1
|
Diffendall G, Claes A, Barcons-Simon A, Nyarko P, Dingli F, Santos MM, Loew D, Claessens A, Scherf A. RNA polymerase III is involved in regulating Plasmodium falciparum virulence. eLife 2024; 13:RP95879. [PMID: 38921824 PMCID: PMC11208047 DOI: 10.7554/elife.95879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
While often undetected and untreated, persistent seasonal asymptomatic malaria infections remain a global public health problem. Despite the presence of parasites in the peripheral blood, no symptoms develop. Disease severity is correlated with the levels of infected red blood cells (iRBCs) adhering within blood vessels. Changes in iRBC adhesion capacity have been linked to seasonal asymptomatic malaria infections, however how this is occurring is still unknown. Here, we present evidence that RNA polymerase III (RNA Pol III) transcription in Plasmodium falciparum is downregulated in field isolates obtained from asymptomatic individuals during the dry season. Through experiments with in vitro cultured parasites, we have uncovered an RNA Pol III-dependent mechanism that controls pathogen proliferation and expression of a major virulence factor in response to external stimuli. Our findings establish a connection between P. falciparum cytoadhesion and a non-coding RNA family transcribed by Pol III. Additionally, we have identified P. falciparum Maf1 as a pivotal regulator of Pol III transcription, both for maintaining cellular homeostasis and for responding adaptively to external signals. These results introduce a novel perspective that contributes to our understanding of P. falciparum virulence. Furthermore, they establish a connection between this regulatory process and the occurrence of seasonal asymptomatic malaria infections.
Collapse
Affiliation(s)
- Gretchen Diffendall
- Institut Pasteur, Universite Paris CitéParisFrance
- Institut Pasteur, Sorbonne Université Ecole doctorale Complexité du VivantParisFrance
| | | | - Anna Barcons-Simon
- Institut Pasteur, Universite Paris CitéParisFrance
- Institut Pasteur, Sorbonne Université Ecole doctorale Complexité du VivantParisFrance
- Institut Pasteur, Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - Prince Nyarko
- Institut Pasteur, Laboratory of Pathogen-Host Interaction (LPHI), CNRS, University of MontpellierMontpellierFrance
| | - Florent Dingli
- Institut Pasteur, Institut Curie, PSL Research University, Centre de Recherche, CurieCoreTech Mass Spectrometry ProteomicsParisFrance
| | - Miguel M Santos
- Institut Pasteur, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de LisboaLisboaPortugal
| | - Damarys Loew
- Institut Pasteur, Institut Curie, PSL Research University, Centre de Recherche, CurieCoreTech Mass Spectrometry ProteomicsParisFrance
| | - Antoine Claessens
- Institut Pasteur, Laboratory of Pathogen-Host Interaction (LPHI), CNRS, University of MontpellierMontpellierFrance
- Institut Pasteur, LPHI, MIVEGEC, CNRS, INSERM, University of MontpellierMontpellierFrance
| | - Artur Scherf
- Institut Pasteur, Universite Paris CitéParisFrance
| |
Collapse
|
2
|
Cabarcas-Petroski S, Olshefsky G, Schramm L. MAF1 is a predictive biomarker in HER2 positive breast cancer. PLoS One 2023; 18:e0291549. [PMID: 37801436 PMCID: PMC10558074 DOI: 10.1371/journal.pone.0291549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/01/2023] [Indexed: 10/08/2023] Open
Abstract
RNA polymerase III transcription is pivotal in regulating cellular growth and frequently deregulated in various cancers. MAF1 negatively regulates RNA polymerase III transcription. Currently, it is unclear if MAF1 is universally deregulated in human cancers. Recently, MAF1 expression has been demonstrated to be altered in colorectal and liver carcinomas and Luminal B breast cancers. In this study, we analyzed clinical breast cancer datasets to determine if MAF1 alterations correlate with clinical outcomes in HER2-positive breast cancer. Using various bioinformatics tools, we screened breast cancer datasets for alterations in MAF1 expression. We report that MAF1 is amplified in 39% of all breast cancer sub-types, and the observed amplification co-occurs with MYC. MAF1 amplification correlated with increased methylation of the MAF1 promoter and MAF1 protein expression is significantly decreased in luminal, HER2-positive, and TNBC breast cancer subtypes. MAF1 protein expression is also significantly reduced in stage 2 and 3 breast cancer compared to normal and significantly decreased in all breast cancer patients, regardless of race and age. In SKBR3 and BT474 breast cancer cell lines treated with anti-HER2 therapies, MAF1 mRNA expression is significantly increased. In HER2-positive breast cancer patients, MAF1 expression significantly increases and correlates with five years of relapse-free survival in response to trastuzumab treatment, suggesting MAF1 is a predictive biomarker in breast cancer. These data suggest a role for MAF1 alterations in HER2-positive breast cancer. More extensive studies are warranted to determine if MAF1 serves as a predictive and prognostic biomarker in breast cancer.
Collapse
Affiliation(s)
| | | | - Laura Schramm
- Department of Biology, St. John’s University, Queens, NY, United States of America
| |
Collapse
|
3
|
Qiu Z, Wang Q, Liu L, Li G, Hao Y, Ning S, Zhang L, Zhang X, Chen Y, Wu J, Wang X, Yang S, Lin Y, Xu S. Riddle of the Sphinx: Emerging Role of Transfer RNAs in Human Cancer. Front Pharmacol 2021; 12:794986. [PMID: 34975491 PMCID: PMC8714751 DOI: 10.3389/fphar.2021.794986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/10/2021] [Indexed: 01/16/2023] Open
Abstract
The dysregulation of transfer RNA (tRNA) expression contributes to the diversity of proteomics, heterogeneity of cell populations, and instability of the genome, which may be related to human cancer susceptibility. However, the relationship between tRNA dysregulation and cancer susceptibility remains elusive because the landscape of cancer-associated tRNAs has not been portrayed yet. Furthermore, the molecular mechanisms of tRNAs involved in tumorigenesis and cancer progression have not been systematically understood. In this review, we detail current knowledge of cancer-related tRNAs and comprehensively summarize the basic characteristics and functions of these tRNAs, with a special focus on their role and involvement in human cancer. This review bridges the gap between tRNAs and cancer and broadens our understanding of their relationship, thus providing new insights and strategies to improve the potential clinical applications of tRNAs for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Zhilin Qiu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lei Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guozheng Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yi Hao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shipeng Ning
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lei Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yihai Chen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiale Wu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xinheng Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuai Yang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yaoxin Lin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China
- *Correspondence: Yaoxin Lin, ; Shouping Xu,
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Yaoxin Lin, ; Shouping Xu,
| |
Collapse
|
4
|
Bian M, Huang S, Yu D, Zhou Z. tRNA Metabolism and Lung Cancer: Beyond Translation. Front Mol Biosci 2021; 8:659388. [PMID: 34660690 PMCID: PMC8516113 DOI: 10.3389/fmolb.2021.659388] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Lung cancer, one of the most malignant tumors, has extremely high morbidity and mortality, posing a serious threat to global health. It is an urgent need to fully understand the pathogenesis of lung cancer and provide new ideas for its treatment. Interestingly, accumulating evidence has identified that transfer RNAs (tRNAs) and tRNA metabolism–associated enzymes not only participate in the protein translation but also play an important role in the occurrence and development of lung cancer. In this review, we summarize the different aspects of tRNA metabolism in lung cancer, such as tRNA transcription and mutation, tRNA molecules and derivatives, tRNA-modifying enzymes, and aminoacyl-tRNA synthetases (ARSs), aiming at a better understanding of the pathogenesis of lung cancer and providing new therapeutic strategies for it.
Collapse
Affiliation(s)
- Meng Bian
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shiqiong Huang
- Department of Pharmacy, The First Hospital of Changsha, Changsha, China
| | - Dongsheng Yu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Lytic Infection with Murine Gammaherpesvirus 68 Activates Host and Viral RNA Polymerase III Promoters and Enhances Noncoding RNA Expression. J Virol 2021; 95:e0007921. [PMID: 33910955 PMCID: PMC8223928 DOI: 10.1128/jvi.00079-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase III (pol III) transcribes multiple noncoding RNAs (ncRNAs) that are essential for cellular function. Pol III-dependent transcription is also engaged during certain viral infections, including those of the gammaherpesviruses (γHVs), where pol III-dependent viral ncRNAs promote pathogenesis. Additionally, several host ncRNAs are upregulated during γHV infection and play integral roles in pathogenesis by facilitating viral establishment and gene expression. Here, we sought to investigate how pol III promoters and transcripts are regulated during gammaherpesvirus infection using the murine gammaherpesvirus 68 (γHV68) system. To compare the transcription of host and viral pol III-dependent ncRNAs, we analyzed a series of pol III promoters for host and viral ncRNAs using a luciferase reporter optimized to measure pol III activity. We measured promoter activity from the reporter gene at the translation level via luciferase activity and at the transcription level via reverse transcription-quantitative PCR (RT-qPCR). We further measured endogenous ncRNA expression at single-cell resolution by flow cytometry. These studies demonstrated that lytic infection with γHV68 increased the transcription from multiple host and viral pol III promoters and further identified the ability of accessory sequences to influence both baseline and inducible promoter activity after infection. RNA flow cytometry revealed the induction of endogenous pol III-derived ncRNAs that tightly correlated with viral gene expression. These studies highlight how lytic gammaherpesvirus infection alters the transcriptional landscape of host cells to increase pol III-derived RNAs, a process that may further modify cellular function and enhance viral gene expression and pathogenesis. IMPORTANCE Gammaherpesviruses are a prime example of how viruses can alter the host transcriptional landscape to establish infection. Despite major insights into how these viruses modify RNA polymerase II-dependent generation of messenger RNAs, how these viruses influence the activity of host RNA polymerase III remains much less clear. Small noncoding RNAs produced by RNA polymerase III are increasingly recognized to play critical regulatory roles in cell biology and virus infection. Studies of RNA polymerase III-dependent transcription are complicated by multiple promoter types and diverse RNAs with variable stability and processing requirements. Here, we characterized a reporter system to directly study RNA polymerase III-dependent responses during gammaherpesvirus infection and utilized single-cell flow cytometry-based methods to reveal that gammaherpesvirus lytic replication broadly induces pol III activity to enhance host and viral noncoding RNA expression within the infected cell.
Collapse
|
6
|
Chen S, Tang C, Ding H, Wang Z, Liu X, Chai Y, Jiang W, Han Y, Zeng H. Maf1 Ameliorates Sepsis-Associated Encephalopathy by Suppressing the NF- kB/NLRP3 Inflammasome Signaling Pathway. Front Immunol 2020; 11:594071. [PMID: 33424842 PMCID: PMC7785707 DOI: 10.3389/fimmu.2020.594071] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Background The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome has been identified as an important mediator of blood–brain-barrier disruption in sepsis-associated encephalopathy (SAE). However, no information is available concerning the critical upstream regulators of SAE. Methods Lipopolysaccharide (LPS) was used to establish an in vitro model of blood–brain barrier (BBB) disruption and an in vivo model of SAE. Disruption of BBB integrity was assessed by measuring the expression levels of tight-junction proteins. NLRP3 inflammasome activation, pro-inflammatory cytokines levels, and neuroapoptosis were measured using biochemical assays. Finally, the FITC-dextran Transwell assay and Evan’s blue dye assay were used to assess the effect of Maf1 on LPS-induced endothelial permeability in vitro and in vivo. Results We found that Maf1 significantly suppressed the brain inflammatory response and neuroapoptosis induced by LPS in vivo and in vitro. Notably, Maf1 downregulated activation of the NF-κB/p65-induced NLRP3 inflammasome and the expression of pro-inflammatory cytokines. In addition, we found that Maf1 and p65 directly bound to the NLRP3 gene promoter region and competitively regulated the function of NLRP3 in inflammations. Moreover, overexpression of NLRP3 reversed the effects of p65 on BBB integrity, apoptosis, and inflammation in response to LPS. Our study revealed novel role for Maf1 in regulating NF-κB-mediated inflammasome formation, which plays a prominent role in SAE. Conclusions Regulation of Maf1 might be a therapeutic strategy for SAE and other neurodegenerative diseases associated with inflammation.
Collapse
Affiliation(s)
- Shenglong Chen
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chaogang Tang
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Hongguang Ding
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhonghua Wang
- Department of Gerontological Critical Care Medicine, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences/Guangdong Provincial Geriatrics Institute, Guangzhou, China
| | - Xinqiang Liu
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yunfei Chai
- Anesthesiology Department of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wenqiang Jiang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yongli Han
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hongke Zeng
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
7
|
Oliveira Andrade M, Sforça ML, Batista FAH, Figueira ACM, Benedetti CE. The MAF1 Phosphoregulatory Region Controls MAF1 Interaction with the RNA Polymerase III C34 Subunit and Transcriptional Repression in Plants. THE PLANT CELL 2020; 32:3019-3035. [PMID: 32641350 PMCID: PMC7474290 DOI: 10.1105/tpc.20.00297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/18/2020] [Accepted: 07/06/2020] [Indexed: 05/13/2023]
Abstract
MAF1 is a phosphoprotein that plays a critical role in cell growth control as the central regulator of RNA polymerase (Pol) III activity. Citrus MAF1 (CsMAF1) was identified as a direct target of PthA4, a bacterial effector protein required to induce tumors in citrus. CsMAF1 binds to Pol III to restrict transcription; however, exactly how CsMAF1 interacts with the polymerase and how phosphorylation modulates this interaction is unknown. Moreover, how CsMAF1 binds PthA4 is also obscure. Here we show that CsMAF1 binds predominantly to the WH1 domain of the citrus Pol III subunit C34 (CsC34) and that its phosphoregulatory region, comprising loop-3 and α-helix-2, contributes to this interaction. We also show that phosphorylation of this region decreases CsMAF1 affinity to CsC34, leading to Pol III derepression, and that Ser 45, found only in plant MAF1 proteins, is critical for CsC34 interaction and is phosphorylated by a new citrus AGC1 kinase. Additionally, we show that the C-terminal region of the citrus TFIIIB component BRF1 competes with CsMAF1 for CsC34 interaction, whereas the C-terminal region of CsMAF1 is essential for PthA4 binding. Based on CsMAF1 structural data, we propose a mechanism for how CsMAF1 represses Pol III transcription and how phosphorylation controls this process.
Collapse
Affiliation(s)
- Maxuel Oliveira Andrade
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, 13083-100 Campinas, São Paulo, Brazil
| | - Mauricio Luis Sforça
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, 13083-100 Campinas, São Paulo, Brazil
| | - Fernanda Aparecida Heleno Batista
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, 13083-100 Campinas, São Paulo, Brazil
| | - Ana Carolina Migliorini Figueira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, 13083-100 Campinas, São Paulo, Brazil
| | - Celso Eduardo Benedetti
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, 13083-100 Campinas, São Paulo, Brazil
| |
Collapse
|
8
|
Zeng T, Hua Y, Sun C, Zhang Y, Yang F, Yang M, Yang Y, Li J, Huang X, Wu H, Fu Z, Li W, Yin Y. Relationship between tRNA-derived fragments and human cancers. Int J Cancer 2020; 147:3007-3018. [PMID: 32427348 DOI: 10.1002/ijc.33107] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/14/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Abstract
tRNA-derived fragments, a class of small noncoding RNAs (sncRNAs), have been identified in numerous studies in recent years. tRNA-derived fragments are classified into two main groups, including tRNA halves (tiRNAs) and tRNA-derived small RNA fragments (tRFs), according to different cleavage positions of the precursor or mature tRNAs. Instead of random tRNA degradation debris, a growing body of evidence has shown that tRNA-derived fragments are precise products of specific tRNA modifications and play important roles in biological activities, such as regulating protein translation, affecting gene expression, and altering immune signaling. Recently, the relations between tRNA-derived fragments and the occurrence of human diseases, especially cancers, have generated wide interest. It has been demonstrated that tRNA-derived fragments are involved in cancer cell proliferation, metastasis, progression and survival. In this review, we will describe the biogenesis of tRNA-derived fragments, the distinct expression and function of tRNA-derived fragments in the development of cancers, and their emerging roles as diagnostic and prognostic biomarkers and precise targets of future treatments.
Collapse
Affiliation(s)
- Tianyu Zeng
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yijia Hua
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chunxiao Sun
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuchen Zhang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fan Yang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mengzhu Yang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yiqi Yang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Huang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Wu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyi Fu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Maternal and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated of Nanjing Medical University, Nanjing, China
| | - Wei Li
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongmei Yin
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Ahn CS, Lee DH, Pai HS. Characterization of Maf1 in Arabidopsis: function under stress conditions and regulation by the TOR signaling pathway. PLANTA 2019; 249:527-542. [PMID: 30293201 DOI: 10.1007/s00425-018-3024-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/30/2018] [Indexed: 06/08/2023]
Abstract
Maf1 repressor activity is critical for plant survival during environmental stresses, and is regulated by its phosphorylation/dephosphorylation through the activity of TOR and PP4/PP2A phosphatases. Maf1 is a global repressor of RNA polymerase III (Pol III), and is conserved in eukaryotes. Pol III synthesizes small RNAs, 5S rRNA, and tRNAs that are essential for protein translation and cell growth. Maf1 is a phosphoprotein and dephosphorylation of Maf1 promotes its repressor activity in yeast and mammals. Plant Maf1 was identified in citrus plants as a canker elicitor-binding protein, and citrus Maf1 represses cell growth associated with canker development. However, functions of plant Maf1 under diverse stress conditions and its regulation by the target of rapamycin (TOR) signaling components are poorly understood. In this study, the Arabidopsis maf1 mutants were more susceptible to diverse stresses and treatment with the TOR inhibitor Torin-1 than wild-type plants. The maf1 mutants expressed higher levels of Maf1 target RNAs, including 5S rRNA and pre-tRNAs in leaf cells, supporting Pol III repressor activity of Arabidopsis Maf1. Cellular stresses and Torin-1 treatment induced dephosphorylation of Maf1, suggesting Maf1 activation under diverse stress conditions. TOR silencing also stimulated Maf1 dephosphorylation, while silencing of catalytic subunit genes of PP4 and PP2A repressed it. Thus, TOR kinase and PP4/PP2A phosphatases appeared to oppositely modulate the Maf1 phosphorylation status. TOR silencing decreased the abundance of the target RNAs, while silencing of the PP4 and PP2A subunit genes increased it, supporting the positive correlation between Maf1 dephosphorylation and its repressor activity. Taken together, these results suggest that repressor activity of Maf1, regulated by the TOR signaling pathway, is critical for plant cell survival during environmental stresses.
Collapse
Affiliation(s)
- Chang Sook Ahn
- Department of Systems Biology, Yonsei University, Seoul, 03722, Korea
- Future Technology Research Center, Corporate R&D, LG Chem/LG Science Park, Seoul, 07796, Korea
| | - Du-Hwa Lee
- Department of Systems Biology, Yonsei University, Seoul, 03722, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
10
|
Huang SQ, Sun B, Xiong ZP, Shu Y, Zhou HH, Zhang W, Xiong J, Li Q. The dysregulation of tRNAs and tRNA derivatives in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:101. [PMID: 29743091 PMCID: PMC5944149 DOI: 10.1186/s13046-018-0745-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/29/2018] [Indexed: 11/14/2022]
Abstract
Transfer RNAs (tRNAs), traditionally considered to participate in protein translation, were interspersed in the entire genome. Recent studies suggested that dysregulation was observed in not only tRNAs, but also tRNA derivatives generated by the specific cleavage of pre- and mature tRNAs in the progression of cancer. Accumulating evidence had identified that certain tRNAs and tRNA derivatives were involved in proliferation, metastasis and invasiveness of cancer cell, as well as tumor growth and angiogenesis in several malignant human tumors. This paper reviews the importance of the dysregulation of tRNAs and tRNA derivatives during the development of cancer, such as breast cancer, lung cancer, and melanoma, aiming at a better understanding of the tumorigenesis and providing new ideas for the treatment of these cancers.
Collapse
Affiliation(s)
- Shi-Qiong Huang
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Bao Sun
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Zong-Ping Xiong
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, MD, USA
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Wei Zhang
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Jing Xiong
- Department of gynaecology and obstetrics, The Second Xiangya Hospital of Central South University, Central South University, Changsha, 410078, People's Republic of China.
| | - Qing Li
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China. .,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China.
| |
Collapse
|
11
|
Gao Z, Herrera-Carrillo E, Berkhout B. RNA Polymerase II Activity of Type 3 Pol III Promoters. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 12:135-145. [PMID: 30195753 PMCID: PMC6023835 DOI: 10.1016/j.omtn.2018.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022]
Abstract
In eukaryotes, three RNA polymerases (Pol I, II, and III) are responsible for the transcription of distinct subsets of genes. Gene-external type 3 Pol III promoters use defined transcription start and termination sites, and they are, therefore, widely used for small RNA expression, including short hairpin RNAs in RNAi applications and guide RNAs in CRISPR-Cas systems. We report that all three commonly used human Pol III promoters (7SK, U6, and H1) mediate luciferase reporter gene expression, which indicates Pol II activity, but to a different extent (H1 ≫ U6 > 7SK). We demonstrate that these promoters can recruit Pol II for transcribing extended messenger transcripts. Intriguingly, selective inhibition of Pol II stimulates the Pol III activity and vice versa, suggesting that two polymerase complexes compete for promoter usage. Pol II initiates transcription at the regular Pol III start site on the 7SK and U6 promoters, but Pol II transcription on the most active H1 promoter starts 8 nt upstream of the Pol III start site. This study provides functional evidence for the close relationship of Pol II and Pol III transcription. These mechanistic insights are important for optimal use of Pol III promoters, and they offer additional flexibility for biotechnology applications of these genetic elements.
Collapse
Affiliation(s)
- Zongliang Gao
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
12
|
Shukla A, Bhargava P. Regulation of tRNA gene transcription by the chromatin structure and nucleosome dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:295-309. [PMID: 29313808 DOI: 10.1016/j.bbagrm.2017.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 01/19/2023]
Abstract
The short, non-coding genes transcribed by the RNA polymerase (pol) III, necessary for survival of a cell, need to be repressed under the stress conditions in vivo. The pol III-transcribed genes have adopted several novel chromatin-based regulatory mechanisms to their advantage. In the budding yeast, the sub-nucleosomal size tRNA genes are found in the nucleosome-free regions, flanked by positioned nucleosomes at both the ends. With their chromosomes-wide distribution, all tRNA genes have a different chromatin context. A single nucleosome dynamics controls the accessibility of the genes for transcription. This dynamics operates under the influence of several chromatin modifiers in a gene-specific manner, giving the scope for differential regulation of even the isogenes within a tRNA gene family. The chromatin structure around the pol III-transcribed genes provides a context conducive for steady-state transcription as well as gene-specific transcriptional regulation upon signaling from the environmental cues. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Ashutosh Shukla
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, India
| | - Purnima Bhargava
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, India.
| |
Collapse
|
13
|
Van Bortle K, Phanstiel DH, Snyder MP. Topological organization and dynamic regulation of human tRNA genes during macrophage differentiation. Genome Biol 2017; 18:180. [PMID: 28931413 PMCID: PMC5607496 DOI: 10.1186/s13059-017-1310-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022] Open
Abstract
Background The human genome is hierarchically organized into local and long-range structures that help shape cell-type-specific transcription patterns. Transfer RNA (tRNA) genes (tDNAs), which are transcribed by RNA polymerase III (RNAPIII) and encode RNA molecules responsible for translation, are dispersed throughout the genome and, in many cases, linearly organized into genomic clusters with other tDNAs. Whether the location and three-dimensional organization of tDNAs contribute to the activity of these genes has remained difficult to address, due in part to unique challenges related to tRNA sequencing. We therefore devised integrated tDNA expression profiling, a method that combines RNAPIII mapping with biotin-capture of nascent tRNAs. We apply this method to the study of dynamic tRNA gene regulation during macrophage development and further integrate these data with high-resolution maps of 3D chromatin structure. Results Integrated tDNA expression profiling reveals domain-level and loop-based organization of tRNA gene transcription during cellular differentiation. tRNA genes connected by DNA loops, which are proximal to CTCF binding sites and expressed at elevated levels compared to non-loop tDNAs, change coordinately with tDNAs and protein-coding genes at distal ends of interactions mapped by in situ Hi-C. We find that downregulated tRNA genes are specifically marked by enhanced promoter-proximal binding of MAF1, a transcriptional repressor of RNAPIII activity, altogether revealing multiple levels of tDNA regulation during cellular differentiation. Conclusions We present evidence of both local and coordinated long-range regulation of human tDNA expression, suggesting the location and organization of tRNA genes contribute to dynamic tDNA activity during macrophage development. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1310-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kevin Van Bortle
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Douglas H Phanstiel
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, 27599, USA.,Thurston Arthritis Research Center and Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
14
|
Herrera-Carrillo E, Gao ZL, Harwig A, Heemskerk MT, Berkhout B. The influence of the 5΄-terminal nucleotide on AgoshRNA activity and biogenesis: importance of the polymerase III transcription initiation site. Nucleic Acids Res 2017; 45:4036-4050. [PMID: 27928054 PMCID: PMC5397164 DOI: 10.1093/nar/gkw1203] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/29/2016] [Indexed: 12/21/2022] Open
Abstract
Recent evidence indicates that shRNAs with a relatively short basepaired stem do not require Dicer processing, but instead are processed by the Argonaute 2 protein (Ago2). We named these molecules AgoshRNAs as both their processing and silencing function are mediated by Ago2. This alternative processing yields only a single RNA guide strand, which can avoid off-target effects induced by the passenger strand of regular shRNAs. It is important to understand this alternative processing route in mechanistic detail such that one can design improved RNA reagents. We verified that AgoshRNAs trigger site-specific cleavage of a complementary mRNA. Second, we document the importance of the identity of the 5΄-terminal nucleotide and its basepairing status for AgoshRNA activity. AgoshRNA activity is significantly reduced or even abrogated with C or U at the 5΄-terminal and is enhanced by introduction of a bottom mismatch and 5΄-terminal nucleotide A or G. The 5΄-terminal RNA nucleotide also represents the +1 position of the transcriptional promoter in the DNA, thus further complicating the analysis. Indeed, we report that +1 modification affects the transcriptional efficiency and accuracy of start site selection, with A or G as optimal nucleotide. These combined results allow us to propose general rules for the design and expression of potent AgoshRNA molecules.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - Zong-Liang Gao
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - Alex Harwig
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - Matthias T Heemskerk
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
15
|
Soprano AS, Giuseppe POD, Shimo HM, Lima TB, Batista FAH, Righetto GL, Pereira JGDC, Granato DC, Nascimento AFZ, Gozzo FC, de Oliveira PSL, Figueira ACM, Smetana JHC, Paes Leme AF, Murakami MT, Benedetti CE. Crystal Structure and Regulation of the Citrus Pol III Repressor MAF1 by Auxin and Phosphorylation. Structure 2017; 25:1360-1370.e4. [PMID: 28781084 DOI: 10.1016/j.str.2017.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/16/2017] [Accepted: 07/06/2017] [Indexed: 10/25/2022]
Abstract
MAF1 is the main RNA polymerase (Pol) III repressor that controls cell growth in eukaryotes. The Citrus ortholog, CsMAF1, was shown to restrict cell growth in citrus canker disease but its role in plant development and disease is still unclear. We solved the crystal structure of the globular core of CsMAF1, which reveals additional structural elements compared with the previously available structure of hMAF1, and explored the dynamics of its flexible regions not present in the structure. CsMAF1 accumulated in the nucleolus upon leaf excision, and this translocation was inhibited by auxin and by mutation of the PKA phosphorylation site, S45, to aspartate. Additionally, mTOR phosphorylated recombinant CsMAF1 and the mTOR inhibitor AZD8055 blocked canker formation in normal but not CsMAF1-silenced plants. These results indicate that the role of TOR on cell growth induced by Xanthomonas citri depends on CsMAF1 and that auxin controls CsMAF1 interaction with Pol III in citrus.
Collapse
Affiliation(s)
- Adriana Santos Soprano
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | - Priscila Oliveira de Giuseppe
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | - Hugo Massayoshi Shimo
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | - Tatiani Brenelli Lima
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, São Paulo, Brazil; Institute of Chemistry, State University of Campinas, Campinas, São Paulo, Brazil
| | - Fernanda Aparecida Heleno Batista
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | - Germanna Lima Righetto
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | - José Geraldo de Carvalho Pereira
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | - Daniela Campos Granato
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | - Andrey Fabricio Ziem Nascimento
- XALOC Beamline, Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Vallès, 08290 Barcelona, Spain; Structural Biology, Molecular Biology Institute of Barcelona (IBMB-CSIC), Carrer Baldiri Reixac 15, 3 A17, 08028 Barcelona, Spain
| | - Fabio Cesar Gozzo
- Institute of Chemistry, State University of Campinas, Campinas, São Paulo, Brazil
| | - Paulo Sérgio Lopes de Oliveira
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | - Ana Carolina Migliorini Figueira
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | - Juliana Helena Costa Smetana
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | - Adriana Franco Paes Leme
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | - Mario Tyago Murakami
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | - Celso Eduardo Benedetti
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, São Paulo, Brazil.
| |
Collapse
|
16
|
Gao Z, Harwig A, Berkhout B, Herrera-Carrillo E. Mutation of nucleotides around the +1 position of type 3 polymerase III promoters: The effect on transcriptional activity and start site usage. Transcription 2017; 8:275-287. [PMID: 28598252 PMCID: PMC5703244 DOI: 10.1080/21541264.2017.1322170] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 11/24/2022] Open
Abstract
Type 3 RNA polymerase III (Pol III) promoters are widely used for the expression of small RNAs such as short hairpin RNA and guide RNA in the popular RNAi and CRISPR-Cas gene regulation systems. Although it is generally believed that type 3 Pol III promoters use a defined transcription start site (+1 position), most man-made promoter constructs contain local sequence alterations of which the impact on transcription efficiency and initiation accuracy is not known. For three human type 3 Pol III promoters (7SK, U6, and H1), we demonstrated that the nucleotides around the +1 position affect both the transcriptional efficiency and start site selection. Human 7SK and U6 promoters with A or G at the +1 position efficiently produced small RNAs with a precise +1 start site. The human H1 promoter with +1A or G also efficiently produced small RNAs but from multiple start sites in the -3/-1 window. These results provide new insights for the design of vectors for accurate expression of designed small RNAs for research and therapeutic purposes.
Collapse
Affiliation(s)
- Zongliang Gao
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex Harwig
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Tetrahelical structural family adopted by AGCGA-rich regulatory DNA regions. Nat Commun 2017; 8:15355. [PMID: 28513602 PMCID: PMC5442326 DOI: 10.1038/ncomms15355] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/23/2017] [Indexed: 12/13/2022] Open
Abstract
Here we describe AGCGA-quadruplexes, an unexpected addition to the well-known tetrahelical families, G-quadruplexes and i-motifs, that have been a focus of intense research due to their potential biological impact in G- and C-rich DNA regions, respectively. High-resolution structures determined by solution-state nuclear magnetic resonance (NMR) spectroscopy demonstrate that AGCGA-quadruplexes comprise four 5′-AGCGA-3′ tracts and are stabilized by G-A and G-C base pairs forming GAGA- and GCGC-quartets, respectively. Residues in the core of the structure are connected with edge-type loops. Sequences of alternating 5′-AGCGA-3′ and 5′-GGG-3′ repeats could be expected to form G-quadruplexes, but are shown herein to form AGCGA-quadruplexes instead. Unique structural features of AGCGA-quadruplexes together with lower sensitivity to cation and pH variation imply their potential biological relevance in regulatory regions of genes responsible for basic cellular processes that are related to neurological disorders, cancer and abnormalities in bone and cartilage development. DNA tetrahelical structures such as G-quadruplexes are known to play important roles in DNA replication and repair. Here the authors present the structure of 5′-AGCGA-3′-quadruplexes enriched in genetic regulatory regions.
Collapse
|
18
|
Nan P, Yan S, Wang Y, Du Q, Chang Z. Gene expression profile changes induced by acute toxicity of [C 16 mim]Cl in loach (Paramisgurnus dabryanus). ENVIRONMENTAL TOXICOLOGY 2017; 32:404-416. [PMID: 26892570 DOI: 10.1002/tox.22244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/12/2016] [Accepted: 01/24/2016] [Indexed: 06/05/2023]
Abstract
Ionic liquids (ILs) are widely used as reaction media in various commercial applications. Many reports have indicated that most ILs are poorly decomposed by microorganisms and are toxic to aquatic organisms. In this study, differential gene expression profiling was conducted using a suppression subtraction hybridization cDNA library from hepatic tissue of the loach (Paramisgurnus dabryanus) after exposure to 1-hexadecyl-3-methylimidazolium chloride ([C16 mim]Cl), a representative IL. Two hundred and fifty-nine differentially expressed candidate genes, whose expression was altered by >2.0-fold by the [C16 mim]Cl treatment, were identified, including 127 upregulated genes and 132 downregulated genes. A gene ontology analysis of the known genes isolated in this study showed that [C16 mim]Cl-responsive genes were involved in cell cycle, stimulus response, defense response, DNA damage response, oxidative stress responses, and other biological responses. To identify candidate genes that may be involved in [C16 mim]Cl-induced toxicity, 259 clones were examined by Southern blot macroarray hybridization, and 20 genes were further characterized using quantitative real-time polymerase chain reaction. Finally, six candidate genes were selected, including three DNA damage response genes, two toxic substance metabolic genes, and one stress protein gene. Our results indicate that these changes in gene expression are associated with [C16 mim]Cl-induced toxicity, and that these six candidate genes can be promising biomarkers for detecting [C16 mim]Cl-induced toxicity. Therefore, this study demonstrates the use of a powerful assay to identify genes potentially involved in [C16 mim]Cl toxicity, and it provides a foundation for the further study of related genes and the molecular mechanism of [C16 mim]Cl toxicity. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 404-416, 2017.
Collapse
Affiliation(s)
- Ping Nan
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, No.46, East Jianshe Road, Xinxiang, Henan, 453007, China
| | - Shuaiguo Yan
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, No.46, East Jianshe Road, Xinxiang, Henan, 453007, China
| | - Yaxing Wang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, No.46, East Jianshe Road, Xinxiang, Henan, 453007, China
| | - Qiyan Du
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, No.46, East Jianshe Road, Xinxiang, Henan, 453007, China
| | - Zhongjie Chang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, No.46, East Jianshe Road, Xinxiang, Henan, 453007, China
| |
Collapse
|
19
|
Pradhan A, Hammerquist AM, Khanna A, Curran SP. The C-Box Region of MAF1 Regulates Transcriptional Activity and Protein Stability. J Mol Biol 2016; 429:192-207. [PMID: 27986570 DOI: 10.1016/j.jmb.2016.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 11/15/2016] [Accepted: 12/08/2016] [Indexed: 12/26/2022]
Abstract
MAF1 is a conserved negative regulator of RNA polymerase (pol) III and intracellular lipid homeostasis across species. Here, we show that the MAF1 C-box region negatively regulates its activity. Mutations in Caenorhabditis elegans mafr-1 that truncate the C-box retain the ability to inhibit the transcription of RNA pol III targets, reduce lipid biogenesis, and lower reproductive output. In human cells, C-box deletion of MAF1 leads to increased MAF1 nuclear localization and enhanced repression of ACC1 and FASN, but with impaired repression of RNA pol III targets. Surprisingly, C-box mutations render MAF1 insensitive to rapamycin, further defining a regulatory role for this region. Two MAF1 species, MAF1L and MAF1S, are regulated by the C-box YSY motif, which, when mutated, alters species stoichiometry and proteasome-dependent turnover of nuclear MAF1. Our results reveal a role for the C-box region as a critical determinant of MAF1 stability, activity, and response to cellular stress.
Collapse
Affiliation(s)
- Ajay Pradhan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Amy M Hammerquist
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Department of Molecular and Computational Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Akshat Khanna
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Department of Molecular and Computational Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Department of Molecular and Computational Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
20
|
Romero-Meza G, Vélez-Ramírez DE, Florencio-Martínez LE, Román-Carraro FC, Manning-Cela R, Hernández-Rivas R, Martínez-Calvillo S. Maf1 is a negative regulator of transcription in Trypanosoma brucei. Mol Microbiol 2016; 103:452-468. [PMID: 27802583 DOI: 10.1111/mmi.13568] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2016] [Indexed: 11/29/2022]
Abstract
RNA polymerase III (Pol III) produces small RNA molecules that play essential roles in mRNA processing and translation. Maf1, originally described as a negative regulator of Pol III transcription, has been studied from yeast to human. Here we characterized Maf1 in the parasitic protozoa Trypanosoma brucei (TbMaf1), representing the first report to analyse Maf1 in an early-diverged eukaryote. While Maf1 is generally encoded by a single-copy gene, the T. brucei genome contains two almost identical TbMaf1 genes. The TbMaf1 protein has the three conserved sequences and is predicted to fold into a globular structure. Unlike in yeast, TbMaf1 localizes to the nucleus in procyclic forms of T. brucei under normal growth conditions. Cell lines that either downregulate or overexpress TbMaf1 were generated, and growth curve analysis with them suggested that TbMaf1 participates in the regulation of cell growth of T. brucei. Nuclear run-on and chromatin immunoprecipitation analyses demonstrated that TbMaf1 represses Pol III transcription of tRNA and U2 snRNA genes by associating with their promoters. Interestingly, 5S rRNA levels do not change after TbMaf1 ablation or overexpression. Notably, our data also revealed that TbMaf1 regulates Pol I transcription of procyclin gene and Pol II transcription of SL RNA genes.
Collapse
Affiliation(s)
- Gabriela Romero-Meza
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP, 54090, México.,Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, México, DF, 07360, México
| | - Daniel E Vélez-Ramírez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP, 54090, México
| | - Luis E Florencio-Martínez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP, 54090, México
| | - Fiordaliso C Román-Carraro
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP, 54090, México
| | - Rebeca Manning-Cela
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, México, DF, 07360, México
| | - Rosaura Hernández-Rivas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, México, DF, 07360, México
| | - Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP, 54090, México
| |
Collapse
|
21
|
Diette N, Koo J, Cabarcas-Petroski S, Schramm L. Gender Specific Differences in RNA Polymerase III Transcription. ACTA ACUST UNITED AC 2016; 7. [PMID: 27158556 DOI: 10.4172/2157-2518.1000251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND RNA polymerase (pol) III transcribes a variety of untranslated RNAs responsible for regulating cellular growth and is deregulated in a variety of cancers. In this study, we examined gender differences in RNA pol III transcription in vitro and in vivo. METHODS Expression levels of U6 snRNA, tMet, and known modulators of RNA pol III transcription were assayed in male and female derived adenocarcinoma (AC) lung cancer cell lines and male and female C57BL/6J mice using real time quantitative PCR. Methylation status of the U6 snRNA promoter was determined for lung and liver tissue isolated from male and female C57BL/6J mice by digesting genomic DNA with methylation sensitive restriction enzymes and digestion profiles were analyzed by qPCR using primers spanning the U6 promoter. RESULTS Here, we demonstrate that RNA pol III transcription is differentially regulated by EGCG in male and female derived AC lung cancer cell lines. Basal RNA pol III transcript levels are significantly different in male and female derived AC lung cancer cell lines. These data prompted an investigation of gender specific differences in RNA pol III transcription in vivo in lung and liver tissue. Herein, we report that U6 snRNA RNA pol III transcription is significantly stimulated in the liver tissue of male C57BL/6J mice. Further, the increase in U6 transcription correlates with a significant inhibition in the expression of p53, a negative regulator of RNA pol III transcription, and demethylation of the U6 promoter in the liver tissue of male C57BL/6J mice. CONCLUSIONS To the best of our knowledge, this is the first study demonstrating gender specific differences in RNA pol III transcription both in vivo and in vitro and further highlights the need to include both male and female cell lines and animals in experimental design.
Collapse
Affiliation(s)
- N Diette
- Department of Biological Sciences, St. John's University, Queens, New York, 11439, USA
| | - J Koo
- Department of Biological Sciences, St. John's University, Queens, New York, 11439, USA
| | - S Cabarcas-Petroski
- Pennsylvania State University, Beaver Campus, Monaca, Pennsylvania, 15061 USA
| | - L Schramm
- Department of Biological Sciences, St. John's University, Queens, New York, 11439, USA
| |
Collapse
|
22
|
Orioli A, Praz V, Lhôte P, Hernandez N. Human MAF1 targets and represses active RNA polymerase III genes by preventing recruitment rather than inducing long-term transcriptional arrest. Genome Res 2016; 26:624-35. [PMID: 26941251 PMCID: PMC4864463 DOI: 10.1101/gr.201400.115] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/24/2016] [Indexed: 12/04/2022]
Abstract
RNA polymerase III (Pol III) is tightly controlled in response to environmental cues, yet a genomic-scale picture of Pol III regulation and the role played by its repressor MAF1 is lacking. Here, we describe genome-wide studies in human fibroblasts that reveal a dynamic and gene-specific adaptation of Pol III recruitment to extracellular signals in an mTORC1-dependent manner. Repression of Pol III recruitment and transcription are tightly linked to MAF1, which selectively localizes at Pol III loci, even under serum-replete conditions, and increasingly targets transcribing Pol III in response to serum starvation. Combining Pol III binding profiles with EU-labeling and high-throughput sequencing of newly synthesized small RNAs, we show that Pol III occupancy closely reflects ongoing transcription. Our results exclude the long-term, unproductive arrest of Pol III on the DNA as a major regulatory mechanism and identify previously uncharacterized, differential coordination in Pol III binding and transcription under different growth conditions.
Collapse
Affiliation(s)
- Andrea Orioli
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Viviane Praz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Philippe Lhôte
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
23
|
Koo J, Cabarcas-Petroski S, Petrie JL, Diette N, White RJ, Schramm L. Induction of proto-oncogene BRF2 in breast cancer cells by the dietary soybean isoflavone daidzein. BMC Cancer 2015; 15:905. [PMID: 26573593 PMCID: PMC4647806 DOI: 10.1186/s12885-015-1914-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/06/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND BRF2 is a transcription factor required for synthesis of a small group of non-coding RNAs by RNA polymerase III. Overexpression of BRF2 can transform human mammary epithelial cells. In both breast and lung cancers, the BRF2 gene is amplified and overexpressed and may serve as an oncogenic driver. Furthermore, elevated BRF2 can be independently prognostic of unfavorable survival. Dietary soy isoflavones increase metastasis to lungs in a model of breast cancer and a recent study reported significantly increased cell proliferation in breast cancer patients who used soy supplementation. The soy isoflavone daidzein is a major food-derived phytoestrogen that is structurally similar to estrogen. The putative estrogenic effect of soy raises concern that high consumption of soy foods by breast cancer patients may increase tumor growth. METHODS Expression of BRF2 RNA and protein was assayed in ER-positive or -negative human breast cancer cells after exposure to daidzein. We also measured mRNA stability, promoter methylation and response to the demethylating agent 5-azacytidine. In addition, expression was compared between mice fed diets enriched or deprived of isoflavones. RESULTS We demonstrate that the soy isoflavone daidzein specifically stimulates expression of BRF2 in ER-positive breast cancer cells, as well as the related factor BRF1. Induction is accompanied by increased levels of non-coding RNAs that are regulated by BRF2 and BRF1. Daidzein treatment stabilizes BRF2 and BRF1 mRNAs and selectively decreases methylation of the BRF2 promoter. Functional significance of demethylation is supported by induction of BRF2 by the methyltransferase inhibitor 5-azacytidine. None of these effects are observed in an ER-negative breast cancer line, when tested in parallel with ER-positive breast cancer cells. In vivo relevance is suggested by the significantly elevated levels of BRF2 mRNA detected in female mice fed a high-isoflavone commercial diet. In striking contrast, BRF2 and BRF1 mRNA levels are suppressed in matched male mice fed the same isoflavone-enriched diet. CONCLUSIONS The BRF2 gene that is implicated in cancer can be induced in human breast cancer cells by the isoflavone daidzein, through promoter demethylation and/or mRNA stabilization. Dietary isoflavones may also induce BRF2 in female mice, whereas the converse occurs in males.
Collapse
Affiliation(s)
- Jana Koo
- Department of Biological Sciences, St. John's University, Queens, New York, 11439, USA
| | | | - John L Petrie
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Nicole Diette
- Department of Biological Sciences, St. John's University, Queens, New York, 11439, USA
| | - Robert J White
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Laura Schramm
- Department of Biological Sciences, St. John's University, Queens, New York, 11439, USA.
| |
Collapse
|
24
|
Dumay-Odelot H, Durrieu-Gaillard S, El Ayoubi L, Parrot C, Teichmann M. Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription. Transcription 2015; 5:e27526. [PMID: 25764111 DOI: 10.4161/trns.27526] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human RNA polymerase III transcribes small untranslated RNAs that contribute to the regulation of essential cellular processes, including transcription, RNA processing and translation. Analysis of this transcription system by in vitro transcription techniques has largely contributed to the discovery of its transcription factors and to the understanding of the regulation of human RNA polymerase III transcription. Here we review some of the key steps that led to the identification of transcription factors and to the definition of minimal promoter sequences for human RNA polymerase III transcription.
Collapse
Affiliation(s)
- Hélène Dumay-Odelot
- a INSERM U869; University of Bordeaux; Institut Européen de Chimie et Biologie (IECB); 33607 Pessac, France
| | | | | | | | | |
Collapse
|
25
|
Lou G, Ma N, Xu Y, Jiang L, Yang J, Wang C, Jiao Y, Gao X. Differential distribution of U6 (RNU6-1) expression in human carcinoma tissues demonstrates the requirement for caution in the internal control gene selection for microRNA quantification. Int J Mol Med 2015; 36:1400-8. [PMID: 26352225 DOI: 10.3892/ijmm.2015.2338] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 08/24/2015] [Indexed: 11/06/2022] Open
Abstract
Alterations in microRNA (miRNA) expression patterns have been associated with a number of human diseases. Accurate quantitation of miRNA levels is important for their use as biomarkers and in determining their functions. Although the issue of proper miRNA detection was solved with the introduction of standard reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) assays, numerous issues with the selection of appropriate internal control genes remain. U6 (RNU6‑1) snRNA, the most commonly used internal control gene in miRNA RT‑qPCR assays, was shown to be unstable in clinical samples, particularly cancer tissues. Identification of the distribution of U6 in different tissues is the premise of more accurate quantification of miRNAs. However, the distribution of U6 in human carcinoma tissues and corresponding normal tissues is unknown. In the present study, U6 levels were significantly higher in human breast carcinoma tissues compared with the corresponding normal tissues by RT‑qPCR. In the carcinoma or corresponding adjacent normal tissues, the expression levels of U6 in epithelial cells were higher than those in the mesenchymal cells. Furthermore, the expression levels of U6 in the carcinoma tissues of the liver and intrahepatic bile ducts were higher than those in the adjacent normal tissues. These results suggest that the expression and distribution of U6 exhibits a high degree of variability among several types of human cells. Therefore, caution is required when selecting U6 as an internal control gene for evaluating expression profiles of miRNAs in patients with carcinoma, particularly carcinoma of the liver and intrahepatic bile ducts.
Collapse
Affiliation(s)
- Ge Lou
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, P.R. China
| | - Ning Ma
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, P.R. China
| | - Ya Xu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, P.R. China
| | - Lei Jiang
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, P.R. China
| | - Jing Yang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, P.R. China
| | - Chuxuan Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, P.R. China
| | - Yufei Jiao
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, P.R. China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, P.R. China
| |
Collapse
|
26
|
Cai Y, Wei YH. Distinct regulation of Maf1 for lifespan extension by Protein kinase A and Sch9. Aging (Albany NY) 2015; 7:133-43. [PMID: 25720796 PMCID: PMC4359695 DOI: 10.18632/aging.100727] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Protein kinase A (PKA) and Sch9 regulates cell growth as well as lifespan in Saccharomyces cerevisiae. Maf1 is a RNA polymerase III (PolIII) inhibitor that tailors 5S rRNA and tRNA production in response to various environmental cues. Both PKA and Sch9 have been shown to phosphorylate Maf1 in vitro at similar amino acids, suggesting a redundancy in Maf1 regulation. However, here we find that activating PKA by bcy1 deletion cannot replace Sch9 for Maf1 phosphorylation and cytoplasmic retention; instead, such modulation lowers Maf1 protein levels. Consistently, loss of MAF1 or constitutive PKA activity reverses the stress resistance and the extended lifespan of sch9Δ cells. Overexpression of MAF1 partially rescues the extended lifespan of sch9Δ in bcy1Δsch9Δ mutant, suggesting that PKA suppresses sch9Δ longevity at least partly through Maf1 abundance. Constitutive PKA activity also reverses the reduced tRNA synthesis and slow growth of sch9Δ, which, however, is not attributed to Maf1 protein abundance. Therefore, regulation of lifespan and growth can be decoupled. Together, we reveal that lifespan regulation by PKA and Sch9 are mediated by Maf1 through distinct mechanisms.
Collapse
Affiliation(s)
- Ying Cai
- No. 3 People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 201900, China
| | - Yue-Hua Wei
- No. 3 People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 201900, China
| |
Collapse
|
27
|
Khanna A, Pradhan A, Curran SP. Emerging Roles for Maf1 beyond the Regulation of RNA Polymerase III Activity. J Mol Biol 2015; 427:2577-85. [PMID: 26173035 DOI: 10.1016/j.jmb.2015.06.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 01/17/2023]
Abstract
Maf1 was first identified in yeast, and studies in metazoans have primarily focused on examining its role in the repression of transcription that is dependent on RNA polymerase III. Recent work has revealed a novel and conserved function for Maf1 in the maintenance of intracellular lipid pools in Caenorhabditis elegans, mice, and cancer cell lines. Although additional Maf1 targets are likely, they have not been identified, and these recent findings begin to define specific activities for Maf1 in multicellular organisms beyond the regulation of RNA polymerase III transcription and suggest that Maf1 plays a more diverse role in organismal physiology. We will discuss these newly defined physiological roles of Maf1 that point to its placement as an important new player in lipid metabolism with implications in human metabolic diseases such as obesity and cancer, which display prominent defects in lipid homeostasis.
Collapse
Affiliation(s)
- Akshat Khanna
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Department of Molecular and Computational Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ajay Pradhan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Department of Molecular and Computational Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
28
|
Affiliation(s)
- Robyn D. Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- * E-mail: (RDM); (IMW)
| | - Ian M. Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- * E-mail: (RDM); (IMW)
| |
Collapse
|
29
|
|
30
|
Bonhoure N, Bounova G, Bernasconi D, Praz V, Lammers F, Canella D, Willis IM, Herr W, Hernandez N, Delorenzi M. Quantifying ChIP-seq data: a spiking method providing an internal reference for sample-to-sample normalization. Genome Res 2014; 24:1157-68. [PMID: 24709819 PMCID: PMC4079971 DOI: 10.1101/gr.168260.113] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) experiments are widely used to determine, within entire genomes, the occupancy sites of any protein of interest, including, for example, transcription factors, RNA polymerases, or histones with or without various modifications. In addition to allowing the determination of occupancy sites within one cell type and under one condition, this method allows, in principle, the establishment and comparison of occupancy maps in various cell types, tissues, and conditions. Such comparisons require, however, that samples be normalized. Widely used normalization methods that include a quantile normalization step perform well when factor occupancy varies at a subset of sites, but may miss uniform genome-wide increases or decreases in site occupancy. We describe a spike adjustment procedure (SAP) that, unlike commonly used normalization methods intervening at the analysis stage, entails an experimental step prior to immunoprecipitation. A constant, low amount from a single batch of chromatin of a foreign genome is added to the experimental chromatin. This "spike" chromatin then serves as an internal control to which the experimental signals can be adjusted. We show that the method improves similarity between replicates and reveals biological differences including global and largely uniform changes.
Collapse
Affiliation(s)
- Nicolas Bonhoure
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Gergana Bounova
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - David Bernasconi
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Viviane Praz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Fabienne Lammers
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Donatella Canella
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ian M Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Winship Herr
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Mauro Delorenzi
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; Department of Oncology and the Ludwig Center for Cancer Research, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | | |
Collapse
|
31
|
TFIIB-related factor 2 is associated with poor prognosis of nonsmall cell lung cancer patients through promoting tumor epithelial-mesenchymal transition. BIOMED RESEARCH INTERNATIONAL 2014; 2014:530786. [PMID: 24738062 PMCID: PMC3971564 DOI: 10.1155/2014/530786] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 01/26/2014] [Accepted: 02/04/2014] [Indexed: 12/15/2022]
Abstract
In this study, we found that increased BRF2 protein expression was prevalent in NSCLC. Overexpression of BRF2 correlated with abnormal expression of E-cadherin, N-cadherin, and snail. Additionally, expression of BRF2 was found to be an independent prognostic factor in NSCLC patients. Furthermore, we showed that targeted knockdown of BRF2 expression could inhibit the migratory and invasive abilities of NSCLC cells and induced loss of the epithelial-mesenchymal transition of NSCLC cells. These results suggested that BRF2 overexpression in tumor tissues is significantly associated with the poor prognosis of NSCLC patients through promoting epithelial-mesenchymal transition (EMT) program.
Collapse
|
32
|
TFIIB-related factor 2 over expression is a prognosis marker for early-stage non-small cell lung cancer correlated with tumor angiogenesis. PLoS One 2014; 9:e88032. [PMID: 24523874 PMCID: PMC3921153 DOI: 10.1371/journal.pone.0088032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/02/2014] [Indexed: 01/11/2023] Open
Abstract
Background The aim of this study was to examine BRF2 expression in patients with non-small cell lung cancer (NSCLC) and explore the relationship of BRF2 protein with clinicopathologic factors, tumor angiogenesis and prognosis. Methods Both BRF2 protein and intratumoral microvessels were examined by immunohistochemical staining in 107 non-small cell lung cancer patients. Intratumoral m icrovessel density (MVD) was measured by counting CD-34 positive immunostained endothelial cells. Western blot and RT-PCR analyses were utilized to investigate the BRF2 expression status in tissues Results A notably higher level of BRF2 expression was found in NSCLC tissues at protein levels. In addition, univariate and multivariate analysis demonstrated that BRF2 protein over-expression and high MVD were significantly associated with tumor relapse. Although BRF2 overexpression and high MVD indicated poor 5-year overall survival (p = 0.004 and p = 0.019, respectively), multivariate analysis demonstrated that only BRF2 overexpression was an independent prognostic factor for unfavorable overall survival (P = 0.021). Conclusions BRF2 is a promising biomarker to identify individuals with poor prognostic potential and a possible target for anti-angiogenic therapy for patients with early-stage NSCLC.
Collapse
|
33
|
Soprano AS, Abe VY, Smetana JHC, Benedetti CE. Citrus MAF1, a repressor of RNA polymerase III, binds the Xanthomonas citri canker elicitor PthA4 and suppresses citrus canker development. PLANT PHYSIOLOGY 2013; 163:232-42. [PMID: 23898043 PMCID: PMC3762644 DOI: 10.1104/pp.113.224642] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/29/2013] [Indexed: 05/23/2023]
Abstract
Transcription activator-like (TAL) effectors from Xanthomonas species pathogens act as transcription factors in plant cells; however, how TAL effectors activate host transcription is unknown. We found previously that TAL effectors of the citrus canker pathogen Xanthomonas citri, known as PthAs, bind the carboxyl-terminal domain of the sweet orange (Citrus sinensis) RNA polymerase II (Pol II) and inhibit the activity of CsCYP, a cyclophilin associated with the carboxyl-terminal domain of the citrus RNA Pol II that functions as a negative regulator of cell growth. Here, we show that PthA4 specifically interacted with the sweet orange MAF1 (CsMAF1) protein, an RNA polymerase III (Pol III) repressor that controls ribosome biogenesis and cell growth in yeast (Saccharomyces cerevisiae) and human. CsMAF1 bound the human RNA Pol III and rescued the yeast maf1 mutant by repressing tRNA(His) transcription. The expression of PthA4 in the maf1 mutant slightly restored tRNA(His) synthesis, indicating that PthA4 counteracts CsMAF1 activity. In addition, we show that sweet orange RNA interference plants with reduced CsMAF1 levels displayed a dramatic increase in tRNA transcription and a marked phenotype of cell proliferation during canker formation. Conversely, CsMAF1 overexpression was detrimental to seedling growth, inhibited tRNA synthesis, and attenuated canker development. Furthermore, we found that PthA4 is required to elicit cankers in sweet orange leaves and that depletion of CsMAF1 in X. citri-infected tissues correlates with the development of hyperplastic lesions and the presence of PthA4. Considering that CsMAF1 and CsCYP function as canker suppressors in sweet orange, our data indicate that TAL effectors from X. citri target negative regulators of RNA Pol II and Pol III to coordinately increase the transcription of host genes involved in ribosome biogenesis and cell proliferation.
Collapse
|
34
|
Mroczek S, Dziembowski A. U6 RNA biogenesis and disease association. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:581-92. [PMID: 23776162 DOI: 10.1002/wrna.1181] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 12/15/2022]
Abstract
U6 snRNA is one of five uridine-rich noncoding RNAs that form the major spliceosome complex. Unlike other U-snRNAs, it reveals many distinctive aspects of biogenesis such as transcription by RNA polymerase III, transcript nuclear retention and particular features of transcript ends: monomethylated 5'-guanosine triphosphate as cap structure and a 2',3'-cyclic phosphate moiety (>P) at the 3' termini. U6-snRNA plays a central role in splicing and thus its transcription, maturation, snRNP formation, and recycling are essential for cellular homeostasis. U6 snRNA enters the splicing cycle as part of the tri-U4/U6.U5snRNP complex, and after significant structural arrangements forms the catalytic site of the spliceosome together with U2 snRNA and Prp8. U6 snRNA also contributes to the splicing reaction by coordinating metal cations required for catalysis. Many human diseases are associated with altered splicing processes. Disruptions of the basal splicing machinery can be lethal or lead to severe diseases such as spinal muscular atrophy, amyotrophic lateral sclerosis, or retinitis pigmentosa. Recent studies have identified a new U6 snRNA biogenesis factor Usb1, the absence of which leads to poikiloderma with neutropenia (PN) (OMIM 604173), an autosomal recessive skin disease. Usb1 is an evolutionarily conserved 3'→5' exoribonuclease that is responsible for removing 3'-terminal uridines from U6 snRNA transcripts, which leads to the formation of a 2',3' cyclic phosphate moiety (>P). This maturation step is fundamental for U6 snRNP assembly and recycling. Usb1 represents the first example of a direct association between a spliceosomal U6 snRNA biogenesis factor and human genetic disease.
Collapse
Affiliation(s)
- Seweryn Mroczek
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
35
|
Lu M, Tian H, Yue W, Li L, Li S, Qi L, Hu W, Gao C, Si L. Overexpression of TFIIB-related factor 2 is significantly correlated with tumor angiogenesis and poor survival in patients with esophageal squamous cell cancer. Med Oncol 2013; 30:553. [DOI: 10.1007/s12032-013-0553-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
36
|
Maf1, a general negative regulator of RNA polymerase III in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012. [PMID: 23201230 DOI: 10.1016/j.bbagrm.2012.11.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
tRNA synthesis by yeast RNA polymerase III (Pol III) is down-regulated under growth-limiting conditions. This control is mediated by Maf1, a global negative regulator of Pol III transcription. Conserved from yeast to man, Maf1 was originally discovered in Saccharomyces cerevisiae by a genetic approach. Details regarding the molecular basis of Pol III repression by Maf1 are now emerging from the recently reported structural and biochemical data on Pol III and Maf1. The phosphorylation status of Maf1 determines its nuclear localization and interaction with the Pol III complex and several Maf1 kinases have been identified to be involved in Pol III control. Moreover, Maf1 indirectly affects tRNA maturation and decay. Here I discuss the current understanding of the mechanisms that oversee the Maf1-mediated regulation of Pol III activity and the role of Maf1 in the control of tRNA biosynthesis in yeast. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
|
37
|
Moir RD, Willis IM. Regulation of pol III transcription by nutrient and stress signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:361-75. [PMID: 23165150 DOI: 10.1016/j.bbagrm.2012.11.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 12/29/2022]
Abstract
Transcription by RNA polymerase III (pol III) is responsible for ~15% of total cellular transcription through the generation of small structured RNAs such as tRNA and 5S RNA. The coordinate synthesis of these molecules with ribosomal protein mRNAs and rRNA couples the production of ribosomes and their tRNA substrates and balances protein synthetic capacity with the growth requirements of the cell. Ribosome biogenesis in general and pol III transcription in particular is known to be regulated by nutrient availability, cell stress and cell cycle stage and is perturbed in pathological states. High throughput proteomic studies have catalogued modifications to pol III subunits, assembly, initiation and accessory factors but most of these modifications have yet to be linked to functional consequences. Here we review our current understanding of the major points of regulation in the pol III transcription apparatus, the targets of regulation and the signaling pathways known to regulate their function. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Robyn D Moir
- Departments of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
38
|
Acker J, Conesa C, Lefebvre O. Yeast RNA polymerase III transcription factors and effectors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:283-95. [PMID: 23063749 DOI: 10.1016/j.bbagrm.2012.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/27/2012] [Accepted: 10/03/2012] [Indexed: 12/19/2022]
Abstract
Recent data indicate that the well-defined transcription machinery of RNA polymerase III (Pol III) is probably more complex than commonly thought. In this review, we describe the yeast basal transcription factors of Pol III and their involvements in the transcription cycle. We also present a list of proteins detected on genes transcribed by Pol III (class III genes) that might participate in the transcription process. Surprisingly, several of these proteins are involved in RNA polymerase II transcription. Defining the role of these potential new effectors in Pol III transcription in vivo will be the challenge of the next few years. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Joël Acker
- CEA, iBiTecS, Gif Sur Yvette, F-91191, France
| | | | | |
Collapse
|
39
|
Cabarcas S, Schramm L. RNA polymerase III transcription in cancer: the BRF2 connection. Mol Cancer 2011; 10:47. [PMID: 21518452 PMCID: PMC3098206 DOI: 10.1186/1476-4598-10-47] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 04/25/2011] [Indexed: 12/13/2022] Open
Abstract
RNA polymerase (pol) III transcription is responsible for the transcription of small, untranslated RNAs involved in fundamental metabolic processes such mRNA processing (U6 snRNA) and translation (tRNAs). RNA pol III transcription contributes to the regulation of the biosynthetic capacity of a cell and a direct link exists between cancer cell proliferation and deregulation of RNA pol III transcription. Accurate transcription by RNA pol III requires TFIIIB, a known target of regulation by oncogenes and tumor suppressors. There have been significant advances in our understanding of how TFIIIB-mediated transcription is deregulated in a variety of cancers. Recently, BRF2, a component of TFIIIB required for gene external RNA pol III transcription, was identified as an oncogene in squamous cell carcinomas of the lung through integrative genomic analysis. In this review, we focus on recent advances demonstrating how BRF2-TFIIIB mediated transcription is regulated by tumor suppressors and oncogenes. Additionally, we present novel data further confirming the role of BRF2 as an oncogene, extracted from the Oncomine database, a cancer microarray database containing datasets derived from patient samples, providing evidence that BRF2 has the potential to be used as a biomarker for patients at risk for metastasis. This data further supports the idea that BRF2 may serve as a potential therapeutic target in a variety of cancers.
Collapse
Affiliation(s)
- Stephanie Cabarcas
- National Cancer Institute, Laboratory of Cancer Prevention, Cancer Stem Cell Section, 1050 Boyles Street, Building 560, Room 21-81, Frederick, MD 21702, USA
| | | |
Collapse
|
40
|
Román AC, González-Rico FJ, Moltó E, Hernando H, Neto A, Vicente-Garcia C, Ballestar E, Gómez-Skarmeta JL, Vavrova-Anderson J, White RJ, Montoliu L, Fernández-Salguero PM. Dioxin receptor and SLUG transcription factors regulate the insulator activity of B1 SINE retrotransposons via an RNA polymerase switch. Genome Res 2011; 21:422-32. [PMID: 21324874 DOI: 10.1101/gr.111203.110] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Complex genomes utilize insulators and boundary elements to help define spatial and temporal gene expression patterns. We report that a genome-wide B1 SINE (Short Interspersed Nuclear Element) retrotransposon (B1-X35S) has potent intrinsic insulator activity in cultured cells and live animals. This insulation is mediated by binding of the transcription factors dioxin receptor (AHR) and SLUG (SNAI2) to consensus elements present in the SINE. Transcription of B1-X35S is required for insulation. While basal insulator activity is maintained by RNA polymerase (Pol) III transcription, AHR-induced insulation involves release of Pol III and engagement of Pol II transcription on the same strand. B1-X35S insulation is also associated with enrichment of heterochromatin marks H3K9me3 and H3K27me3 downstream of B1-X35S, an effect that varies with cell type. B1-X35S binds parylated CTCF and, consistent with a chromatin barrier activity, its positioning between two adjacent genes correlates with their differential expression in mouse tissues. Hence, B1 SINE retrotransposons represent genome-wide insulators activated by transcription factors that respond to developmental, oncogenic, or toxicological stimuli.
Collapse
Affiliation(s)
- Angel Carlos Román
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cabarcas S, Watabe K, Schramm L. Inhibition of U6 snRNA Transcription by PTEN. ONLINE JOURNAL OF BIOLOGICAL SCIENCES 2010; 10:114-125. [PMID: 21479160 PMCID: PMC3071578 DOI: 10.3844/ojbsci.2010.114.125] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PROBLEM STATEMENT: RNA polymerase III (RNA pol III) is responsible for transcribing many of the small structural RNA molecules involved in RNA processing and protein translation, thereby regulating the growth rate of a cell. RNA pol III transcribes both gene internal (tRNA) and gene external (U6 snRNA) promoters and proper initiation by RNA polymerase III requires the transcription initiation factor TFIIIB. TFIIIB has been shown to be a target of repression by tumor suppressors such as ARF, p53, RB and the RB-related pocket proteins. Also, TFIIIB activity is stimulated by the oncogenes c-Myc and the ERK mitogen-activated protein kinase. Recently, two TFIIIB subunits, BRF1 and BRF2, have been demonstrated to behave as oncogenes, making deregulation of TFIIIB activity and thus RNA pol III transcription an important step in tumor development. PTEN is a commonly mutated tumor suppressor regulating cell growth, proliferation and survival. Thus, we sought to examine the potential role of PTEN in regulating U6 snRNA transcription. APPROACH: We examined the potential for PTEN to regulate U6 snRNA transcription using in vitro RNA pol III luciferase assays, western blotting and deletion analysis in cancer cell lines differing in their PTEN status. RESULTS: Using breast, cervical, prostate and glioblastoma cancer cells we demonstrate: (1) PTEN inhibition of gene external RNA pol III transcription is cell type specific, (2) PTEN-mediated inhibition of U6 transcription occurs via the C2 lipid-binding domain and (3) PTEN repression of U6 transcription occurs, at least in part, through the TFIIIB subunit BRF2. CONCLUSION/RECOMMENDATIONS: Our data demonstrates that regulation of the U6 snRNA gene by PTEN is mediated, in part by the TFIIIB oncogene BRF2, potentially identifying novel targets for chemotherapeutic drug design.
Collapse
Affiliation(s)
- Stephanie Cabarcas
- Department of Biological Sciences, St. John's University, Queens, New York 11439
| | | | | |
Collapse
|
42
|
Abstract
tRNA biology has come of age, revealing an unprecedented level of understanding and many unexpected discoveries along the way. This review highlights new findings on the diverse pathways of tRNA maturation, and on the formation and function of a number of modifications. Topics of special focus include the regulation of tRNA biosynthesis, quality control tRNA turnover mechanisms, widespread tRNA cleavage pathways activated in response to stress and other growth conditions, emerging evidence of signaling pathways involving tRNA and cleavage fragments, and the sophisticated intracellular tRNA trafficking that occurs during and after biosynthesis.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | |
Collapse
|
43
|
Gajda A, Towpik J, Steuerwald U, Müller CW, Lefebvre O, Boguta M. Full repression of RNA polymerase III transcription requires interaction between two domains of its negative regulator Maf1. J Biol Chem 2010; 285:35719-27. [PMID: 20817737 DOI: 10.1074/jbc.m110.125286] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Maf1, first identified in yeast Saccharomyces cerevisiae, is a general negative regulator of RNA polymerase III (Pol III). Transcription regulation by Maf1 is important under stress conditions and during the switch between fermentation and respiration. Maf1 is composed of two domains conserved during evolution. We report here that these two domains of human Maf1 are resistant to mild proteolysis and interact together as shown by pull-down and size-exclusion chromatography and that the comparable domains of yeast Maf1 interact in a two-hybrid assay. Additionally, in yeast, a mutation in the N-terminal domain is compensated by mutations in the C-terminal domain. Integrity of both domains and their direct interaction are necessary for Maf1 dephosphorylation and subsequent inhibition of Pol III transcription on a nonfermentable carbon source. These data relate Pol III transcription inhibition to Maf1 structural changes.
Collapse
Affiliation(s)
- Anna Gajda
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
44
|
Dumay-Odelot H, Durrieu-Gaillard S, Da Silva D, Roeder RG, Teichmann M. Cell growth- and differentiation-dependent regulation of RNA polymerase III transcription. Cell Cycle 2010; 9:3687-99. [PMID: 20890107 DOI: 10.4161/cc.9.18.13203] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
RNA polymerase III transcribes small untranslated RNAs that fulfill essential cellular functions in regulating transcription, RNA processing, translation and protein translocation. RNA polymerase III transcription activity is tightly regulated during the cell cycle and coupled to growth control mechanisms. Furthermore, there are reports of changes in RNA polymerase III transcription activity during cellular differentiation, including the discovery of a novel isoform of human RNA polymerase III that has been shown to be specifically expressed in undifferentiated human H1 embryonic stem cells. Here, we review major regulatory mechanisms of RNA polymerase III transcription during the cell cycle, cell growth and cell differentiation.
Collapse
Affiliation(s)
- Hélène Dumay-Odelot
- Institut Européen de Chimie et Biologie (I.E.C.B.), Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM) U869, Pessac, France
| | | | | | | | | |
Collapse
|
45
|
Moqtaderi Z, Wang J, Raha D, White RJ, Snyder M, Weng Z, Struhl K. Genomic binding profiles of functionally distinct RNA polymerase III transcription complexes in human cells. Nat Struct Mol Biol 2010; 17:635-40. [PMID: 20418883 PMCID: PMC3350333 DOI: 10.1038/nsmb.1794] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 02/25/2010] [Indexed: 12/24/2022]
Abstract
Genome-wide occupancy profiles of five components of the RNA Polymerase III (Pol III) machinery in human cells identified the expected tRNA and non-coding RNA targets and revealed many additional Pol III-associated loci, mostly near SINEs. Several genes are targets of an alternative TFIIIB containing Brf2 instead of Brf1 and have extremely low levels of TFIIIC. Strikingly, expressed Pol III genes, unlike non-expressed Pol III genes, are situated in regions with a pattern of histone modifications associated with functional Pol II promoters. TFIIIC alone associates with numerous ETC loci, via the B box or a novel motif. ETCs are often near CTCF binding sites, suggesting a potential role in chromosome organization. Our results suggest that human Pol III complexes associate preferentially with regions near functional Pol II promoters and that TFIIIC-mediated recruitment of TFIIIB is regulated in a locus-specific manner.
Collapse
Affiliation(s)
- Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Shor B, Wu J, Shakey Q, Toral-Barza L, Shi C, Follettie M, Yu K. Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells. J Biol Chem 2010; 285:15380-15392. [PMID: 20233713 DOI: 10.1074/jbc.m109.071639] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) regulates growth via promoting translation and transcription. Here, employing an mTOR active-site inhibitor WYE-125132 (WYE-132), we have performed quantitative phospho-proteomics and identified a Ser-75-containing phosphopeptide from Maf1, a known repressor of RNA polymerase III (Pol III) transcription. Treatment of cancer cells with WYE-132 or the rapamycin analog CCI-779 led to a rapid loss of the phosphorylation at Ser-75, whereas this effect was not seen in cells treated with cytotoxic agents or unrelated inhibitors. WYE-132-induced Maf1 dephosphorylation correlated with its accumulation in the nucleus and a marked decline in the cellular levels of pre-tRNAs. Depletion of cellular Maf1 via small interfering RNA increased basal pre-tRNA and rendered tRNA synthesis refractory to mTOR inhibitors. Maf1 mutant proteins carrying S75A alone or with S60A, T64A, and S68A (Maf1-S75A, Maf1-4A) progressively enhanced basal repression of tRNA in actively proliferating cells and attenuated amino acid-induced tRNA transcription. Gene alignment revealed conservation of all four Ser/Thr sites in high eukaryotes, further supporting a critical role of these residues in Maf1 function. Interestingly, mTOR inhibition led to an increase in the occupancy of Maf1 on a set of Pol III-dependent genes, with concomitant reduction in the binding of Pol III and Brf1. Unexpectedly, mTORC1 itself was also enriched at the same set of Pol III templates, but this association was not influenced by mTOR inhibitor treatment. Our results highlight a new and unique mode of regulation of Pol III transcription by mTOR and suggest that normalization of Pol III activity may contribute to the therapeutic efficacy of mTOR inhibitors.
Collapse
Affiliation(s)
- Boris Shor
- Discovery Oncology, Wyeth Research, Pearl River, New York 10965.
| | - Jiang Wu
- Biological Technologies, Wyeth Research, Cambridge, Massachusetts 02140
| | - Quazi Shakey
- Biological Technologies, Wyeth Research, Cambridge, Massachusetts 02140
| | | | - Celine Shi
- Discovery Oncology, Wyeth Research, Pearl River, New York 10965
| | - Max Follettie
- Biological Technologies, Wyeth Research, Cambridge, Massachusetts 02140
| | - Ker Yu
- Discovery Oncology, Wyeth Research, Pearl River, New York 10965.
| |
Collapse
|
47
|
Wei Y, Zheng XS. Maf1 regulation: a model of signal transduction inside the nucleus. Nucleus 2010; 1:162-5. [PMID: 21326948 DOI: 10.4161/nucl.1.2.11179] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/06/2010] [Accepted: 01/07/2010] [Indexed: 11/19/2022] Open
Abstract
RNA polymerase III (Pol III) is responsible for the synthesis of 5S ribosomal RNA (rRNA) and transfer RNAs (tRNAs) essential for protein synthesis and cell growth. Pol III is tightly controlled by growth signals such as nutrients and deregulation of Pol III-dependent transcription can lead to oncogenic transformation. In response to extracellular stimuli, the target of rapamycin complex 1 (TORC1) regulates Pol III activity through Maf1, a key conserved Pol III repressor. Recent studies have unraveled intricate mechanisms by which Maf1 activity is controlled at multiple levels, including nuclear transport and phoshorylation at specific chromatin loci. These studies suggest an emerging mode of gene regulation by extracellular signals inside the nucleus.
Collapse
Affiliation(s)
- Yuehua Wei
- Department of Pharmacology and Cancer Institute of New Jersey, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | | |
Collapse
|
48
|
Veras I, Rosen EM, Schramm L. Inhibition of RNA polymerase III transcription by BRCA1. J Mol Biol 2009; 387:523-31. [PMID: 19361418 DOI: 10.1016/j.jmb.2009.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 01/31/2009] [Accepted: 02/03/2009] [Indexed: 12/20/2022]
Abstract
RNA polymerase III (RNA pol III) transcribes structural RNAs involved in RNA processing (U6 snRNA) and translation (tRNA), thereby regulating the growth rate of cells. Proper initiation by RNA pol III requires the transcription factor TFIIIB. Gene-external U6 snRNA transcription requires TFIIIB consisting of Bdp1, TBP, and Brf2. Transcription from the gene-internal tRNA promoter requires TFIIIB composed of Bdp1, TBP, and Brf1. TFIIIB is a target of tumor suppressors, including PTEN, ARF, p53, and RB, and RB-related pocket proteins. Breast cancer susceptibility gene 1 (BRCA1) tumor suppressor plays a role in DNA repair, cell cycle regulation, apoptosis, genome integrity, and ubiquitination. BRCA1 has a conserved amino-terminal RING domain, an activation domain 1 (AD1), and an acidic carboxyl-terminal domain (BRCA1 C-terminal region). In Saccharomyces cerevisiae, TFIIB interacts with the BRCA1 C-terminal region domain of Fcp1p, an RNA polymerase II phosphatase. The TFIIIB subunits Brf1 and Brf2 are structurally similar to TFIIB. Hence, we hypothesize that RNA pol III may be regulated by BRCA1 via the TFIIB family members Brf1 and Brf2. Here we report that: (1) BRCA1 inhibits both VAI (tRNA) and U6 snRNA RNA pol III transcription; (2) the AD1 of BRCA1 is responsible for inhibition of U6 snRNA transcription, whereas the RING domain and AD1 of BRCA1 are required for VAI transcription inhibition; and (3) overexpression of Brf1 and Brf2 alleviates inhibition of U6 snRNA and VAI transcription by BRCA1. Taken together, these data suggest that BRCA1 is a general repressor of RNA pol III transcription.
Collapse
Affiliation(s)
- Ingrid Veras
- Department of Biological Sciences, St John's University, Queens, NY 11439, USA
| | | | | |
Collapse
|
49
|
Soragni E, Kassavetis GA. Absolute gene occupancies by RNA polymerase III, TFIIIB, and TFIIIC in Saccharomyces cerevisiae. J Biol Chem 2008; 283:26568-76. [PMID: 18667429 PMCID: PMC2546553 DOI: 10.1074/jbc.m803769200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/16/2008] [Indexed: 11/06/2022] Open
Abstract
A major limitation of chromatin immunoprecipitation lies in the challenge of measuring the immunoprecipitation effectiveness of different proteins and antibodies and the resultant inability to compare the occupancies of different DNA-binding proteins. Here we present the implementation of a quantitative chromatin immunoprecipitation assay in the RNA polymerase III (pol III) system that allowed us to measure the absolute in vivo occupancy of pol III and its two transcription factors, TFIIIC and TFIIIB, on a subset of pol III genes. The crucial point of our analysis was devising a method that allows the accurate determination of the immunoprecipitation efficiency for each protein. We achieved this by spiking every immunoprecipitation reaction with the formaldehyde cross-linked in vitro counterparts of TFIIIB-, TFIIIC-, and pol III-DNA complexes, measuring the in vitro occupancies of the corresponding factors on a DNA probe and determining probe recovery by quantitative PCR. Analysis of nine pol III-transcribed genes with diverse sequence characteristics showed a very high occupancy by TFIIIB and pol III (pol III occupancy being generally approximately 70% of TFIIIB occupancy) and a TFIIIC occupancy that ranged between approximately 5 and 25%. Current data suggest that TFIIIC is released during transcription in vitro, and it has been proposed that TFIIIB suffices for pol III recruitment in vivo. Our findings point to the transient nature of the TFIIIC-DNA interaction in vivo, with no significant counter-correlation between pol III and TFIIIC occupancy and instead to a dependence of TFIIIB-DNA and TFIIIC-DNA complex maintenance in vivo on pol III function.
Collapse
Affiliation(s)
- Elisabetta Soragni
- Division of Biological Sciences and Center for Molecular Genetics,
University of California, San Diego, La Jolla, California 92093-0634
| | - George A. Kassavetis
- Division of Biological Sciences and Center for Molecular Genetics,
University of California, San Diego, La Jolla, California 92093-0634
| |
Collapse
|
50
|
Cabarcas S, Jacob J, Veras I, Schramm L. Differential expression of the TFIIIB subunits Brf1 and Brf2 in cancer cells. BMC Mol Biol 2008; 9:74. [PMID: 18700021 PMCID: PMC2533013 DOI: 10.1186/1471-2199-9-74] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 08/12/2008] [Indexed: 12/27/2022] Open
Abstract
Background RNA polymerase (pol) III transcription is specifically elevated in a variety of cancers and is a target of regulation by a variety of tumor suppressors and oncogenes. Accurate initiation by RNA pol III is dependent on TFIIIB. In higher eukaryotes, two forms of TFIIIB have been characterized. TFIIIB required for proper initiation from gene internal RNA pol III promoters is comprised of TBP, Bdp1, and Brf1. Proper initiation from gene external RNA pol III promoters requires TBP, Bdp1, and Brf2. We hypothesized that deregulation of RNA polymerase III transcription in cancer may be a consequence of altered TFIIIB expression Results Here, we report: (1) the TFIIIB subunits Brf1 and Brf2 are differentially expressed in a variety of cancer cell lines: (2) the Brf1 and Brf2 promoters differ in activity in cancer cell lines, and (3) VAI transcription is universally elevated, as compared to U6, in breast, prostate and cervical cancer cells. Conclusion Deregulation of TFIIIB-mediated transcription may be an important step in tumor development. We demonstrate that Brf1 and Brf2 mRNA are differentially expressed in a variety of cancer cells and that the Brf2 promoter is more active than the Brf1 promoter in all cell lines tested. We also demonstrate, that Brf1-dependent VAI transcription was significantly higher than the Brf2-dependent U6 snRNA transcription in all cancer cell lines tested. The data presented suggest that Brf2 protein expression levels correlate with U6 promoter activity in the breast, cervical and prostate cell lines tested. Interestingly, the Brf1 protein levels did not vary considerably in HeLa, MCF-7 and DU-145 cells, yet Brf1 mRNA expression varied considerably in breast, prostate and cervical cancer cell lines tested. Thus, Brf1 promoter activity and Brf1 protein expression levels did not correlate well with Brf1-dependent transcription levels. Taken together, we reason that deregulation of Brf1 and Brf2 expression could be a key mechanism responsible for the observed deregulation of RNA pol III transcription in cancer cells.
Collapse
Affiliation(s)
- Stephanie Cabarcas
- Department of Biological Sciences, St, John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.
| | | | | | | |
Collapse
|