1
|
Kasper B, Zablotski Y, Mueller RS. Long-term use of lokivetmab in dogs with atopic dermatitis. Vet Dermatol 2024; 35:683-693. [PMID: 39143659 DOI: 10.1111/vde.13286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/05/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Lokivetmab, a caninised monoclonal antibody against interleukin (IL)-31, is an effective treatment for the pruritus associated with canine atopic dermatitis (cAD). OBJECTIVES To investigate the efficacy and safety of lokivetmab during long-term treatment defined as at least three consecutive lokivetmab injections in atopic dogs under field conditions. To assess individual factors influencing treatment outcome and adverse events. ANIMALS 150 dogs with cAD. MATERIALS AND METHODS Medical records of dogs treated with lokivetmab were reviewed, and owners and/or veterinarians were contacted as needed for follow-up. A decrease of the pruritus Visual Analog Scale (PVAS) score by ≥2 or a PVAS score ≤2 after treatment was considered as treatment success. Logistic regression was used to investigate the influence of a variety of factors on outcome: type of cAD (food versus environment), age at first lokivetmab administration, disease chronicity, dosage and/or secondary infection. Any adverse event that occurred during the study period was recorded. RESULTS Lokivetmab reduced the PVAS score with long-term use (p < 0.01); the success rate was 53 of 69 total dogs (77%). The probability of treatment failure decreased with increasing treatment duration. None of the factors investigated influenced the treatment outcome. Twelve dogs of 150 (8%) showed adverse events such as gastrointestinal signs or lethargy. CONCLUSION AND CLINICAL RELEVANCE Lokivetmab appears to be an effective and safe long-term anti-itch therapy for dogs with cAD.
Collapse
Affiliation(s)
- Bettina Kasper
- Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Yury Zablotski
- Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Ralf S Mueller
- Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
2
|
Jacoby C, Scorza K, Ecker L, McMillin M, Ramaswamy R, Sundararajan A, Sidebottom AM, Lin H, Dufault-Thompson K, Hall B, Jiang X, Light SH. Gut Bacteria Metabolize Natural and Synthetic Steroid Hormones via the Reductive OsrABC Pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617280. [PMID: 39416003 PMCID: PMC11482826 DOI: 10.1101/2024.10.08.617280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Steroid hormone metabolism by the gut microbiome has multiple implications for mammalian physiology, but the underlying mechanisms and broader significance of this activity remains largely unknown. Here, we isolate a novel human gut bacterium, Clostridium steroidoreducens T strain HCS.1, that reduces cortisol, progesterone, testosterone, and related steroid hormones to 3β,5β-tetrahydrosteroid products. Through transcriptomics and heterologous enzyme profiling, we identify and biochemically characterize the C. steroidoreducens OsrABC reductive steroid hormone pathway. OsrA is a 3-oxo-Δ1-steroid hormone reductase that selectively targets the Δ1-bond present in synthetic steroid hormones, including the anti-inflammatory corticosteroids prednisolone and dexamethasone. OsrB is a promiscuous 3-oxo-Δ4-steroid hormone reductase that converts steroid hormones to 5β-dihydrosteroid intermediates. OsrC is a 3-oxo-5β-steroid hormone oxidoreductase that reduces 5β-intermediates to 3β,5β-tetrahydro products. We find that osrA and osrB homologs predict steroid hormone reductase activity in diverse gut bacteria and are enriched in Crohn's disease fecal metagenomes. These studies thus identify the basis of reductive steroid hormone metabolism in the gut and establish a link between inflammatory disease and microbial enzymes that deplete anti-inflammatory corticosteroids.
Collapse
Affiliation(s)
- Christian Jacoby
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Kaylie Scorza
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Lia Ecker
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Mary McMillin
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | | | | | | | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | | | - Brantley Hall
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD, USA
| | - Xiaofang Jiang
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Samuel H. Light
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Ostrowska-Czyżewska A, Zgliczyński W, Bednarek-Papierska L, Mrozikiewicz-Rakowska B. Is It Time for a New Algorithm for the Pharmacotherapy of Steroid-Induced Diabetes? J Clin Med 2024; 13:5801. [PMID: 39407860 PMCID: PMC11605232 DOI: 10.3390/jcm13195801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 12/01/2024] Open
Abstract
Glucocorticoids (GS) are widely used in multiple medical indications due to their anti-inflammatory, immunosuppressive, and antiproliferative effects. Despite their effectiveness in treating respiratory, skin, joint, renal, and neoplastic diseases, they dysregulate glucose metabolism, leading to steroid-induced diabetes (SID) or a significant increase of glycemia in people with previously diagnosed diabetes. The risk of adverse event development depends on the prior therapy, the duration of the treatment, the form of the drug, and individual factors, i.e., BMI, genetics, and age. Unfortunately, SID and steroid-induced hyperglycemia (SIH) are often overlooked, because the fasting blood glucose level, which is the most commonly used diagnostic test, is insufficient for excluding both conditions. The appropriate control of post-steroid hyperglycemia remains a major challenge in everyday clinical practice. Recently, the most frequently used antidiabetic strategies have been insulin therapy with isophane insulin or multiple injections in the basal-bolus regimen. Alternatively, in patients with lower glycemia, sulphonylureas or glinides were used. Taking into account the pathogenesis of post-steroid-induced hyperglycemia, the initiation of therapy with glucagon-like peptide 1 (GLP-1) analogs and dipeptidyl peptidase 4 (DPP-4) inhibitors should be considered. In this article, we present a universal practical diagnostic algorithm of SID/SIH in patients requiring steroids, in both acute and chronic conditions, and we present a new pharmacotherapy algorithm taking into account the use of all currently available antidiabetic drugs.
Collapse
Affiliation(s)
| | | | | | - Beata Mrozikiewicz-Rakowska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Marymoncka St. 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
4
|
Meng Q, Chen B, Xu Y, Zhang Q, Ding R, Ma Z, Jin Z, Gao S, Qu F. A machine learning model for early candidemia prediction in the intensive care unit: Clinical application. PLoS One 2024; 19:e0309748. [PMID: 39250466 PMCID: PMC11383240 DOI: 10.1371/journal.pone.0309748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/17/2024] [Indexed: 09/11/2024] Open
Abstract
Candidemia often poses a diagnostic challenge due to the lack of specific clinical features, and delayed antifungal therapy can significantly increase mortality rates, particularly in the intensive care unit (ICU). This study aims to develop a machine learning predictive model for early candidemia diagnosis in ICU patients, leveraging their clinical information and findings. We conducted this study with a cohort of 334 patients admitted to the ICU unit at Ji Ning NO.1 people's hospital in China from Jan. 2015 to Dec. 2022. To ensure the model's reliability, we validated this model with an external group consisting of 77 patients from other sources. The candidemia to bacteremia ratio is 1:1. We collected relevant clinical procedures and eighteen key examinations or tests features to support the recursive feature elimination (RFE) algorithm. These features included total bilirubin, age, platelet count, hemoglobin, CVC, lymphocyte, Duration of stay in ICU and so on. To construct the candidemia diagnosis model, we employed random forest (RF) algorithm alongside other machine learning methods and conducted internal and external validation with training and testing sets allocated in a 7:3 ratio. The RF model demonstrated the highest area under the receiver operating characteristic (AUC) with values of 0.87 and 0.83 for internal and external validation, respectively. To evaluate the importance of features in predicting candidemia, Shapley additive explanation (SHAP) values were calculated and results revealed that total bilirubin and age were the most important factors in the prediction model. This advancement in candidemia prediction holds significant promise for early intervention and improved patient outcomes in the ICU setting, where timely diagnosis is of paramount crucial.
Collapse
Affiliation(s)
- Qiang Meng
- Jining No. 1 People's Hospital Affiliated to Shandong First Medical University, Jining, Shandong, China
| | - Bowang Chen
- Jining No. 1 People's Hospital Affiliated to Shandong First Medical University, Jining, Shandong, China
| | - Yingyuan Xu
- Pulmonary and Critical Care Medicine, Tengzhou Central People's Hospital, Tengzhou City, Shandong Province, People's Republic of China
| | - Qiang Zhang
- Pulmonary and Critical Care Medicine, Tengzhou Central People's Hospital, Tengzhou City, Shandong Province, People's Republic of China
| | - Ranran Ding
- Jining No. 1 People's Hospital Affiliated to Shandong First Medical University, Jining, Shandong, China
| | - Zhen Ma
- Jining No. 1 People's Hospital Affiliated to Shandong First Medical University, Jining, Shandong, China
| | - Zhi Jin
- Jining No. 1 People's Hospital Affiliated to Shandong First Medical University, Jining, Shandong, China
| | - Shuhong Gao
- Jining No. 1 People's Hospital Affiliated to Shandong First Medical University, Jining, Shandong, China
| | - Feng Qu
- Jining No. 1 People's Hospital Affiliated to Shandong First Medical University, Jining, Shandong, China
| |
Collapse
|
5
|
Hwang S, Cho JM, Yoon YJ, Seo S, Hong Y, Lim JY. Retroductal dexamethasone administration promotes the recovery from obstructive and inflammatory salivary gland dysfunction. Front Immunol 2024; 15:1418703. [PMID: 39044831 PMCID: PMC11263033 DOI: 10.3389/fimmu.2024.1418703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction Salivary gland dysfunction, often resulting from salivary gland obstruction-induced inflammation, is a prevalent condition. Corticosteroid, known for its anti-inflammatory and immunomodulatory properties, is commonly prescribed in clinics. This study investigates the therapeutic implications and potential side effects of dexamethasone on obstructive sialadenitis recovery using duct ligation mice and salivary gland organoid models. Methods Functional and pathological changes were assessed after administering dexamethasone to the duct following deligation 2 weeks after maintaining ligation of the mouse submandibular duct. Additionally, lipopolysaccharide- and tumor necrosis factor-induced salivary gland organoid inflammation models were established to investigate the effects and underlying mechanisms of action of dexamethasone. Results Dexamethasone administration facilitated SG function restoration, by increasing salivary gland weight and saliva volume while reducing saliva lag time. Histological evaluation revealed, reduced acinar cell atrophy and fibrosis with dexamethasone treatment. Additionally, dexamethasone suppressed pro-inflammatory cytokines IL-1β and TNF expression. In a model of inflammation in salivary gland organoids induced by inflammatory substances, dexamethasone restored acinar markers such as AQP5 gene expression levels, while inhibiting pro-inflammatory cytokines TNF and IL6, as well as chemokines CCL2, CXCL5, and CXCL12 induction. Macrophages cultured in inflammatory substance-treated media from salivary gland organoid cultures exhibited pro-inflammatory polarization. However, treatment with dexamethasone shifted them towards an anti-inflammatory phenotype by reducing M1 markers (Tnf, Il6, Il1b, and Cd86) and elevating M2 markers (Ym1, Il10, Cd163, and Klf4). However, high-dose or prolonged dexamethasone treatment induced acino-ductal metaplasia and had side effects in both in vivo and in vitro models. Conclusions Our findings suggest the effectiveness of corticosteroids in treating obstructive sialadenitis-induced salivary gland dysfunction by regulating pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Seungyeon Hwang
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Min Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeo-Jun Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sunyoung Seo
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yongpyo Hong
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Xu W, Ye J, Cao Z, Zhao Y, Zhu Y, Li L. Glucocorticoids in lung cancer: Navigating the balance between immunosuppression and therapeutic efficacy. Heliyon 2024; 10:e32357. [PMID: 39022002 PMCID: PMC11252876 DOI: 10.1016/j.heliyon.2024.e32357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Glucocorticoids (GCs), a class of hormones secreted by the adrenal glands, are released into the bloodstream to maintain homeostasis and modulate responses to various stressors. These hormones function by binding to the widely expressed GC receptor (GR), thereby regulating a wide range of pathophysiological processes, especially in metabolism and immunity. The role of GCs in the tumor immune microenvironment (TIME) of lung cancer (LC) has been a focal point of research. As immunosuppressive agents, GCs exert a crucial impact on the occurrence, progression, and treatment of LC. In the TIME of LC, GCs act as a constantly swinging pendulum, simultaneously offering tumor-suppressive properties while diminishing the efficacy of immune-based therapies. The present study reviews the role and mechanisms of GCs in the TIME of LC.
Collapse
Affiliation(s)
| | | | - Zhendong Cao
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, 210017, China
| | - Yupei Zhao
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, 210017, China
| | - Yimin Zhu
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, 210017, China
| | - Lei Li
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, 210017, China
| |
Collapse
|
7
|
Han H, Kim JE, Lee HJ. Effect of apigetrin in pseudo-SARS-CoV-2-induced inflammatory and pulmonary fibrosis in vitro model. Sci Rep 2024; 14:14545. [PMID: 38914619 PMCID: PMC11196261 DOI: 10.1038/s41598-024-65447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024] Open
Abstract
SARS-CoV-2 has become a global public health problem. Acute respiratory distress syndrome (ARDS) is the leading cause of death due to the SARS-CoV-2 infection. Pulmonary fibrosis (PF) is a severe and frequently reported COVID-19 sequela. In this study, an in vitro model of ARDS and PF caused by SARS-CoV-2 was established in MH-S, THP-1, and MRC-5 cells using pseudo-SARS-CoV-2 (PSCV). Expression of proinflammatory cytokines (IL-6, IL-1β, and TNF-α) and HIF-1α was increased in PSCV-infected MH-S and THP-1 cells, ARDS model, consistent with other profiling data in SARS-CoV-2-infected patients have been reported. Hypoxia-inducible factor-1 alpha (HIF-1α) siRNA and cobalt chloride were tested using this in vitro model. HIF-1α knockdown reduces inflammation caused by PSCV infection in MH-S and THP-1 cells and lowers elevated levels of CTGF, COLA1, and α-SMA in MRC-5 cells exposed to CPMSCV. Furthermore, apigetrin, a glycoside bioactive dietary flavonoid derived from several plants, including Crataegus pinnatifida, which is reported to be a HIF-1α inhibitor, was tested in this in vitro model. Apigetrin significantly reduced the increased inflammatory cytokine (IL-6, IL-1β, and TNF-α) expression and secretion by PSCV in MH-S and THP-1 cells. Apigetrin inhibited the binding of the SARS-CoV-2 spike protein RBD to the ACE2 protein. An in vitro model of PF induced by SARS-CoV-2 was produced using a conditioned medium of THP-1 and MH-S cells that were PSCV-infected (CMPSCV) into MRC-5 cells. In a PF model, CMPSCV treatment of THP-1 and MH-S cells increased cell growth, migration, and collagen synthesis in MRC-5 cells. In contrast, apigetrin suppressed the increase in cell growth, migration, and collagen synthesis induced by CMPSCV in THP-1 and MH-S MRC-5 cells. Also, compared to control, fibrosis-related proteins (CTGF, COLA1, α-SMA, and HIF-1α) levels were over two-fold higher in CMPSV-treated MRC-5 cells. Apigetrin decreased protein levels in CMPSCV-treated MRC-5 cells. Thus, our data suggest that hypoxia-inducible factor-1 alpha (HIF-1α) might be a novel target for SARS-CoV-2 sequela therapies and apigetrin, representative of HIF-1alpha inhibitor, exerts anti-inflammatory and PF effects in PSCV-treated MH-S, THP-1, and CMPVSC-treated MRC-5 cells. These findings indicate that HIF-1α inhibition and apigetrin would have a potential value in controlling SARS-CoV-2-related diseases.
Collapse
Affiliation(s)
- Hengmin Han
- Department of Cancer Preventive Material Development, Graduate School, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Jung-Eun Kim
- Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Hyo-Jeong Lee
- Department of Cancer Preventive Material Development, Graduate School, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea.
- Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea.
| |
Collapse
|
8
|
Zhang K, Zhu J, Wang P, Chen Y, Wang Z, Ge X, Wu J, Chen L, Lu Y, Xu P, Yao J. Plasma metabolites as mediators in immune cell-pancreatic cancer risk: insights from Mendelian randomization. Front Immunol 2024; 15:1402113. [PMID: 38933268 PMCID: PMC11199692 DOI: 10.3389/fimmu.2024.1402113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Background Immune cells play a crucial role in the development and progression of pancreatic cancer, yet the causal relationship remains uncertain due to complex immune microenvironments and conflicting research findings. Mendelian randomization (MR), this study aims to delineate the causal relationships between immune cells and pancreatic cancer while identifying intermediary factors. Methods The genome-wide association study (GWAS) data on immune cells, pancreatic cancer, and plasma metabolites are derived from public databases. In this investigation, inverse variance weighting (IVW) as the primary analytical approach to investigate the causal relationship between exposure and outcome. Furthermore, this study incorporates MR-Egger, simple mode, weighted median, and weighted mode as supplementary analytical approaches. To ensure the reliability of our findings, we further assessed horizontal pleiotropy and heterogeneity and evaluated the stability of MR results using the Leave-one-out method. In conclusion, this study employed mediation analysis to elucidate the potential mediating effects of plasma metabolites. Results Our investigation revealed a causal relationship between immune cells and pancreatic cancer, highlighting the pivotal roles of CD11c+ monocytes (odds ratio, ORIVW=1.105; 95% confidence interval, 95%CI: 1.002-1.218; P=0.045), HLA DR+ CD4+ antigen-presenting cells (ORIVW=0.920; 95%CI: 0.873-0.968; P=0.001), and HLA DR+ CD8br T cells (ORIVW=1.058; 95%CI: 1.002-1.117; P=0.041) in pancreatic cancer progression. Further mediation analysis indicated that oxalate (proportion of mediation effect in total effect: -11.6%, 95% CI: -89.7%, 66.6%) and the mannose to trans-4-hydroxyproline ratio (-19.4, 95% CI: -136%, 96.8%) partially mediate the relationship between HLA DR+ CD8br T cells and pancreatic cancer in nature. In addition, our analysis indicates that adrenate (-8.39%, 95% CI: -18.3%, 1.54%) plays a partial mediating role in the association between CD11c+ monocyte and pancreatic cancer, while cortisone (-26.6%, 95% CI: 138%, -84.8%) acts as a partial mediator between HLA DR+ CD4+ AC and pancreatic cancer. Conclusion This MR investigation provides evidence supporting the causal relationship between immune cell and pancreatic cancer, with plasma metabolites serving as mediators. Identifying immune cell phenotypes with potential causal effects on pancreatic cancer sheds light on its underlying mechanisms and suggests novel therapeutic targets.
Collapse
Affiliation(s)
- Ke Zhang
- Dalian Medical University, Dalian, China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Peng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Yuan Chen
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Zhengwang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Xinyu Ge
- Dalian Medical University, Dalian, China
| | - Junqing Wu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Long Chen
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Yipin Lu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Peng Xu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Jie Yao
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Chávez-Pacheco JL, Castillejos-López M, Hernández-Regino LM, Velasco-Hidalgo L, Zapata-Tarres M, Correa-Carranza V, Rosario-Méndez G, Barrientos-Ríos R, Aquino-Gálvez A, Torres-Espíndola LM. Challenges in Treating Pediatric Cancer Patients during the COVID-19 Pandemic: Balancing Risks and Care. Viruses 2024; 16:690. [PMID: 38793571 PMCID: PMC11125850 DOI: 10.3390/v16050690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
The COVID-19 pandemic has resulted in millions of fatalities worldwide. The case of pediatric cancer patients stands out since, despite being considered a population at risk, few studies have been carried out concerning symptom detection or the description of the mechanisms capable of modifying the course of the COVID-19 disease, such as the interaction and response between the virus and the treatment given to cancer patients. By synthesizing existing studies, this paper aims to expose the treatment challenges for pediatric patients with COVID-19 in an oncology context. Additionally, this updated review includes studies that utilized the antiviral agents Remdesivir and PaxlovidTM in pediatric cancer patients. There is no specific treatment designed exclusively for pediatric cancer patients dealing with COVID-19, and it is advisable to avoid self-medication to prevent potential side effects. Managing COVID-19 in pediatric cancer patients is indeed a substantial challenge. New strategies, such as chemotherapy application rooms, have been implemented for children with cancer who were positive for COVID-19 but asymptomatic since the risk of disease progression is greater than the risk of complications from SARS-CoV-2.
Collapse
Affiliation(s)
- Juan Luis Chávez-Pacheco
- Pharmacology Laboratory, National Institute of Pediatrics, Mexico City 04530, Mexico; (J.L.C.-P.); (L.M.H.-R.); (V.C.-C.); (G.R.-M.)
| | - Manuel Castillejos-López
- Epidemiology and Infectology, National Institute of Respiratory Diseases, Mexico City 14080, Mexico;
| | - Laura M. Hernández-Regino
- Pharmacology Laboratory, National Institute of Pediatrics, Mexico City 04530, Mexico; (J.L.C.-P.); (L.M.H.-R.); (V.C.-C.); (G.R.-M.)
| | | | - Marta Zapata-Tarres
- Head of Research Coordination at Mexican Social Security Institute Foundation, Mexico City 06600, Mexico;
| | - Valeria Correa-Carranza
- Pharmacology Laboratory, National Institute of Pediatrics, Mexico City 04530, Mexico; (J.L.C.-P.); (L.M.H.-R.); (V.C.-C.); (G.R.-M.)
| | - Guillermo Rosario-Méndez
- Pharmacology Laboratory, National Institute of Pediatrics, Mexico City 04530, Mexico; (J.L.C.-P.); (L.M.H.-R.); (V.C.-C.); (G.R.-M.)
| | - Rehotbevely Barrientos-Ríos
- Cytogenetics Laboratory, Department of Human Genetics, National Institute of Pediatrics, Mexico City 04530, Mexico;
| | - Arnoldo Aquino-Gálvez
- Molecular Biology Laboratory, Pulmonary Fibrosis Department, National Institute of Respiratory Diseases, Mexico City 14080, Mexico
| | - Luz María Torres-Espíndola
- Pharmacology Laboratory, National Institute of Pediatrics, Mexico City 04530, Mexico; (J.L.C.-P.); (L.M.H.-R.); (V.C.-C.); (G.R.-M.)
| |
Collapse
|
10
|
Chaffey LE, Roberti A, Bowman A, O'Brien CJ, Som L, Purvis GS, Greaves DR. Drug repurposing screen identifies novel anti-inflammatory activity of sunitinib in macrophages. Eur J Pharmacol 2024; 969:176437. [PMID: 38417608 DOI: 10.1016/j.ejphar.2024.176437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/01/2024]
Abstract
Inflammation is a driver of human disease and an unmet clinical need exists for new anti-inflammatory medicines. As a key cell type in both acute and chronic inflammatory pathologies, macrophages are an appealing therapeutic target for anti-inflammatory medicines. Drug repurposing - the use of existing medicines for novel indications - is an attractive strategy for the identification of new anti-inflammatory medicines with reduced development costs and lower failure rates than de novo drug discovery. In this study, FDA-approved medicines were screened in a murine macrophage NF-κB reporter cell line to identify potential anti-inflammatory drug repurposing candidates. The multi-tyrosine kinase inhibitor sunitinib was found to be a potent inhibitor of NF-κB activity and suppressor of inflammatory mediator production in murine bone marrow derived macrophages. Furthermore, oral treatment with sunitinib in mice was found to reduce TNFα production, inflammatory gene expression and organ damage in a model of endotoxemia via inhibition of NF-κB. Finally, we revealed sunitinib to have immunomodulatory effects in a model of chronic cardiovascular inflammation by reducing circulating TNFα. This study validates drug repurposing as a strategy for the identification of novel anti-inflammatory medicines and highlights sunitinib as a potential drug repurposing candidate for inflammatory disease via inhibition of NF-κB signalling.
Collapse
Affiliation(s)
- Laura E Chaffey
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, United Kingdom
| | - Annabell Roberti
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, United Kingdom
| | - Amelia Bowman
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, United Kingdom
| | - Conan Jo O'Brien
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, United Kingdom
| | - Liliana Som
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, United Kingdom
| | - Gareth Sd Purvis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, United Kingdom
| | - David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, United Kingdom.
| |
Collapse
|
11
|
Xiang Q, Shen X, Li K, Wang Z, Zhao X, Chen Q. Occurrence, distribution, and environmental risk of 61 glucocorticoids in surface water of the Yellow River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167504. [PMID: 37783438 DOI: 10.1016/j.scitotenv.2023.167504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Glucocorticoids (GCs), as important endocrine disrupting compounds and emerging contaminants, could have irreversible adverse effects on aquatic organisms even at ng/L levels. However, previous studies have only focused on the dissolved concentrations of GCs in the water, and limited data are available for their occurrences in the solid phase. In this study, the occurrence, distribution, and environmental risks of 61 natural and synthetic GCs in surface water of the Yellow River Delta (YRD) were simultaneously analyzed by investigating water, suspended particulate matter (SPM) and sediment samples at 64 sites in six major rivers in the wet season. Overall, 51 GCs were detected in all samples from different matrices, and their concentrations were in the range of not detected (ND)-274 ng/L in water, ND-42 ng/g dry weight (dw) in SPM and ND-9.98 ng/g dw in sediment. Natural GCs were the dominant compounds in all samples, followed by synthetic halogenated esters. High concentrations of GCs were observed in discharge outlet samples from livestock farming, aquaculture and industrial production, and the composition differences of GCs between human/animal sources and industrial sources could be used as indicators to identify pollution sources. Most GCs were distributed in the water phase, while compounds with higher log octanol/water partition coefficients (log Kow) tended to be adsorbed to SPM and sediment. The spatial distribution of GCs was primarily affected by anthropogenic activities and hydrodynamic conditions. Four synthetic compounds (budesonide [BD], fluocinolone acetonide [FOA], fluticasone propionate [FP], and clobetasol propionate [CBSP]) were identified as the main contributors to GC activity with a combined contribution of 57 %-95 %. Risk assessment using the risk quotient revealed that low to moderate risks are posed to aquatic organisms in surface water.
Collapse
Affiliation(s)
- Qingyue Xiang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Xiaoyan Shen
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China.
| | - Kun Li
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Zihao Wang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xinkun Zhao
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Qingfeng Chen
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
12
|
Zhang H, Zhang R, Su Y, Zheng J, Li H, Han Z, Kong Y, Liu H, Zhang Z, Sai C. Anti-cervical cancer mechanism of bioactive compounds from Alangium platanifolium based on the 'compound-target-disease' network. Heliyon 2023; 9:e20747. [PMID: 37860565 PMCID: PMC10582369 DOI: 10.1016/j.heliyon.2023.e20747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
In this study, we analyzed the chemical compositions of Alangium platanifolium (Sieb. et Zucc.) Harms (AP) using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) non-targeted plant metabolomics integration MolNetEnhancer strategy. A total of 75 compounds, including flavonoids, alkaloids, terpenes, C21 steroids, among others, were identified by comparing accurate mass-to-charge ratios, MS2 cleavage fragments, retention times, and MolNetenhancer-integrated analytical data, and the cleavage rules of the characteristic compounds were analyzed. A total of 125 potential cervical cancer (CC) therapeutic targets were obtained through Gene Expression Omnibus (GEO) data mining, differential analysis, and database screening. Hub targets were obtained by constructing protein-protein interaction (PPI) networks and CytoNCA topology analysis, including SRC, STAT3, TP53, PIK3R1, MAPK3, and PIK3CA. According to Gene ontology (GO) analysis, AP was primarily against CC by influencing gland development, oxidative stress processes, serine/threonine kinase, and tyrosine kinase activity. Enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated that the PI3K/AKT and MAPK signaling pathways play a crucial role in AP treatment for CC. The compound-target-pathway (C-T-P) network revealed that quercetin, methylprednisolone, and caudatin may play key roles in the treatment of CC. The results of molecular docking revealed that the core compound could bind significantly to the core target. In this study, the compounds in AP were systematically analyzed qualitatively, and the core components, core targets, and mechanisms of action of AP in the treatment of CC were screened through a combination of network pharmacology tools. Providing a scientific reference for the therapeutic material basis and quality control of AP.
Collapse
Affiliation(s)
- Hao Zhang
- College of Pharmacy, Weifang Medical University, Weifang, 261053, China
- College of Pharmacy, Jining Medical University, Rizhao, 276826, China
| | - Ruiming Zhang
- College of Pharmacy, Jining Medical University, Rizhao, 276826, China
| | - Yuefen Su
- College of Pharmacy, Jining Medical University, Rizhao, 276826, China
| | - Jingrou Zheng
- College of Pharmacy, Jining Medical University, Rizhao, 276826, China
| | - Hui Li
- College of Pharmacy, Jining Medical University, Rizhao, 276826, China
| | - Zhichao Han
- College of Pharmacy, Jining Medical University, Rizhao, 276826, China
- College of Agriculture, Yanbian University, Yanji, 133002, China
| | - Yunzhen Kong
- College of Pharmacy, Jining Medical University, Rizhao, 276826, China
| | - Han Liu
- College of Pharmacy, Jining Medical University, Rizhao, 276826, China
| | - Zhen Zhang
- College of Pharmacy, Jining Medical University, Rizhao, 276826, China
| | - Chunmei Sai
- College of Pharmacy, Jining Medical University, Rizhao, 276826, China
| |
Collapse
|
13
|
Jiang Y, Peng Y, Yang X, Yu J, Yu F, Yuan J, Zha Y. PM 2.5 exposure aggravates kidney damage by facilitating the lipid metabolism disorder in diabetic mice. PeerJ 2023; 11:e15856. [PMID: 37671359 PMCID: PMC10476618 DOI: 10.7717/peerj.15856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/16/2023] [Indexed: 09/07/2023] Open
Abstract
Background Ambient fine particulate matter ≤ 2.5 µm (PM2.5) air pollution exposure has been identified as a global health threat, the epidemiological evidence suggests that PM2.5 increased the risk of chronic kidney disease (CKD) among the diabetes mellitus (DM) patients. Despite the growing body of research on PM2.5 exposure, there has been limited investigation into its impact on the kidneys and the underlying mechanisms. Past studies have demonstrated that PM2.5 exposure can lead to lipid metabolism disorder, which has been linked to the development and progression of diabetic kidney disease (DKD). Methods In this study, db/db mice were exposed to different dosage PM2.5 for 8 weeks. The effect of PM2.5 exposure was analysis by assessment of renal function, pathological staining, immunohistochemical (IHC), quantitative real-time PCR (qPCR) and liquid chromatography with tandem mass spectrometry (LC-MS/MS) based metabolomic analyses. Results The increasing of Oil Red staining area and adipose differentiation related protein (ADRP) expression detected by IHC staining indicated more ectopic lipid accumulation in kidney after PM2.5 exposure, and the increasing of SREBP-1 and the declining of ATGL detected by IHC staining and qPCR indicated the disorder of lipid synthesisandlipolysis in DKD mice kidney after PM2.5 exposure. The expressions of high mobility group nucleosome binding protein 1 (HMGN1) and kidney injury molecule 1 (KIM-1) that are associated with kidney damage increased in kidney after PM2.5 exposure. Correlation analysis indicated that there was a relationship between HMGN1-KIM-1 and lipid metabolic markers. In addition, kidneys of mice were analyzed using LC-MS/MS based metabolomic analyses. PM2.5 exposure altered metabolic profiles in the mice kidney, including 50 metabolites. In conclusion the results of this study show that PM2.5 exposure lead to abnormal renal function and further promotes renal injury by disturbance of renal lipid metabolism and alter metabolic profiles.
Collapse
Affiliation(s)
- Yuecheng Jiang
- Zunyi Medical University, Guiyang, China
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People’s Hospital, Guiyang, China
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yanzhe Peng
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xia Yang
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People’s Hospital, Guiyang, China
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, China
- School of Medicine, Guizhou University, Guiyang, China
| | - Jiali Yu
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People’s Hospital, Guiyang, China
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, China
- School of Medicine, Guizhou University, Guiyang, China
| | - Fuxun Yu
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People’s Hospital, Guiyang, China
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jing Yuan
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yan Zha
- Zunyi Medical University, Guiyang, China
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People’s Hospital, Guiyang, China
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, China
- School of Medicine, Guizhou University, Guiyang, China
| |
Collapse
|
14
|
Nayak SS, Naidu A, Sudhakaran SL, Vino S, Selvaraj G. Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease. J Pers Med 2023; 13:664. [PMID: 37109050 PMCID: PMC10142859 DOI: 10.3390/jpm13040664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is intricately linked with SARS-CoV-2-associated disease severity and mortality, especially in patients with co-morbidities. Lung tissue injury caused as a consequence of ARDS leads to fluid build-up in the alveolar sacs, which in turn affects oxygen supply from the capillaries. ARDS is a result of a hyperinflammatory, non-specific local immune response (cytokine storm), which is aggravated as the virus evades and meddles with protective anti-viral innate immune responses. Treatment and management of ARDS remain a major challenge, first, because the condition develops as the virus keeps replicating and, therefore, immunomodulatory drugs are required to be used with caution. Second, the hyperinflammatory responses observed during ARDS are quite heterogeneous and dependent on the stage of the disease and the clinical history of the patients. In this review, we present different anti-rheumatic drugs, natural compounds, monoclonal antibodies, and RNA therapeutics and discuss their application in the management of ARDS. We also discuss on the suitability of each of these drug classes at different stages of the disease. In the last section, we discuss the potential applications of advanced computational approaches in identifying reliable drug targets and in screening out credible lead compounds against ARDS.
Collapse
Affiliation(s)
- Smruti Sudha Nayak
- Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Akshayata Naidu
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Sajitha Lulu Sudhakaran
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Sundararajan Vino
- Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Gurudeeban Selvaraj
- Centre for Research in Molecular Modeling, Department of Chemistry and Biochemistry, Concordia University-Loyola Campus, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
15
|
Luo L, Zhu D, Zhang Z, Zeng H, Huang M, Zhou S. 11β-Hydroxysteroid dehydrogenase type 1 amplifies inflammation in LPS-induced THP-1 cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:374-379. [PMID: 36865036 PMCID: PMC9922366 DOI: 10.22038/ijbms.2023.67927.14852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/22/2022] [Indexed: 03/04/2023]
Abstract
Objectives The role of glucocorticoids as anti-inflammatory and immune-stimulatory drugs has been widely reported. However, the role of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which catalyzes the conversion of inactive cortisone into active cortisol, in inflammation remains unclear. This study aimed to examine the mechanism of actions of 11β-HSD1 in lipopolysaccharide (LPS)-induced THP-1 cells. Materials and Methods The gene expression of 11β-HSD1 and pro-inflammatory cytokines was detected via RT-PCR. The protein expression of IL-1β in cell supernatants was detected via ELISA. Oxidative stress and mitochondrial membrane potential were assessed using a reactive oxygen species (ROS) kit and a mitochondrial membrane potential (MMP) kit, respectively. The expression of Nuclear Factor- Kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) was detected via western blotting. Results Elevated levels of 11β-HSD1 contributed to the expression of inflammatory cytokines, whereas BVT.2733, a selective 11β-HSD1 inhibitor, ameliorated inflammatory responses, ROS, and mitochondrial damage in LPS-stimulated THP-1 cells. Furthermore, cortisone and cortisol, which are the substrate and product of 11β-HSD1, respectively, showed biphasic responses and induced the expression of pro-inflammatory cytokines at a low concentration in both LPS-stimulated or untreated THP-1 cells. The enhanced inflammation was attenuated by co-treatment with BVT.2733 and the glucocorticoid receptor (GR) antagonist RU486, but not in those treated with the mineralocorticoid receptor (MR) antagonist spironolactone. Overall, the results indicate that 11β-HSD1 amplifies inflammatory responses by activating the NF-κB and MAPK signaling pathways. Conclusion Inhibition of 11β-HSD1 may serve as a potential therapeutic target against the excessive activation of inflammation.
Collapse
Affiliation(s)
- Lingli Luo
- Department of Geriatrics Intensive Care Unit, The First Affiliated Hospital of Nanjing Medical University. NO.300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Dongmei Zhu
- Department of Geriatrics Intensive Care Unit, The First Affiliated Hospital of Nanjing Medical University. NO.300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Zheng Zhang
- Department of Geriatrics Intensive Care Unit, The First Affiliated Hospital of Nanjing Medical University. NO.300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Hanjie Zeng
- Department of Geriatrics Intensive Care Unit, The First Affiliated Hospital of Nanjing Medical University. NO.300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Min Huang
- Department of Geriatrics Intensive Care Unit, The First Affiliated Hospital of Nanjing Medical University. NO.300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Suming Zhou
- Department of Geriatrics Intensive Care Unit, The First Affiliated Hospital of Nanjing Medical University. NO.300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China,Corresponding author: Suming Zhou. Department of Geriatrics Intensive Care Unit, The First Affiliated Hospital of Nanjing Medical University. NO.300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China. Tel/ Fax: +86-2568305053;
| |
Collapse
|
16
|
Zhang H, Yan J, Nie G, Xie D, Luo B, Niu J, Wang H, Li X. Effects of cadmium and lead co-exposure on glucocorticoid levels in rural residents of northwest China. CHEMOSPHERE 2023; 317:137783. [PMID: 36638928 DOI: 10.1016/j.chemosphere.2023.137783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd) and lead (Pb) are important environmental endocrine disruptors that are associated with adverse health problems. However, the effects of co-exposure to Cd and Pb on glucocorticoids (GCs) in the body at environmental levels are limited. A total of 468 subjects from the Dongdagou-Xinglong cohort (DDG-XL) were included in this study. We measured the serum levels of two representative endogenous GCs [cortisol (CRL) and cortisone (CRN)], and whole blood levels of Cd and Pb. Multiple linear regression models were constructed to explore the associations of single or combined Cd and Pb exposure with serum CRL and CRN levels. The interactive effects of Cd and Pb on GCs were further assessed using mediation analysis and moderation analysis. Single-heavy metal exposure analysis with adjustment for potential confounders showed that the serum CRL level decreased when the blood Cd or Pb concentration gradually increased (P trend <0.01). Additionally, subjects with high Cd or Pb exposure (Q4) had significantly reduced serum CRN levels compared to those with low Cd or Pb exposure (Q1) (P < 0.05). In Cd and Pb co-exposure analysis, significant negative dose-response relationships were observed between co-exposure to Cd and Pb and serum CRL and CRN levels. Furthermore, mediation analysis showed that Cd completely mediated the relationship between Pb and GCs, and moderation analysis suggested that Pb might weaken the negative relationship between Cd and GCs. These findings suggest that single or combined exposure to Cd and Pb interferes with the homeostasis of serum CRL and CRN levels. Furthermore, we innovatively propose that Cd and Pb may have interactive effects on GCs levels, and Pb can antagonize the negative relationship between Cd and GCs, which may provide clues for further studies on endocrine and metabolic disorders related to these heavy metals.
Collapse
Affiliation(s)
- Honglong Zhang
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jun Yan
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Guole Nie
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Danna Xie
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Bin Luo
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jingping Niu
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Haiping Wang
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Xun Li
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
17
|
Yan J, Chen Y, Luo M, Hu X, Li H, Liu Q, Zou Z. Chronic stress in solid tumor development: from mechanisms to interventions. J Biomed Sci 2023; 30:8. [PMID: 36707854 PMCID: PMC9883141 DOI: 10.1186/s12929-023-00903-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/17/2023] [Indexed: 01/29/2023] Open
Abstract
Chronic stress results in disturbances of body hormones through the neuroendocrine system. Cancer patients often experience recurrent anxiety and restlessness during disease progression and treatment, which aggravates disease progression and hinders treatment effects. Recent studies have shown that chronic stress-regulated neuroendocrine systems secret hormones to activate many signaling pathways related to tumor development in tumor cells. The activated neuroendocrine system acts not only on tumor cells but also modulates the survival and metabolic changes of surrounding non-cancerous cells. Current clinical evidences also suggest that chronic stress affects the outcome of cancer treatment. However, in clinic, there is lack of effective treatment for chronic stress in cancer patients. In this review, we discuss the main mechanisms by which chronic stress regulates the tumor microenvironment, including functional regulation of tumor cells by stress hormones (stem cell-like properties, metastasis, angiogenesis, DNA damage accumulation, and apoptotic resistance), metabolic reprogramming and immune escape, and peritumor neuromodulation. Based on the current clinical treatment framework for cancer and chronic stress, we also summarize pharmacological and non-pharmacological therapeutic approaches to provide some directions for cancer therapy.
Collapse
Affiliation(s)
- Jiajing Yan
- grid.263785.d0000 0004 0368 7397MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| | - Yibing Chen
- grid.207374.50000 0001 2189 3846Department of Gynecology and Obstetrics, First Affiliated Hospital, Genetic and Prenatal Diagnosis Center, Zhengzhou University, Zhengzhou, 450001 China
| | - Minhua Luo
- grid.263785.d0000 0004 0368 7397MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| | - Xinyu Hu
- grid.263785.d0000 0004 0368 7397MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| | - Hongsheng Li
- grid.410737.60000 0000 8653 1072Department of Breast Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095 China
| | - Quentin Liu
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510631 China ,grid.411971.b0000 0000 9558 1426Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044 Liaoning China
| | - Zhengzhi Zou
- grid.263785.d0000 0004 0368 7397MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China ,grid.263785.d0000 0004 0368 7397Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| |
Collapse
|
18
|
Xie P, Wang W, Dong M. A Predictive Model for 30-Day Mortality of Fungemia in ICUs. Infect Drug Resist 2022; 15:7841-7852. [PMID: 36605852 PMCID: PMC9809363 DOI: 10.2147/idr.s389161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/23/2022] [Indexed: 12/31/2022] Open
Abstract
Background Few predictive models have been established to predict the risk of 30-day mortality from fungemia. This study aims to create a nomogram to predict the 30-day mortality of fungemia in ICUs. Methods Data of ICU patients with fungemia from both the Medical Information Mart for Intensive Care (MIMIC-III) database and the Grade-III Class-A hospital in China were collected. The data extracted from the MIMIC-III database functioned as the training dataset, which was used to construct a predictive model for 30-day mortality risk in ICU patients with fungemia; the data from the hospital functioned as the validation dataset, which was used to validate the model. A predictive model for 30-day mortality risk in ICU patients with fungemia was then built based on R software. Such indicators as C-index and calibration curve were utilized to evaluate the prediction ability of the model. Data of ICU patients with fungemia from the hospital were used as a validation dataset to validate the model. Results Predictive models were constructed by age, international normalized ratio (INR), renal failure, liver disease, respiratory rate (RR), glucocorticoid therapy, antifungal therapy, and platelets. The C-index value of the models was 0.838 (95% CI: 0.79096-0.88504). Attested by external validation results, the model has satisfactory predictive ability. Conclusion The 30-day mortality risk predictive model for ICU patients with fungemia constructed in this study has good predictive ability and may hopefully provide a 30-day mortality risk screening tool for ICU patients with fungemia.
Collapse
Affiliation(s)
- Peng Xie
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China,Department of Critical Care Medicine, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Wenqiang Wang
- Department of Nursing, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Maolong Dong
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China,Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China,Correspondence: Maolong Dong, No. 1838, Guangzhou Avenue North Road, Guangzhou, 510515, Guangdong, People’s Republic of China, Tel +86-020-61641888, Fax +86-020-61641888, Email
| |
Collapse
|
19
|
Mitre-Aguilar IB, Moreno-Mitre D, Melendez-Zajgla J, Maldonado V, Jacobo-Herrera NJ, Ramirez-Gonzalez V, Mendoza-Almanza G. The Role of Glucocorticoids in Breast Cancer Therapy. Curr Oncol 2022; 30:298-314. [PMID: 36661673 PMCID: PMC9858160 DOI: 10.3390/curroncol30010024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Glucocorticoids (GCs) are anti-inflammatory and immunosuppressive steroid molecules secreted by the adrenal gland and regulated by the hypothalamic-pituitary-adrenal (HPA) axis. GCs present a circadian release pattern under normal conditions; they increase their release under stress conditions. Their mechanism of action can be via the receptor-independent or receptor-dependent pathway. The receptor-dependent pathway translocates to the nucleus, where the ligand-receptor complex binds to specific sequences in the DNA to modulate the transcription of specific genes. The glucocorticoid receptor (GR) and its endogenous ligand cortisol (CORT) in humans, and corticosterone in rodents or its exogenous ligand, dexamethasone (DEX), have been extensively studied in breast cancer. Its clinical utility in oncology has mainly focused on using DEX as an antiemetic to prevent chemotherapy-induced nausea and vomiting. In this review, we compile the results reported in the literature in recent years, highlighting current trends and unresolved controversies in this field. Specifically, in breast cancer, GR is considered a marker of poor prognosis, and a therapeutic target for the triple-negative breast cancer (TNBC) subtype, and efforts are being made to develop better GR antagonists with fewer side effects. It is necessary to know the type of breast cancer to differentiate the treatment for estrogen receptor (ER)-positive, ER-negative, and TNBC, to implement therapies that include the use of GCs.
Collapse
Affiliation(s)
- Irma B. Mitre-Aguilar
- Unidad de Bioquimica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (INCMNSZ), Mexico City 14080, Mexico
| | - Daniel Moreno-Mitre
- Centro de Desarrollo de Destrezas Médicas (CEDDEM), Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (INCMNSZ), Mexico City 14080, Mexico
| | - Jorge Melendez-Zajgla
- Laboratorio de Genomica Funcional del Cancer, Instituto Nacional de Medicina Genomica (INMEGEN), Mexico City 14610, Mexico
| | - Vilma Maldonado
- Laboratorio de Epigenetica, Instituto Nacional de Medicina Genomica (INMEGEN), Mexico City 14610, Mexico
| | - Nadia J. Jacobo-Herrera
- Unidad de Bioquimica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (INCMNSZ), Mexico City 14080, Mexico
| | - Victoria Ramirez-Gonzalez
- Departamento de Cirugía-Experimental, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (INCMNSZ), Mexico City 14080, Mexico
| | - Gretel Mendoza-Almanza
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Laboratorio de Epigenetica, Instituto Nacional de Medicina Genomica (INMEGEN), Mexico City 14610, Mexico
| |
Collapse
|
20
|
Jiang Y, Rubin L, Zhou Z, Zhang H, Su Q, Hou ST, Lazarovici P, Zheng W. Pharmacological therapies and drug development targeting SARS-CoV-2 infection. Cytokine Growth Factor Rev 2022; 68:13-24. [PMID: 36266222 PMCID: PMC9558743 DOI: 10.1016/j.cytogfr.2022.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 01/30/2023]
Abstract
The development of therapies for SARS-CoV-2 infection, based on virus biology and pathology, and of large- and small-scale randomized controlled trials, have brought forward several antiviral and immunomodulatory drugs targeting the disease severity. Casirivimab/Imdevimab monoclonal antibodies and convalescent plasma to prevent virus entry, Remdesivir, Molnupiravir, and Paxlovid nucleotide analogs to prevent viral replication, a variety of repurposed JAK-STAT signaling pathway inhibitors, corticosteroids, and recombinant agonists/antagonists of cytokine and interferons have been found to provide clinical benefits in terms of mortality and hospitalization. However, current treatment options face multiple clinical needs, and therefore, in this review, we provide an update on the challenges of the existing therapeutics and highlight drug development strategies for COVID-19 therapy, based on ongoing clinical trials, meta-analyses, and clinical case reports.
Collapse
Affiliation(s)
- Yizhou Jiang
- Centre of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China,Brain Research Centre and Department of Biology, School of Life Science, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, China
| | - Limor Rubin
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel
| | - Zhiwei Zhou
- Centre of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Haibo Zhang
- Anesthesia, Critical Care Medicine and Physiology, St. Michael’s Hospital, University of Toronto, Ontario, Canada
| | - Qiaozhu Su
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Sheng-Tao Hou
- Brain Research Centre and Department of Biology, School of Life Science, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, China,Correspondence to: Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, China
| | - Philip Lazarovici
- Pharmacology, School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Wenhua Zheng
- Centre of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China,Correspondence to: Faculty of Health Sciences, University of Macau, Room 3057, Building E12, Avenida de Universidade, Taipa, Macau, China
| |
Collapse
|
21
|
Zhang A, Luo Y, Jia A, Park M, Daniels KD, Nie X, Wu S, Snyder SA. Adsorption kinetics of 20 glucocorticoids at environmentally relevant concentrations in wastewater by powdered activated carbons and development of surrogate models. JOURNAL OF WATER PROCESS ENGINEERING 2022; 50:103279. [PMID: 36349294 PMCID: PMC9634149 DOI: 10.1016/j.jwpe.2022.103279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/09/2022] [Accepted: 10/21/2022] [Indexed: 05/14/2023]
Abstract
Glucocorticoids (GCs) are widely used in the treatment of the coronavirus disease of 2019 (COVID-19), and the toxicity of GCs to aquatic organisms has aroused widespread concern. Powdered activated carbon (PAC) has proven effective in removing various trace organic pollutants. In this study, the adsorption behaviors of 20 typical GCs onto PACs were investigated at environmentally relevant concentrations (ng/L) in real wastewater, using four commercially available PACs (HDB, WPH, 20BF, PWA). The results showed that PAC adsorption was feasible for GC removal at ng/L concentrations. After adsorption for 60 min, the GC removal efficiencies obtained by HDB, WPH, 20BF, and PWA were 90-98 %, 89-97 %, 84-96 %, and 71-90 %, respectively. The adsorption processes of 20 GCs on PACs were well fitted by the pseudo-second-order kinetics model (with R 2 >0.98). Among the four PACs, HDB achieved the highest rates because of the electrostatic attraction between HDB (positively charged) and the complex of GCs and natural organic matter (GC-NOM, negatively charged). Among the 20 GCs, compounds with substitutions of halogen atoms or five-membered rings at C-17 achieved higher adsorption rates because of the enhanced formation of hydrogen bonds and a resulting increase in electron density. In addition, surrogate models with total fluorescence (TF) and ultraviolet absorbance at 254 nm (UV254) were developed to monitor the attenuation trend of GCs during adsorption processes. Compared with the UV254 model, the TF model showed better sensitivity to GC monitoring, which could greatly simplify the water quality monitoring process and facilitate online monitoring of GCs in water.
Collapse
Affiliation(s)
- Ai Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yuxin Luo
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Ai Jia
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, AZ 85721-0011, USA
- Metropolitan Water District of Southern California, Water Quality Laboratory, La Verne, CA 91750, USA
| | - Minkyu Park
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, AZ 85721-0011, USA
| | - Kevin D Daniels
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, AZ 85721-0011, USA
- Stantec Inc., 3133 W Frye Rd Suite 300, Chandler, AZ 85226, USA
| | - Xuhao Nie
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, AZ 85721-0011, USA
| | - Shimin Wu
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, AZ 85721-0011, USA
- Jiangsu Shuangliang Environmental Technology Co., Ltd., Jiangyin 214444, China
| | - Shane A Snyder
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, AZ 85721-0011, USA
- Nanyang Technological University, Nanyang Environment & Water Research Institute, 1 Cleantech Loop, CleanTech One, #06-08, 637141, Singapore
| |
Collapse
|
22
|
Jansen-van Vuuren RD, Jedlovčnik L, Košmrlj J, Massey TE, Derdau V. Deuterated Drugs and Biomarkers in the COVID-19 Pandemic. ACS OMEGA 2022; 7:41840-41858. [PMID: 36440130 PMCID: PMC9685803 DOI: 10.1021/acsomega.2c04160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/18/2022] [Indexed: 06/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Initially identified in Wuhan (China) in December 2019, COVID-19 rapidly spread globally, resulting in the COVID-19 pandemic. Carriers of the SARS-CoV-2 can experience symptoms ranging from mild to severe (or no symptoms whatsoever). Although vaccination provides extra immunity toward SARS-CoV-2, there has been an urgent need to develop treatments for COVID-19 to alleviate symptoms for carriers of the disease. In seeking a potential treatment, deuterated compounds have played a critical role either as therapeutic agents or as internal MS standards for studying the pharmacological properties of new drugs by quantifying the parent compounds and metabolites. We have identified >70 examples of deuterium-labeled compounds associated with treatment of COVID-19. Of these, we found 9 repurposed drugs and >20 novel drugs studied for potential therapeutic roles along with a total of 38 compounds (drugs, biomarkers, and lipids) explored as internal mass spectrometry standards. This review details the synthetic pathways and modes of action of these compounds (if known), and a brief analysis of each study.
Collapse
Affiliation(s)
- Ross D. Jansen-van Vuuren
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, Ljubljana 1000, Slovenia
- Department
of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L
3N6, Canada
| | - Luka Jedlovčnik
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, Ljubljana 1000, Slovenia
| | - Janez Košmrlj
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, Ljubljana 1000, Slovenia
| | - Thomas E. Massey
- Department
of Biomedical and Molecular Sciences, School of Medicine, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
| | - Volker Derdau
- Research
& Development, Integrated Drug Discovery, Isotope Chemistry, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst G876, Frankfurt/Main 65926, Germany
| |
Collapse
|
23
|
Islam MZ, Hossain SI, Deplazes E, Saha SC. Concentration-dependent cortisone adsorption and interaction with model lung surfactant monolayer. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2113397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Mohammad Zohurul Islam
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, Australia
| | - Sheikh I. Hossain
- School of Life Sciences, University of Technology Sydney, Ultimo, Australia
| | - Evelyne Deplazes
- School of Life Sciences, University of Technology Sydney, Ultimo, Australia
| | - Suvash C. Saha
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
24
|
Naeem FN, Hasan SFS, Ram MD, Waseem S, Ahmed SH, Shaikh TG. The association between SARS-CoV-2 vaccines and transverse myelitis: A review. Ann Med Surg (Lond) 2022; 79:103870. [PMID: 35702684 PMCID: PMC9181565 DOI: 10.1016/j.amsu.2022.103870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 12/02/2022] Open
Abstract
In late 2019, the emergence of a new viral strain, later referred to as Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) took the shape of a global pandemic, affecting millions of lives and deteriorating economies around the globe. Vaccines were developed at an exceptional rate to combat the viral desolation, all of them being rolled out once they displayed sufficient safety and efficacy. However, assorted adverse events came into attention, one of them being Transverse Myelitis (TM), an infrequent, immune-mediated, focal disease of the spinal cord. This disorder can lead to severe neurological complications including autonomic, sensory, and motor deficits. The literature aims to shed light on TM and its various etiologies, specifically in line with the vaccine, and a comprehensive treatment plan. Discussing and reducing the number of vaccines related adverse events can help succor in bringing down the vaccine hesitancy and ultimately combatting the pandemic.
Collapse
|
25
|
Moura J, Nascimento H, Ferreira I, Samões R, Teixeira C, Lopes D, Boleixa D, Sousa AP, Santos E, Silva AM. SARS-CoV-2 infection in patients with neuroimmunological disorders in a tertiary referral centre from the north of Portugal. Mult Scler Relat Disord 2022; 63:103893. [PMID: 35605521 PMCID: PMC9110068 DOI: 10.1016/j.msard.2022.103893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/16/2022] [Accepted: 05/15/2022] [Indexed: 11/17/2022]
Abstract
Introduction The impact of COVID-19 in patients with neuroimmunological disorders is not fully established. There is some evidence suggesting an increased risk of more severe infection associated with the use of immunosuppressors in this population. Objective To characterize SARS-CoV-2 infection in patients followed in the neuroimmunology outpatient clinic of a tertiary centre from the north of Portugal. Methods Retrospective analysis of neuroimmunological patients with PCR-proven SARS-CoV-2 infection during the observational period of 20 months. Results Ninety-one patients were infected, 68.1% female, with a mean age of 48.9±16.7 years. The median disease duration was 11.0 (IQR 6.0-19.0) years. Sixty-one patients (67.0%) had Multiple Sclerosis, of which 50 with relapsing-remitting course, 12 (13.2%) Myasthenia Gravis (MG), 6 (6.6%) Autoimmune Encephalitis and 6 (6.6%) Chronic Inflammatory Demyelinating Polyneuropathy. Seventy-six patients (83.5%) were taking disease-modifying therapy, 77.6% of which were on immunosuppressants, including anti-CD20 in 12 (13.2%). Most patients had mild COVID-19 (84.6%), with 3 cases (3.3%) of severe disease and, 7 cases (7.7%) of critical disease being reported. In total, 13 patients were hospitalized and 4 died. Patients with severe to critical disease were significantly older than patients with milder forms (69.4±21.0 versus 46.5±14.4 years, p<0.01). MG was also associated with more severe disease (p=0.02). There was no association between comorbidities or use of immunosuppressors (including anti-CD20) and COVID-19 severity. Conclusions Greater age and MG were associated with severe or critical COVID-19. We found no association between a specific DMT, including anti-CD20, and outcome. Clinical recovery was achieved by 93.4%.
Collapse
|
26
|
Jensterle M, Herman R, Janež A, Mahmeed WA, Al-Rasadi K, Al-Alawi K, Banach M, Banerjee Y, Ceriello A, Cesur M, Cosentino F, Galia M, Goh SY, Kalra S, Kempler P, Lessan N, Lotufo P, Papanas N, Rizvi AA, Santos RD, Stoian AP, Toth PP, Viswanathan V, Rizzo M. The Relationship between COVID-19 and Hypothalamic–Pituitary–Adrenal Axis: A Large Spectrum from Glucocorticoid Insufficiency to Excess—The CAPISCO International Expert Panel. Int J Mol Sci 2022; 23:ijms23137326. [PMID: 35806331 PMCID: PMC9266848 DOI: 10.3390/ijms23137326] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly heterogeneous disease regarding severity, vulnerability to infection due to comorbidities, and treatment approaches. The hypothalamic–pituitary–adrenal (HPA) axis has been identified as one of the most critical endocrine targets of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that might significantly impact outcomes after infection. Herein we review the rationale for glucocorticoid use in the setting of COVID-19 and emphasize the need to have a low index of suspicion for glucocorticoid-induced adrenal insufficiency, adjusting for the glucocorticoid formulation used, dose, treatment duration, and underlying health problems. We also address several additional mechanisms that may cause HPA axis dysfunction, including critical illness-related corticosteroid insufficiency, the direct cytopathic impacts of SARS-CoV-2 infection on the adrenals, pituitary, and hypothalamus, immune-mediated inflammations, small vessel vasculitis, microthrombotic events, the resistance of cortisol receptors, and impaired post-receptor signaling, as well as the dissociation of ACTH and cortisol regulation. We also discuss the increased risk of infection and more severe illness in COVID-19 patients with pre-existing disorders of the HPA axis, from insufficiency to excess. These insights into the complex regulation of the HPA axis reveal how well the body performs in its adaptive survival mechanism during a severe infection, such as SARS-CoV-2, and how many parameters might disbalance the outcomes of this adaptation.
Collapse
Affiliation(s)
- Mojca Jensterle
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia; (M.J.); (R.H.)
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Rok Herman
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia; (M.J.); (R.H.)
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Andrej Janež
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia; (M.J.); (R.H.)
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-522-35-64
| | - Wael Al Mahmeed
- Heart and Vascular Institute, Cleveland Clinic, Abu Dhabi P.O. Box 112412, United Arab Emirates;
| | - Khalid Al-Rasadi
- Medical Research Center, Sultan Qaboos University, Muscat 113, Oman;
| | - Kamila Al-Alawi
- Department of Training and Studies, Royal Hospital, Ministry of Health, Muscat 113, Oman;
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), 90-419 Lodz, Poland;
- Polish Mother’s Memorial Hospital Research Institute (PMMHRI), 93-338 Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, 65-417 Zielona Gora, Poland
| | - Yajnavalka Banerjee
- Department of Biochemistry, Mohamed Bin Rashid University, Dubai P.O. Box 505055, United Arab Emirates;
| | | | - Mustafa Cesur
- Clinic of Endocrinology, Ankara Güven Hospital, 06540 Ankara, Turkey;
| | - Francesco Cosentino
- Unit of Cardiology, Karolinska Institute and Karolinska University Hospital, University of Stockholm, 171 77 Stockholm, Sweden;
| | - Massimo Galia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bind), University of Palermo, 90127 Palermo, Italy;
| | - Su-Yen Goh
- Department of Endocrinology, Singapore General Hospital, Singapore 169856, Singapore;
| | - Sanjay Kalra
- Department of Endocrinology, Bharti Hospital & BRIDE, Karnal 132001, India;
| | - Peter Kempler
- Department of Medicine and Oncology, Semmelweis University, 1085 Budapest, Hungary;
| | - Nader Lessan
- The Research Institute, Imperial College London Diabetes Centre, Abu Dhabi P.O. Box 48338, United Arab Emirates;
| | - Paulo Lotufo
- Center for Clinical and Epidemiological Research, University Hospital, University of São Paulo, São Paulo 05403-000, Brazil;
| | - Nikolaos Papanas
- Diabetes Center, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, 68100 Alexandroupoli, Greece;
| | - Ali A. Rizvi
- Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA;
| | - Raul D. Santos
- The Heart Institute (InCor), University of Sao Paulo Medical School Hospital, São Paulo 05403-000, Brazil;
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
| | - Anca P. Stoian
- Faculty of Medicine, Diabetes, Nutrition and Metabolic Diseases, Carol Davila University, 050474 Bucharest, Romania;
| | - Peter P. Toth
- Cicarrone Center for the Prevention of Cardiovascular Disease, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | | | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
27
|
Saleh SR, Manaa A, Sheta E, Ghareeb DA, Abd-Elmonem NM. The Synergetic Effect of Egyptian Portulaca oleracea L. (Purslane) and Cichorium intybus L. (Chicory) Extracts against Glucocorticoid-Induced Testicular Toxicity in Rats through Attenuation of Oxidative Reactions and Autophagy. Antioxidants (Basel) 2022; 11:antiox11071272. [PMID: 35883763 PMCID: PMC9311541 DOI: 10.3390/antiox11071272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
Long-term glucocorticoids can alter sperm motility, vitality, or morphology, disrupting male reproductive function. This study scrutinized the synergistic benefits of two Egyptian plants against dexamethasone (Dexa)-induced testicular and autophagy dysfunction in male rats. Phytochemical ingredients and the combination index were estimated for Purslane ethanolic extract (PEE) and Chicory water extract (CWE). Four control groups received saline and 100 mg/kg of each PEE, CWE, and PEE/CWE, daily for 8 weeks. Dexa (1 mg/kg daily for 6 weeks) induced infertility where PEE, CWE, and PEE/CWE were given. Seminal analysis, male hormones, glycemic and oxidative stress markers, endoplasmic reticulum (ER) stress markers (Sigma 1R and GRP78), and autophagy regulators (Phospho-mTOR, LC3I/II, PI3KC3, and Beclin-1, P62, ATG5, and ATG7) were measured. The in vitro study illustrated the synergistic (CI < 1) antioxidant capacity of the PEE/CWE combination. Dexa exerts testicular damage by inducing oxidative reactions, a marked reduction in serum testosterone, TSH and LH levels, insulin resistance, ER stress, and autophagy. In contrast, the PEE and CWE extracts improve fertility hormones, sperm motility, and testicular histological alterations through attenuating oxidative stress and autophagy, with a synergistic effect upon combination. In conclusion, the administration of PEE/CWE has promised ameliorative impacts on male infertility and can delay disease progression.
Collapse
Affiliation(s)
- Samar R. Saleh
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (A.M.); (D.A.G.); (N.M.A.-E.)
- Correspondence: or ; Tel.: +20-122-573-2849; Fax: +2-(03)-391-1794
| | - Ashraf Manaa
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (A.M.); (D.A.G.); (N.M.A.-E.)
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt;
| | - Doaa A. Ghareeb
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (A.M.); (D.A.G.); (N.M.A.-E.)
| | - Nihad M. Abd-Elmonem
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (A.M.); (D.A.G.); (N.M.A.-E.)
| |
Collapse
|
28
|
Di Girolamo FG, Fiotti N, Sisto UG, Nunnari A, Colla S, Mearelli F, Vinci P, Schincariol P, Biolo G. Skeletal Muscle in Hypoxia and Inflammation: Insights on the COVID-19 Pandemic. Front Nutr 2022; 9:865402. [PMID: 35529457 PMCID: PMC9072827 DOI: 10.3389/fnut.2022.865402] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/09/2022] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2 infection is often associated with severe inflammation, oxidative stress, hypoxia and impaired physical activity. These factors all together contribute to muscle wasting and fatigue. In addition, there is evidence of a direct SARS-CoV-2 viral infiltration into skeletal muscle. Aging is often characterized by sarcopenia or sarcopenic obesity These conditions are risk factors for severe acute COVID-19 and long-COVID-19 syndrome. From these observations we may predict a strong association between COVID-19 and decreased muscle mass and functions. While the relationship between physical inactivity, chronic inflammation, oxidative stress and muscle dysfunction is well-known, the effects on muscle mass of COVID-19-related hypoxemia are inadequately investigated. The aim of this review is to highlight metabolic, immunity-related and redox biomarkers potentially affected by reduced oxygen availability and/or muscle fatigue in order to shed light on the negative impact of COVID-19 on muscle mass and function. Possible countermeasures are also reviewed.
Collapse
Affiliation(s)
- Filippo G. Di Girolamo
- Department of Medical Surgical ad Health Science, Clinica Medica, Cattinara Hospital, University of Trieste, Trieste, Italy
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
- *Correspondence: Filippo G. Di Girolamo
| | - Nicola Fiotti
- Department of Medical Surgical ad Health Science, Clinica Medica, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Ugo G. Sisto
- Department of Medical Surgical ad Health Science, Clinica Medica, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Alessio Nunnari
- Department of Medical Surgical ad Health Science, Clinica Medica, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Stefano Colla
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Filippo Mearelli
- Department of Medical Surgical ad Health Science, Clinica Medica, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Pierandrea Vinci
- Department of Medical Surgical ad Health Science, Clinica Medica, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Paolo Schincariol
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Gianni Biolo
- Department of Medical Surgical ad Health Science, Clinica Medica, Cattinara Hospital, University of Trieste, Trieste, Italy
| |
Collapse
|
29
|
Yu Y. Repurposing glucocorticoids as adjuvant reagents for immune checkpoint inhibitors in solid cancers. Cancer Biol Med 2021; 18:j.issn.2095-3941.2021.0491. [PMID: 34697935 PMCID: PMC8610151 DOI: 10.20892/j.issn.2095-3941.2021.0491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 11/11/2022] Open
Affiliation(s)
- Yingyan Yu
- Department of General Surgery, Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
30
|
Xuan W, Jiang X, Huang L, Pan S, Chen C, Zhang X, Zhu H, Zhang S, Yu W, Peng Z, Su D. Predictive Value of Eosinophil Count on COVID-19 Disease Progression and Outcomes, a Retrospective Study of Leishenshan Hospital in Wuhan, China. J Intensive Care Med 2021; 37:359-365. [PMID: 34550036 PMCID: PMC8986993 DOI: 10.1177/08850666211037326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND The potential protective role of eosinophils in the COVID-19 pandemic has aroused great interest, given their potential virus clearance function and the infection resistance of asthma patients to this coronavirus. However, it is unknown whether eosinophil counts could serve as a predictor of the severity of COVID-19. METHODS A total of 1004 patients with confirmed COVID-19 who were admitted to Leishenshan Hospital in Wuhan, China, were enrolled in this study, including 905 patients in the general ward and 99 patients in the intensive care unit (ICU). We reviewed their medical data to analyze the association between eosinophils and ICU admission and death. RESULTS Of our 1004 patients with COVID-19, low eosinophil counts/ratios were observed in severe cases. After adjusting for confounders that could have affected the outcome, we found that eosinophil counts might not be a predictor of ICU admission. In 99 ICU patients, 58 of whom survived and 41 of whom died, low eosinophil level was an indicator of death in severe COVID-19 patients with a cutoff value of 0.04 × 109/L, which had an area under the curve of 0.665 (95% CI = 1.089-17.839; P = .045) with sensitivity and specificity of 0.569 and 0.7317, respectively. CONCLUSION Our research revealed that a low eosinophil level is a predictor of death in ICU patients rather than a cause of ICU admission.
Collapse
Affiliation(s)
- Wei Xuan
- Renji Hospital, 71140Shanghai Jiaotong University, Shanghai, China
| | - Xuliang Jiang
- Renji Hospital, 71140Shanghai Jiaotong University, Shanghai, China
| | - Lili Huang
- Renji Hospital, 71140Shanghai Jiaotong University, Shanghai, China
| | - Shuting Pan
- Clinical Center for Investigation, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Caiyang Chen
- Renji Hospital, 71140Shanghai Jiaotong University, Shanghai, China
| | - Xiao Zhang
- Renji Hospital, 71140Shanghai Jiaotong University, Shanghai, China
| | - Hui Zhu
- Renji Hospital, 71140Shanghai Jiaotong University, Shanghai, China
| | - Song Zhang
- Renji Hospital, 71140Shanghai Jiaotong University, Shanghai, China
| | - Weifeng Yu
- Renji Hospital, 71140Shanghai Jiaotong University, Shanghai, China
| | - Zhiyong Peng
- Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Diansan Su
- Renji Hospital, 71140Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
31
|
Glucocorticoid and PD-1 Cross-Talk: Does the Immune System Become Confused? Cells 2021; 10:cells10092333. [PMID: 34571982 PMCID: PMC8468592 DOI: 10.3390/cells10092333] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
Programmed cell death protein 1 (PD-1) and its ligands, PD-L1/2, control T cell activation and tolerance. While PD-1 expression is induced upon T cell receptor (TCR) activation or cytokine signaling, PD-L1 is expressed on B cells, antigen presenting cells, and on non-immune tissues, including cancer cells. Importantly, PD-L1 binding inhibits T cell activation. Therefore, the modulation of PD-1/PD-L1 expression on immune cells, both circulating or in a tumor microenvironment and/or on the tumor cell surface, is one mechanism of cancer immune evasion. Therapies that target PD-1/PD-L1, blocking the T cell-cancer cell interaction, have been successful in patients with various types of cancer. Glucocorticoids (GCs) are often administered to manage the side effects of chemo- or immuno-therapy, exerting a wide range of immunosuppressive and anti-inflammatory effects. However, GCs may also have tumor-promoting effects, interfering with therapy. In this review, we examine GC signaling and how it intersects with PD-1/PD-L1 pathways, including a discussion on the potential for GC- and PD-1/PD-L1-targeted therapies to "confuse" the immune system, leading to a cancer cell advantage that counteracts anti-cancer immunotherapy. Therefore, combination therapies should be utilized with an awareness of the potential for opposing effects on the immune system.
Collapse
|
32
|
Dexamethasone suppresses immune evasion by inducing GR/STAT3 mediated downregulation of PD-L1 and IDO1 pathways. Oncogene 2021; 40:5002-5012. [PMID: 34175886 PMCID: PMC8235907 DOI: 10.1038/s41388-021-01897-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
T cell exhaustion plays critical roles in tumor immune evasion. Novel strategies to suppress immune evasion are in urgent need. We aimed to identify potential compounds to target T cell exhaustion and increase response to immune checkpoint inhibitors (ICIs). Differentially expressed genes (DEGs) were identified between tumors with different immune evasion potential by comparing the transcriptome data. DEGs were then analyzed in the Connectivity Map (CMap) platform to identify potential compounds to increase response to ICIs. Gene set enrichment analysis, LDH release assay, Chromatin immunoprecipitation (ChIP), and Co-IP were performed to explore the potential mechanisms in vitro. Patients derived organoids and humanized xenograft mouse model were utilized to validate the finding ex vivo and in vivo. We identified 25 potential compounds that may play critical roles in regulating tumor immune evasion. We further pinpointed a specific compound, dexamethasone, which shows potent anti-tumor effect in multiple cancer cell lines when cocultured with T cells. Dexamethasone can suppress T cell exhaustion by decreasing the activity of two immune checkpoints simultaneously, including PD-L1 and IDO1. Functional study shows dexamethasone can increase the sensitivity of ICIs in coculture system, 3D organoid model and humanized mouse model. Mechanism study shows dexamethasone mediated transcriptional suppression of PD-L1 and IDO1 depends on the nuclear translocation of GR/STAT3 complex. These findings demonstrate dexamethasone can suppress immune evasion by inducing GR/STAT3 mediated downregulation of PD-L1 and IDO1 pathways.
Collapse
|