, Ma D, Zhao M. Identification of QTL under Brassinosteroid-Combined Cold Treatment at Seedling Stage in Rice Using Genotyping-by-Sequencing (GBS). PLANTS (BASEL, SWITZERLAND) 2022; 11:2324. [PMID: 36079705 PMCID: PMC9460439 DOI: 10.3390/plants11172324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/21/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Cold stress is a major threat to the sustainability of rice yield. Brassinosteroids (BR) application can enhance cold tolerance in rice. However, the regulatory mechanism related to cold tolerance and the BR signaling pathway in rice has not been clarified. In the current study, the seedling shoot length (SSL), seedling root length (SRL), seedling dry weight (SDW), and seedling wet weight (SWW) were used as the indices for identifying cold tolerance under cold stress and BR-combined cold treatment in a backcross recombinant inbred lines (BRIL) population. According to the phenotypic characterization for cold tolerance and a high-resolution SNP genetic map obtained from the GBS technique, a total of 114 QTLs were identified, of which 27 QTLs were detected under cold stress and 87 QTLs under BR-combined cold treatment. Among them, the intervals of many QTLs were coincident under different treatments, as well as different traits. A total of 13 candidate genes associated with cold tolerance or BR pathway, such as BRASSINAZOLE RESISTANT1 (OsBZR1), OsWRKY77, AP2 domain-containing protein, zinc finger proteins, basic helix-loop-helix (bHLH) protein, and auxin-induced protein, were predicted. Among these, the expression levels of 10 candidate genes were identified under different treatments in the parents and representative BRIL individuals. These results were helpful in understanding the regulation relationship between cold tolerance and BR pathway in rice.
Collapse
Affiliation(s)
- Zhifu Guo
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Jialu Yao
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yishan Cheng
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Wenzhong Zhang
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhengjin Xu
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Maomao Li
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Jing Huang
- Department of Agronomy, College of Agriculture, Purdue University, West Lafayette, IN 47907, USA
| | - Dianrong Ma
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Minghui Zhao
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
9
|
Guo Z, Wang H, Yao J, Cheng Y, Zhang W, Xu Z, Li M, Huang J, Zhao M. Quantitative Trait Loci Mapping Analysis for Cold Tolerance Under Cold Stress and Brassinosteroid-Combined Cold Treatment at Germination and Bud Burst Stages in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:938339. [PMID: 35923884 PMCID: PMC9340073 DOI: 10.3389/fpls.2022.938339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Low temperature is one of the major abiotic stresses limiting seed germination and early seedling growth in rice. Brassinosteroid (BR) application can improve cold tolerance in rice. However, the regulatory relationship between cold tolerance and BR in rice remains undefined. Here, we constructed a population of 140 backcross recombinant inbred lines (BRILs) derived from a cross between a wild rice (Dongxiang wild rice, DXWR) and a super rice (SN265). The low-temperature germination rate (LTG), survival rate (SR), plant height (PH), and first leaf length (FLL) were used as indices for assessing cold tolerance under cold stress and BR-combined cold treatment at seed germination and bud burst stages. A high-resolution SNP genetic map, covering 1,145 bin markers with a distance of 3188.33 cM onto 12 chromosomes, was constructed using the GBS technique. A total of 73 QTLs were detected, of which 49 QTLs were identified under cold stress and 24 QTLs under BR-combined cold treatment. Among these, intervals of 30 QTLs were pairwise coincident under cold stress and BR-combined cold treatment, as well as different traits including SR and FLL, and PH and FLL, respectively. A total of 14 candidate genes related to cold tolerance or the BR signaling pathway, such as CBF/DREB (LOC_Os08g43200), bHLH (LOC_Os07g08440 and LOC_Os07g08440), WRKY (LOC_Os06g30860), MYB (LOC_Os01g62410 and LOC_Os05g51160), and BRI1-associated receptor kinase 1 precursor (LOC_Os06g16300), were located. Among these, the transcript levels of 10 candidate genes were identified under cold stress and BR-combined cold treatment by qRT-PCR. These findings provided an important basis for further mining the genes related to cold tolerance or the BR signaling pathway and understanding the molecular mechanisms of cold tolerance in rice.
Collapse
Affiliation(s)
- Zhifu Guo
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Haotian Wang
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Jialu Yao
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yishan Cheng
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Wenzhong Zhang
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Zhengjin Xu
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Maomao Li
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Jing Huang
- Department of Agronomy, College of Agriculture, Purdue University, West Lafayette, IN, United States
| | - Minghui Zhao
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
10
|
Yepuri V, Jalali S, Mudunuri V, Pothakani S, Kancharla N, Arockiasamy S. Genotyping by sequencing-based linkage map construction and identification of quantitative trait loci for yield-related traits and oil content in Jatropha (Jatropha curcas L.). Mol Biol Rep 2022; 49:4293-4306. [PMID: 35239140 DOI: 10.1007/s11033-022-07264-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/14/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Jatropha (Jatropha curcas L.) has been considered as a potential bioenergy crop and its genetic improvement is essential for higher seed yield and oil content which has been hampered due to lack of desirable molecular markers. METHODS AND RESULTS An F2 population was created using an intraspecific cross involving a Central American line RJCA9 and an Asiatic species RJCS-9 to develop a dense genetic map and for Quantitative trait loci (QTL) identification. The genotyping-by-sequencing (GBS) approach was used to genotype the mapping population of 136 F2 individuals along with the two parental lines for classification of the genotypes based on single nucleotide polymorphism (SNPs). NextSeq 2500 sequencing technology provided a total of 517.23 million clean reads, with an average of ~ 3.8 million reads per sample. We analysed 411 SNP markers and developed 11 linkage groups. The total length of the genetic map was 4092.3 cM with an average marker interval of 10.04 cM. We have identified a total of 83 QTLs for various yield and oil content governing traits. The percentage of phenotypic variation (PV) was found to be in the range of 8.81 to 65.31%, and a QTL showed the maximum PV of 65.3% for a total seed number on the 6th linkage group (LG). CONCLUSIONS The QTLs detected in this study for various phenotypic traits will lay down the path for marker-assisted breeding in the future and cloning of genes that are responsible for phenotypic variation.
Collapse
Affiliation(s)
- Vijay Yepuri
- Agronomy Division, Reliance Technology Group, Reliance Industries Ltd, Ghansoli, Navi Mumbai, 400701, India
| | - Saakshi Jalali
- Agronomy Division, Reliance Technology Group, Reliance Industries Ltd, Ghansoli, Navi Mumbai, 400701, India
| | - Vishwnadharaju Mudunuri
- Jatropha Breeding station, Reliance Industries Ltd, IDA-Peddapuram, ADB Road, Samalkota, Andhra Pradesh, 533440, India
| | - Sai Pothakani
- Jatropha Breeding station, Reliance Industries Ltd, IDA-Peddapuram, ADB Road, Samalkota, Andhra Pradesh, 533440, India
| | - Nagesh Kancharla
- Agronomy Division, Reliance Technology Group, Reliance Industries Ltd, Ghansoli, Navi Mumbai, 400701, India
| | - S Arockiasamy
- Agronomy Division, Reliance Technology Group, Reliance Industries Ltd, Ghansoli, Navi Mumbai, 400701, India.
| |
Collapse
|
11
|
Wang X, Liu Y, Liu H, Pan W, Ren J, Zheng X, Tan Y, Chen Z, Deng Y, He N, Chen H, Li S. Recent advances and application of whole genome amplification in molecular diagnosis and medicine. MedComm (Beijing) 2022; 3:e116. [PMID: 35281794 PMCID: PMC8906466 DOI: 10.1002/mco2.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
Whole genome amplification (WGA) is a technology for non-selective amplification of the whole genome sequence, first appearing in 1992. Its primary purpose is to amplify and reflect the whole genome of trace tissues and single cells without sequence bias and to provide sufficient DNA template for subsequent multigene and multilocus analysis, along with comprehensive genome research. WGA provides a method to obtain a large amount of genetic information from a small amount of DNA and provides a valuable tool for preserving limited samples in molecular biology. WGA technology is especially suitable for forensic identification and genetic disease research, along with new technologies such as next-generation sequencing (NGS). In addition, WGA is also widely used in single-cell sequencing. Due to the small amount of DNA in a single cell, it is often unable to meet the amount of samples needed for sequencing, so WGA is generally used to achieve the amplification of trace samples. This paper reviews WGA methods based on different principles, summarizes both amplification principle and amplification quality, and discusses the application prospects and challenges of WGA technology in molecular diagnosis and medicine.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Yapeng Liu
- School of Early‐Childhood Education, Nanjing Xiaozhuang UniversityNanjingChina
| | - Hongna Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Wenjing Pan
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Jie Ren
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Xiangming Zheng
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Yimin Tan
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
- State Key Laboratory of BioelectronicsSoutheast UniversityNanjingChina
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| |
Collapse
|
12
|
Zhao S, Liu P, Ruan Z, Li J, Zeng S, Zhong M, Tang L. Association between long non-coding RNA (lncRNA) GAS5 polymorphism rs145204276 and cancer risk. J Int Med Res 2021; 49:3000605211039798. [PMID: 34521242 PMCID: PMC8447101 DOI: 10.1177/03000605211039798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE The long non-coding RNA (lncRNA) growth arrest‑specific transcript 5 (GAS5) plays an important role in various tumors, and an increasing number of studies have explored the association of the GAS5 rs145204276 polymorphism with cancer risk with inconclusive results. METHODS PubMed, Medline, EMBASE, Cochrane databases, and Web of Science were searched, and nine studies involving 6107 cases and 7909 controls were deemed eligible. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated to evaluate the relationship between rs145204276 and cancer risk in six genetic models. RESULTS The pooled results suggest that the variant allele del was not associated with overall cancer risk. However, the subgroup analysis showed that allele del was significantly associated with a 22% decreased risk of gastrointestinal cancer (OR = 0.78, 95% CI: 0.72-0.85). Both sensitivity analyses and trial sequential analyses (TSA) demonstrated that the subgroup results were reliable and robust. Moreover, False-Positive Report Probability (FPRP) analysis indicated that the results had true significant correlations. CONCLUSION These findings provide evidence that the GAS5 rs145204276 polymorphism is associated with the susceptibility to gastrointestinal cancer. Further studies with different ethnicities and larger sample sizes are warranted to confirm these results.
Collapse
Affiliation(s)
- Shushan Zhao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ping Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhe Ruan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianhuang Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meizuo Zhong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lanhua Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Sharma B, Hussain T, Khan MA, Jaiswal V. Exploring AT2R and its polymorphism in different diseases: An approach to develop AT2R as a drug target beyond hypertension. Curr Drug Targets 2021; 23:99-113. [PMID: 34365920 DOI: 10.2174/1389450122666210806125919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022]
Abstract
The Angiotensin II type 2 receptor (AT2R) is one of the critical components of the renin-angiotensin system (RAS), which performs diverse functions like inhibiting cell differentiation, cell proliferation, vasodilatation, reduces oxidative stress and inflammation. AT2R is relatively less studied in comparison to other components of RAS despite its uniqueness (sex-linked) and diverse functions. The AT2R is differentially expressed in different tissues, and its gene polymorphisms are associated with several diseases. The molecular mechanism behind the association of AT2R and its gene polymorphisms with the diseases remains to be fully understood, which hinders the development of AT2R as a drug target. Single nucleotide polymorphisms (SNPs) in AT2R are found at different locations (exons, introns, promoter, and UTR regions) and were studied for association with different diseases. There may be different mechanisms behind these associations as some AT2R SNP variants were associated with differential expression, the SNPs (A1675G/A1332G) affect the alternate splicing of AT2R mRNA, A1332G genotype results in shortening of the AT2R mRNA and subsequently defective protein. Few SNPs were found to be associated with the diseases in either females (C4599A) or males (T1334C). Several other SNPs were expected to be associated with other similar/related diseases, but studies have not been done yet. The present review emphasizes on the significance of AT2R and its polymorphisms associated with the diseases to explore the precise role of AT2R in different diseases and the possibility to develop AT2R as a potential drug target.
Collapse
Affiliation(s)
- Bhanu Sharma
- Faculty of Applied Sciences and Biotechnology Shoolini University of Biotechnology and Management Sciences, Post Box No. 9, Head post Office, Solan, Himachal Pradesh. India
| | - Tahir Hussain
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas. United States
| | - Mohammed Azhar Khan
- Faculty of Applied Sciences and Biotechnology Shoolini University of Biotechnology and Management Sciences, Post Box No. 9, Head post Office, Solan, Himachal Pradesh. India
| | - Varun Jaiswal
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Gyeonggi-do 13120. South Korea
| |
Collapse
|
14
|
Kessler C, Brambilla A, Waldvogel D, Camenisch G, Biebach I, Leigh DM, Grossen C, Croll D. A robust sequencing assay of a thousand amplicons for the high-throughput population monitoring of Alpine ibex immunogenetics. Mol Ecol Resour 2021; 22:66-85. [PMID: 34152681 PMCID: PMC9292246 DOI: 10.1111/1755-0998.13452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/27/2022]
Abstract
Polymorphism for immune functions can explain significant variation in health and reproductive success within species. Drastic loss in genetic diversity at such loci constitutes an extinction risk and should be monitored in species of conservation concern. However, effective implementations of genome‐wide immune polymorphism sets into high‐throughput genotyping assays are scarce. Here, we report the design and validation of a microfluidics‐based amplicon sequencing assay to comprehensively capture genetic variation in Alpine ibex (Capra ibex). This species represents one of the most successful large mammal restorations recovering from a severely depressed census size and a massive loss in diversity at the major histocompatibility complex (MHC). We analysed 65 whole‐genome sequencing sets of the Alpine ibex and related species to select the most representative markers and to prevent primer binding failures. In total, we designed ~1,000 amplicons densely covering the MHC, further immunity‐related genes as well as randomly selected genome‐wide markers for the assessment of neutral population structure. Our analysis of 158 individuals shows that the genome‐wide markers perform equally well at resolving population structure as RAD‐sequencing or low‐coverage genome sequencing data sets. Immunity‐related loci show unexpectedly high degrees of genetic differentiation within the species. Such information can now be used to define highly targeted individual translocations. Our design strategy can be realistically implemented into genetic surveys of a large range of species. In conclusion, leveraging whole‐genome sequencing data sets to design targeted amplicon assays allows the simultaneous monitoring of multiple genetic risk factors and can be translated into species conservation recommendations.
Collapse
Affiliation(s)
- Camille Kessler
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Alice Brambilla
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Alpine Wildlife Research Center, Gran Paradiso National Park, Italy
| | - Dominique Waldvogel
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - Glauco Camenisch
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - Iris Biebach
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - Deborah M Leigh
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,WSL Swiss Federal Research Institute, Birmensdorf, Switzerland
| | - Christine Grossen
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
15
|
Xu M, Xing S, Zhao Y, Zhao C. Peptide nucleic acid-assisted colorimetric detection of single-nucleotide polymorphisms based on the intrinsic peroxidase-like activity of hemin-carbon nanotube nanocomposites. Talanta 2021; 232:122420. [PMID: 34074407 DOI: 10.1016/j.talanta.2021.122420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
Here, taking the advantage of single-stranded (ss) DNA specific nuclease (S1) and peptide nucleic acid (PNA), we demonstrated a novel, rapid, and label-free colorimetric nanosensor for the sensitive and accurate detection of SNPs based on the intrinsic peroxidase-like activity of hemin-functionalized single-walled carbon nanotubes (hemin-SWCNTs). PNA, a man-made mimic of DNA with extraordinary stability toward enzymatic degradation, can effectively protect DNA in the fully matched DNA/PNA duplexes from nuclease digestion. While the DNA in DNA/PNA duplexes containing a mismatch can be cleaved into small fragments. This difference can be visually monitored from the specific color change of TMB/H2O2 system by employing the peroxidase activity of hemin-SWCNTs because of its different aggregation states responding to ssPNA or DNA/PNA duplex. Under optimized conditions, the SNPs in the human tumor suppressor gene TP53 have been successfully genotyped in a linear range of 50-1000 nM with a detection limit of 0.11 nM. Moreover, this platform can effectively discriminate a series of single-base mismatches. This assay avoids the assistance of sophisticated instruments and complicated modifications of probes or nanomaterials, and function well for both cell lysate samples and PCR amplicons from standard cell lines, implying its potential practical applications for bioanalysis and biosensors.
Collapse
Affiliation(s)
- Mengjia Xu
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, 315300, Zhejiang, PR China
| | - Shu Xing
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
| | - Yang Zhao
- College of Science and Technology, Ningbo University, Ningbo, 315300, PR China
| | - Chao Zhao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
16
|
Torkamaneh D, Laroche J, Boyle B, Belzile F. DepthFinder: a tool to determine the optimal read depth for reduced-representation sequencing. Bioinformatics 2020; 36:26-32. [PMID: 31173057 DOI: 10.1093/bioinformatics/btz473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 12/27/2022] Open
Abstract
MOTIVATION Identification of DNA sequence variations such as single nucleotide polymorphisms (SNPs) is a fundamental step toward genetic studies. Reduced-representation sequencing methods have been developed as alternatives to whole genome sequencing to reduce costs and enable the analysis of many more individual. Amongst these methods, restriction site associated sequencing (RSAS) methodologies have been widely used for rapid and cost-effective discovery of SNPs and for high-throughput genotyping in a wide range of species. Despite the extensive improvements of the RSAS methods in the last decade, the estimation of the number of reads (i.e. read depth) required per sample for an efficient and effective genotyping remains mostly based on trial and error. RESULTS Herein we describe a bioinformatics tool, DepthFinder, designed to estimate the required read counts for RSAS methods. To illustrate its performance, we estimated required read counts in six different species (human, cattle, spruce budworm, salmon, barley and soybean) that cover a range of different biological (genome size, level of genome complexity, level of DNA methylation and ploidy) and technical (library preparation protocol and sequencing platform) factors. To assess the prediction accuracy of DepthFinder, we compared DepthFinder-derived results with independent datasets obtained from an RSAS experiment. This analysis yielded estimated accuracies of nearly 94%. Moreover, we present DepthFinder as a powerful tool to predict the most effective size selection interval in RSAS work. We conclude that DepthFinder constitutes an efficient, reliable and useful tool for a broad array of users in different research communities. AVAILABILITY AND IMPLEMENTATION https://bitbucket.org/jerlar73/DepthFinder. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Davoud Torkamaneh
- Département de Phytologie, Québec City, QC G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada.,Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jérôme Laroche
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Brian Boyle
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada
| | - François Belzile
- Département de Phytologie, Québec City, QC G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
17
|
Getmantseva LV, Bakoev SY, Shevtsova VS, Kolosov AY, Bakoev NF, Kolosova MA. Assessing the Effect of SNPs on Litter Traits in Pigs. SCIENTIFICA 2020; 2020:5243689. [PMID: 32802554 PMCID: PMC7414332 DOI: 10.1155/2020/5243689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/04/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
The reproductive ability of sows is the principle of continuous and efficient production, based on such traits as the number of piglets, the total number of parities, and the period of economic use. Currently, SNPs associated with the TNB and NBA are presented in the PigQTLdb. The aim of this work was the assessment of the SNP effects on the litter traits in Large White (LW, n = 502) and Landrace (LN, n = 432) sow breeds in a farm in Russia. 9 SNPs (SNP_1: rs80956812; SNP_2: rs81471381; SNP_3: rs80891106; SNP_4: rs81399474; SNP_5: rs81421148; SNP_6: rs81242222; SNP_7: rs81319839; SNP_8: rs81312912; SNP_9: rs80962240) were selected for the study. Associative analysis was performed using the GLM procedure in R version 3.5.1. The analysis of reproductive traits was carried out according to the results of the first parity, the second and subsequent parities, and totals for lifetime of sows. The significant effect on litter traits in LW was determined for SNP rs80956812, SNP rs81471381, SNP rs81421148, and SNP rs81399474. The significant effect on litter traits in LN was determined for SNP rs81421148 and SNP rs81319839. AKT3 gene was identified as perspective candidate gene, whose biological functions, as well as the results obtained in our work and in other studies, indicate its potential role in the reproductive process regulation in pigs. In general, the data obtained help to explain the genetic mechanisms of reproductive traits.
Collapse
Affiliation(s)
- Lyubov V. Getmantseva
- Federal Science Center for Animal Husbandry named after Academy Member L.K. Ernst, Dubrovitsy 142132, Russia
| | - Siroj Yu Bakoev
- Federal Science Center for Animal Husbandry named after Academy Member L.K. Ernst, Dubrovitsy 142132, Russia
| | | | - Anatoly Yu Kolosov
- Federal Science Center for Animal Husbandry named after Academy Member L.K. Ernst, Dubrovitsy 142132, Russia
- Don State Agrarian University, Persianovski 346493, Russia
| | - Neckruz F. Bakoev
- Federal Science Center for Animal Husbandry named after Academy Member L.K. Ernst, Dubrovitsy 142132, Russia
| | - Maria A. Kolosova
- Southern Federal University, Rostov-on-Don 344006, Russia
- Don State Agrarian University, Persianovski 346493, Russia
| |
Collapse
|
18
|
Naseri A, Holzhauser E, Zhi D, Zhang S. Efficient haplotype matching between a query and a panel for genealogical search. Bioinformatics 2020; 35:i233-i241. [PMID: 31510689 PMCID: PMC6612857 DOI: 10.1093/bioinformatics/btz347] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Motivation With the wide availability of whole-genome genotype data, there is an increasing need for conducting genetic genealogical searches efficiently. Computationally, this task amounts to identifying shared DNA segments between a query individual and a very large panel containing millions of haplotypes. The celebrated Positional Burrows-Wheeler Transform (PBWT) data structure is a pre-computed index of the panel that enables constant time matching at each position between one haplotype and an arbitrarily large panel. However, the existing algorithm (Durbin’s Algorithm 5) can only identify set-maximal matches, the longest matches ending at any location in a panel, while in real genealogical search scenarios, multiple ‘good enough’ matches are desired. Results In this work, we developed two algorithmic extensions of Durbin’s Algorithm 5, that can find all L-long matches, matches longer than or equal to a given length L, between a query and a panel. In the first algorithm, PBWT-Query, we introduce ‘virtual insertion’ of the query into the PBWT matrix of the panel, and then scanning up and down for the PBWT match blocks with length greater than L. In our second algorithm, L-PBWT-Query, we further speed up PBWT-Query by introducing additional data structures that allow us to avoid iterating through blocks of incomplete matches. The efficiency of PBWT-Query and L-PBWT-Query is demonstrated using the simulated data and the UK Biobank data. Our results show that our proposed algorithms can detect related individuals for a given query efficiently in very large cohorts which enables a fast on-line query search. Availability and implementation genome.ucf.edu/pbwt-query Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ardalan Naseri
- Department of Computer Science, University of Central Florida, Orlando, FL, USA
| | - Erwin Holzhauser
- Department of Computer Science, University of Central Florida, Orlando, FL, USA
| | - Degui Zhi
- School of Biomedical Informatics and School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shaojie Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
19
|
Piekoszewska-Ziętek P, Szymański K, Olczak-Kowalczyk D. Polymorphism in the CAVI gene, salivary properties and dental caries. Acta Odontol Scand 2020; 78:250-255. [PMID: 32013665 DOI: 10.1080/00016357.2019.1694977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objectives: Carbonic anhydrase (CA) VI is supposed to take part in pH or buffering capacity regulation, which can influence the caries risk of an individual. Its expression in the saliva can be modified by single nucleotide polymorphism (SNP). The aim was to investigate SNP in the CA VI gene in relation to active dental caries and physiochemical properties of saliva.Materials and methods: One hundred and thirty participants aged 11-16 years were involved. Clinical examinations were carried out using standardized WHO criteria, DMFT/DMFS and white spot lesions score was evaluated. Saliva samples were examined for salivary properties and CA VI concentration. DNA evaluated in the investigation was extracted from the buccal smear. Three SNP within CAVI gene (rs2274327; rs2274328; rs2274333) were selected and genotyping was performed.Results: In the active caries group, the mean CAVI concentration was significantly lower than in caries free group (p = .014). No association between increased or decreased risk of caries and analysed SNPs was found. There were some significant relations concerning SNPs and salivary buffer capacity and flow rate in rs2274327 and rs2274328.Conclusions: Polymorphism in the CAVI gene can affect salivary properties but there is no direct connection with dental caries.
Collapse
Affiliation(s)
| | - Konrad Szymański
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
20
|
Bakoev S, Getmantseva L, Bakoev F, Kolosova M, Gabova V, Kolosov A, Kostyunina O. Survey of SNPs Associated with Total Number Born and Total Number Born Alive in Pig. Genes (Basel) 2020; 11:E491. [PMID: 32365801 PMCID: PMC7291110 DOI: 10.3390/genes11050491] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/26/2022] Open
Abstract
Reproductive productivity depend on a complex set of characteristics. The number of piglets at birth (Total number born, Litter size, TNB) and the number of alive piglets at birth (Total number born alive, NBA) are the main indicators of the reproductive productivity of sows in pig breeding. Great hopes are pinned on GWAS (Genome-Wide Association Studies) to solve the problems associated with studying the genetic architecture of reproductive traits of pigs. This paper provides an overview of international studies on SNP (Single nucleotide polymorphism) associated with TNB and NBA in pigs presented in PigQTLdb as "Genome map association". Currently on the base of Genome map association results 306 SNPs associated with TNB (218 SNPs) and NBA (88 SNPs) have been identified and presented in the Pig QTLdb database. The results are based on research of pigs such as Large White, Yorkshire, Landrace, Berkshire, Duroc and Erhualian. The presented review shows that most SNPs found in chromosome areas where candidate genes or QTLs (Quantitative trait locus) have been identified. Further research in the given direction will allow to obtain new data that will become an impulse for creating breakthrough breeding technologies and increase the production efficiency in pig farming.
Collapse
Affiliation(s)
- Siroj Bakoev
- Federal Science Center for Animal Husbandry named after Academy Member L.K. Ernst, Dubrovitsy 142132, Russian; (S.B.); (F.B.); (M.K.); (A.K.); (O.K.)
| | - Lyubov Getmantseva
- Federal Science Center for Animal Husbandry named after Academy Member L.K. Ernst, Dubrovitsy 142132, Russian; (S.B.); (F.B.); (M.K.); (A.K.); (O.K.)
| | - Faridun Bakoev
- Federal Science Center for Animal Husbandry named after Academy Member L.K. Ernst, Dubrovitsy 142132, Russian; (S.B.); (F.B.); (M.K.); (A.K.); (O.K.)
- Department of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344006, Russia;
| | - Maria Kolosova
- Federal Science Center for Animal Husbandry named after Academy Member L.K. Ernst, Dubrovitsy 142132, Russian; (S.B.); (F.B.); (M.K.); (A.K.); (O.K.)
- Department of Biotechnology, Don State Agrarian University, Persianovski 346493, Russia
| | - Valeria Gabova
- Department of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344006, Russia;
| | - Anatoly Kolosov
- Federal Science Center for Animal Husbandry named after Academy Member L.K. Ernst, Dubrovitsy 142132, Russian; (S.B.); (F.B.); (M.K.); (A.K.); (O.K.)
- Department of Biotechnology, Don State Agrarian University, Persianovski 346493, Russia
| | - Olga Kostyunina
- Federal Science Center for Animal Husbandry named after Academy Member L.K. Ernst, Dubrovitsy 142132, Russian; (S.B.); (F.B.); (M.K.); (A.K.); (O.K.)
| |
Collapse
|
21
|
Wang DF, Lyu JL, Fang J, Chen J, Chen WW, Huang JQ, Xia SD, Jin JM, Dong FH, Cheng HQ, Xu YK, Guo XG. Impact of LDB3 gene polymorphisms on clinical presentation and implantable cardioverter defibrillator (ICD) implantation in Chinese patients with idiopathic dilated cardiomyopathy. J Zhejiang Univ Sci B 2020; 20:766-775. [PMID: 31379146 DOI: 10.1631/jzus.b1900017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Mutations in LIM domain binding 3 (LDB3) gene cause idiopathic dilated cardiomyopathy (IDCM), a structural heart disease with a complicated genetic background. However, the association of polymorphisms in the LDB3 gene with susceptibility to IDCM in Chinese populations remains unexplored as dose the impact on clinical presentation. METHODS We sequenced all exons and the adjacent part of introns of the LDB3 gene in 159 Chinese Han IDCM patients and 247 healthy controls. Then we detected the distribution of polymorphisms in the LDB3 gene in all participants and assessed their associations with risk of IDCM. Additionally, we conducted a stratified genotype-phenotype correlation analysis. RESULTS The A allele of rs4468255 was significantly associated with IDCM (P<0.01). The rs4468255, rs11812601, rs56165849, and rs3740346 were also associated with diastolic blood pressure (DBP) and left ventricular ejection fraction (LVEF) (P<0.05). Notably, a higher frequency of rs4468255 polymorphism was observed in implantable cardioverter defibrillator (ICD) recipients under a recessive model (P<0.01), whereas the significant association disappeared after adjusting for potential confounders. However, in the dominant model, notable correlations could only be observed after adjusting for multi parameters. CONCLUSIONS The rs4468255 was significantly correlated with IDCM of Chinese Han population. A allele of rs4468255 is higher in IDCM patients with ICD implantation, suggesting the influence of genetic background in the generation of this response. In addition, rs11812601, rs56165849, and rs3740346 in LDB3 show association with brain natriuretic peptide, DBP, and LVEF levels in patients with IDCM but did not show any association with IDCM susceptibility.
Collapse
Affiliation(s)
- Dong-Fei Wang
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jia-Lan Lyu
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Juan Fang
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jian Chen
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Wan-Wan Chen
- Department of Cardiology, Pujiang Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, Jinhua 322200, China
| | - Jia-Qi Huang
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shu-Dong Xia
- Department of Cardiology, the Forth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Jian-Mei Jin
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Fang-Hong Dong
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hong-Qiang Cheng
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ying-Ke Xu
- Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiao-Gang Guo
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
22
|
Wang X, Liu H, Pang M, Fu B, Yu X, He S, Tong J. Construction of a high-density genetic linkage map and mapping of quantitative trait loci for growth-related traits in silver carp (Hypophthalmichthys molitrix). Sci Rep 2019; 9:17506. [PMID: 31767872 PMCID: PMC6877629 DOI: 10.1038/s41598-019-53469-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 10/29/2019] [Indexed: 01/26/2023] Open
Abstract
High-density genetic map and quantitative trait loci (QTL) mapping are powerful tools for identifying genomic regions that may be responsible for such polygenic trait as growth. A high-density genetic linkage map was constructed by sequencing 198 individuals in a F1 family of silver carp (Hypophthalmichthys molitrix) in this study. This genetic map spans a length of 2,721.07 cM with 3,134 SNPs distributed on 24 linkage groups (LGs). Comparative genomic mapping presented a high level of syntenic relationship between silver carp and zebrafish. We detected one major and nineteen suggestive QTL for 4 growth-related traits (body length, body height, head length and body weight) at 6, 12 and 18 months post hatch (mph), explaining 10.2~19.5% of phenotypic variation. All six QTL for growth traits of 12 mph generally overlapped with QTL for 6 mph, while the majority of QTL for 18 mph were identified on two additional LGs, which may reveal a different genetic modulation during early and late muscle growth stages. Four potential candidate genes were identified from the QTL regions by homology searching of marker sequences against zebrafish genome. Hepcidin, a potential candidate gene identified from a QTL interval on LG16, was significantly associated with growth traits in the analyses of both phenotype-SNP association and mRNA expression between small-size and large-size groups of silver carp. These results provide a basis for elucidating the genetic mechanisms for growth and body formation in silver carp, a world aquaculture fish.
Collapse
Affiliation(s)
- Xinhua Wang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Haiyang Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Meixia Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Beide Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shunping He
- Key Laboratory of Aquatic Biodiversity and Conservation of the CAS, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
23
|
Kuismin M, Saatoglu D, Niskanen AK, Jensen H, Sillanpää MJ. Genetic assignment of individuals to source populations using network estimation tools. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Markku Kuismin
- Research Unit of Mathematical Sciences University of Oulu Oulu Finland
- Biocenter Oulu University of Oulu Oulu Finland
| | - Dilan Saatoglu
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Alina K. Niskanen
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
- Ecology and Genetics Research Unit University of Oulu Oulu Finland
| | - Henrik Jensen
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Mikko J. Sillanpää
- Research Unit of Mathematical Sciences University of Oulu Oulu Finland
- Biocenter Oulu University of Oulu Oulu Finland
- Infotech Oulu University of Oulu Oulu Finland
| |
Collapse
|
24
|
Antonaros F, Olivucci G, Cicchini E, Ramacieri G, Pelleri MC, Vitale L, Strippoli P, Locatelli C, Cocchi G, Piovesan A, Caracausi M. MTHFR C677T polymorphism analysis: A simple, effective restriction enzyme-based method improving previous protocols. Mol Genet Genomic Med 2019; 7:e628. [PMID: 30868767 PMCID: PMC6503068 DOI: 10.1002/mgg3.628] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 12/16/2022] Open
Abstract
Background 5,10‐Methylentetrahydrofolate reductase (MTHFR) C677T polymorphism is one of the most studied genetic variations in the human genome. Polymerase chain reaction‐restriction fragment length polymorphism (PCR‐RFLP) is one of the most used techniques to characterize the point mutations in genomic sequences because of its suitability and low cost. The most widely used method for the MTHFR C677T polymorphism characterization was developed by Frosst et al. (1995) but appears to have some technical limitations. The aim of this study was to propose a novel PCR‐RFLP method for the detection of this polymorphism. Methods In order to retrieve all published articles possibly describing any PCR‐RFLP methods useful to analyze MTHFR C677T polymorphism, we performed systematic queries on PubMed, using a combination of Boolean operators (AND/OR) and MeSH terms. Amplify software was used in order to design a new primer pair following the optimal standard criteria. Primer‐BLAST software was used to check primer pair's biological specificity. Results The analysis of previous literature showed that PCR‐RFLP method remains the most used technique. None of the 108 primer pairs described was ideal with regard to main accepted primer pair biochemical technical parameters. The new primer pair amplifies a DNA‐fragment of 513 base pair (bp) that, in the presence of the polymorphism, is cut by Hinf I enzyme in two pieces of 146 bp and 367 bp and clearly visible on 2% agarose gel. The level of expertise and the materials required are minimal and the protocol takes one day to carry out. Conclusion Our original PCR‐RFLP strategy, specifically designed to make the analysis optimal with respect to PCR primers and gel analysis, fits the ideal criteria compared to the widely used strategy by Frosst et al (1995) as well as any other PCR‐RFLP strategies proposed for MTHFR C677T polymorphism genotyping to date.
Collapse
Affiliation(s)
- Francesca Antonaros
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Giulia Olivucci
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Elena Cicchini
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Giuseppe Ramacieri
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Maria Chiara Pelleri
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Lorenza Vitale
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Pierluigi Strippoli
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Chiara Locatelli
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Bologna, Italy
| | - Guido Cocchi
- Neonatology Unit, Department of Medical and Surgical Sciences (DIMEC), St. Orsola-Malpighi Polyclinic, University of Bologna, Bologna, Italy
| | - Allison Piovesan
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Maria Caracausi
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
25
|
Richter L, Du Plessis EM, Duvenage S, Korsten L. Occurrence, Identification, and Antimicrobial Resistance Profiles of Extended-Spectrum and AmpC β-Lactamase-Producing Enterobacteriaceae from Fresh Vegetables Retailed in Gauteng Province, South Africa. Foodborne Pathog Dis 2019; 16:421-427. [PMID: 30785775 DOI: 10.1089/fpd.2018.2558] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Extended-spectrum β-lactamase (ESBL) and AmpC β-lactamase-producing Enterobacteriaceae are no longer restricted to the health care system, but represent increased risks related to environmental integrity and food safety. Fresh produce has been increasingly reported to constitute a reservoir of multidrug-resistant (MDR) potential human pathogenic Enterobacteriaceae. This study aimed to detect, identify, and characterize the antimicrobial resistance of ESBL/AmpC-producing Enterobacteriaceae isolates from fresh vegetables at point of sale. Vegetable samples (spinach, tomatoes, lettuce, cucumber, and green beans; n = 545) were purchased from retailers in Gauteng, the most densely populated province in South Africa. These included street vendors, trolley vendors, farmers' market stalls, and supermarket chain stores. Selective enrichment, plating onto chromogenic media, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) confirmation of isolate identities showed that 17.4% (95/545) vegetable samples analyzed were contaminated with presumptive ESBL/AmpC-producing Enterobacteriaceae. Dominant species identified included Escherichia coli, Enterobacter cloacae, Enterobacter asburiae, and Klebsiella pneumoniae. Phenotypic antibiotic resistance analysis showed that 96.1% of 77 selected isolates were MDR, while resistance to aminoglycoside (94.8%), chloramphenicol (85.7%), and tetracycline (53.2%) antibiotic classes was most prevalent. Positive phenotypic analysis for ESBL production was shown in 61 (79.2%) of the 77 isolates, and AmpC production in 41.6% of the isolates. PCR and sequencing confirmed the presence of β-lactamase genes in 75.3% isolates from all vegetable types analyzed, mainly in E. coli, Enterobacter spp., and Serratia spp. isolates. CTX-M group 9 (32.8%) was the dominant ESBL type, while EBC (24.1%) was the most prevalent plasmidic type AmpC β-lactamase. Our findings document for the first time the presence of MDR ESBL/AmpC-producing Enterobacteriaceae in raw vegetables sold at selected retailers in Gauteng Province, South Africa.
Collapse
Affiliation(s)
- Loandi Richter
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Erika M Du Plessis
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Stacey Duvenage
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
26
|
Altered expression of long non-coding RNA GAS5 in digestive tumors. Biosci Rep 2019; 39:BSR20180789. [PMID: 30606744 PMCID: PMC6340949 DOI: 10.1042/bsr20180789] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 12/16/2018] [Accepted: 12/27/2018] [Indexed: 12/23/2022] Open
Abstract
Cancer has become one of the most important diseases that affect human health and life. The effects of cancer in the digestive system are particularly prominent. Recently, long non-coding RNA (lncRNA) has attracted the attention of more and more researchers and has become an emerging field of gene research. The lncRNA growth arrest-specific 5 (GAS5) is a novel lncRNA that has attracted the attention of researchers in recent years and plays an important role in the development of tumors, especially in digestive system tumors. GAS5 was first identified in a mouse cDNA library. It was generally considered that it has the role of tumor suppressor genes, but there are still studies that have a certain ability to promote cancer. Furthermore, the 5-bp indel polymorphism (rs145204276) in the GAS5 promoter region also has a carcinogenic effect. The discovery of GAS5 and in-depth study of single nucleotide polymorphism (SNP) mechanism can provide a new way for the prevention and treatment of digestive system tumors.
Collapse
|
27
|
Xu LY, Wang LY, Wei K, Tan LQ, Su JJ, Cheng H. High-density SNP linkage map construction and QTL mapping for flavonoid-related traits in a tea plant (Camellia sinensis) using 2b-RAD sequencing. BMC Genomics 2018; 19:955. [PMID: 30577813 PMCID: PMC6304016 DOI: 10.1186/s12864-018-5291-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 11/20/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Flavonoids are important components that confer upon tea plants a unique flavour and health functions. However, the traditional breeding method for selecting a cultivar with a high or unique flavonoid content is time consuming and labour intensive. High-density genetic map construction associated with quantitative trait locus (QTL) mapping provides an effective way to facilitate trait improvement in plant breeding. In this study, an F1 population (LJ43×BHZ) was genotyped using 2b-restriction site-associated DNA (2b-RAD) sequencing to obtain massive single nucleotide polymorphism (SNP) markers to construct a high-density genetic map for a tea plant. Furthermore, QTLs related to flavonoids were identified using our new genetic map. RESULTS A total of 13,446 polymorphic SNP markers were developed using 2b-RAD sequencing, and 4,463 of these markers were available for constructing the genetic linkage map. A 1,678.52-cM high-density map at an average interval of 0.40 cM with 4,217 markers, including 427 frameset simple sequence repeats (SSRs) and 3,800 novel SNPs, mapped into 15 linkage groups was successfully constructed. After QTL analysis, a total of 27 QTLs related to flavonoids or caffeine content (CAF) were mapped to 8 different linkage groups, LG01, LG03, LG06, LG08, LG10, LG11, LG12, and LG13, with an LOD from 3.14 to 39.54, constituting 7.5% to 42.8% of the phenotypic variation. CONCLUSIONS To our knowledge, the highest density genetic map ever reported was constructed since the largest mapping population of tea plants was adopted in present study. Moreover, novel QTLs related to flavonoids and CAF were identified based on the new high-density genetic map. In addition, two markers were located in candidate genes that may be involved in flavonoid metabolism. The present study provides valuable information for gene discovery, marker-assisted selection breeding and map-based cloning for functional genes that are related to flavonoid content in tea plants.
Collapse
Affiliation(s)
- Li-Yi Xu
- National Centre for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Li-Yuan Wang
- National Centre for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| | - Kang Wei
- National Centre for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| | - Li-Qiang Tan
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jing-Jing Su
- National Centre for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| | - Hao Cheng
- National Centre for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| |
Collapse
|
28
|
Carrasco B, González M, Gebauer M, García-González R, Maldonado J, Silva H. Construction of a highly saturated linkage map in Japanese plum (Prunus salicina L.) using GBS for SNP marker calling. PLoS One 2018; 13:e0208032. [PMID: 30507961 PMCID: PMC6277071 DOI: 10.1371/journal.pone.0208032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/09/2018] [Indexed: 11/19/2022] Open
Abstract
This study reports the construction of high density linkage maps of Japanese plum (Prunus salicina Lindl.) using single nucleotide polymorphism markers (SNPs), obtained with a GBS strategy. The mapping population (An x Au) was obtained by crossing cv. "Angeleno" (An) as maternal line and cv. "Aurora" (Au) as the pollen donor. A total of 49,826 SNPs were identified using the peach genome V2.1 as a reference. Then a stringent filtering was carried out, which revealed 1,441 high quality SNPs in 137 An x Au offspring, which were mapped in eight linkage groups. Finally, the consensus map was built using 732 SNPs which spanned 617 cM with an average of 0.96 cM between adjacent markers. The majority of the SNPs were distributed in the intragenic region in all the linkage groups. Considering all linkage groups together, 85.6% of the SNPs were located in intragenic regions and only 14.4% were located in intergenic regions. The genetic linkage analysis was able to co-localize two to three SNPs over 37 putative orthologous genes in eight linkage groups in the Japanese plum map. These results indicate a high level of synteny and collinearity between Japanese plum and peach genomes.
Collapse
Affiliation(s)
- Basilio Carrasco
- Pontificia Universidad Católica de Chile, Facultad de Agronomía e Ingeniería Forestal, Departamento de Ciencias Vegetales, Macul, Santiago, Chile
| | - Máximo González
- Pontificia Universidad Católica de Chile, Facultad de Agronomía e Ingeniería Forestal, Departamento de Ciencias Vegetales, Macul, Santiago, Chile
| | - Marlene Gebauer
- Pontificia Universidad Católica de Chile, Facultad de Agronomía e Ingeniería Forestal, Departamento de Ciencias Vegetales, Macul, Santiago, Chile
| | - Rolando García-González
- Sociedad BioTECNOS Ltda, R&D Department Camino a Pangal Km 2 1/2, San Javier, Región del Maule, Chile
- Facultad de Ciencias Agrarias y Forestales, Centro de Biotecnología de los Recursos Naturales (CENBio), Universidad Católica del Maule, Talca, Chile
| | - Jonathan Maldonado
- Universidad de Chile, Facultad de Ciencias Agronómicas, Departamento de Producción Agrícola, Laboratorio de Genómica Funcional & Bioinformática, La Pintana, Santiago, Chile
| | - Herman Silva
- Universidad de Chile, Facultad de Ciencias Agronómicas, Departamento de Producción Agrícola, Laboratorio de Genómica Funcional & Bioinformática, La Pintana, Santiago, Chile
| |
Collapse
|
29
|
Lv J, Jiao W, Guo H, Liu P, Wang R, Zhang L, Zeng Q, Hu X, Bao Z, Wang S. HD-Marker: a highly multiplexed and flexible approach for targeted genotyping of more than 10,000 genes in a single-tube assay. Genome Res 2018; 28:1919-1930. [PMID: 30409770 PMCID: PMC6280760 DOI: 10.1101/gr.235820.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 10/25/2018] [Indexed: 01/03/2023]
Abstract
Targeted genotyping of transcriptome-scale genetic markers is highly attractive for genetic, ecological, and evolutionary studies, but achieving this goal in a cost-effective manner remains a major challenge, especially for laboratories working on nonmodel organisms. Here, we develop a high-throughput, sequencing-based GoldenGate approach (called HD-Marker), which addresses the array-related issues of original GoldenGate methodology and allows for highly multiplexed and flexible targeted genotyping of more than 12,000 loci in a single-tube assay (in contrast to fewer than 3100 in the original GoldenGate assay). We perform extensive analyses to demonstrate the power and performance of HD-Marker on various multiplex levels (296, 795, 1293, and 12,472 genic SNPs) across two sequencing platforms in two nonmodel species (the scallops Chlamys farreri and Patinopecten yessoensis), with extremely high capture rate (98%-99%) and genotyping accuracy (97%-99%). We also demonstrate the potential of HD-Marker for high-throughput targeted genotyping of alternative marker types (e.g., microsatellites and indels). With its remarkable cost-effectiveness (as low as $0.002 per genotype) and high flexibility in choice of multiplex levels and marker types, HD-Marker provides a highly attractive tool over array-based platforms for fulfilling genome/transcriptome-wide targeted genotyping applications, especially in nonmodel organisms.
Collapse
Affiliation(s)
- Jia Lv
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Wenqian Jiao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Haobing Guo
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Pingping Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ruijia Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qifan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
30
|
Campbell EO, Brunet BMT, Dupuis JR, Sperling FAH. Would an
RRS
by any other name sound as
RAD
? Methods Ecol Evol 2018. [DOI: 10.1111/2041-210x.13038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Erin O. Campbell
- Department of Biological SciencesCW405 Biosciences CentreUniversity of Alberta Edmonton Alberta Canada
| | - Bryan M. T. Brunet
- Department of Biological SciencesCW405 Biosciences CentreUniversity of Alberta Edmonton Alberta Canada
| | - Julian R. Dupuis
- Department of Plant and Environmental Protection SciencesUniversity of Hawai'i at Mãnoa Honolulu Hawai'i
| | - Felix A. H. Sperling
- Department of Biological SciencesCW405 Biosciences CentreUniversity of Alberta Edmonton Alberta Canada
| |
Collapse
|
31
|
Gates DJ, Pilson D, Smith SD. Filtering of target sequence capture individuals facilitates species tree construction in the plant subtribe Iochrominae (Solanaceae). Mol Phylogenet Evol 2018; 123:26-34. [DOI: 10.1016/j.ympev.2018.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 10/18/2022]
|
32
|
Maghuly F, Pabinger S, Krainer J, Laimer M. The Pattern and Distribution of Induced Mutations in J. curcas Using Reduced Representation Sequencing. FRONTIERS IN PLANT SCIENCE 2018; 9:524. [PMID: 29774036 PMCID: PMC5944264 DOI: 10.3389/fpls.2018.00524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/04/2018] [Indexed: 05/31/2023]
Abstract
Mutagenesis in combination with Genotyping by Sequencing (GBS) is a powerful tool for introducing variation, studying gene function and identifying causal mutations underlying phenotypes of interest in crop plant genomes. About 400 million paired-end reads were obtained from 82 ethylmethane sulfonate (EMS) induced mutants and 14 wild-type accessions of Jatropha curcas for the detection of Single Nucleotide Polymorphisms (SNPs) and Insertion/Deletions (InDels) by two different approaches (nGBS and ddGBS) on an Illumina HiSeq 2000 sequencer. Using bioinformatics analyses, 1,452 induced SNPs and InDels were identified in coding regions, which were distributed across 995 genes. The predominantly observed mutations were G/C to A/T transitions (64%), while transversions were observed at a lower frequency (36%). Regarding the effect of mutations on gene function, 18% of the mutations were located in intergenic regions. In fact, mutants with the highest number of heterozygous SNPs were found in samples treated with 0.8% EMS for 3 h. Reconstruction of the metabolic pathways showed that in total 16 SNPs were located in six KEGG pathways by nGBS and two pathways by ddGBS. The most highly represented pathways were ether-lipid metabolism and glycerophospholipid metabolism, followed by starch and sucrose metabolism by nGBS and triterpenoid biosynthesis as well as steroid biosynthesis by ddGBS. Furthermore, high genome methylation was observed in J. curcas, which might help to understand the plasticity of the Jatropha genome in response to environmental factors. At last, the results showed that continuously vegetatively propagated tissue is a fast, efficient and accurate method to dissolve chimeras, especially for long-lived plants like J. curcas. Obtained data showed that allelic variations and in silico analyses of gene functions (gene function prediction), which control important traits, could be identified in mutant populations using nGBS and ddGBS. However, the handling of GBS data is more difficult and more challenging than the traditional TILLING strategy in mutated plants, since the Jatropha genome sequence is incomplete, which makes alignment and variant analysis of target sequence reads challenging to perform and interpret. Therefore, providing a complete Jatropha reference genome sequence with high quality should be a priority for any breeding program.
Collapse
Affiliation(s)
- Fatemeh Maghuly
- Plant Biotechnology Unit, Department of Biotechnology, Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Stephan Pabinger
- Molecular Diagnostics, Center for Health & Bioresources, Austrian Institute of Technology, Vienna, Austria
| | - Julie Krainer
- Molecular Diagnostics, Center for Health & Bioresources, Austrian Institute of Technology, Vienna, Austria
| | - Margit Laimer
- Plant Biotechnology Unit, Department of Biotechnology, Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
33
|
NGS-Based Genotyping, High-Throughput Phenotyping and Genome-Wide Association Studies Laid the Foundations for Next-Generation Breeding in Horticultural Crops. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9030038] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Demographic trends and changes to climate require a more efficient use of plant genetic resources in breeding programs. Indeed, the release of high-yielding varieties has resulted in crop genetic erosion and loss of diversity. This has produced an increased susceptibility to severe stresses and a reduction of several food quality parameters. Next generation sequencing (NGS) technologies are being increasingly used to explore “gene space” and to provide high-resolution profiling of nucleotide variation within germplasm collections. On the other hand, advances in high-throughput phenotyping are bridging the genotype-to-phenotype gap in crop selection. The combination of allelic and phenotypic data points via genome-wide association studies is facilitating the discovery of genetic loci that are associated with key agronomic traits. In this review, we provide a brief overview on the latest NGS-based and phenotyping technologies and on their role to unlocking the genetic potential of vegetable crops; then, we discuss the paradigm shift that is underway in horticultural crop breeding.
Collapse
|
34
|
Piekoszewska-Ziętek P, Turska-Szybka A, Olczak-Kowalczyk D. Single Nucleotide Polymorphism in the Aetiology of Caries: Systematic Literature Review. Caries Res 2017; 51:425-435. [PMID: 28668961 DOI: 10.1159/000476075] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/24/2017] [Indexed: 01/20/2023] Open
Abstract
Recent progress in the field of molecular biology and techniques of DNA sequence analysis allowed determining the meaning of hereditary factors of many common human diseases. Studies of genetic mechanisms in the aetiology of caries encompass, primarily, 4 main groups of genes responsible for (1) the development of enamel, (2) formation and composition of saliva, (3) immunological responses, and (4) carbohydrate metabolism. The aim of this study was to present current knowledge about the influence of single nucleotide polymorphism (SNP) genetic variants on the occurrence of dental caries. PubMed/Medline, Embase, and Cochrane Library databases were searched for papers on the influence of genetic factors connected with SNP on the occurrence of dental caries in children, teenagers, and adults. Thirty original papers written in English were included in this review. Study groups ranged from 30 to 13,000 subjects. SNPs were observed in 30 genes. Results of the majority of studies confirm the participation of hereditary factors in the aetiology of caries. Three genes, AMELX, AQP5, and ESRRB, have the most promising evidence based on multiple replications and data, supporting a role of these genes in caries. The review of the literature proves that SNP is linked with the aetiology of dental caries.
Collapse
|
35
|
Wang Y, Cao X, Zhao Y, Fei J, Hu X, Li N. Optimized double-digest genotyping by sequencing (ddGBS) method with high-density SNP markers and high genotyping accuracy for chickens. PLoS One 2017; 12:e0179073. [PMID: 28598985 PMCID: PMC5466311 DOI: 10.1371/journal.pone.0179073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/23/2017] [Indexed: 12/04/2022] Open
Abstract
High-density single nucleotide polymorphism (SNP) markers are crucial to improve the resolution and accuracy of genome-wide association study (GWAS) and genomic selection (GS). Numerous approaches, including whole genome sequencing, genome sampling sequencing, and SNP chips are able to discover or genotype markers at different densities and costs. Achieving an optimal balance between sequencing resolution and budgets, especially in large-scale population genetics research, constitutes a major challenge. Here, we performed improved double-enzyme digestion genotyping by sequencing (ddGBS) on chicken. We evaluated eight double-enzyme digestion combinations, and EcoR I- Mse I was chosen as the optimal combination for the chicken genome. We firstly proposed that two parameters, optimal read-count point (ORP) and saturated read-count point (SRP), could be utilized to determine the optimal sequencing volume. A total of 291,772 high-density SNPs from 824 animals were identified. By validation using the SNP chip, we found that the consistency between ddGBS data and the SNP chip is over 99%. The approach that we developed in chickens, which is high-quality, high-density, cost-effective (300 K, $30/sample), and time-saving (within 48 h), will have broad applications in animal breeding programs.
Collapse
Affiliation(s)
- Yuzhe Wang
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Xuemin Cao
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Yiqiang Zhao
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Jing Fei
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Xiaoxiang Hu
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, China
- * E-mail:
| | - Ning Li
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
36
|
A SNP Based Linkage Map of the Arctic Charr ( Salvelinus alpinus) Genome Provides Insights into the Diploidization Process After Whole Genome Duplication. G3-GENES GENOMES GENETICS 2017; 7:543-556. [PMID: 27986793 PMCID: PMC5295600 DOI: 10.1534/g3.116.038026] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Diploidization, which follows whole genome duplication events, does not occur evenly across the genome. In salmonid fishes, certain pairs of homeologous chromosomes preserve tetraploid loci in higher frequencies toward the telomeres due to residual tetrasomic inheritance. Research suggests this occurs only in homeologous pairs where one chromosome arm has undergone a fusion event. We present a linkage map for Arctic charr (Salvelinus alpinus), a salmonid species with relatively fewer chromosome fusions. Genotype by sequencing identified 19,418 SNPs, and a linkage map consisting of 4508 markers was constructed from a subset of high quality SNPs and microsatellite markers that were used to anchor the new map to previous versions. Both male- and female-specific linkage maps contained the expected number of 39 linkage groups. The chromosome type associated with each linkage group was determined, and 10 stable metacentric chromosomes were identified, along with a chromosome polymorphism involving the sex chromosome AC04. Two instances of a weak form of pseudolinkage were detected in the telomeric regions of homeologous chromosome arms in both female and male linkage maps. Chromosome arm homologies within the Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) genomes were determined. Paralogous sequence variants (PSVs) were identified, and their comparative BLASTn hit locations showed that duplicate markers exist in higher numbers on seven pairs of homeologous arms, previously identified as preserving tetrasomy in salmonid species. Homeologous arm pairs where neither arm has been part of a fusion event in Arctic charr had fewer PSVs, suggesting faster diploidization rates in these regions.
Collapse
|
37
|
Balsalobre TWA, da Silva Pereira G, Margarido GRA, Gazaffi R, Barreto FZ, Anoni CO, Cardoso-Silva CB, Costa EA, Mancini MC, Hoffmann HP, de Souza AP, Garcia AAF, Carneiro MS. GBS-based single dosage markers for linkage and QTL mapping allow gene mining for yield-related traits in sugarcane. BMC Genomics 2017; 18:72. [PMID: 28077090 PMCID: PMC5225503 DOI: 10.1186/s12864-016-3383-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/07/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Sugarcane (Saccharum spp.) is predominantly an autopolyploid plant with a variable ploidy level, frequent aneuploidy and a large genome that hampers investigation of its organization. Genetic architecture studies are important for identifying genomic regions associated with traits of interest. However, due to the genetic complexity of sugarcane, the practical applications of genomic tools have been notably delayed in this crop, in contrast to other crops that have already advanced to marker-assisted selection (MAS) and genomic selection. High-throughput next-generation sequencing (NGS) technologies have opened new opportunities for discovering molecular markers, especially single nucleotide polymorphisms (SNPs) and insertion-deletion (indels), at the genome-wide level. The objectives of this study were to (i) establish a pipeline for identifying variants from genotyping-by-sequencing (GBS) data in sugarcane, (ii) construct an integrated genetic map with GBS-based markers plus target region amplification polymorphisms and microsatellites, (iii) detect QTLs related to yield component traits, and (iv) perform annotation of the sequences that originated the associated markers with mapped QTLs to search putative candidate genes. RESULTS We used four pseudo-references to align the GBS reads. Depending on the reference, from 3,433 to 15,906 high-quality markers were discovered, and half of them segregated as single-dose markers (SDMs) on average. In addition to 7,049 non-redundant SDMs from GBS, 629 gel-based markers were used in a subsequent linkage analysis. Of 7,678 SDMs, 993 were mapped. These markers were distributed throughout 223 linkage groups, which were clustered in 18 homo(eo)logous groups (HGs), with a cumulative map length of 3,682.04 cM and an average marker density of 3.70 cM. We performed QTL mapping of four traits and found seven QTLs. Our results suggest the presence of a stable QTL across locations. Furthermore, QTLs to soluble solid content (BRIX) and fiber content (FIB) traits had markers linked to putative candidate genes. CONCLUSIONS This study is the first to report the use of GBS for large-scale variant discovery and genotyping of a mapping population in sugarcane, providing several insights regarding the use of NGS data in a polyploid, non-model species. The use of GBS generated a large number of markers and still enabled ploidy and allelic dosage estimation. Moreover, we were able to identify seven QTLs, two of which had great potential for validation and future use for molecular breeding in sugarcane.
Collapse
Affiliation(s)
- Thiago Willian Almeida Balsalobre
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Rodovia Anhanguera, Km 174, Araras, CEP 13600-970 São Paulo Brazil
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Avenida Monteiro Lobato 255, Campinas, CEP 13083-862 São Paulo Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Avenida Candido Rondon 400, Campinas, CEP 13083-875 São Paulo Brazil
| | - Guilherme da Silva Pereira
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Avenida Pádua Dias 11, Piracicaba, CEP 13418-900 São Paulo Brazil
| | - Gabriel Rodrigues Alves Margarido
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Avenida Pádua Dias 11, Piracicaba, CEP 13418-900 São Paulo Brazil
| | - Rodrigo Gazaffi
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Rodovia Anhanguera, Km 174, Araras, CEP 13600-970 São Paulo Brazil
| | - Fernanda Zatti Barreto
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Rodovia Anhanguera, Km 174, Araras, CEP 13600-970 São Paulo Brazil
| | - Carina Oliveira Anoni
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Avenida Pádua Dias 11, Piracicaba, CEP 13418-900 São Paulo Brazil
| | - Cláudio Benício Cardoso-Silva
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Avenida Monteiro Lobato 255, Campinas, CEP 13083-862 São Paulo Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Avenida Candido Rondon 400, Campinas, CEP 13083-875 São Paulo Brazil
| | - Estela Araújo Costa
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Avenida Monteiro Lobato 255, Campinas, CEP 13083-862 São Paulo Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Avenida Candido Rondon 400, Campinas, CEP 13083-875 São Paulo Brazil
| | - Melina Cristina Mancini
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Avenida Monteiro Lobato 255, Campinas, CEP 13083-862 São Paulo Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Avenida Candido Rondon 400, Campinas, CEP 13083-875 São Paulo Brazil
| | - Hermann Paulo Hoffmann
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Rodovia Anhanguera, Km 174, Araras, CEP 13600-970 São Paulo Brazil
| | - Anete Pereira de Souza
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Avenida Monteiro Lobato 255, Campinas, CEP 13083-862 São Paulo Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Avenida Candido Rondon 400, Campinas, CEP 13083-875 São Paulo Brazil
| | - Antonio Augusto Franco Garcia
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Avenida Pádua Dias 11, Piracicaba, CEP 13418-900 São Paulo Brazil
| | - Monalisa Sampaio Carneiro
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Rodovia Anhanguera, Km 174, Araras, CEP 13600-970 São Paulo Brazil
| |
Collapse
|
38
|
Integrating Genomic Data Sets for Knowledge Discovery: An Informed Approach to Management of Captive Endangered Species. Int J Genomics 2016; 2016:2374610. [PMID: 27376076 PMCID: PMC4916311 DOI: 10.1155/2016/2374610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/19/2016] [Accepted: 03/21/2016] [Indexed: 12/31/2022] Open
Abstract
Many endangered captive populations exhibit reduced genetic diversity resulting in health issues that impact reproductive fitness and quality of life. Numerous cost effective genomic sequencing and genotyping technologies provide unparalleled opportunity for incorporating genomics knowledge in management of endangered species. Genomic data, such as sequence data, transcriptome data, and genotyping data, provide critical information about a captive population that, when leveraged correctly, can be utilized to maximize population genetic variation while simultaneously reducing unintended introduction or propagation of undesirable phenotypes. Current approaches aimed at managing endangered captive populations utilize species survival plans (SSPs) that rely upon mean kinship estimates to maximize genetic diversity while simultaneously avoiding artificial selection in the breeding program. However, as genomic resources increase for each endangered species, the potential knowledge available for management also increases. Unlike model organisms in which considerable scientific resources are used to experimentally validate genotype-phenotype relationships, endangered species typically lack the necessary sample sizes and economic resources required for such studies. Even so, in the absence of experimentally verified genetic discoveries, genomics data still provides value. In fact, bioinformatics and comparative genomics approaches offer mechanisms for translating these raw genomics data sets into integrated knowledge that enable an informed approach to endangered species management.
Collapse
|