1
|
Li W, Fang C, Gao Y, Gao Y, Yan F, Chen B, Xu M. Correlation between plasma PSGL-1 and FIGO stage, tumor metastasis, and survival in epithelial ovarian cancer. Biotechnol Appl Biochem 2024; 71:733-740. [PMID: 38494670 DOI: 10.1002/bab.2572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/10/2024] [Indexed: 03/19/2024]
Abstract
Plasma circulating P-selectin glycoprotein ligand-1 (PSGL-1) levels and its clinical correlation in patients with epithelial ovarian cancer (EOC) are unknown. The study determined plasma PSGL-1 levels in EOC patients and investigated its relationship with clinicopathological factors and prognosis. Plasma PSGL-1 levels were measured using ELISA in 69 patients with EOC, 34 patients with benign ovarian cystadenoma, and 36 healthy controls. Subsequently, the relationship between PSGL-1 levels and clinicopathological characteristics of patients, as well as the prognosis of EOC patients, was examined. Additionally, the specificity and sensitivity of plasma PSGL-1 were assessed through ROC curve analysis. Plasma PSGL-1 was upregulated in EOC patients compared with healthy subjects and/or patients with benign ovarian cystadenoma (p < 0.01). Elevated levels of PSGL-1 in the plasma were positively associated with advanced FIGO stage (p < 0.001), tumor size (p = 0.001), tumor metastasis (p = 0.036), and tumor recurrence (p = 0.013), while was negatively correlated with residual tumor size (p < 0.001). Kaplan-Meier survival analysis showed that high plasma PSGL-1 levels were associated with progression-free survival (p = 0.0345). In univariate and multivariate Cox regression analyses, PSGL-1 (HR = 1.456, p = 0.009) was an independent prognostic marker. Plasma PSGL-1 levels distinguished EOC patients and healthy individuals (AUC = 0.905), patients at late and early FIGO stages (AUC = 0.886), and metastatic and non-metastatic EOC (AUC = 0.722). The expression of plasma PSGL-1 is significantly increased in patients with EOC, serving as a reliable biomarker to differentiate between healthy individuals and those with EOC. Furthermore, PSGL-1 in patients is correlated with prognostic indicators, such as advanced FIGO stage, tumor lymph node metastasis, and progression-free survival.
Collapse
Affiliation(s)
- WenHui Li
- Department of Gynaecology and Obstetrics, the First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Cheng Fang
- Department of Hepatic Surgery IV, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Ya Gao
- Department of Gynaecology and Obstetrics, the First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Yan Gao
- Department of Gynaecology and Obsterics, Xijing Hospital, Air Force Medical University, Xi'an City, Shaanxi Province, China
| | - FengShang Yan
- Department of Gynaecology and Obstetrics, the First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - BiLiang Chen
- Department of Gynaecology and Obsterics, Xijing Hospital, Air Force Medical University, Xi'an City, Shaanxi Province, China
| | - MingJuan Xu
- Department of Gynaecology and Obstetrics, the First Affiliated Hospital of Second Military Medical University, Shanghai, China
| |
Collapse
|
2
|
Jia Y, Zhao Y, Niu M, Zhao C, Li X, Chen H. Preliminary study of metabonomic changes during the progression of atherosclerosis in miniature pigs. Animal Model Exp Med 2024; 7:419-432. [PMID: 38923366 PMCID: PMC11369038 DOI: 10.1002/ame2.12462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/19/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND To explore potential biomarkers for early diagnosis of atherosclerosis (AS) and provide basic data for further research on AS, the characteristics of serum metabolomics during the progression of AS in mini-pigs were observed dynamically. METHODS An AS model in Bama miniature pigs was established by a high-cholesterol and high-fat diet. Fasting serum samples were collected monthly for metabolomics and serum lipid detection. At the end of the treatment period, pathological analysis of the abdominal aorta and coronary artery was performed to evaluate the lesions of AS, thereby distinguishing the susceptibility of mini-pigs to AS. The metabolomics was detected using a high-resolution untargeted metabolomic approach. Statistical analysis was used to identify metabolites associated with AS susceptibility. RESULTS Based on pathological analysis, mini-pigs were divided into two groups: a susceptible group (n = 3) and a non-susceptible group (n = 6). A total of 1318 metabolites were identified, with significant shifting of metabolic profiles over time in both groups. Dynamic monitoring analysis highlighted 57 metabolites that exhibited an obvious trend of differential changes between two groups with the advance of time. The KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis indicated significant disorders in cholesterol metabolism, primary bile acid metabolism, histidine metabolism, as well as taurine and hypotaurine metabolism. CONCLUSIONS During the progression of AS in mini-pigs induced by high-cholesterol/high-fat diet, the alterations in serum metabolic profile exhibited a time-dependent pattern, accompanied by notable disturbances in lipid metabolism, cholesterol metabolism, and amino acid metabolism. These metabolites may become potential biomarkers for early diagnosis of AS.
Collapse
Affiliation(s)
- Yunxiao Jia
- Laboratory Animal CenterChinese PLA General HospitalBeijingPeople's Republic of China
| | - Yuqiong Zhao
- Laboratory Animal CenterChinese PLA General HospitalBeijingPeople's Republic of China
| | - Miaomiao Niu
- Laboratory Animal CenterChinese PLA General HospitalBeijingPeople's Republic of China
| | - Changqi Zhao
- Laboratory Animal CenterChinese PLA General HospitalBeijingPeople's Republic of China
| | - Xuezhuang Li
- Laboratory Animal CenterChinese PLA General HospitalBeijingPeople's Republic of China
| | - Hua Chen
- Laboratory Animal CenterChinese PLA General HospitalBeijingPeople's Republic of China
| |
Collapse
|
3
|
Li Q, Chen W, Huang W, Hou R, Huang X, Xu M, Que L, Wang L, Yang Y. 1H-NMR-Based Metabonomics Study to Reveal the Progressive Metabolism Regulation of SAP Deficiency on ApoE -/- Mice. Metabolites 2022; 12:metabo12121278. [PMID: 36557316 PMCID: PMC9785365 DOI: 10.3390/metabo12121278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Atherosclerosis is the most common disease of the vascular system and the metabolic disorder is one of its important molecular mechanisms. SAP protein is found to be highly expressed in atherosclerotic blood vessels. Our previous study found that SAP deficiency can significantly inhibit the development of atherosclerosis. However, the regulatory effect of SAP deficiency on AS metabolism is unknown. Based on 1H-NMR metabonomics, this study investigated the serum metabolic changes in ApoE-/-;SAP-/- mice compared with ApoE-/- mice during the whole progression of atherosclerosis. The results showed that acetate, pyruvate, choline and VLDL + LDL were statistically regulated to the normal levels as in C57 mice by SAP deficiency in ApoE-/-;SAP-/- mice at 8 w (without obvious plaques). With the appearance and aggravation of atherosclerotic plaques (8 + 4 w and 8 + 8 w), the four metabolites of acetate, pyruvate, choline and VLDL + LDL were continuously regulated, which were denoted as the metabolic regulatory markers of SAP deficiency. We also found that the changes in these four metabolites had nothing to do with high-fat diet. Therefore, it was revealed that SAP deficiency regulated the metabolic disorders in ApoE-/- prior to the appearance of obvious atherosclerotic plaques, which is one of the important mechanisms leading to the inhibition of atherosclerosis, providing a new basis for the application of SAP in atherosclerosis.
Collapse
Affiliation(s)
- Qian Li
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wanting Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenbin Huang
- Department of Breast Care Surgery, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ranran Hou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xinping Huang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Man Xu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Limei Que
- Foshan Fosun Chancheng Hospital, Foshan 528031, China
| | - Lijing Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongxia Yang
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangzhou 510006, China
- Correspondence: ; Tel.: +86-(0)20-3935-2197
| |
Collapse
|
4
|
Zhong M, Huang J, Wu Z, Chan KG, Wang L, Li J, Lee LH, Law JWF. Potential Roles of Selectins in Periodontal Diseases and Associated Systemic Diseases: Could They Be Targets for Immunotherapy? Int J Mol Sci 2022; 23:14280. [PMID: 36430760 PMCID: PMC9698067 DOI: 10.3390/ijms232214280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
Periodontal diseases are predisposing factors to the development of many systemic disorders, which is often initiated via leukocyte infiltration and vascular inflammation. These diseases could significantly affect human health and quality of life. Hence, it is vital to explore effective therapies to prevent disease progression. Periodontitis, which is characterized by gingival bleeding, disruption of the gingival capillary's integrity, and irreversible destruction of the periodontal supporting bone, appears to be caused by overexpression of selectins in periodontal tissues. Selectins (P-, L-, and E-selectins) are vital members of adhesion molecules regulating inflammatory and immune responses. They are mainly located in platelets, leukocytes, and endothelial cells. Furthermore, selectins are involved in the immunopathogenesis of vascular inflammatory diseases, such as cardiovascular disease, diabetes, cancers, and so on, by mediating leukocyte recruitment, platelet activation, and alteration of endothelial barrier permeability. Therefore, selectins could be new immunotherapeutic targets for periodontal disorders and their associated systemic diseases since they play a crucial role in immune regulation and endothelium dysfunction. However, the research on selectins and their association with periodontal and systemic diseases remains limited. This review aims to discuss the critical roles of selectins in periodontitis and associated systemic disorders and highlights the potential of selectins as therapeutic targets.
Collapse
Affiliation(s)
- Mei Zhong
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Jiangyong Huang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Zhe Wu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China
| | - Lijing Wang
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiang Li
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
5
|
Discovery of four plasmatic biomarkers potentially predicting cardiovascular outcome in peripheral artery disease. Sci Rep 2022; 12:18388. [PMID: 36319844 PMCID: PMC9626632 DOI: 10.1038/s41598-022-23260-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/27/2022] [Indexed: 01/01/2023] Open
Abstract
Peripheral artery disease (PAD) patients have an increased cardiovascular risk despite pharmacological treatment strategies. Biomarker research improving risk stratification only focused on known atherothrombotic pathways, but unexplored pathways might play more important roles. To explore the association between a broad cardiovascular biomarker set and cardiovascular risk in PAD. 120 PAD outpatients were enrolled in this observational cohort study. Patients were followed for one year in which the composite endpoint (myocardial infarction, coronary revascularization, stroke, acute limb ischemia and mortality) was assessed. Patient data and blood samples were collected upon inclusion, and citrated platelet-poor plasma was used to analyze 184 biomarkers in Olink Cardiovascular panel II and III using a proximity extension assay. Fifteen patients reached the composite endpoint. These patients had more prior strokes and higher serum creatinine levels. Multivariate analysis revealed increased plasma levels of protease-activated receptor 1 (PAR1), galectin-9 (Gal-9), tumor necrosis factor receptor superfamily member 11A (TNFRSF11A) and interleukin 6 (IL-6) to be most predictive for cardiovascular events and mortality. Positive regulation of acute inflammatory responses and leukocyte chemotaxis were identified as involved biological processes. This study identified IL-6, PAR1, Gal-9, TNFRSF11A as potent predictors for cardiovascular events and mortality in PAD, and potential drug development targets.
Collapse
|
6
|
Braczko A, Kutryb-Zajac B, Jedrzejewska A, Krol O, Mierzejewska P, Zabielska-Kaczorowska M, Slominska EM, Smolenski RT. Cardiac Mitochondria Dysfunction in Dyslipidemic Mice. Int J Mol Sci 2022; 23:ijms231911488. [PMID: 36232794 PMCID: PMC9570391 DOI: 10.3390/ijms231911488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Dyslipidemia triggers many severe pathologies, including atherosclerosis and chronic inflammation. Several lines of evidence, including our studies, have suggested direct effects of dyslipidemia on cardiac energy metabolism, but details of these effects are not clear. This study aimed to investigate how mild dyslipidemia affects cardiac mitochondria function and vascular nucleotide metabolism. The analyses were performed in 3- and 6-month-old knock-out mice for low-density lipoprotein receptor (Ldlr−/−) and compared to wild-type C57Bl/6J mice (WT). Cardiac isolated mitochondria function was analyzed using Seahorse metabolic flux analyzer. The mechanical function of the heart was measured using echocardiography. The levels of fusion, fission, and mitochondrial biogenesis proteins were determined by ELISA kits, while the cardiac intracellular nucleotide concentration and vascular pattern of nucleotide metabolism ecto-enzymes were analyzed using reverse-phase high-performance liquid chromatography. We revealed the downregulation of mitochondrial complex I, together with a decreased activity of citrate synthase (CS), reduced levels of nuclear respiratory factor 1 and mitochondrial fission 1 protein, as well as lower intracellular adenosine and guanosine triphosphates’ pool in the hearts of 6-month Ldlr−/− mice vs. age-matched WT. The analysis of vascular ecto-enzyme pattern revealed decreased rate of extracellular adenosine monophosphate hydrolysis and increased ecto-adenosine deaminase activity (eADA) in 6-month Ldlr−/− vs. WT mice. No changes were observed in echocardiography parameters in both age groups of Ldlr−/− mice. Younger hyperlipidemic mice revealed no differences in cardiac mitochondria function, CS activity, intracellular nucleotides, mitochondrial biogenesis, and dynamics but exhibited minor changes in vascular eADA activity vs. WT. This study revealed that dysfunction of cardiac mitochondria develops during prolonged mild hyperlipidemia at the time point corresponding to the formation of early vascular alterations.
Collapse
Affiliation(s)
- Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
- Correspondence: (B.K.-Z.); (R.T.S.); Tel.: +48-58-349-14-14 (B.K.-Z.); +48-58-349-14-60 (R.T.S.)
| | - Agata Jedrzejewska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Oliwia Krol
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Paulina Mierzejewska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Magdalena Zabielska-Kaczorowska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
- Department of Physiology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Ewa M. Slominska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
- Correspondence: (B.K.-Z.); (R.T.S.); Tel.: +48-58-349-14-14 (B.K.-Z.); +48-58-349-14-60 (R.T.S.)
| |
Collapse
|
7
|
Dietary Supplementation with Sea Buckthorn Berry Puree Alters Plasma Metabolomic Profile and Gut Microbiota Composition in Hypercholesterolemia Population. Foods 2022; 11:foods11162481. [PMID: 36010480 PMCID: PMC9407212 DOI: 10.3390/foods11162481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Sea buckthorn berries have been reported to have beneficial effects on plasma lipid profile and cardiovascular health. This study aimed to investigate the impact of intervention with sea buckthorn berry puree on plasma metabolomics profile and gut microbiota in hypercholesterolemic subjects. A total of 56 subjects with hypercholesterolemia consumed 90 g of sea buckthorn berry puree daily for 90 days, and plasma metabolomic profile was studied at 0 (baseline), 45, and 90 days of intervention by using proton nuclear magnetic resonance spectroscopy (1H NMR). Gut microbiota composition was analyzed at the baseline and after 90 days of supplementation by using high-throughput sequencing. The plasma metabolic profile was significantly altered after 45 days of intervention as compared to the baseline (day 0). A clear trend of returning to the baseline metabolomic profile was observed in plasma when the intervention extended from 45 days to 90 days. Despite this, the levels of several key plasma metabolites such as glucose, lactate, and creatine were lowered at day 90 compared to the baseline levels, suggesting an improved energy metabolism in those patients. In addition, intervention with sea buckthorn puree enriched butyrate-producing bacteria and other gut microbes linked to lipid metabolisms such as Prevotella and Faecalibacterium while depleting Parasutterella associated with increased risks of cardiovascular disease. These findings indicate that sea buckthorn berries have potential in modulating energy metabolism and the gut microbiota composition in hypercholesterolemic patients.
Collapse
|
8
|
Metabolism in atherosclerotic plaques: immunoregulatory mechanisms in the arterial wall. Clin Sci (Lond) 2022; 136:435-454. [PMID: 35348183 PMCID: PMC8965849 DOI: 10.1042/cs20201293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023]
Abstract
Over the last decade, there has been a growing interest to understand the link between metabolism and the immune response in the context of metabolic diseases but also beyond, giving then birth to a new field of research. Termed 'immunometabolism', this interdisciplinary field explores paradigms of both immunology and metabolism to provided unique insights into different disease pathogenic processes, and the identification of new potential therapeutic targets. Similar to other inflammatory conditions, the atherosclerotic inflammatory process in the artery has been associated with a local dysregulated metabolic response. Thus, recent studies show that metabolites are more than just fuels in their metabolic pathways, and they can act as modulators of vascular inflammation and atherosclerosis. In this review article, we describe the most common immunometabolic pathways characterised in innate and adaptive immune cells, and discuss how macrophages' and T cells' metabolism may influence phenotypic changes in the plaque. Moreover, we discuss the potential of targeting immunometabolism to prevent and treat cardiovascular diseases (CVDs).
Collapse
|
9
|
Ning W, Ma Y, Li S, Wang X, Pan H, Wei C, Zhang S, Bai D, Liu X, Deng Y, Acharya A, Pelekos G, Savkovic V, Li H, Gaus S, Haak R, Schmalz G, Ziebolz D, Ma Y, Xu Y. Shared Molecular Mechanisms between Atherosclerosis and Periodontitis by Analyzing the Transcriptomic Alterations of Peripheral Blood Monocytes. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:1498431. [PMID: 34899963 PMCID: PMC8664523 DOI: 10.1155/2021/1498431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/12/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE This study investigated the nature of shared transcriptomic alterations in PBMs from periodontitis and atherosclerosis to unravel molecular mechanisms underpinning their association. METHODS Gene expression data from PBMs from patients with periodontitis and those with atherosclerosis were each downloaded from the GEO database. Differentially expressed genes (DEGs) in periodontitis and atherosclerosis were identified through differential gene expression analysis. The disease-related known genes related to periodontitis and atherosclerosis each were downloaded from the DisGeNET database. A Venn diagram was constructed to identify crosstalk genes from four categories: DEGs expressed in periodontitis, periodontitis-related known genes, DEGs expressed in atherosclerosis, and atherosclerosis-related known genes. A weighted gene coexpression network analysis (WGCNA) was performed to identify significant coexpression modules, and then, coexpressed gene interaction networks belonging to each significant module were constructed to identify the core crosstalk genes. RESULTS Functional enrichment analysis of significant modules obtained by WGCNA analysis showed that several pathways might play the critical crosstalk role in linking both diseases, including bacterial invasion of epithelial cells, platelet activation, and Mitogen-Activated Protein Kinases (MAPK) signaling. By constructing the gene interaction network of significant modules, the core crosstalk genes in each module were identified and included: for GSE23746 dataset, RASGRP2 in the blue module and VAMP7 and SNX3 in the green module, as well as HMGB1 and SUMO1 in the turquoise module were identified; for GSE61490 dataset, SEC61G, PSMB2, SELPLG, and FIBP in the turquoise module were identified. CONCLUSION Exploration of available transcriptomic datasets revealed core crosstalk genes (RASGRP2, VAMP7, SNX3, HMGB1, SUMO1, SEC61G, PSMB2, SELPLG, and FIBP) and significant pathways (bacterial invasion of epithelial cells, platelet activation, and MAPK signaling) as top candidate molecular linkage mechanisms between atherosclerosis and periodontitis.
Collapse
Affiliation(s)
- Wanchen Ning
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Simin Li
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xin Wang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Hongying Pan
- School of Dentistry, University of Michigan, 1011 N University Ave, Ann Arbor, MI 48109, USA
| | - Chenxuan Wei
- School of Dentistry, University of Michigan, 1011 N University Ave, Ann Arbor, MI 48109, USA
| | - Shaochuan Zhang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Dongying Bai
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Xiangqiong Liu
- Laboratory of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, 218 Anwaixiaoguanbeili Street, Chaoyang, Beijing 100029, China
| | - Yupei Deng
- Laboratory of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, 218 Anwaixiaoguanbeili Street, Chaoyang, Beijing 100029, China
| | - Aneesha Acharya
- Dr D Y Patil Dental College and Hospital, Dr D Y Patil Vidyapeeth, Pimpri, Pune, India
| | - George Pelekos
- Faculty of Dentistry, University of Hong Kong, Hong KongChina
| | - Vuk Savkovic
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Liebigstr. 12, 04103 Leipzig, Germany
| | - Hanluo Li
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Liebigstr. 12, 04103 Leipzig, Germany
| | - Sebastian Gaus
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Liebigstr. 12, 04103 Leipzig, Germany
| | - Rainer Haak
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, 04103 Leipzig, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, 04103 Leipzig, Germany
| | - Dirk Ziebolz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, 04103 Leipzig, Germany
| | - Yanbo Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province 271000, China
| |
Collapse
|
10
|
Aged Monkeys Fed a High-Fat/High-Sugar Diet Recapitulate Metabolic Disorders and Cardiac Contractile Dysfunction. J Cardiovasc Transl Res 2021; 14:799-815. [PMID: 33591467 DOI: 10.1007/s12265-021-10105-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 12/28/2022]
Abstract
Aged nonhuman primate (NHP) models are of great value for studying the pathology of metabolic heart diseases and developing therapeutic strategies. In this study, aged male cynomolgus monkeys were fed a regular diet or a high-fat/high-sugar diet (HFSD) for 8 months. Metabolic disorders were diagnosed by 1H-NMR and serum biochemistry, and cardiac function was evaluated by echocardiography. Our results showed that serum metabolic profiles were altered in aged monkeys fed a HFSD, in line with aortic tissue damage, cardiac remodeling, and contractile dysfunction. This aged monkey model significantly increased expression of proinflammatory cytokines and altered expression and phosphorylation of intracellular signaling proteins in the heart, as compared to aged monkeys on a regular diet. Furthermore, the animals demonstrated increased phosphorylation of cardiac myofilament proteins which are causatively associated with decreased myofilament contractility. We conclude that the aged monkey model fed a HFSD exhibits metabolic disorders and cardiac contractile dysfunction.
Collapse
|
11
|
Circulating P-Selectin and Its Glycoprotein Ligand in Nondiabetic Obstructive Sleep Apnea Patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1279:61-69. [PMID: 32170667 DOI: 10.1007/5584_2020_501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Selectins and their ligands play an important role in atherosclerosis. The role of these adhesion molecules in the pathogenesis of obstructive sleep apnea (OSA) may be of clinical relevance. Therefore, the aim of this study was to assess the serum content of platelet P-selectin (P-SEL) and P-selectin glycoprotein ligand 1 (PSGL-1) in different OSA stages. The study was performed in nondiabetic patients, aged 32-71, in whom OSA was verified by polysomnography. The apnea/hypopnea index (AHI) was used to stratify OSA stages: AHI <5, no sleep pathology (OSA-0); AHI 5-15, (OSA-1); AHI 16-30, (OSA-2); and AHI >30, (OSA-3). There were 16 patients in each group. P-SEL and PSGL-1 were assessed by ELISA kits. There were no appreciable differences in the patients' glucose or high-specificity C-reactive protein content. We found that P-SEL and PSGL-1 significantly increased from OSA-0 to OSA-3. There were the following positive associations in all OSA patients: P-SEL vs. AHI, PSGL-1 vs. AHI, and P-SEL vs. PSGL-1. In addition, the adhesion molecules are associated with the anthropometric parameters, oxygen saturation, and sleep architecture in the OSA-1 group. We conclude that the adhesion molecules consistently increase in the blood of nondiabetic OSA patients, along with progression of disorder severity.
Collapse
|
12
|
Chen J, Zhang S, Wu J, Wu S, Xu G, Wei D. Essential Role of Nonessential Amino Acid Glutamine in Atherosclerotic Cardiovascular Disease. DNA Cell Biol 2019; 39:8-15. [PMID: 31825254 DOI: 10.1089/dna.2019.5034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis is a major disease that seriously harms human health and is known as the "number one killer" in developed countries and the leading cause of death worldwide. Glutamine is the most abundant nonessential amino acid in the human blood that has multifaceted effects on the body. Recent studies showed that glutamine is negatively corrected with the progression of atherosclerotic lesions. In this review, we focused on the relationship of glutamine with macrophage polarization, nitrification stress, oxidative stress injury, myocardial ischemia-reperfusion injury, and therapeutic angiogenesis to review its roles in atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Jinna Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Province Innovative Training Base for Medical Postgraduates, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Shulei Zhang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Province Innovative Training Base for Medical Postgraduates, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Jiaxiong Wu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Province Innovative Training Base for Medical Postgraduates, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Shiyuan Wu
- YueYang Maternal-Child Medicine Health Hospital Hunan, Province Innovative Training Base for Medical Postgraduates, Yueyang, Hunan, China
| | - Gaosheng Xu
- YueYang Maternal-Child Medicine Health Hospital Hunan, Province Innovative Training Base for Medical Postgraduates, Yueyang, Hunan, China
| | - Dangheng Wei
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Province Innovative Training Base for Medical Postgraduates, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| |
Collapse
|
13
|
The P-selectin and PSGL-1 axis accelerates atherosclerosis via activation of dendritic cells by the TLR4 signaling pathway. Cell Death Dis 2019; 10:507. [PMID: 31263109 PMCID: PMC6602970 DOI: 10.1038/s41419-019-1736-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/22/2022]
Abstract
P-selectin and dendritic cells (DCs) are associated with atherosclerosis. However, their interactions in this setting are undefined. Herein, we investigated the role of P-selectin and its receptor P-selectin glycoprotein ligand (PSGL)-1 on atherosclerosis via activation of DCs. In the current study, a total of 34 patients with ST elevation myocardial infarction (STEMI) and 34 healthy control subjects were enrolled. Serum concentration of P-selectin was higher and the myeloid DC/plasmacytoid DC (mDC/pDC) ratio was lower in STEMI patients than in normal individuals. Interestingly, in STEMI patients, P-selectin was decreased and the mDC/pDC ratio was increased at 5–7 days after successful percutaneous coronary intervention, as compared with values on admission. Serum P-selectin was inversely correlated with the mDC/pDC ratio. Moreover, ApoE−/−P−/− and ApoE−/−PSGL-1−/− mice developed small atherosclerotic plaques after feeding of a western diet for 12 weeks and DC infiltration was significantly reduced. P-selectin stimulation markedly induced phenotypic maturation, enhanced secretion of inflammatory cytokines, communication with T cells, and the adhesion and migration of DCs. In vivo, DC maturation was significantly attenuated in P-selectin and PSGL1 knockout mice under hypercholesterolemic and inflammatory conditions. These effects were associated with the activation of myeloid differentiation primary response 88 (MYD88)-dependent and MyD88-independent Toll-like receptor 4 (TLR4) signaling pathways. Taken together, binding of P-selectin to PSGL-1 on DCs contributes to atherosclerosis progression via DC activation via the TLR4 signaling pathway.
Collapse
|