1
|
Donati Zeppa S, Gervasi M, Bartolacci A, Ferrini F, Patti A, Sestili P, Stocchi V, Agostini D. Targeting the Gut Microbiota for Prevention and Management of Type 2 Diabetes. Nutrients 2024; 16:3951. [PMID: 39599740 PMCID: PMC11597803 DOI: 10.3390/nu16223951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disorder with a heterogeneous etiology encompassing societal and behavioral risk factors in addition to genetic and environmental susceptibility. The cardiovascular consequences of diabetes account for more than two-thirds of mortality among people with T2D. Not only does T2D shorten life expectancy, but it also lowers quality of life and is associated with extremely high health expenditures since diabetic complications raise both direct and indirect healthcare costs. An increasing body of research indicates a connection between T2D and gut microbial traits, as numerous alterations in the intestinal microorganisms have been noted in pre-diabetic and diabetic individuals. These include pro-inflammatory bacterial patterns, increased intestinal permeability, endotoxemia, and hyperglycemia-favoring conditions, such as the alteration of glucagon-like peptide-1 (GLP-1) secretion. Restoring microbial homeostasis can be very beneficial for preventing and co-treating T2D and improving antidiabetic therapy outcomes. This review summarizes the characteristics of a "diabetic" microbiota and the metabolites produced by microbial species that can worsen or ameliorate T2D risk and progression, suggesting gut microbiota-targeted strategies to restore eubiosis and regulate blood glucose. Nutritional supplementation, diet, and physical exercise are known to play important roles in T2D, and here their effects on the gut microbiota are discussed, suggesting non-pharmacological approaches that can greatly help in diabetes management and highlighting the importance of tailoring treatments to individual needs.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
- Department of Human Science for Promotion of Quality of Life, University San Raffaele, 00166 Rome, Italy;
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Alessia Bartolacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Antonino Patti
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90144 Palermo, Italy;
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Vilberto Stocchi
- Department of Human Science for Promotion of Quality of Life, University San Raffaele, 00166 Rome, Italy;
| | - Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| |
Collapse
|
2
|
Ke S, Hu Q, Zhu G, Li L, Sun X, Cheng H, Li L, Yao Y, Li H. Remodeling of white adipose tissue microenvironment against obesity by phytochemicals. Phytother Res 2024; 38:4904-4922. [PMID: 36786412 DOI: 10.1002/ptr.7758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Obesity is a kind of chronic disease due to a long-term imbalance between energy intake and expenditure. In recent years, the number of obese people around the world has soared, and obesity problem should not be underestimated. Obesity is characterized by changes in the adipose microenvironment, mainly manifested as hypertrophy, chronic inflammatory status, hypoxia, and fibrosis, thus contributing to the pathological changes of other tissues. A plethora of phytochemicals have been found to improve adipose microenvironment, thus prevent and resist obesity, providing a new research direction for the treatment of obesity and related diseases. This paper discusses remodeling of the adipose tissue microenvironment as a therapeutic avenue and reviews the progress of phytochemicals in fighting obesity by improving the adipose microenvironment.
Collapse
Affiliation(s)
- Shuwei Ke
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Qingyuan Hu
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Guanyao Zhu
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Linghuan Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xuechao Sun
- Research and Development Department, Zhejiang Starry Pharmaceutical Co., Ltd., Taizhou, People's Republic of China
| | - Hongbin Cheng
- Research and Development Department, Zhejiang Starry Pharmaceutical Co., Ltd., Taizhou, People's Republic of China
| | - Lingqiao Li
- Research and Development Department, Zhejiang Starry Pharmaceutical Co., Ltd., Taizhou, People's Republic of China
| | - Yuanfa Yao
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Hanbing Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
3
|
McNamee N, Rajagopalan P, Tal-Mason A, Roytburd S, Sachdeva UM. AMPK Activation Serves as a Common Pro-Survival Pathway in Esophageal Adenocarcinoma Cells. Biomolecules 2024; 14:1115. [PMID: 39334882 PMCID: PMC11429576 DOI: 10.3390/biom14091115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Esophageal adenocarcinoma (EAC) is a subtype of esophageal cancer that is difficult to treat, with overall poor survival and frequent recurrence despite curative-intent treatment strategies. There is limited understanding of EAC resistance mechanisms to chemotherapy or radiation. We have found that the AMP-activated protein kinase (AMPK) can serve a pro-survival function in EAC cells in response to cytotoxic treatments. Treatment with the IL-6 inhibitor tocilizumab, which previously has been shown to inhibit EAC organoid growth, resulted in the activation of AMPK in the OE33 EAC cell line, which was accompanied by a decrease in MTORC1 signaling and an increase in oxidative mitochondrial metabolism, both known downstream effects of AMPK activation to promote cell survival under conditions of metabolic stress. This increase in oxidative metabolism was abrogated in cells with a genetic knockdown of AMPK expression. Furthermore, we found that AMPK was activated in OE33 cells following treatment with cisplatin or ionizing radiation. Treatment with the AMPK inhibitor Compound C or genetic knockdown of AMPK expression enhanced cell death in a synergistic manner with chemotherapeutics or ionizing radiation. These findings were recapitulated in human patient-derived EAC organoids, suggesting that AMPK may be a common pro-survival mechanism to confer treatment resistance in EAC and may serve as a novel target to enhance the efficacy of current and future treatment strategies.
Collapse
Affiliation(s)
- Niamh McNamee
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Pavithra Rajagopalan
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Aya Tal-Mason
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Samuel Roytburd
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Uma M Sachdeva
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
4
|
Capatina AL, Malcolm JR, Stenning J, Moore RL, Bridge KS, Brackenbury WJ, Holding AN. Hypoxia-induced epigenetic regulation of breast cancer progression and the tumour microenvironment. Front Cell Dev Biol 2024; 12:1421629. [PMID: 39282472 PMCID: PMC11392762 DOI: 10.3389/fcell.2024.1421629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
The events that control breast cancer progression and metastasis are complex and intertwined. Hypoxia plays a key role both in oncogenic transformation and in fueling the metastatic potential of breast cancer cells. Here we review the impact of hypoxia on epigenetic regulation of breast cancer, by interfering with multiple aspects of the tumour microenvironment. The co-dependent relationship between oxygen depletion and metabolic shift to aerobic glycolysis impacts on a range of enzymes and metabolites available in the cell, promoting posttranslational modifications of histones and chromatin, and changing the gene expression landscape to facilitate tumour development. Hormone signalling, particularly through ERα, is also tightly regulated by hypoxic exposure, with HIF-1α expression being a prognostic marker for therapeutic resistance in ER+ breast cancers. This highlights the strong need to understand the hypoxia-endocrine signalling axis and exploit it as a therapeutic target. Furthermore, hypoxia has been shown to enhance metastasis in TNBC cells, as well as promoting resistance to taxanes, radiotherapy and even immunotherapy through microRNA regulation and changes in histone packaging. Finally, several other mediators of the hypoxic response are discussed. We highlight a link between ionic dysregulation and hypoxia signalling, indicating a potential connection between HIF-1α and tumoural Na+ accumulation which would be worth further exploration; we present the role of Ca2+ in mediating hypoxic adaptation via chromatin remodelling, transcription factor recruitment and changes in signalling pathways; and we briefly summarise some of the findings regarding vesicle secretion and paracrine induced epigenetic reprogramming upon hypoxic exposure in breast cancer. By summarising these observations, this article highlights the heterogeneity of breast cancers, presenting a series of pathways with potential for therapeutic applications.
Collapse
Affiliation(s)
| | - Jodie R Malcolm
- Department of Biology, University of York, York, United Kingdom
| | - Jack Stenning
- Department of Biology, University of York, York, United Kingdom
| | - Rachael L Moore
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Katherine S Bridge
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - William J Brackenbury
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Andrew N Holding
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
5
|
Sajeev A, Sailo B, Unnikrishnan J, Talukdar A, Alqahtani MS, Abbas M, Alqahtani A, Sethi G, Kunnumakkara AB. Unlocking the potential of Berberine: Advancing cancer therapy through chemosensitization and combination treatments. Cancer Lett 2024; 597:217019. [PMID: 38849013 DOI: 10.1016/j.canlet.2024.217019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Despite considerable progress in cancer treatment options, resistance to chemotherapeutic drugs remains a significant challenge. This review focuses on Berberine (BBR), an isoquinoline alkaloid found in various medicinal plants, which has garnered attention in the field of oncology for its anticancer potential either alone or in combination with other compounds and its ability to modulate chemoresistance, acting as a natural chemosensitizer. BBR's ability to modulate chemoresistance is attributed to its diverse mechanisms of action, including inducing DNA breaks, inhibition of drug efflux pumps, modulation of apoptosis and necroptosis, downregulating multidrug resistance genes, enhancing immune response, suppressing angiogenesis and targeting multiple pathways within cancer cells, including protein kinase B/mammalian target of rapamycin (Akt/mTOR), epidermal growth factor receptor (EGFR), mitogen-activated protein kinase (MAPK), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), poly(ADP-ribose) polymerase (PARP1), janus kinase/signal transducers and activators of transcription (JAK-STAT), Wnt/β-catenin etc. Moreover, BBR, in combination with other compounds, also offers a promising approach to cancer therapy, enforcing its broad-spectrum anticancer effects. Therefore, this review aims to elucidate the intricate mechanism of action of BBR in combinatorial therapy as a potential chemosensitizer to increase the efficiency of several drugs, including cisplatin, doxorubicin, lapatinib, tamoxifen, irinotecan, niraparib, etc. in various cancers. Additionally, this review briefly covers the origin and biological activities of BBR, exploring the specific actions underlying its anticancer effects. Further, pharmacokinetic properties of BBR are also discussed, providing insight into its therapeutic potential and optimization of its use in cancer treatment.
Collapse
Affiliation(s)
- Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Bethsebie Sailo
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Jyothsna Unnikrishnan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Ayesha Talukdar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Athba Alqahtani
- Research Centre, King Fahad Medical City. P.O. Box: 59046, Riyadh, 11525, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, 117600, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India.
| |
Collapse
|
6
|
Zhi S, Chen C, Huang H, Zhang Z, Zeng F, Zhang S. Hypoxia-inducible factor in breast cancer: role and target for breast cancer treatment. Front Immunol 2024; 15:1370800. [PMID: 38799423 PMCID: PMC11116789 DOI: 10.3389/fimmu.2024.1370800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Globally, breast cancer stands as the most prevalent form of cancer among women. The tumor microenvironment of breast cancer often exhibits hypoxia. Hypoxia-inducible factor 1-alpha, a transcription factor, is found to be overexpressed and activated in breast cancer, playing a pivotal role in the anoxic microenvironment by mediating a series of reactions. Hypoxia-inducible factor 1-alpha is involved in regulating downstream pathways and target genes, which are crucial in hypoxic conditions, including glycolysis, angiogenesis, and metastasis. These processes significantly contribute to breast cancer progression by managing cancer-related activities linked to tumor invasion, metastasis, immune evasion, and drug resistance, resulting in poor prognosis for patients. Consequently, there is a significant interest in Hypoxia-inducible factor 1-alpha as a potential target for cancer therapy. Presently, research on drugs targeting Hypoxia-inducible factor 1-alpha is predominantly in the preclinical phase, highlighting the need for an in-depth understanding of HIF-1α and its regulatory pathway. It is anticipated that the future will see the introduction of effective HIF-1α inhibitors into clinical trials, offering new hope for breast cancer patients. Therefore, this review focuses on the structure and function of HIF-1α, its role in advancing breast cancer, and strategies to combat HIF-1α-dependent drug resistance, underlining its therapeutic potential.
Collapse
Affiliation(s)
| | | | | | | | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
7
|
Chien TM, Yang CW, Yen CH, Yeh BW, Wu WJ, Sheu JH, Chang HW. Excavatolide C/cisplatin combination induces antiproliferation and drives apoptosis and DNA damage in bladder cancer cells. Arch Toxicol 2024; 98:1543-1560. [PMID: 38424264 DOI: 10.1007/s00204-024-03699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
Excavatolide C (EXCC), a marine coral-derived compound, exhibits an antiproliferation effect on bladder cancer cells. The present study evaluated the improvement in the antiproliferation ability of EXCC by co-treatment with cisplatin in bladder cancer cells. EXCC/cisplatin (12.5 and 1 μg/mL) showed higher antiproliferation effects on bladder cancer cells than single treatments (EXCC or cisplatin alone) in the 48 h ATP assay. EXCC/cisplatin also enhanced the increase in subG1, annexin V-mediated apoptosis, and activation of poly (ADP-ribose) polymerase (PARP) and several caspases (caspases 3, 8, and 9) compared to the single treatments. Cellular and mitochondrial oxidative stress was enhanced with EXCC/cisplatin compared to the single treatments according to analyses of reactive oxygen species (ROS), mitochondrial superoxide, and mitochondrial membrane potential; in addition, cellular antioxidants, such as glutathione (GSH), and the mRNA expressions of antioxidant signaling genes (catalase and NFE2-like bZIP transcription factor 2) were downregulated. EXCC/cisplatin treatment produced more DNA damage than the single treatments, as indicated by γH2AX and 8-hydroxy-2'-deoxyguanosine levels. Moreover, several DNA repair genes for homologous recombination (HR) and non-homologous end joining (NHEJ) were downregulated in EXCC/cisplatin compared to others. The addition of the GSH precursor N-acetylcysteine, which has ROS scavenging activity, attenuated all EXCC/cisplatin-induced changes. Notably, EXCC/cisplatin showed lower antiproliferation, apoptosis, ROS induction, GSH depletion, and γH2AX DNA damage in normal cells than in bladder cancer cells. Therefore, the co-treatment of EXCC/cisplatin reduces the proliferation of bladder cancer cells via oxidative stress-mediated mechanisms with normal cell safety.
Collapse
Affiliation(s)
- Tsu-Ming Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
- Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Che-Wei Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Bi-Wen Yeh
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Wen-Jeng Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
- Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
| | - Hsueh-Wei Chang
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
8
|
Liu Z, Liu X, Zhang W, Gao R, Wei H, Yu CY. Current advances in modulating tumor hypoxia for enhanced therapeutic efficacy. Acta Biomater 2024; 176:1-27. [PMID: 38232912 DOI: 10.1016/j.actbio.2024.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/08/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Hypoxia is a common feature of most solid tumors, which promotes the proliferation, invasion, metastasis, and therapeutic resistance of tumors. Researchers have been developing advanced strategies and nanoplatforms to modulate tumor hypoxia to enhance therapeutic effects. A timely review of this rapidly developing research topic is therefore highly desirable. For this purpose, this review first introduces the impact of hypoxia on tumor development and therapeutic resistance in detail. Current developments in the construction of various nanoplatforms to enhance tumor treatment in response to hypoxia are also systematically summarized, including hypoxia-overcoming, hypoxia-exploiting, and hypoxia-disregarding strategies. We provide a detailed discussion of the rationale and research progress of these strategies. Through a review of current trends, it is hoped that this comprehensive overview can provide new prospects for clinical application in tumor treatment. STATEMENT OF SIGNIFICANCE: As a common feature of most solid tumors, hypoxia significantly promotes tumor progression. Advanced nanoplatforms have been developed to modulate tumor hypoxia to enhanced therapeutic effects. In this review, we first introduce the impact of hypoxia on tumor progression. Current developments in the construction of various nanoplatforms to enhance tumor treatment in response to hypoxia are systematically summarized, including hypoxia-overcoming, hypoxia-exploiting, and hypoxia-disregarding strategies. We discuss the rationale and research progress of the above strategies in detail, and finally introduce future challenges for treatment of hypoxic tumors. By reviewing the current trends, this comprehensive overview can provide new prospects for clinical translatable tumor therapy.
Collapse
Affiliation(s)
- Zihan Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xinping Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Wei Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ruijie Gao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
9
|
Lin X, Zhang J, Chu Y, Nie Q, Zhang J. Berberine prevents NAFLD and HCC by modulating metabolic disorders. Pharmacol Ther 2024; 254:108593. [PMID: 38301771 DOI: 10.1016/j.pharmthera.2024.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global metabolic disease with high prevalence in both adults and children. Importantly, NAFLD is becoming the main cause of hepatocellular carcinoma (HCC). Berberine (BBR), a naturally occurring plant component, has been demonstrated to have advantageous effects on a number of metabolic pathways as well as the ability to kill liver tumor cells by causing cell death and other routes. This permits us to speculate and make assumptions about the value of BBR in the prevention and defense against NAFLD and HCC by a global modulation of metabolic disorders. Herein, we briefly describe the etiology of NAFLD and NAFLD-related HCC, with a particular emphasis on analyzing the potential mechanisms of BBR in the treatment of NAFLD from aspects including increasing insulin sensitivity, controlling the intestinal milieu, and controlling lipid metabolism. We also elucidate the mechanism of BBR in the treatment of HCC. More significantly, we provided a list of clinical studies for BBR in NAFLD. Taking into account our conclusions and perspectives, we can make further progress in the treatment of BBR in NAFLD and NAFLD-related HCC.
Collapse
Affiliation(s)
- Xinyue Lin
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Juanhong Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Yajun Chu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
10
|
Coppinger C, Pomales B, Movahed MR, Marefat M, Hashemzadeh M. Berberine: A Multi-Target Natural PCSK9 Inhibitor with the Potential to Treat Diabetes, Alzheimer's, Cancer and Cardiovascular Disease. Curr Rev Clin Exp Pharmacol 2024; 19:312-326. [PMID: 38361373 DOI: 10.2174/0127724328250471231222094648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 02/17/2024]
Abstract
Berberine is a natural product with a wide range of pharmacological effects. It has antimicrobial, anti-cancer, anti-inflammatory, anti-hyperlipidemic, neuroprotective, and cholesterollowering properties, among others. It has been used in traditional Chinese and Ayurvedic medicine for 3000 years and is generally well-tolerated with few side effects. Its main drawback is low oral bioavailability, which has hindered widespread clinical use. However, recent interest has surged with the emergence of evidence that berberine is effective in treating cancer, diabetes, Alzheimer's disease, and cardiovascular disease via multiple mechanisms. It enhances insulin sensitivity and secretion by pancreatic β-cells in Type 2 Diabetes Mellitus in addition to reducing pro-inflammatory cytokines such as IL-6, IL-1β, TLR4 and TNF-α. These cytokines are elevated in Alzheimer's disease, cardiovascular disease, and diabetes. Reductions in pro-inflammatory cytokine levels are associated with positive outcomes such as improved cognition, reduced cardiovascular events, and improved glucose metabolism and insulin sensitivity. Berberine is a natural PCSK9 inhibitor, which contributes to its hypolipidemic effects. It also increases low-density lipoprotein receptor expression, reduces intestinal cholesterol absorption, and promotes cholesterol excretion from the liver to the bile. This translates into a notable decrease in LDL cholesterol levels. High LDL cholesterol levels are associated with increased cardiovascular disease risk. Novel synthetic berberine derivatives are currently being developed that optimize LDL reduction, bioavailability, and other pharmacokinetic properties.
Collapse
Affiliation(s)
- Caroline Coppinger
- Department of Chemistry, Pima College, Tucson, AZ, USA
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Briana Pomales
- Department of Chemistry, Pima College, Tucson, AZ, USA
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Mohammad Reza Movahed
- Department of Medicine, University of Arizona, Tucson, AZ, USA
- Department of Medicine, University of Arizona College of Medicine, Phoenix, USA
| | | | - Mehrnoosh Hashemzadeh
- Department of Chemistry, Pima College, Tucson, AZ, USA
- Department of Medicine, University of Arizona College of Medicine, Phoenix, USA
| |
Collapse
|
11
|
Bharathiraja P, Yadav P, Sajid A, Ambudkar SV, Prasad NR. Natural medicinal compounds target signal transduction pathways to overcome ABC drug efflux transporter-mediated multidrug resistance in cancer. Drug Resist Updat 2023; 71:101004. [PMID: 37660590 PMCID: PMC10840887 DOI: 10.1016/j.drup.2023.101004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023]
Abstract
ATP-binding cassette (ABC) transporters such as ABCB1, ABCG2, and ABCC1 are the major players in drug efflux-mediated multidrug resistance (MDR), which severely affects the efficacy of chemotherapy. Several synthetic compounds block the drug transport by ABC transporters; however, they exhibit a narrow therapeutic window, and produce side effects in non-target normal tissues. Conversely, the downregulation of the expression of ABC drug transporters seems to be a promising strategy to reverse MDR in cancer cells. Several signaling pathways, such as NF-κB, STAT3, Gli, NICD, YAP/TAZ, and Nrf2 upregulate the expression of ABC drug transporters in drug-resistant cancers. Recently, natural medicinal compounds have gained importance to overcome the ABC drug-efflux pump-mediated MDR in cancer. These compounds target transcription factors and the associated signal transduction pathways, thereby downregulating the expression of ABC transporters in drug-resistant cancer cells. Several potent natural compounds have been identified as lead candidates to synergistically enhance chemotherapeutic efficacy, and a few of them are already in clinical trials. Therefore, modulation of signal transduction pathways using natural medicinal compounds for the reversal of ABC drug transporter-mediated MDR in cancer is a novel approach for improving the efficiency of the existing chemotherapeutics. In this review, we discuss the modulatory role of natural medicinal compounds on cellular signaling pathways that regulate the expression of ABC transporters in drug-resistant cancer cells.
Collapse
Affiliation(s)
- Pradhapsingh Bharathiraja
- Department of Biochemistry & Biotechnology, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
| | - Priya Yadav
- Department of Biochemistry & Biotechnology, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
| | - Andaleeb Sajid
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892-4256, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892-4256, USA.
| | - N Rajendra Prasad
- Department of Biochemistry & Biotechnology, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India.
| |
Collapse
|
12
|
Hashemi M, Razzazan M, Bagheri M, Asadi S, Jamali B, Khalafi M, Azimi A, Rad S, Behroozaghdam M, Nabavi N, Rashidi M, Dehkhoda F, Taheriazam A, Entezari M. Versatile function of AMPK signaling in osteosarcoma: An old player with new emerging carcinogenic functions. Pathol Res Pract 2023; 251:154849. [PMID: 37837858 DOI: 10.1016/j.prp.2023.154849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
AMP-activated protein kinase (AMPK) signaling has a versatile role in Osteosarcoma (OS), an aggressive bone malignancy with a poor prognosis, particularly in cases that have metastasized or recurred. This review explores the regulatory mechanisms, functional roles, and therapeutic applications of AMPK signaling in OS. It focuses on the molecular activation of AMPK and its interactions with cellular processes like proliferation, apoptosis, and metabolism. The uncertain role of AMPK in cancer is also discussed, highlighting its potential as both a tumor suppressor and a contributor to carcinogenesis. The therapeutic potential of targeting AMPK signaling in OS treatment is examined, including direct and indirect activators like metformin, A-769662, resveratrol, and salicylate. Further research is needed to determine dosing, toxicities, and molecular mechanisms responsible for the anti-osteosarcoma effects of these compounds. This review underscores the complex involvement of AMPK signaling in OS and emphasizes the need for a comprehensive understanding of its molecular mechanisms. By elucidating the role of AMPK in OS, the aim is to pave the way for innovative therapeutic approaches that target this pathway, ultimately improving the prognosis and quality of life for OS patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Bagheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behdokht Jamali
- Department of Microbiology and Genetics, Kherad Institute of Higher Education, Bushehr, lran
| | - Maryam Khalafi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Abolfazl Azimi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Sepideh Rad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Farshid Dehkhoda
- Department of Orthopedics, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
13
|
Huang B, Wen G, Li R, Wu M, Zou Z. Integrated network pharmacology, bioinformatics, and molecular docking to explore the mechanisms of berberine regulating autophagy in breast cancer. Medicine (Baltimore) 2023; 102:e35070. [PMID: 37682166 PMCID: PMC10489552 DOI: 10.1097/md.0000000000035070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Berberine exhibits anticancer efficacy against a variety of malignancies, including breast cancer (BRCA). However, the underlying mechanism is ambiguous. This study sought to explore the targets and the probable mechanism of berberine regulating autophagy in BRCA through network pharmacology, bioinformatics, and molecular docking. The targets of berberine and autophagy-modulated genes were derived from online databases, and the Cancer Genome Atlas database was used to identify the differentially expressed genes of BRCA. Then, through intersections, the autophagy-modulated genes regulated by berberine (AMGRBs) in BRCA were obtained. Next, we established a protein-protein interaction network using the Search Tool for the Retrieval of Interacting Genes database. Afterward, gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses were employed to explore the targets' biological functions. Additionally, molecular docking was conducted to verify the binding ability of berberine to the targets. Finally, to determine the prognostic value of AMGRBs in BRCA, we performed overall survival analyses. We identified 29 AMGRBs in BRCA, including CASP3, MTOR, AKT1, GSK3B, PIK3CA, and others. Gene ontology enrichment analysis showed that the AMGRBs in BRCA were associated with autophagy regulation, negative regulation of catabolic process, macroautophagy, and other biological processes. Kyoto encyclopedia of genes and genomes enrichment analyses indicated that AMGRBs in BRCA were involved in epidermal growth factor receptor tyrosine kinase inhibitor resistance, PI3K/Akt signaling pathway, JAK-STAT signaling pathway, and others. Molecular docking results proved that berberine had strong binding affinities with AMGRBs in BRCA. Survival analyses indicated that ATM, HTR2B, LRRK2, PIK3CA, CDK5, and IFNG were associated with the prognosis of BRCA. This study identified the targets and pathways of berberine for regulating autophagy in BRCA, which contributed to a better understanding of berberine's function in BRCA and serve as a foundation and reference for further study and therapeutic application of berberine.
Collapse
Affiliation(s)
- Bowan Huang
- Department of Anesthesiology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Gengzhi Wen
- Department of Anesthesiology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Rujia Li
- Department of Pathology, Guangdong Medical University, Zhanjiang, China
| | - Minhua Wu
- School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
| | - Zhenning Zou
- Department of Pathology, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
14
|
Mirzaei S, Ranjbar B, Tackallou SH, Aref AR. Hypoxia inducible factor-1α (HIF-1α) in breast cancer: The crosstalk with oncogenic and onco-suppressor factors in regulation of cancer hallmarks. Pathol Res Pract 2023; 248:154676. [PMID: 37454494 DOI: 10.1016/j.prp.2023.154676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Low oxygen level at tumor microenvironment leads to a condition, known as hypoxia that is implicated in cancer progression. Upon hypoxia, HIF-1α undergoes activation and due to its oncogenic function and interaction with other molecular pathways, promotes tumor progression. The HIF-1α role in regulating breast cancer progression is described, Overall, HIF-1α has upregulation in breast tumor and due to its tumor-promoting function, its upregulation is in favor of breast tumor progression. HIF-1α overexpression prevents apoptosis in breast tumor and it promotes cell cycle progression. Silencing HIF-1α triggers cycle arrest and decreases growth. Migration of breast tumor enhances by HIF-1α signaling and it mainly induces EMT in providing metastasis. HIF-1α upregulation stimulates drug resistance and radio-resistance in breast tumor. Furthermore, HIF-1α signaling induces immune evasion of breast cancer. Berberine and pharmacological intervention suppress HIF-1α signaling in breast tumor and regulation of HIF-1α by non-coding RNAs occurs. Furthermore, HIF-1α is a biomarker in clinic.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Bijan Ranjbar
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | | | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
15
|
Banerjee M, Devi Rajeswari V. A novel cross-communication of HIF-1α and HIF-2α with Wnt signaling in TNBC and influence of hypoxic microenvironment in the formation of an organ-on-chip model of breast cancer. Med Oncol 2023; 40:245. [PMID: 37454033 DOI: 10.1007/s12032-023-02112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
The microenvironment role is very important in cancer development. The epithelial-mesenchymal transition of the cancer cells depends upon specific signaling and microenvironmental conditions, such as hypoxic conditions. The crosstalk between hypoxia and Wnt signaling through some molecular mechanism in TNBC is related. Cross-communication between hypoxia and Wnt signaling in cancer cells is known, but the detailed mechanism in TNBC is unknown. This review includes the role of the hypoxia microenvironment in TNBC and the novel crosstalk of the Wnt signaling and hypoxia. When targeted, the new pathway and crosstalk link may be a solution for metastatic TNBC and chemoresistance. The microenvironment influences cancer's metastasis, which changes from person to person. Therefore, organ-on-a-chip is a very novel model to test the drugs clinically before going for human trials, focusing on personalized medications can be done. The effect of the hypoxia microenvironment on breast cancer stem cells is still unknown. Apart from all the published papers, this paper mainly focuses only on the hypoxic microenvironment and its association with the growth of TNBC. The medicines or small proteins, drugs, mimics, and inhibitors targeting wnt and hypoxia genes are consolidated in this review paper.
Collapse
Affiliation(s)
- Manosi Banerjee
- Department of Biomedical Science, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - V Devi Rajeswari
- Department of Biomedical Science, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
16
|
Sun Y, Zhou Q, Chen F, Gao X, Yang L, Jin X, Wink M, Sharopov FS, Sethi G. Berberine inhibits breast carcinoma proliferation and metastasis under hypoxic microenvironment involving gut microbiota and endogenous metabolites. Pharmacol Res 2023:106817. [PMID: 37315824 DOI: 10.1016/j.phrs.2023.106817] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
A potential role of berberine, a benzyl isoquinoline alkaloid, in cancer therapy is apparent. Its underlying mechanisms of berberine against breast carcinoma under hypoxia have not been elucidated. We focused on the doubt how berberine restrains breast carcinoma under hypoxia in vitro and in vivo. A molecular analysis of the microbiome via 16S rDNA gene sequencing of DNA from mouse faeces confirmed that the abundances and diversity of gut microbiota were significantly altered in 4T1/Luc mice with higher survival rate following berberine treatment. A metabolome analysis liquid chromatography-mass spectrometer/mass spectrometer (LC-MS/MS) revealed that berberine regulated various endogenous metabolites, especially L-palmitoylcarnitine. Furthermore, the cytotoxicity of berberine was investigated in MDA-MB-231, MCF-7, and 4T1 cells. In vitro to simulate under hypoxic environment, MTT assay showed that berberine inhibited the proliferation of MDA-MB-231, MCF-7, and 4T1 cells with IC50 values of 4.14 ± 0.35μM, 26.53 ± 3.12μM and 11.62 ± 1.44μM, respectively. Wound healing and trans-well invasion studies revealed that berberine inhibited the invasion and migration of breast cancer cells. RT-qPCR analysis shed light that berberine reduced the expression of hypoxia-inducible factor-1α (HIF-1α) gene. Immunofluorescence and western blot demonstrated that berberine decreased the expression of E-cadherin and HIF-1α protein. Taken together, these results provide evidence that berberine efficiently suppresses breast carcinoma growth and metastasis in a hypoxic microenvironment, highlighting the potential of berberine as a promising anti-neoplastic agent to combat breast carcinoma.
Collapse
Affiliation(s)
- Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - QianQian Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fangming Chen
- Animal Research Center, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaoyan Gao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Linjun Yang
- Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou 318000, China
| | - Xiaoyan Jin
- Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou 318000, China
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | - Farukh S Sharopov
- Research Institution "Chinese-Tajik Innovation Center for Natural Products", National Academy of Sciences of Tajikistan, Rudaki Avenue 33, 734025 Dushanbe, Tajikistan
| | - Gautam Sethi
- Department of Pharmacology, National University of Singapore, Building MD3, 117600 Medical Drive, Singapore.
| |
Collapse
|
17
|
Zhao Y, Lin X, Zeng W, Qin X, Miao B, Gao S, Liu J, Li Z. Berberine inhibits the progression of renal cell carcinoma cells by regulating reactive oxygen species generation and inducing DNA damage. Mol Biol Rep 2023:10.1007/s11033-023-08381-w. [PMID: 37217616 DOI: 10.1007/s11033-023-08381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/09/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Berberine is a natural isoquinoline alkaloid that has been shown to have antitumor properties in a growing number of studies. However, its role in renal cell carcinoma remains unclear. This study investigates berberine's effect and mechanism in renal cell carcinoma. METHODS The methyl-tetrazolium, colony formation, and lactate dehydrogenase assay were used to detect proliferation and cytotoxicity, respectively. Flow cytometry, caspase-Glo 3/7 assay, and adenosine triphosphate assay were used to detect apoptosis and the adenosine triphosphate levels. Wound healing and transwell assay were used to examine the migration ability of renal cell carcinoma cells. Besides, the level of reactive oxygen species (ROS) was explored using a DCFH-DA-based kit. Additionally, western blot and Immunofluorescence assay was taken to determine the levels of relative proteins. RESULTS In vitro, our findings indicated that the proliferation and migration of renal cell carcinoma cells treated with berberine in various concentrations were inhibited, while the level of ROS and apoptosis rate were increased. Furthermore, The results of western blot showed that the expression of Bax, Bad, Bak, Cyto c, Clv-Caspase 3, Clv-Caspase 9, E-cadherin, TIMP-1and γH2AX were up-regulated, while Bcl-2, N-cadherin, Vimentin, Snail, Rad51 and PCNA were down-regulated after treating with berberine with various concentration. CONCLUSION The result of this study revealed that berberine inhibits renal cell carcinoma progression via regulating ROS generation and inducing DNA break.
Collapse
Affiliation(s)
- Yuwan Zhao
- Department of Urology, Affiliated Hospital of Guangdong Medical University, 57 Renmin Street South, 524001, Zhanjiang, Guangdong, China
| | - Xinghua Lin
- Department of Urology, Affiliated Hospital of Guangdong Medical University, 57 Renmin Street South, 524001, Zhanjiang, Guangdong, China
| | - Wenfeng Zeng
- Department of Urology, Affiliated Hospital of Guangdong Medical University, 57 Renmin Street South, 524001, Zhanjiang, Guangdong, China
| | - Xingzhang Qin
- Department of Urology, Affiliated Hospital of Guangdong Medical University, 57 Renmin Street South, 524001, Zhanjiang, Guangdong, China
| | - Bailiang Miao
- Department of Urology, Affiliated Hospital of Guangdong Medical University, 57 Renmin Street South, 524001, Zhanjiang, Guangdong, China
| | - Sheng Gao
- Department of Urology, Affiliated Hospital of Guangdong Medical University, 57 Renmin Street South, 524001, Zhanjiang, Guangdong, China
| | - Jianjun Liu
- Department of Urology, Affiliated Hospital of Guangdong Medical University, 57 Renmin Street South, 524001, Zhanjiang, Guangdong, China.
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, 57 Renmin Street South, 524001, Zhanjiang, Guangdong, China.
| | - Zhuo Li
- Department of Urology, Affiliated Hospital of Guangdong Medical University, 57 Renmin Street South, 524001, Zhanjiang, Guangdong, China.
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, 57 Renmin Street South, 524001, Zhanjiang, Guangdong, China.
| |
Collapse
|
18
|
Devarajan N, Nathan J, Mathangi R, Mahendra J, Ganesan SK. Pharmacotherapeutic values of berberine: A Chinese herbal medicine for the human cancer management. J Biochem Mol Toxicol 2023; 37:e23278. [PMID: 36588295 DOI: 10.1002/jbt.23278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/27/2022] [Accepted: 12/02/2022] [Indexed: 01/03/2023]
Abstract
Berberine (BBR), a traditional Chinese phytomedicine extracted from various parts of Berberis plants, is an isoquinoline alkaloid used for centuries to treat diabetes, hypercholesterolemia, hypertension, and so forth. It has recently received immense attention worldwide to treat cancer due to its potent pro-apoptotic, antiproliferative, and anti-inflammatory properties. BBR efficiently induces tumor apoptosis, replicative quiescence and abrogates cell proliferation, epithelial-mesenchymal transition, tumor neovascularization, and metastasis by modulating diverse molecular and cell signaling pathways. Furthermore, BBR could also reverse drug resistance, make tumor cells sensitive to current cancer treatment and significantly minimize the harmful side effects of cytotoxic therapies. This review comprehensively analyzed the pharmacological effects of BBR against the development, growth, progression, metastasis, and therapy resistance in wide varieties of cancer. Also, it critically discusses the significant limitations behind the development of BBR into pharmaceuticals to treat cancer and the future research directions to overcome these limitations.
Collapse
Affiliation(s)
- Nalini Devarajan
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research - MAHER (Deemed to be University), Chennai, Tamilnadu, India
| | - Jhansi Nathan
- Zebrafish Developmental Biology Laboratory, AUKBC Research Centre for Emerging Technologies, Anna University, Chennai, Tamil Nadu, India
| | - Ramalingam Mathangi
- Department of Biochemistry, Sree Balaji Dental College and Hospital, BIHER, Chennai, Tamil Nadu, India
| | - Jaideep Mahendra
- Department of Periodontology, Meenakshi Ammal Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Senthil Kumar Ganesan
- Laboratory of Functional Genomics, Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| |
Collapse
|
19
|
Wang X, Tang G, Guo H, Ma J, Liu D, Wang Y, Jin R, Li Z, Tang Y. Research Progress on the Anti-Tumor Mechanism and Reversal of Multidrug Resistance of Zuojin Pill and its Main Components, Evodiamine and Berberine. Nat Prod Commun 2023; 18. [DOI: 10.1177/1934578x231161414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Background Cancer is one of the most serious diseases worldwide that threatens human health and leads to death. Chemotherapy is the main clinical method to treat tumors, but, despite the development of new chemotherapeutic drugs, the multidrug resistance (MDR) of cancer cells to conventional chemotherapeutic drugs remains a major cause of failure in cancer prevention and treatment. Therefore, overcoming this resistance has become a major challenge in cancer prevention and treatment. Method With the in-depth study of traditional Chinese medicines (TCMs) for the treatment of tumors, many such medicines have been found that can reverse MDR and enhance the sensitivity of chemotherapy. ZJW is a famous traditional medicine formula from China, recorded first in an ancient medicine book named Danxi Xinfa. It is composed of Huanglian and Wuzhuyu in a ratio of 6:1 by mass. Conclusion ZJW can inhibit proliferation, induce apoptosis, inhibit invasion and metastasis, and reverse MDR of tumor cells through multiple pathways and multiple targets. In this paper, we briefly review recent research on ZJW and its main components, evodiamine and berberine, in the anti-tumor mechanism and reversal of multidrug resistance.
Collapse
Affiliation(s)
- Xinyi Wang
- Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, XianYang, China
| | - Gonghuan Tang
- Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, XianYang, China
| | - Hui Guo
- Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, XianYang, China
| | - Jingjing Ma
- Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, XianYang, China
| | - Dongmei Liu
- No.988 Hospital of Joint Logistic Support Force, Zhengzhou, China
| | - Yuwei Wang
- Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, XianYang, China
| | - Ruyi Jin
- Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, XianYang, China
| | - Zhi Li
- Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, XianYang, China
| | - Yuping Tang
- Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, XianYang, China
| |
Collapse
|
20
|
Novel Anti-Cancer Products Targeting AMPK: Natural Herbal Medicine against Breast Cancer. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020740. [PMID: 36677797 PMCID: PMC9863744 DOI: 10.3390/molecules28020740] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
Breast cancer is a common cancer in women worldwide. The existing clinical treatment strategies have been able to limit the progression of breast cancer and cancer metastasis, but abnormal metabolism, immunosuppression, and multidrug resistance involving multiple regulators remain the major challenges for the treatment of breast cancer. Adenosine 5'-monophosphate (AMP)-Activated Protein Kinase (AMPK) can regulate metabolic reprogramming and reverse the "Warburg effect" via multiple metabolic signaling pathways in breast cancer. Previous studies suggest that the activation of AMPK suppresses the growth and metastasis of breast cancer cells, as well as stimulating the responses of immune cells. However, some other reports claim that the development and poor prognosis of breast cancer are related to the overexpression and aberrant activation of AMPK. Thus, the role of AMPK in the progression of breast cancer is still controversial. In this review, we summarize the current understanding of AMPK, particularly the comprehensive bidirectional functions of AMPK in cancer progression; discuss the pharmacological activators of AMPK and some specific molecules, including the natural products (including berberine, curcumin, (-)-epigallocatechin-3-gallate, ginsenosides, and paclitaxel) that influence the efficacy of these activators in cancer therapy; and elaborate the role of AMPK as a potential therapeutic target for the treatment of breast cancer.
Collapse
|
21
|
Yuan R, Tan Y, Sun PH, Qin B, Liang Z. Emerging trends and research foci of berberine on tumor from 2002 to 2021: A bibliometric article of the literature from WoSCC. Front Pharmacol 2023; 14:1122890. [PMID: 36937842 PMCID: PMC10021304 DOI: 10.3389/fphar.2023.1122890] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/03/2023] [Indexed: 03/06/2023] Open
Abstract
Background: Cancer, also known as a malignant tumor, is caused by the activation of oncogenes, which leads to the uncontrolled proliferation of cells that results in swelling. According to the World Health Organization (WHO), cancer is one of the main causes of death worldwide. The main variables limiting the efficacy of anti-tumor treatments are side effects and drug resistance. The search for natural, safe, low toxicity, and efficient chemical compounds in tumor research is essential. Berberine is a pentacyclic isoquinoline quaternary ammonium alkaloid isolated from Berberis and Coptis that has long been used in clinical settings. Studies in recent years have reported the use of berberine in cancer treatment. In this study, we performed a bibliometric analysis of berberine- and tumor-related research. Materials and methods: Relevant articles from January 1, 2002, to December 31, 2021, were identified from the Web of Science Core Collection (WOSCC) of Clarivate Analytics. Microsoft Excel, CiteSpace, VOSviewer, and an online platform were used for the literary metrology analysis. Results: A total of 1368 publications had unique characteristics. Publications from China were the most common (783 articles), and Y. B. Feng (from China) was the most productive author, with the highest total citations. China Medical University (Taiwan) and Sun Yat-sen University (China) were the two organizations with the largest numbers of publications (36 each). Frontiers in Pharmacology was the most commonly occurring journal (29 articles). The present body of research is focused on the mechanism, molecular docking, and oxidative stress of berberine in tumors. Conclusion: Research on berberine and tumors was thoroughly reviewed using knowledge map and bibliometric methods. The results of this study reveal the dynamic evolution of berberine and tumor research and provide a basis for strategic planning in cancer research.
Collapse
Affiliation(s)
- Runzhu Yuan
- School of Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
| | - Yao Tan
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Ping-Hui Sun
- Department of Thoracic Surgery, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Bo Qin
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
- *Correspondence: Bo Qin, ; Zhen Liang,
| | - Zhen Liang
- Department of Geriatrics, The Second Clinical Medical College, Jinan University, Shenzhen People’s Hospital, Shenzhen, China
- *Correspondence: Bo Qin, ; Zhen Liang,
| |
Collapse
|
22
|
Zhong XD, Chen LJ, Xu XY, Liu YJ, Tao F, Zhu MH, Li CY, Zhao D, Yang GJ, Chen J. Berberine as a potential agent for breast cancer therapy. Front Oncol 2022; 12:993775. [PMID: 36119505 PMCID: PMC9480097 DOI: 10.3389/fonc.2022.993775] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 01/02/2023] Open
Abstract
Breast cancer (BC) is a common malignancy that mainly occurred in women and it has become the most diagnosed cancer annually since 2020. Berberine (BBR), an alkaloid extracted from the Berberidacea family, has been found with broad pharmacological bioactivities including anti-inflammatory, anti-diabetic, anti-hypertensive, anti-obesity, antidepressant, and anticancer effects. Mounting evidence shows that BBR is a safe and effective agent with good anticancer activity against BC. However, its detailed underlying mechanism in BC treatment remains unclear. Here, we will provide the evidence for BBR in BC therapy and summarize its potential mechanisms. This review briefly introduces the source, metabolism, and biological function of BBR and emphasizes the therapeutic effects of BBR against BC via directly interacting with effector proteins, transcriptional regulatory elements, miRNA, and several BBR-mediated signaling pathways. Moreover, the novel BBR-based therapeutic strategies against BC improve biocompatibility and water solubility, and the efficacies of BBR are also briefly discussed. Finally, the status of BBR in BC treatment and future research directions is also prospected.
Collapse
Affiliation(s)
- Xiao-Dan Zhong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Li-Juan Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Xin-Yang Xu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Fan Tao
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Ming-Hui Zhu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Chang-Yun Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Dan Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
23
|
Yong L, Tang S, Yu H, Zhang H, Zhang Y, Wan Y, Cai F. The role of hypoxia-inducible factor-1 alpha in multidrug-resistant breast cancer. Front Oncol 2022; 12:964934. [PMID: 36003773 PMCID: PMC9393754 DOI: 10.3389/fonc.2022.964934] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide with increasing incidence. Significant therapeutics advances in the field of breast cancer have resulted in a growing number of treatment options, whereas de novo or acquired resistance is still a persistent clinical challenge. Drug resistance involves a variety of mechanisms, and hypoxia is one of the many causes. Hypoxia-inducible Factor-1 Alpha (HIF-1α) is a key transcription factor which can regulate the response of cells to hypoxia. HIF-1α can trigger anaerobic glycolysis of tumor cells, induce angiogenesis, promote the proliferation, invasion, and migration of tumor cells, and lead to multidrug resistance. This review mainly discusses the role of HIF-1α in the drug-resistant breast cancer and highlighted the potential of HIF-1α -targeted therapy.
Collapse
Affiliation(s)
- Liyun Yong
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shasha Tang
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haixin Yu
- Department of Orthopedic Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongyi Zhang
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Zhang
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University—SUNY, Binghamton, NY, United States
- *Correspondence: Fengfeng Cai, ; Yuan Wan,
| | - Fengfeng Cai
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Fengfeng Cai, ; Yuan Wan,
| |
Collapse
|
24
|
Dian L, Xu Z, Sun Y, Li J, Lu H, Zheng M, Wang J, Drobot L, Horak I. Berberine alkaloids inhibit the proliferation and metastasis of breast carcinoma cells involving Wnt/β-catenin signaling and EMT. PHYTOCHEMISTRY 2022; 200:113217. [PMID: 35504329 DOI: 10.1016/j.phytochem.2022.113217] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Berberine alkaloids belong to the class of isoquinoline alkaloids that have been shown to possess anticancer potential, berberine exhibits inhibitory effects on breast cancer development. However, the exact mechanisms of action for anti-breast carcinoma of the alkaloids, including epiberberine, berberrubine and dihydroberberine are still unclear. MTT assay, colony formation, wound healing and transwell invasion assays detected these alkaloids suppressed proliferation, migration and invasion of breast cancer cells. Hoechst and Annexin V-FITC/PI staining were used to analyze the apoptosis of breast cancer cells. Western blotting investigated the changes noted in the expression levels of the key proteins involved in the Wnt/β-catenin signaling pathway and epithelial to mesenchymal transition (EMT). The results showed that inhibited the proliferation of breast cancer cells. Berberine alkaloids inhibited the cell cycle at G2/M phase in MCF-7 cells, but in MDA-MB-231 cells berberine alkaloids arrested the cell cycle in G0/G1 and G2/M phases. By decreasing β-catenin expression, increasing GSK-3β expression and decreasing N-cadherin expression, increasing E-cadherin expression, which proved that epiberberine, berberrubine and dihydroberberine inhibited of metastasis of breast cancer cells through Wnt signaling pathway and reversed EMT except berberine. Furthermore, berberine alkaloids exert their anti-breast cancer effects through the synergistic action of intrinsic and extrinsic pathways of apoptosis. These findings highlight the different effects of different berberine alkaloids on breast cancer cells and confirm that berberine alkaloids may be potentially used in the treatment of breast cancer.
Collapse
Affiliation(s)
- Lulu Dian
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhaozhen Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Jinhua Li
- Department of Pathology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China
| | - Hongfei Lu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Meng Zheng
- Zhejiang Huisong Pharmaceuticals Co. Ltd., Hangzhou, 310003, China
| | - Juan Wang
- Zhejiang Huisong Pharmaceuticals Co. Ltd., Hangzhou, 310003, China
| | - Liudmyla Drobot
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Leontovicha Street 9, 01030, Kyiv, Ukraine
| | - Iryna Horak
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Leontovicha Street 9, 01030, Kyiv, Ukraine
| |
Collapse
|
25
|
Wang SC, Yen CY, Shiau JP, Chang MY, Hou MF, Jeng JH, Tang JY, Chang HW. Synergistic Antiproliferation of Cisplatin and Nitrated [6,6,6]Tricycle Derivative (SK2) for a Combined Treatment of Oral Cancer Cells. Antioxidants (Basel) 2022; 11:926. [PMID: 35624790 PMCID: PMC9137724 DOI: 10.3390/antiox11050926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 12/19/2022] Open
Abstract
SK2, a nitrated [6,6,6]tricycle derivative with an n-butyloxy group, showed selective antiproliferation effects on oral cancer but not on normal oral cells. This investigation assessed for the first time the synergistic antiproliferation potential of cisplatin/SK2 in oral cancer cells. Cell viability assay at 24 h showed that a low dose of combined cisplatin/SK2 (10 μM/10 μg/mL) provided more antiproliferation than cisplatin or SK2 alone. Cisplatin/SK2 triggered also more apoptosis inductions in terms of subG1 accumulation, annexin V, pancaspase, and caspase 3/8/9 measurements. Moreover, cisplatin/SK2 provided more oxidative stress and DNA damage in oral cancer cells than independent treatments. Oxidative stress inhibitors rescued the cisplatin/SK2-induced antiproliferation and oxidative stress generation. Moreover, cisplatin/SK2 induced more antiproliferation, apoptosis, oxidative stress, and DNA damage in oral cancer cells than in normal oral cells (S-G). In conclusion, low-dose cisplatin/SK2 combined treatment promoted selective and synergistic antiproliferation in oral cancer cells depending on oxidative-stress-associated responses.
Collapse
Affiliation(s)
- Sheng-Chieh Wang
- Ph.D. Program in Life Sciences, Department of Biomedical Science and Environmental Biology, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-C.W.); (M.-F.H.)
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan;
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan
| | - Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ming-Feng Hou
- Ph.D. Program in Life Sciences, Department of Biomedical Science and Environmental Biology, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-C.W.); (M.-F.H.)
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsueh-Wei Chang
- Ph.D. Program in Life Sciences, Department of Biomedical Science and Environmental Biology, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-C.W.); (M.-F.H.)
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
26
|
Exercise protects intestinal epithelial barrier from high fat diet- induced permeabilization through SESN2/AMPKα1/HIF-1α signaling. J Nutr Biochem 2022; 107:109059. [DOI: 10.1016/j.jnutbio.2022.109059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/19/2022] [Accepted: 04/14/2022] [Indexed: 01/01/2023]
|
27
|
Extracellular ATP promotes breast cancer chemoresistance via HIF-1α signaling. Cell Death Dis 2022; 13:199. [PMID: 35236823 PMCID: PMC8891368 DOI: 10.1038/s41419-022-04647-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 12/27/2022]
Abstract
We have previously demonstrated that extracellular adenosine 5'-triphosphate (ATP) promotes breast cancer cell chemoresistance. However, the underlying mechanism remains unclear. Using a cDNA microarray, we demonstrated that extracellular ATP can stimulate hypoxia-inducible factor (HIF) signaling. In this study, we report that hypoxia-inducible factor 1α (HIF-1α) was upregulated after ATP treatment and mediated the ATP-driven chemoresistance process. We aimed to investigate the mechanisms and identify potential clinically relevant targets that are involved. Using mass spectrometry, we found that aldolase A (ALDOA) interacts with HIF-1α and increases HIF-1α expression. We then demonstrated that STAT3-ALDOA mediates ATP-HIF-1α signaling and upregulates the HIF-1 target genes adrenomedullin (ADM) and phosphoinositide-dependent kinase-1 (PDK1). Moreover, we show that PI3K/AKT acts upstream of HIF-1α in ATP signaling and contributes to chemoresistance in breast cancer cells. In addition, HIF-1α-knockdown or treatment with direct HIF inhibitors combined with the ATP hydrolase apyrase in MDA-MB-231 cells induced enhanced drug sensitivity in nude BALB/c mice. We then used in vitro spheroid formation assays to demonstrate the significance of ATP-HIF-1α in mediating chemoresistance. Furthermore, considering that indirect HIF inhibitors are effective in clinical cancer therapy, we treated tumor-bearing BALB/c mice with STAT3 and PI3K/AKT inhibitors and found that the dual-targeting strategy sensitized breast cancer to cisplatin. Finally, using breast cancer tissue microarrays, we found that ATP-HIF-1α signaling is associated with cancer progression, poor prognosis, and resistance to chemotherapy. Taken together, we suggest that HIF-1α signaling is vital in ATP-driven chemoresistance and may serve as a potential target for breast cancer therapies.
Collapse
|
28
|
Determination of the effect of berberine on epirubicin concentration in MCF-7 cells by LC-MS/MS: the mechanism of synergism explained by intracellular pharmacokinetics. J Pharm Biomed Anal 2022; 214:114692. [DOI: 10.1016/j.jpba.2022.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/26/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022]
|
29
|
Liu M, Yang Y, Kang W, Liu Y, Tao X, Li X, Pan Y. Berberine inhibits pancreatic intraepithelial neoplasia by inhibiting glycolysis via the adenosine monophosphate -activated protein kinase pathway. Eur J Pharmacol 2022; 915:174680. [PMID: 34890544 DOI: 10.1016/j.ejphar.2021.174680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 11/28/2022]
Abstract
Most cases of pancreatic cancer develop in patients with chronic pancreatitis (CP). Berberine is natural product that exhibits anti-tumor effects in various types of cancer and is used in traditional Chinese medicine. In this study, we demonstrated that berberine inhibited the development of pancreatic intraepithelial neoplasia (PanIN) in an in vivo CP model and an in vitro acinar-to-ductal metaplasia model. As berberine may inhibit glycolysis during the development of PanIN, we measured indicators of glycolysis. Quantitative reverse transcription polymerase chain reaction and western blotting assays revealed that berberine activated the adenosine monophosphate-activated protein kinase (AMPK) pathway. This demonstrated that berberine suppressed glycolysis by targeting AMPK, a key metabolic sensor. Furthermore, berberine acted via the AMPK-hypoxia-inducible factor 1 alpha pathway to achieve suppression of PanIN. These findings show that berberine is a potential therapeutic candidate for preventing the progression of CP to PanIN.
Collapse
Affiliation(s)
- Mengmeng Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yongjie Yang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Wenli Kang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yingjie Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Xufeng Tao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Xiaona Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yue Pan
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China; Ningbo Institute of Dalian University of Technology, Ningbo, China.
| |
Collapse
|
30
|
Zhang X, He C, Xiang G. Engineering nanomedicines to inhibit hypoxia-inducible Factor-1 for cancer therapy. Cancer Lett 2022; 530:110-127. [PMID: 35041892 DOI: 10.1016/j.canlet.2022.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/18/2021] [Accepted: 01/10/2022] [Indexed: 11/02/2022]
Abstract
Hypoxia-inducible factor-1 (HIF-1), an essential promoter of tumor progression, has attracted increasing attention as a therapeutic target. In addition to hypoxic cellular conditions, HIF-1 activation can be triggered by cancer treatment, which causes drug tolerance and therapeutic failure. To date, a series of effective strategies have been explored to suppress HIF-1 function, including silencing the HIF-1α gene, inhibiting HIF-1α protein translation, degrading HIF-1α protein, and inhibiting HIF-1 transcription. Furthermore, nanoparticle-based drug delivery systems have been widely developed to improve the stability and pharmacokinetics of HIF-1 inhibitors or achieve HIF-1-targeted combination therapies as a nanoplatform. In this review, we summarize the current literature on nanomedicines targeting HIF-1 to combat cancer and discuss their potential for future development.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chuanchuan He
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
31
|
Zhou R, Hu Z, Pan J, Wang J, Pei Y. Current research status of alkaloids against breast cancer. CHINESE J PHYSIOL 2022; 65:12-20. [DOI: 10.4103/cjp.cjp_89_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
32
|
Chen Z, Vallega KA, Chen H, Zhou J, Ramalingam SS, Sun SY. The natural product berberine synergizes with osimertinib preferentially against MET-amplified osimertinib-resistant lung cancer via direct MET inhibition. Pharmacol Res 2022; 175:105998. [PMID: 34826601 PMCID: PMC8755628 DOI: 10.1016/j.phrs.2021.105998] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/04/2021] [Accepted: 11/21/2021] [Indexed: 01/03/2023]
Abstract
Berberine is a natural product that has long been used in traditional Chinese medicine due to its antimicrobial, anti-inflammatory and metabolism-regulatory properties. Osimertinib is the first third-generation EGFR-tyrosine kinase inhibitor (TKI) approved for the treatment of non-small cell lung cancer (NSCLC) with activating EGFR mutations and those resistant to earlier generation EGFR-TKIs due to a T790M mutation. However, emergence of acquired resistance to osimertinib limits its long-term efficacy in the clinic. One known mechanism of acquired resistance to osimertinib and other EGFR-TKIs is MET (c-MET) gene amplification. Here, we report that berberine, when combined with osimertinib, synergistically and selectively decreased the survival of several MET-amplified osimertinib-resistant EGFR mutant NSCLC cell lines with enhanced induction of apoptosis likely through Bim elevation and Mcl-1 reduction. Importantly, this combination effectively enhanced suppressive effect on the growth of MET-amplified osimertinib-resistant xenografts in nude mice and was well tolerated. Molecular modeling showed that berberine was able to bind to the kinase domain of non-phosphorylated MET, occupy the front of the binding pocket, and interact with the activation loop, in a similar way as other known MET inhibitors do. MET kinase assay showed clear concentration-dependent inhibitory effects of berberine against MET activity, confirming its kinase inhibitory activity. These findings collectively suggest that berberine can act as a naturally-existing MET inhibitor to synergize with osimertinib in overcoming osimertinib acquired resistance caused by MET amplification.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Karin A Vallega
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Haiying Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA.
| |
Collapse
|
33
|
de Keijzer MJ, de Klerk DJ, de Haan LR, van Kooten RT, Franchi LP, Dias LM, Kleijn TG, van Doorn DJ, Heger M. Inhibition of the HIF-1 Survival Pathway as a Strategy to Augment Photodynamic Therapy Efficacy. Methods Mol Biol 2022; 2451:285-403. [PMID: 35505024 DOI: 10.1007/978-1-0716-2099-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a non-to-minimally invasive treatment modality that utilizes photoactivatable drugs called photosensitizers to disrupt tumors with locally photoproduced reactive oxygen species (ROS). Photosensitizer activation by light results in hyperoxidative stress and subsequent tumor cell death, vascular shutdown and hypoxia, and an antitumor immune response. However, sublethally afflicted tumor cells initiate several survival mechanisms that account for decreased PDT efficacy. The hypoxia inducible factor 1 (HIF-1) pathway is one of the most effective cell survival pathways that contributes to cell recovery from PDT-induced damage. Several hundred target genes of the HIF-1 heterodimeric complex collectively mediate processes that are involved in tumor cell survival directly and indirectly (e.g., vascularization, glucose metabolism, proliferation, and metastasis). The broad spectrum of biological ramifications culminating from the activation of HIF-1 target genes reflects the importance of HIF-1 in the context of therapeutic recalcitrance. This chapter elaborates on the involvement of HIF-1 in cancer biology, the hypoxic response mechanisms, and the role of HIF-1 in PDT. An overview of inhibitors that either directly or indirectly impede HIF-1-mediated survival signaling is provided. The inhibitors may be used as pharmacological adjuvants in combination with PDT to augment therapeutic efficacy.
Collapse
Affiliation(s)
- Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Lianne R de Haan
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Robert T van Kooten
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
- Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, epartment of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group,University of São Paulo, São Paulo, Brazil
| | - Lionel M Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Diederick J van Doorn
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
34
|
Xu M, Ren L, Fan J, Huang L, Zhou L, Li X, Ye X. Berberine inhibits gastric cancer development and progression by regulating the JAK2/STAT3 pathway and downregulating IL-6. Life Sci 2021; 290:120266. [PMID: 34968467 DOI: 10.1016/j.lfs.2021.120266] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023]
Abstract
AIM Gastric cancer is a prevalent malignant tumor that seriously affects human health. Berberine (BBR), an alkaloid from Chinese herbal medicines, inhibits the proliferation of various cancers. We evaluated the effects and related mechanisms of BBR on gastric cancer. MAIN METHODS The MTT assay, flow cytometry, scratch assays, transwell experiments and xenograft nude mice models were used to investigate the antineoplastic effects of BBR. RNA-Seq, qRT-PCR, WB and ELISA were used to investigate the underlying mechanisms of BBR on gastric cancer metastasis. KEY FINDINGS BBR treatment inhibited the proliferation of MKN-45 and HGC-27 cells, induced their apoptosis, G0/G1 cell arrest, and suppressed the migration as well as invasion of GC cells in vitro. Moreover, BBR inhibited in vivo tumor growth in MKN-45 xenograft mice. RNA-seq showed that interactions between cytokines and their receptors was one of the greatest enrichment modulated pathways and IL-6 was a key target. IL-6 knockdown significantly inhibited the activities of MKN-45 cells. Mechanistically, these findings imply that BBR inhibits GC cell proliferation by modulating the signaling pathways related to IL-6/JAK2/STAT3. SIGNIFICANCE This study provides a theoretical basis for the use of BBR in gastric cancer prevention.
Collapse
Affiliation(s)
- Minmin Xu
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Li Ren
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jinhua Fan
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lu Huang
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Liming Zhou
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xuegang Li
- School of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400716, China.
| | - Xiaoli Ye
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
35
|
Yin X, Li W, Zhang J, Zhao W, Cai H, Zhang C, Liu Z, Guo Y, Wang J. AMPK-Mediated Metabolic Switching Is High Effective for Phytochemical Levo-Tetrahydropalmatine (l-THP) to Reduce Hepatocellular Carcinoma Tumor Growth. Metabolites 2021; 11:metabo11120811. [PMID: 34940569 PMCID: PMC8703446 DOI: 10.3390/metabo11120811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022] Open
Abstract
Targeting cancer cell metabolism has been an attractive approach for cancer treatment. However, the role of metabolic alternation in cancer is still unknown whether it functions as a tumor promoter or suppressor. Applying the cancer gene-metabolism integrative network model, we predict adenosine monophosphate-activated protein kinase (AMPK) to function as a central hub of metabolic landscape switching in specific liver cancer subtypes. For the first time, we demonstrate that the phytochemical levo-tetrahydropalmatine (l-THP), a Corydalis yanhusuo-derived clinical drug, as an AMPK activator via autophagy-mediated metabolic switching could kill the hepatocellular carcinoma HepG2 cells. Mechanistically, l-THP promotes the autophagic response by activating the AMPK-mTOR-ULK1 and the ROS-JNK-ATG cascades and impairing the ERK/AKT signaling. All these processes ultimately synergize to induce the decreased mitochondrial oxidative phosphorylation (OXPHOS) and mitochondrial damage. Notably, silencing AMPK significantly inhibits the autophagic flux and recovers the decreased OXPHOS metabolism, which results in HepG2 resistance to l-THP treatment. More importantly, l-THP potently reduces the growth of xenograft HepG2 tumor in nude mice without affecting other organs. From this perspective, our findings support the conclusion that metabolic change is an alternative approach to influence the development of HCC.
Collapse
Affiliation(s)
- Xunzhe Yin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.Y.); (H.C.); (C.Z.)
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (W.L.); (J.Z.); (W.Z.)
| | - Wenbo Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (W.L.); (J.Z.); (W.Z.)
| | - Jiaxin Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (W.L.); (J.Z.); (W.Z.)
| | - Wenjing Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (W.L.); (J.Z.); (W.Z.)
| | - Huaxing Cai
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.Y.); (H.C.); (C.Z.)
| | - Chi Zhang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.Y.); (H.C.); (C.Z.)
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (W.L.); (J.Z.); (W.Z.)
- Correspondence: (Z.L.); (Y.G.)
| | - Yan Guo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.Y.); (H.C.); (C.Z.)
- Correspondence: (Z.L.); (Y.G.)
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, NY 11794-3400, USA;
| |
Collapse
|
36
|
Kaboli PJ, Imani S, Jomhori M, Ling KH. Chemoresistance in breast cancer: PI3K/Akt pathway inhibitors vs the current chemotherapy. Am J Cancer Res 2021; 11:5155-5183. [PMID: 34765318 PMCID: PMC8569340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023] Open
Abstract
Breast cancer is the most prevalent type of cancer among women. Several types of drugs, targeting the specific proteins expressed on the breast cancer cell surface (such as receptor tyrosine kinases and immune checkpoint regulators) and proteins involved in cell cycle and motility (including cyclin-dependent kinases, DNA stabilisers, and cytoskeleton modulators) are approved for different subtypes of breast cancer. However, breast cancer also has a poor response to conventional chemotherapy due to intrinsic and acquired resistance, and an Akt fingerprint is detectable in most drug-resistant cases. Overactivation of Akt and its upstream and downstream regulators in resistant breast cancer cells is considered a major potential target for novel anti-cancer therapies, suggesting that Akt signalling acts as a cellular mechanism against chemotherapy. The present review has shown that sustained activation of Akt results in resistance to different types of chemotherapy. Akt signalling plays a cellular defence role against chemotherapy and (1) enhances multi-drug resistance, (2) increases reactive oxygen species at breast tumor microenvironment, (3) enhances anaerobic metabolism, (4) inhibits the tricarboxylic cycle, (5) promotes PD-L1 upregulation, (6) inhibits apoptosis, (7) increases glucose uptake, and more importantly (8) recruits and interconnects the plasma membrane, nucleus, endoplasmic reticulum, and mitochondria to hijack breast cancer cells and rescue these cells from chemotherapy. Therefore, Akt signalling is considered a cellular defence mechanism employed against chemotherapeutic effects. In addition, interfering roles of PI3K/Akt signalling on the current cytotoxic and molecularly targeted therapy as well as immunotherapy of breast cancer are discussed with a clinical approach. Although, alpelisib, a PIK3CA inhibitor, is the only PI3K/Akt pathway inhibitor approved for breast cancer, we also highlight well-evaluated inhibitors of PI3K/Akt signalling based on different subtypes of breast cancer, which are under clinical trials whether as monotherapy or in combination with other types of chemotherapy.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical UniversityTaichung 404, Taiwan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra MalaysiaSerdang, Selangor 43400, Malaysia
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical UniversityLuzhou, Sichuan 646000, P. R. China
| | - Masume Jomhori
- Department of Biotechnology Research, Razi Vaccine and Serum Research InstituteMashhad, Iran
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra MalaysiaSerdang, Selangor 43400, Malaysia
- Department of Genetics, Harvard Medical SchoolBoston, MA 02115, USA
| |
Collapse
|
37
|
Guo XH, Jiang SS, Zhang LL, Hu J, Edelbek D, Feng YQ, Yang ZX, Hu PC, Zhong H, Yang GH, Yang F. Berberine exerts its antineoplastic effects by reversing the Warburg effect via downregulation of the Akt/mTOR/GLUT1 signaling pathway. Oncol Rep 2021; 46:253. [PMID: 34643248 PMCID: PMC8548812 DOI: 10.3892/or.2021.8204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/01/2021] [Indexed: 11/09/2022] Open
Abstract
Glucose transporter 1 (GLUT1) plays a primary role in the glucose metabolism of cancer cells. However, to the best of our knowledge, there are currently no anticancer drugs that inhibit GLUT1 function. The present study aimed to investigate the antineoplastic activity of berberine (BBR), the main active ingredient in numerous Traditional Chinese medicinal herbs, on HepG2 and MCF7 cells. The results of Cell Counting Kit-8 assay, colony formation assay and flow cytometry revealed that BBR effectively inhibited the proliferation of tumor cells, and induced G2/M cell cycle arrest and apoptosis. Notably, the results of luminescence ATP detection assay and glucose uptake assay showed that BBR also significantly inhibited ATP synthesis and markedly decreased the glucose uptake ability, which suggested that the antitumor effect of BBR may occur via reversal of the Warburg effect. In addition, the results of reverse transcription-quantitative PCR, western blotting and immunofluorescence staining indicated that BBR downregulated the protein expression levels of GLUT1, maintained the cytoplasmic internalization of GLUT1 and suppressed the Akt/mTOR signaling pathway in both HepG2 and MCF7 cell lines. Augmentation of Akt phosphorylation levels by the Akt activator, SC79, abolished the BBR-induced decrease in ATP synthesis, glucose uptake, GLUT1 expression and cell proliferation, and reversed the proapoptotic effect of BBR. These findings indicated that the antineoplastic effect of BBR may involve the reversal of the Warburg effect by downregulating the Akt/mTOR/GLUT1 signaling pathway. Furthermore, the results of the co-immunoprecipitation assay demonstrated that BBR increased the interaction between ubiquitin conjugating enzyme E2 I (Ubc9) and GLUT1, which suggested that Ubc9 may mediate the proteasomal degradation of GLUT1. On the other hand, BBR decreased the interaction between Gα-interacting protein-interacting protein at the C-terminus (GIPC) and GLUT1, which suggested that the retention of GLUT1 in the cytoplasm may be achieved by inhibiting the interaction between GLUT1 and GIPC, thereby suppressing the glucose transporter function of GLUT1. The results of the present study provided a theoretical basis for the application of the Traditional Chinese medicine component, BBR, for cancer treatment.
Collapse
Affiliation(s)
- Xiao-Hong Guo
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Shui-Shan Jiang
- Medical Security Office, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Li-Li Zhang
- Nursing Department, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jun Hu
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Dilda Edelbek
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yu-Qi Feng
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zi-Xian Yang
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Peng-Chao Hu
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Hua Zhong
- Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Guo-Hua Yang
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Fang Yang
- Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| |
Collapse
|
38
|
Orlandi P, Solini A, Banchi M, Brunetto MR, Cioni D, Ghiadoni L, Bocci G. Antiangiogenic Drugs in NASH: Evidence of a Possible New Therapeutic Approach. Pharmaceuticals (Basel) 2021; 14:ph14100995. [PMID: 34681219 PMCID: PMC8539163 DOI: 10.3390/ph14100995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease is the most common liver disorder worldwide, and its progressive form non-alcoholic steatohepatitis (NASH) is a growing cause of liver cirrhosis and hepatocellular carcinoma (HCC). Lifestyle changes, which are capable of improving the prognosis, are hard to achieve, whereas a pharmacologic therapy able to combine efficacy and safety is still lacking. Looking at the pathophysiology of various liver diseases, such as NASH, fibrosis, cirrhosis, and HCC, the process of angiogenesis is a key mechanism influencing the disease progression. The relationship between the worsening of chronic liver disease and angiogenesis may suggest a possible use of drugs with antiangiogenic activity as a tool to stop or slow the progression of the disorder. In this review, we highlight the available preclinical data supporting a role of known antiangiogenic drugs (e.g., sorafenib), or phytotherapeutic compounds with multiple mechanism of actions, including also antiangiogenic activities (e.g., berberine), in the treatment of NASH.
Collapse
Affiliation(s)
- Paola Orlandi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 55, 56126 Pisa, Italy; (P.O.); (M.B.); (M.R.B.); (L.G.)
| | - Anna Solini
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università di Pisa, 56126 Pisa, Italy; (A.S.); (D.C.)
| | - Marta Banchi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 55, 56126 Pisa, Italy; (P.O.); (M.B.); (M.R.B.); (L.G.)
| | - Maurizia Rossana Brunetto
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 55, 56126 Pisa, Italy; (P.O.); (M.B.); (M.R.B.); (L.G.)
| | - Dania Cioni
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università di Pisa, 56126 Pisa, Italy; (A.S.); (D.C.)
| | - Lorenzo Ghiadoni
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 55, 56126 Pisa, Italy; (P.O.); (M.B.); (M.R.B.); (L.G.)
| | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 55, 56126 Pisa, Italy; (P.O.); (M.B.); (M.R.B.); (L.G.)
- Correspondence: ; Tel.: +39-0502218756
| |
Collapse
|
39
|
Yun BD, Son SW, Choi SY, Kuh HJ, Oh TJ, Park JK. Anti-Cancer Activity of Phytochemicals Targeting Hypoxia-Inducible Factor-1 Alpha. Int J Mol Sci 2021; 22:ijms22189819. [PMID: 34575983 PMCID: PMC8467787 DOI: 10.3390/ijms22189819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-inducible factor-1 alpha (HIF-1α) is overexpressed in cancer, leading to a poor prognosis in patients. Diverse cellular factors are able to regulate HIF-1α expression in hypoxia and even in non-hypoxic conditions, affecting its progression and malignant characteristics by regulating the expression of the HIF-1α target genes that are involved in cell survival, angiogenesis, metabolism, therapeutic resistance, et cetera. Numerous studies have exhibited the anti-cancer effect of HIF-1α inhibition itself and the augmentation of anti-cancer treatment efficacy by interfering with HIF-1α-mediated signaling. The anti-cancer effect of plant-derived phytochemicals has been evaluated, and they have been found to possess significant therapeutic potentials against numerous cancer types. A better understanding of phytochemicals is indispensable for establishing advanced strategies for cancer therapy. This article reviews the anti-cancer effect of phytochemicals in connection with HIF-1α regulation.
Collapse
Affiliation(s)
- Ba Da Yun
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Seung Wan Son
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Hyo Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Tae-Jin Oh
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 31460, Korea;
| | - Jong Kook Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
- Correspondence: ; Tel.: +82-33-248-2114
| |
Collapse
|
40
|
Qi Y, Liu G. Berberine-10-hydroxy camptothecine-loaded lipid microsphere for the synergistic treatment of liver cancer by inhibiting topoisomerase and HIF-1α. Drug Deliv 2021; 28:171-182. [PMID: 33427515 PMCID: PMC7808750 DOI: 10.1080/10717544.2020.1870020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
10-HCPT is a topoisomerase I inhibitor effective in the treatment of liver cancer but its use is hampered by its resistance. The expression of hypoxia-inducible factor-1α (HIF-1α) is reportedly upregulated in liver cancer tissues, which is directly linked to the resistance of 10-HCPT. While BBR can significantly decrease the level of HIF-1α according to the literature report. Thus, the aim of this study was to prepare a novel intravenous 10-HCPT-BBR-loaded lipid microsphere (LM) and evaluate their synergistic effect on liver cancer treatment. The optimal preparation mainly included 10.0% oil phase (medium-chain triglyceride:long-chain triglyceride = 1:1), emulsifier (egg lecithin E80 and pluronic F68), antioxidant (0.02% NaHSO3), and pH regulator (0.1 mol/L Hcl). Then, the behaviors of BBR-10-HCPT loaded LM in vitro and in vivo were systematically investigated. In vitro, it showed an obvious sustained-release effect in different release mediums, good physicochemical stability at accelerated and long-term storage conditions, and great anti-proliferative capability toward human liver cancer Hep-3B cells. In vivo, the prepared LM exhibited a longer half-life and higher AUC compared to BBR injection and 10-HCPT injection. More importantly, it was found that The LM was distributed more in the liver, spleen, and tumors, but less in the lungs and heart, especially in the lung. And then, it showed significant inhibition of tumor growth against nude mouse with Hep-3B tumor, and the tumor inhibition rate reached 91.55%. Thus, the data obtained in our study suggested that BBR combined with 10-HCPT can raise curative effect and reduce the toxicity of 10-HCPT.
Collapse
Affiliation(s)
- Yingjie Qi
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, P. R. China
| | - Guangxuan Liu
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, P. R. China
| |
Collapse
|
41
|
New Advances in the Research of Resistance to Neoadjuvant Chemotherapy in Breast Cancer. Int J Mol Sci 2021; 22:ijms22179644. [PMID: 34502549 PMCID: PMC8431789 DOI: 10.3390/ijms22179644] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer has an extremely high incidence in women, and its morbidity and mortality rank first among female tumors. With the increasing development of medicine today, the clinical application of neoadjuvant chemotherapy has brought new hope to the treatment of breast cancer. Although the efficacy of neoadjuvant chemotherapy has been confirmed, drug resistance is one of the main reasons for its treatment failure, contributing to the difficulty in the treatment of breast cancer. This article focuses on multiple mechanisms of action and expounds a series of recent research advances that mediate drug resistance in breast cancer cells. Drug metabolizing enzymes can mediate a catalytic reaction to inactivate chemotherapeutic drugs and develop drug resistance. The drug efflux system can reduce the drug concentration in breast cancer cells. The combination of glutathione detoxification system and platinum drugs can cause breast cancer cells to be insensitive to drugs. Changes in drug targets have led to poorer efficacy of HER2 receptor inhibitors. Moreover, autophagy, epithelial–mesenchymal transition, and tumor microenvironment can all contribute to the development of resistance in breast cancer cells. Based on the relevant research on the existing drug resistance mechanism, the current treatment plan for reversing the resistance of breast cancer to neoadjuvant chemotherapy is explored, and the potential drug targets are analyzed, aiming to provide a new idea and strategy to reverse the resistance of neoadjuvant chemotherapy drugs in breast cancer.
Collapse
|
42
|
Zhong JC, Li XB, Lyu WY, Ye WC, Zhang DM. Natural products as potent inhibitors of hypoxia-inducible factor-1α in cancer therapy. Chin J Nat Med 2021; 18:696-703. [PMID: 32928513 DOI: 10.1016/s1875-5364(20)60008-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Indexed: 02/07/2023]
Abstract
Hypoxia is a prominent feature of tumors. Hypoxia-inducible factor-1α (HIF-1α), a major subunit of HIF-1, is overexpressed in hypoxic tumor tissues and activates the transcription of many oncogenes. Accumulating evidence has demonstrated that HIF-1α promotes tumor angiogenesis, metastasis, metabolism, and immune evasion. Natural products are an important source of antitumor drugs and numerous studies have highlighted the crucial role of these agents in modulating HIF-1α. The present review describes the role of HIF-1α in tumor progression, summarizes natural products used as HIF-1α inhibitors, and discusses the potential of developing natural products as HIF-1α inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Jin-Cheng Zhong
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Xiao-Bo Li
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Wen-Yu Lyu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wen-Cai Ye
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China.
| | - Dong-Mei Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
43
|
Devarajan N, Manjunathan R, Ganesan SK. Tumor hypoxia: The major culprit behind cisplatin resistance in cancer patients. Crit Rev Oncol Hematol 2021; 162:103327. [PMID: 33862250 DOI: 10.1016/j.critrevonc.2021.103327] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/05/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Cisplatin is the most commonly used first-line drug for cancer treatment. However, many patients develop resistance to cisplatin therapy which ultimately results in therapy failure and increased mortality. A growing body of evidence shows that the hypoxic microenvironment is the prime factor underlying tumor insensitivity to cisplatin treatment. Since tumors in the majority of cancer patients are under hypoxic stress (low oxygen supply), it becomes necessary to understand the pathobiology behind hypoxia-induced cisplatin resistance in cancer cells. Here, we discuss the molecular events that render hypoxic tumors insensitive to cisplatin therapy. Furthermore, various drugs and tumor oxygenation techniques have been developed to circumvent cisplatin resistance in hypoxic tumors. However, their pharmaceutical applications are limited due to failures in clinical investigations and a lack of preclinical studies in the hypoxic tumor microenvironment. This review addresses these challenges and provides new directions for the strategic deployment of cisplatin sensitizers in the hypoxic tumor microenvironment.
Collapse
Affiliation(s)
- Nalini Devarajan
- Central Research Laboratory, Meenakshi Ammal Dental College, Meenakshi Academy of Higher Education and Research, Maduravoyal, Chennai, 600095, Tamilnadu, India.
| | - Reji Manjunathan
- Multidisciplinary Research Unit, Chengalpattu Government Medical College, Chengalpattu, 603001, Tamilnadu, India.
| | - Senthil Kumar Ganesan
- Laboratory of Functional Genomics, Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, TRUE Campus, CN Block-6, Sector V, Salt Lake, Kolkata, 700 091, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
44
|
Zheng X, Zhao Y, Jia Y, Shao D, Zhang F, Sun M, Dawulieti J, Hu H, Cui L, Pan Y, Yang C, Sun W, Zhang S, He K, Li J, Du J, Zhang M, Chen L. Biomimetic co-assembled nanodrug of doxorubicin and berberine suppresses chemotherapy-exacerbated breast cancer metastasis. Biomaterials 2021; 271:120716. [PMID: 33621894 DOI: 10.1016/j.biomaterials.2021.120716] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022]
Abstract
Chemotherapy is a major approach for treating breast cancer patients. Paradoxically, it can also induce cancer progression. Understanding post-chemotherapy metastasis mechanism will help the development of new therapeutic strategies to ameliorate chemotherapy-induced cancer progression. In this study, we deciphered the role of HMGB1 in the regulation of TLR4-mediated epithelial to mesenchymal transitions (EMT) process on doxorubicin (Dox)-treated 4T1 breast cancer cells. Berberine (Ber), a clinically approved alkaloid has been demonstrated as an HMGB1-TLR4 axis regulator to Dox-exacerbated breast cancer metastasis in vitro and in vivo. Hypothesizing that combination of Dox and Ber would be beneficial for breast cancer chemotherapy, we engineered self-assembled nanodrug (DBNP) consisting of Dox and Ber without the aid of additional carriers. After cloaking with 4T1 cell membranes, DBNP@CM exhibited higher accumulation at tumor sites and prolonged blood circulation time in 4T1 orthotopic tumor-bearing mice than DBNP. Importantly, DBNP@CM not only effectively inhibited tumor growth with fewer side effects, but also remarkably suppressed pulmonary metastasis via blocking HMGB1-TLR4 axis. Together, our results have provided a promising combination strategy to dampen chemotherapy-exacerbated breast cancer metastasis and shed light on the development of biomimetic nanodrug for efficient and safe breast cancer chemotherapy.
Collapse
Affiliation(s)
- Xiao Zheng
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun, 130021, China; Institutes for Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510630, China
| | - Yawei Zhao
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun, 130021, China
| | - Yong Jia
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun, 130021, China
| | - Dan Shao
- Institutes for Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510630, China; Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Fan Zhang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun, 130021, China; Institutes for Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510630, China
| | - Madi Sun
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun, 130021, China; Institutes for Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510630, China
| | - Jianati Dawulieti
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun, 130021, China; Institutes for Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510630, China
| | - Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Lianzhi Cui
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun, 130021, China; Clinical Laboratory, Jilin Cancer Hospital, Changchun, 130012, China
| | - Yue Pan
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Chao Yang
- Institutes for Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510630, China; Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Wen Sun
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Shuang Zhang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun, 130021, China
| | - Kan He
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun, 130021, China
| | - Jing Li
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun, 130021, China
| | - Jinzhi Du
- Institutes for Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510630, China
| | - Ming Zhang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun, 130021, China.
| | - Li Chen
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun, 130021, China.
| |
Collapse
|
45
|
Devarajan N, Jayaraman S, Mahendra J, Venkatratnam P, Rajagopal P, Palaniappan H, Ganesan SK. Berberine-A potent chemosensitizer and chemoprotector to conventional cancer therapies. Phytother Res 2021; 35:3059-3077. [PMID: 33559280 DOI: 10.1002/ptr.7032] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
Chemotherapy and radiotherapy are mainstay treatments for cancer patients. However, their clinical outcomes are highly limited by the resistance of malignant tumors to these therapies and the incurrence of serious damages in vital organs. This in turn necessitates the development of adjunct drugs that overcomes chemo/radioresistance in refractory cancers and protects vital organs from the cytotoxic effects of cancer therapies. In recent years, Berberine (BBR), a natural isoquinoline alkaloid has garnered more attention due to its potent chemosensitizing and chemoprotective properties. BBR effectively sensitizes refractory cancers to chemotherapy and radiotherapy by ameliorating the diverse events underlying therapy resistance. Furthermore, it protects the heart, liver, lungs, and kidneys from severe damages caused by these therapies. In this review, we discuss the molecular mechanisms underlying the chemo/radiosensitizing and chemo/radioprotective potential of BBR during cancer treatment. Also, we highlight the limitations that hamper the clinical application of BBR as an adjunct drug and how novel innovations have been made in recent years to circumvent these challenges.
Collapse
Affiliation(s)
- Nalini Devarajan
- Central Research Laboratory, Meenakshi Ammal Dental College, Meenakshi Academy of Higher Education and Research, Chennai, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Jaideep Mahendra
- Department of Periodontology, Meenakshi Ammal Dental College, and Hospital, Chennai, India
| | - Purushothaman Venkatratnam
- Central Research laboratory, Meenakshi Ammal Dental College, Meenakshi Academy of Higher Education and Research, Chennai, India
| | - Ponnulakshmi Rajagopal
- Central Research Laboratory, Meenakshi Ammal Dental College, Meenakshi Academy of Higher Education and Research, Chennai, India
| | - Hema Palaniappan
- Department of Pharmacology, Coimbatore Medical College, Coimbatore, India
| | - Senthil Kumar Ganesan
- Laboratory of Functional Genomics, Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
46
|
Gu S, Song X, Xie R, Ouyang C, Xie L, Li Q, Su T, Xu M, Xu T, Huang D, Liang B. Berberine inhibits cancer cells growth by suppressing fatty acid synthesis and biogenesis of extracellular vesicles. Life Sci 2020; 257:118122. [PMID: 32702446 DOI: 10.1016/j.lfs.2020.118122] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 02/05/2023]
Abstract
AIMS Berberine is an isoquinoline alkaloid extracted from the root, rhizome and stem bark of Coptidis Rhizoma. Previous studies have revealed the anti-tumor potential of berberine against various types of cancer cells. However, the underlying mechanisms are not yet fully understood. In this study, we focused on the effects of berberine on fatty acid synthesis and extracellular vesicles formation in cancer cells, and revealed the internal mechanism of berberine inhibition on cancer cell proliferation. MATERIALS AND METHODS Anti-proliferative activity of berberine was determined by cell counting and microscope observation and cell cycle analysis. Activities of AMPK and ACC, expression of extracellular vesicles markers were detected by western blotting. 13C labeling metabolic flux analysis was used for determination of de novo synthesis of fatty acids. The excreted extracellular vesicles in culture mediums were separated by both polyethylene glycol enrichment of extracellular vesicles and differential centrifugation separation. KEY FINDINGS Among our early experiments, 5-10 μmol/L berberine exhibited the substantial anti-proliferative effect against human colon cancer cell line HCT116, cervical cancer cell line HeLa and other cancer cells. It was also revealed that, through activating AMPK, berberine inhibited ACC activity then suppressed intracellular fatty acid synthesis, finally decreased the biogenesis of extracellular vesicles. Moreover, supplement with citrate acid, palmitic acid, as well as exogenous extracellular vesicles, could rescue the inhibitory effect of berberine on cell proliferation, suggesting that inhibited ACC activity, suppressed fatty acid synthesis and decreased extracellular vesicles production were important mechanisms account for berberine inhibiting cancer cell proliferation. SIGNIFICANCE Our study indicates that berberine suppresses cancer cell proliferation through inhibiting the synthesis of fatty acids and decreasing biogenesis and secretion of extracellular vesicles, suggests that berberine is a promising candidate for the development of new therapies for cancer.
Collapse
Affiliation(s)
- Songgang Gu
- Department of Biliary-Pancreatic Minimally Invasive Surgery, the First Affiliated Hospital, Shantou University Medical College, Guangdong, China; Section of Cell Biology and Genetics, Shantou University Medical College, Guangdong, China
| | - Xuhong Song
- Center for Cancer Research, Shantou University Medical College, Guangdong, China
| | - Rufei Xie
- Section of Cell Biology and Genetics, Shantou University Medical College, Guangdong, China
| | - Cong Ouyang
- Section of Cell Biology and Genetics, Shantou University Medical College, Guangdong, China
| | - Lingzhu Xie
- Section of Cell Biology and Genetics, Shantou University Medical College, Guangdong, China; Biomedical Research Center, Shantou University Medical College, Guangdong, China
| | - Qidong Li
- Section of Cell Biology and Genetics, Shantou University Medical College, Guangdong, China
| | - Ting Su
- Section of Cell Biology and Genetics, Shantou University Medical College, Guangdong, China
| | - Man Xu
- Section of Cell Biology and Genetics, Shantou University Medical College, Guangdong, China
| | - Tian Xu
- Section of Cell Biology and Genetics, Shantou University Medical College, Guangdong, China
| | - Dongyang Huang
- Section of Cell Biology and Genetics, Shantou University Medical College, Guangdong, China.
| | - Bin Liang
- Section of Cell Biology and Genetics, Shantou University Medical College, Guangdong, China; Biomedical Research Center, Shantou University Medical College, Guangdong, China.
| |
Collapse
|
47
|
Tumorigenesis and Progression As A Consequence of Hypoxic TME:A Prospective View upon Breast Cancer Therapeutic Targets. Exp Cell Res 2020; 395:112192. [PMID: 32738345 DOI: 10.1016/j.yexcr.2020.112192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/28/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
Intratumoral hypoxia has a significant impact on the development and progression of breast cancer (BC). Rather than exerting limited regional impact, hypoxia create an aggressive macroenvironment for BC. Hypoxia-inducible factors-1(HIF-1) is extensively induced under hypoxia condition of BC, activating the transcription of multiple oncogenes. Thereinto, CD73 is the one which could be secreted into the microenvironment and is in favor of the growth, metastasis, resistance to therapies, as well as the stemness maintenance of BC. In this review, we address the significance of hypoxia/HIF-1/CD73 axis for BC, and provide a novel perspective into BC therapeutic strategies.
Collapse
|
48
|
Liu J, Luo X, Guo R, Jing W, Lu H. Cell Metabolomics Reveals Berberine-Inhibited Pancreatic Cancer Cell Viability and Metastasis by Regulating Citrate Metabolism. J Proteome Res 2020; 19:3825-3836. [DOI: 10.1021/acs.jproteome.0c00394] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jingjing Liu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Laboratory for Functional Metabolomics Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xialin Luo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Laboratory for Functional Metabolomics Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Laboratory for Functional Metabolomics Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanghui Jing
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Haitao Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Laboratory for Functional Metabolomics Science, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
49
|
Huang S, Zhang Z, Li W, Kong F, Yi P, Huang J, Mao D, Peng W, Zhang S. Network Pharmacology-Based Prediction and Verification of the Active Ingredients and Potential Targets of Zuojinwan for Treating Colorectal Cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2725-2740. [PMID: 32764874 PMCID: PMC7369379 DOI: 10.2147/dddt.s250991] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022]
Abstract
Background Zuojinwan (ZJW), a famous Chinese medicine formula, has been widely used to treat colorectal cancer (CRC). However, its bioactive compounds, potential targets, and molecular mechanism remain largely elusive. Aim A network pharmacology-based strategy combined with molecular docking studies and in vitro validation were employed to investigate bioactive compounds, potential targets, and molecular mechanism of ZJW against CRC. Materials and Methods Bioactive compounds and potential targets of ZJW, as well as related genes of CRC, were acquired from public databases. Important ingredients, potential targets, and signaling pathways were determined through bioinformatics analysis, including protein-protein interaction (PPI), the Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, molecular docking and cell experiments were performed to further verify the findings. Results A total of 36 bioactive ingredients of ZJW and 163 gene targets of ZJW were identified. The network analysis revealed that quercetin, baicalein, wogonin, beta-sitosterol, and isorhamnetin may be candidate agents. The AKT1, JUN, CDKN1A, BCL2L1, and NCOA1 could become potential drug targets. The KEGG indicated that PI3K-AKT signaling pathway may play an important role in the effect of ZJW against CRC. Molecular docking suggested that quercetin, baicalein, and wogonin combined well with AKT1 and JUN. The in vitro experiment showed that quercetin, the most important ingredient of ZJW, could induce apoptosis of HCT116 cells through PI3K-Akt signaling pathway. This finding was congruent with the prediction obtained through the network pharmacology approach. Conclusion This study comprehensively illuminated the active ingredients, potential targets, and molecular mechanism of ZJW against CRC. It also provided a promising approach to uncover the scientific basis and therapeutic mechanism of traditional Chinese medicine (TCM) formula treating for disease.
Collapse
Affiliation(s)
- Siqi Huang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Fanhua Kong
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Pengji Yi
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Jianhua Huang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, People's Republic of China
| | - Dan Mao
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Sifang Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| |
Collapse
|
50
|
Zeng X, Wan L, Wang Y, Xue J, Yang H, Zhu Y. Effect of low dose of berberine on the radioresistance of cervical cancer cells via a PI3K/HIF-1 pathway under nutrient-deprived conditions. Int J Radiat Biol 2020; 96:1060-1067. [PMID: 32412317 DOI: 10.1080/09553002.2020.1770358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Purpose: Radiotherapy (RT) is one of the major treatments of cervical cancer. Although the prognosis of clinical cervical cancer becomes better in recent years, some patients still suffer from the recurrence and metastasis. Insufficiency of glucose and oxygen supply could increase the radioresistance of cervical cancer cells through regulating hypoxia-inducible factor 1 (HIF-1) in tumor microenvironment and glucose metabolism. And, berberine can regulate HIF-1. However, how berberine regulates tumor microenvironment and radioresistance through HIF-1 remains to be elucidated.Materials and methods: The human HeLa cervical cancer cells were treated with berberine and radiation under the high and low concentrations of glucose and oxygen, respectively. The survival of cells was tested by CCK-8 assay and colony formation assay. We investigated the PI3K- and IDH3α-related pathway molecules that may regulate HIF-1α by qPCR and western blot. Differentially expressed genes (DEGs) were identified by integrating five related cohort profile datasets. Protein-protein interaction (PPI) network analyses of DEGs related to HIF-1α were conducted by using the STRING database and Cytoscape software.Results: Berberine dramatically damaged HeLa cells under hypoxic and low-glucose conditions compared with the normoxic and high-glucose conditions. The clonogenic assay indicated that the application of berberine decreased the number of colony counts compared to the negative control. Low doses of berberine might decrease the level of phospho-PI3K and HIF-1α under the nutrient-deprived conditions. Moreover, we found that most of the differentially expressed genes which were related to CDKN1B were the downstream molecules regulated by HIF-1α.Conclusion: The results indicated that berberine could dramatically overcome the low-glucose and hypoxia-induced radioresistance. And the regulation berberine on nutrition-deficient conditions might involve in PI3K/HIF-1 pathway. Thus, the interference of glucose metabolism by berberine might be an attractive method to eliminate radioresistant cells and improve radiotherapy efficacy.
Collapse
Affiliation(s)
- Xiaozhu Zeng
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Jinshan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Clinical Cancer Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Linghong Wan
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Jinshan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Clinical Cancer Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Wang
- Department of Pediatrics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jinmin Xue
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Jinshan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Clinical Cancer Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huaju Yang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Jinshan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Clinical Cancer Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxi Zhu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Jinshan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Clinical Cancer Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|