1
|
Platani M, Sokefun O, Bassil E, Apidianakis Y. Genetic engineering and genome editing in plants, animals and humans: Facts and myths. Gene 2023; 856:147141. [PMID: 36574935 DOI: 10.1016/j.gene.2022.147141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Human history is inextricably linked to the introduction of desirable heritable traits in plants and animals. Selective breeding (SB) predates our historical period and has been practiced since the advent of agriculture and farming more than ten thousand years ago. Since the 1970s, methods of direct plant and animal genome manipulation are constantly being developed. These are collectively described as "genetic engineering" (GE). Plant GE aims to improve nutritional value, insect resistance and weed control. Animal GE has focused on livestock improvement and disease control. GE applications also involve medical improvements intended to treat human disease. The scientific consensus built around marketed products of GE organisms (GEOs) is usually well established, noting significant benefits and low risks. GEOs are exhaustively scrutinized in the EU and many non-EU countries for their effects on human health and the environment, but scrutiny should be equally applied to all previously untested organisms derived directly from nature or through selective breeding. In fact, there is no evidence to suggest that natural or selectively bred plants and animals are in principle safer to humans than GEOs. Natural and selectively bred strains evolve over time via genetic mutations that can be as risky to humans and the environment as the mutations found in GEOs. Thus, previously untested plant and animal strains aimed for marketing should be proven useful or harmful to humans only upon comparative testing, regardless of their origin. Highlighting the scientific consensus declaring significant benefits and rather manageable risks provided by equitably accessed GEOs, can mitigate negative predispositions by policy makers and the public. Accordingly, we provide an overview of the underlying technologies and the scientific consensus to help resolve popular myths about the safety and usefulness of GEOs.
Collapse
Affiliation(s)
- Maria Platani
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Owolabi Sokefun
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Elias Bassil
- Horticultural Sciences Department, University of Florida, Gainesville, USA
| | | |
Collapse
|
2
|
Smirnov A, Battulin N. Concatenation of Transgenic DNA: Random or Orchestrated? Genes (Basel) 2021; 12:genes12121969. [PMID: 34946918 PMCID: PMC8701086 DOI: 10.3390/genes12121969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022] Open
Abstract
Generation of transgenic organisms by pronuclear microinjection has become a routine procedure. However, while the process of DNA integration in the genome is well understood, we still do not know much about the recombination between transgene molecules that happens in the first moments after DNA injection. Most of the time, injected molecules are joined together in head-to-tail tandem repeats-the so-called concatemers. In this review, we focused on the possible concatenation mechanisms and how they could be studied with genetic reporters tracking individual copies in concatemers. We also discuss various features of concatemers, including palindromic junctions and repeat-induced gene silencing (RIGS). Finally, we speculate how cooperation of DNA repair pathways creates a multicopy concatenated insert.
Collapse
Affiliation(s)
- Alexander Smirnov
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia;
| | - Nariman Battulin
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia;
- Institute of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
3
|
Progress in Gene-Editing Technology of Zebrafish. Biomolecules 2021; 11:biom11091300. [PMID: 34572513 PMCID: PMC8468279 DOI: 10.3390/biom11091300] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/26/2022] Open
Abstract
As a vertebrate model, zebrafish (Danio rerio) plays a vital role in the field of life sciences. Recently, gene-editing technology has become increasingly innovative, significantly promoting scientific research on zebrafish. However, the implementation of these methods in a reasonable and accurate manner to achieve efficient gene-editing remains challenging. In this review, we systematically summarize the development and latest progress in zebrafish gene-editing technology. Specifically, we outline trends in double-strand break-free genome modification and the prospective applications of fixed-point orientation transformation of any base at any location through a multi-method approach.
Collapse
|
4
|
Smirnov A, Fishman V, Yunusova A, Korablev A, Serova I, Skryabin BV, Rozhdestvensky TS, Battulin N. DNA barcoding reveals that injected transgenes are predominantly processed by homologous recombination in mouse zygote. Nucleic Acids Res 2020; 48:719-735. [PMID: 31740957 PMCID: PMC7145541 DOI: 10.1093/nar/gkz1085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
Mechanisms that ensure repair of double-strand DNA breaks (DSBs) are instrumental in the integration of foreign DNA into the genome of transgenic organisms. After pronuclear microinjection, exogenous DNA is usually found as a concatemer comprising multiple co-integrated transgene copies. Here, we investigated the contribution of various DSB repair pathways to the concatemer formation. We injected mouse zygotes with a pool of linear DNA molecules carrying unique barcodes at both ends and obtained 10 transgenic embryos with 1–300 transgene copies. Sequencing the barcodes allowed us to assign relative positions to the copies in concatemers and detect recombination events that occurred during integration. Cumulative analysis of approximately 1,000 integrated copies reveals that over 80% of them underwent recombination when their linear ends were processed by synthesis-dependent strand annealing (SDSA) or double-strand break repair (DSBR). We also observed evidence of double Holliday junction (dHJ) formation and crossing over during the concatemer formations. Sequencing indels at the junctions between copies shows that at least 10% of DNA molecules introduced into the zygotes are ligated by non-homologous end joining (NHEJ). Our barcoding approach, verified with Pacific Biosciences Single Molecule Real-Time (SMRT) long-range sequencing, documents high activity of homologous recombination after DNA microinjection.
Collapse
Affiliation(s)
| | - Veniamin Fishman
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | | | - Alexey Korablev
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Irina Serova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Boris V Skryabin
- Medical Faculty, Core Facility Transgenic animal and genetic engineering Models (TRAM), University of Muenster, Muenster, Germany
| | - Timofey S Rozhdestvensky
- Medical Faculty, Core Facility Transgenic animal and genetic engineering Models (TRAM), University of Muenster, Muenster, Germany
| | - Nariman Battulin
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
5
|
Li J, Li HY, Gu SY, Zi HX, Jiang L, Du JL. One-step generation of zebrafish carrying a conditional knockout-knockin visible switch via CRISPR/Cas9-mediated intron targeting. SCIENCE CHINA. LIFE SCIENCES 2020; 63:59-67. [PMID: 31872378 DOI: 10.1007/s11427-019-1607-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/16/2019] [Indexed: 01/05/2023]
Abstract
The zebrafish has become a popular vertebrate animal model in biomedical research. However, it is still challenging to make conditional gene knockout (CKO) models in zebrafish due to the low efficiency of homologous recombination (HR). Here we report an efficient non-HR-based method for generating zebrafish carrying a CKO and knockin (KI) switch (zCKOIS) coupled with dual-color fluorescent reporters. Using this strategy, we generated hey2zKOIS which served as a hey2 KI reporter with EGFP expression. Upon Cre induction in targeted cells, the hey2zCKOIS was switched to a non-functional CKO allele hey2zCKOIS-invassociated with TagRFP expression, enabling visualization of the CKO alleles. Thus, simplification of the design, and the visibility and combination of both CKO and KI alleles make our zCKOIS strategy an applicable CKO approach for zebrafish.
Collapse
Affiliation(s)
- Jia Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Hong-Yu Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan-Ye Gu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Hua-Xing Zi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jiu-Lin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China.
| |
Collapse
|
6
|
Li W, Zhang Y, Han B, Li L, Li M, Lu X, Chen C, Lu M, Zhang Y, Jia X, Zhu Z, Tong X, Zhang B. One-step efficient generation of dual-function conditional knockout and geno-tagging alleles in zebrafish. eLife 2019; 8:48081. [PMID: 31663848 PMCID: PMC6845224 DOI: 10.7554/elife.48081] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
CRISPR/Cas systems are widely used to knock out genes by inducing indel mutations, which are prone to genetic compensation. Complex genome modifications such as knockin (KI) might bypass compensation, though difficult to practice due to low efficiency. Moreover, no ‘two-in-one’ KI strategy combining conditional knockout (CKO) with fluorescent gene-labeling or further allele-labeling has been reported. Here, we developed a dual-cassette-donor strategy and achieved one-step and efficient generation of dual-function KI alleles at tbx5a and kctd10 loci in zebrafish via targeted insertion. These alleles display fluorescent gene-tagging and CKO effects before and after Cre induction, respectively. By introducing a second fluorescent reporter, geno-tagging effects were achieved at tbx5a and sox10 loci, exhibiting CKO coupled with fluorescent reporter switch upon Cre induction, enabling tracing of three distinct genotypes. We found that LiCl purification of gRNA is critical for highly efficient KI, and preselection of founders allows the efficient germline recovery of KI events.
Collapse
Affiliation(s)
- Wenyuan Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Yage Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Bingzhou Han
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Lianyan Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Muhang Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Xiaochan Lu
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Cheng Chen
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Mengjia Lu
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yujie Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Xuefeng Jia
- Gcrispr (Tianjin) Genetic Technology, Tianjin, China
| | - Zuoyan Zhu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Xiangjun Tong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
7
|
Abstract
Transgenic mouse models can be subdivided into two main categories based on genomic location: (1) targeted genomic manipulation and (2) random integration into the genome. Despite the potential confounding insertional mutagenesis and host locus-dependent expression, random integration transgenics allowed for rapid in vivo assessment of gene/protein function. Since precise genomic manipulation required the time-consuming prerequisite of first generating genetically modified embryonic stem cells, the rapid nature of generating random integration transgenes remained a strong benefit outweighing various disadvantages. The advent of targetable nucleases, such as CRISPR/Cas9, has eliminated the prerequisite of first generating genetically modified embryonic stem cells for some types of targeted genomic mutations. This chapter outlines the generation of mouse models with targeted genomic manipulation using the CRISPR/Cas9 system directly into single cell mouse embryos.
Collapse
Affiliation(s)
- Greg J Scott
- Knockout Mouse Core, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Artiom Gruzdev
- Knockout Mouse Core, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
8
|
Establishment and application of distant hybridization technology in fish. SCIENCE CHINA-LIFE SCIENCES 2018; 62:22-45. [DOI: 10.1007/s11427-018-9408-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022]
|
9
|
Lee SH, Kim S, Hur JK. CRISPR and Target-Specific DNA Endonucleases for Efficient DNA Knock-in in Eukaryotic Genomes. Mol Cells 2018; 41:943-952. [PMID: 30486613 PMCID: PMC6277560 DOI: 10.14348/molcells.2018.0408] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 01/23/2023] Open
Abstract
The discovery and mechanistic understanding of target-specific genome engineering technologies has led to extremely effective and specific genome editing in higher organisms. Target-specific genetic modification technology is expected to have a leading position in future gene therapy development, and has a ripple effect on various basic and applied studies. However, several problems remain and hinder efficient and specific editing of target genomic loci. The issues are particularly critical in precise targeted insertion of external DNA sequences into genomes. Here, we discuss some recent efforts to overcome such problems and present a perspective of future genome editing technologies.
Collapse
Affiliation(s)
- Seung Hwan Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116,
Korea
| | - Sunghyun Kim
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447,
Korea
| | - Junho K Hur
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447,
Korea
| |
Collapse
|
10
|
Yang Z, Chen S, Xue S, Li X, Hu J, Sun Z, Cui H. Injection of an SV40 transcriptional terminator causes embryonic lethality: a possible zebrafish model for screening nonhomologous end-joining inhibitors. Onco Targets Ther 2018; 11:4945-4953. [PMID: 30154663 PMCID: PMC6103608 DOI: 10.2147/ott.s153576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Introduction DNA repair by the nonhomologous end joining (NHEJ) pathway promotes tumor recurrence after chemotherapy and radiotherapy. Discovery of rapid and high-throughput techniques to screen for an effective NHEJ inhibitor drug is imperative for the suppression of NHEJ during tumor treatment. However, traditional screening methods are too cumbersome to meet the current need. Zebrafish is an ideal model for drug screening due to the specificity of its early embryonic development and similarity of tumor cell generation. By exploiting the high frequency of NHEJ in early embryonic development, we established a model that uses a transcriptional terminator signal fragment from the Simian virus 40 (SV40) to cause embryonic lethality. SV40 fragment-induced embryonic lethality was alleviated by 5,6-bis ((E)-benzylideneamino)-2-mercaptopyrimidin-4-ol or C18H14N4OS (SCR7), an NHEJ inhibitor. Materials and methods A 122 bp SV40 terminator fragment (10 ng/µL) was microinjected into zebrafish zygotes. SV40 fragment integration into the zebrafish embryonic genome was detected by Southern blot using a DNA probe for the SV40 terminator. Embryonic lethality rates were observed 24 and 48 h after microinjection. A nonhomologous recombinant inhibitor, SCR7 (5 µM), was used to alleviate embryonic lethality. Results Microinjection of zebrafish embryos with the SV40 terminator fragment (10 ng/µL) caused a progressive increase in mortality over time. Using Southern blots, we confirmed that SV40 terminator sequences were integrated into the zebrafish embryonic genome. This phenomenon was effectively alleviated by addition of SCR7. Conclusion Injection of an SV40 terminator into zebrafish embryos may cause embryonic lethality due to NHEJ during early zebrafish development. The high mortality of zebrafish embryos could be alleviated by using the NHEJ inhibitor, SCR7. The zebrafish model presented here is simpler and more convenient than traditional methods of screening for NHEJ inhibitors and can be utilized in large-scale drug screens for NHEJ inhibitors and for the development of novel anticancer drugs.
Collapse
Affiliation(s)
- Zhe Yang
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China, .,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China,
| | - Shihao Chen
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China, .,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China,
| | - Songlei Xue
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China, .,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China,
| | - Xinxiu Li
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China, .,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China,
| | - Jiang Hu
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China, .,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China,
| | - Zhen Sun
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China, .,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China,
| | - Hengmi Cui
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China, .,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China, .,Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China, .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China, .,Joint International Research Laboratory of Agricultural & Agri-Product Safety of Educational Ministry of China, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China,
| |
Collapse
|
11
|
Staunstrup NH, Stenderup K, Mortensen S, Primo MN, Rosada C, Steiniche T, Liu Y, Li R, Schmidt M, Purup S, Dagnæs-Hansen F, Schrøder LD, Svensson L, Petersen TK, Callesen H, Bolund L, Mikkelsen JG. Psoriasiform skin disease in transgenic pigs with high-copy ectopic expression of human integrins α2 and β1. Dis Model Mech 2018; 10:869-880. [PMID: 28679670 PMCID: PMC5536904 DOI: 10.1242/dmm.028662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 05/12/2017] [Indexed: 01/15/2023] Open
Abstract
Psoriasis is a complex human-specific disease characterized by perturbed keratinocyte proliferation and a pro-inflammatory environment in the skin. Porcine skin architecture and immunity are very similar to that in humans, rendering the pig a suitable animal model for studying the biology and treatment of psoriasis. Expression of integrins, which is normally confined to the basal layer of the epidermis, is maintained in suprabasal keratinocytes in psoriatic skin, modulating proliferation and differentiation as well as leukocyte infiltration. Here, we generated minipigs co-expressing integrins α2 and β1 in suprabasal epidermal layers. Integrin-transgenic minipigs born into the project displayed skin phenotypes that correlated with the number of inserted transgenes. Molecular analyses were in good concordance with histological observations of psoriatic hallmarks, including hypogranulosis and T-lymphocyte infiltration. These findings mark the first creation of minipigs with a psoriasiform phenotype resembling human psoriasis and demonstrate that integrin signaling plays a key role in psoriasis pathology. Summary: A cloned porcine disease model to advance topical treatment in the debilitating skin disorder psoriasis.
Collapse
Affiliation(s)
- Nicklas Heine Staunstrup
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.,iPSYCH The Lundbeck Foundation Initiative For Integrative Psychiatric Research, Denmark.,iSEQ, Centre for integrative sequencing, Aarhus, Denmark
| | - Karin Stenderup
- Department of Dermatology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Sidsel Mortensen
- Department of Skin Inflammation Pharmacology, LEO Pharma, 2750 Ballerup, Denmark
| | | | - Cecilia Rosada
- Department of Dermatology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Torben Steiniche
- Department of Dermatology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Ying Liu
- Department of Animal Science, Aarhus University, 8830 Tjele, Denmark
| | - Rong Li
- Department of Animal Science, Aarhus University, 8830 Tjele, Denmark
| | - Mette Schmidt
- Department of Veterinary Reproduction and Obstetrics, Faculty of Life Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Stig Purup
- Department of Animal Science, Aarhus University, 8830 Tjele, Denmark
| | | | | | - Lars Svensson
- Department of NME Ideation, LEO Pharma, 2750 Ballerup, Denmark
| | | | - Henrik Callesen
- Department of Animal Science, Aarhus University, 8830 Tjele, Denmark
| | - Lars Bolund
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.,iSEQ, Centre for integrative sequencing, Aarhus, Denmark.,HuaDa JiYin (BGI), Shenzhen 518083, China
| | | |
Collapse
|
12
|
Kesavan G, Hammer J, Hans S, Brand M. Targeted knock-in of CreER T2 in zebrafish using CRISPR/Cas9. Cell Tissue Res 2018; 372:41-50. [DOI: 10.1007/s00441-018-2798-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/16/2018] [Indexed: 12/31/2022]
|
13
|
Tálas A, Kulcsár PI, Weinhardt N, Borsy A, Tóth E, Szebényi K, Krausz SL, Huszár K, Vida I, Sturm Á, Gordos B, Hoffmann OI, Bencsura P, Nyeste A, Ligeti Z, Fodor E, Welker E. A convenient method to pre-screen candidate guide RNAs for CRISPR/Cas9 gene editing by NHEJ-mediated integration of a 'self-cleaving' GFP-expression plasmid. DNA Res 2017; 24:609-621. [PMID: 28679166 PMCID: PMC5726473 DOI: 10.1093/dnares/dsx029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 06/07/2017] [Indexed: 12/20/2022] Open
Abstract
The efficacies of guide RNAs (gRNAs), the short RNA molecules that bind to and determine the sequence specificity of the Streptococcus pyogenes Cas9 nuclease, to mediate DNA cleavage vary dramatically. Thus, the selection of appropriate target sites, and hence spacer sequence, is critical for most applications. Here, we describe a simple, unparalleled method for experimentally pre-testing the efficiencies of various gRNAs targeting a gene. The method explores NHEJ-cloning, genomic integration of a GFP-expressing plasmid without homologous arms and linearized in-cell. The use of 'self-cleaving' GFP-plasmids containing universal gRNAs and corresponding targets alleviates cloning burdens when this method is applied. These universal gRNAs mediate efficient plasmid cleavage and are designed to avoid genomic targets in several model species. The method combines the advantages of the straightforward FACS detection provided by applying fluorescent reporter systems and of the PCR-based approaches being capable of testing targets in their genomic context, without necessitating any extra cloning steps. Additionally, we show that NHEJ-cloning can also be used in mammalian cells for targeted integration of donor plasmids up to 10 kb in size, with up to 30% efficiency, without any selection or enrichment.
Collapse
Affiliation(s)
- András Tálas
- School of Ph.D. Studies, Semmelweis University, Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Péter István Kulcsár
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- University of Szeged, Szeged, Hungary
| | - Nóra Weinhardt
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- University of Szeged, Szeged, Hungary
| | - Adrienn Borsy
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Eszter Tóth
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Kornélia Szebényi
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Sarah Laura Krausz
- School of Ph.D. Studies, Semmelweis University, Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Krisztina Huszár
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - István Vida
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
- Institute of Organic Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Ádám Sturm
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Bianka Gordos
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Orsolya Ivett Hoffmann
- Animal Biotechnology Section, Ruminant Genome Biology Group, NARIC Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Petra Bencsura
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Antal Nyeste
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Zoltán Ligeti
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Elfrieda Fodor
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Ervin Welker
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
14
|
Kesavan G, Chekuru A, Machate A, Brand M. CRISPR/Cas9-Mediated Zebrafish Knock-in as a Novel Strategy to Study Midbrain-Hindbrain Boundary Development. Front Neuroanat 2017; 11:52. [PMID: 28713249 PMCID: PMC5492657 DOI: 10.3389/fnana.2017.00052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/19/2017] [Indexed: 11/13/2022] Open
Abstract
The midbrain-hindbrain boundary (MHB) acts as an organizer and controls the fate of neighboring cells to develop into either mesencephalic (midbrain) or metencephalic (hindbrain) cells by secreting signaling molecules like Wnt1 and Fgf8. The zebrafish is an excellent vertebrate model for studying MHB development due to the ease of gene manipulation and the possibility of following cellular dynamics and morphogenetic processes using live imaging. Currently, only very few reporter and/or Cre-driver lines are available to study gene expression at the MHB, hampering the understanding of MHB development, and traditional transgenic technologies using promoter/enhancer fragments or bacterial artificial chromosome (BAC)-mediated transgenesis often do not faithfully recapitulate endogenous expression patterns. In contrast, CRISPR/Cas9-mediated genome editing technology now provides a great opportunity to efficiently knock-in or knock-out genes. We have generated four CRISPR/Cas9-based knock-in fluorescent reporter lines for two crucial genes involved in MHB development, namely otx2 and pax2a. The coding sequences of the reporters were knocked-in upstream of the corresponding ATG and are, thus, under the control of the endogenous promoter/enhancer elements. Interestingly, this strategy does not disturb endogenous gene expression. Using the fast maturing fluorescent protein reporter, Venus, enabled us to follow MHB development using cell tracking and live imaging. In addition, we show that these reporter lines label various neuronal and glial cell types in the adult zebrafish brain, making them highly suitable for investigating embryonic and adult midbrain, hindbrain, and MHB development.
Collapse
Affiliation(s)
- Gokul Kesavan
- Biotechnology Center and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität DresdenDresden, Germany
| | - Avinash Chekuru
- Biotechnology Center and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität DresdenDresden, Germany
| | - Anja Machate
- Biotechnology Center and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität DresdenDresden, Germany
| | - Michael Brand
- Biotechnology Center and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität DresdenDresden, Germany
| |
Collapse
|
15
|
Cooper CA, Challagulla A, Jenkins KA, Wise TG, O'Neil TE, Morris KR, Tizard ML, Doran TJ. Generation of gene edited birds in one generation using sperm transfection assisted gene editing (STAGE). Transgenic Res 2017; 26:331-347. [PMID: 27896535 DOI: 10.1007/s11248-016-0003-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/16/2016] [Indexed: 12/28/2022]
Abstract
Generating transgenic and gene edited mammals involves in vitro manipulation of oocytes or single cell embryos. Due to the comparative inaccessibility of avian oocytes and single cell embryos, novel protocols have been developed to produce transgenic and gene edited birds. While these protocols are relatively efficient, they involve two generation intervals before reaching complete somatic and germline expressing transgenic or gene edited birds. Most of this work has been done with chickens, and many protocols require in vitro culturing of primordial germ cells (PGCs). However, for many other bird species no methodology for long term culture of PGCs exists. Developing methodologies to produce germline transgenic or gene edited birds in the first generation would save significant amounts of time and resource. Furthermore, developing protocols that can be readily adapted to a wide variety of avian species would open up new research opportunities. Here we report a method using sperm as a delivery mechanism for gene editing vectors which we call sperm transfection assisted gene editing (STAGE). We have successfully used this method to generate GFP knockout embryos and chickens, as well as generate embryos with mutations in the doublesex and mab-3 related transcription factor 1 (DMRT1) gene using the CRISPR/Cas9 system. The efficiency of the method varies from as low as 0% to as high as 26% with multiple factors such as CRISPR guide efficiency and mRNA stability likely impacting the outcome. This straightforward methodology could simplify gene editing in many bird species including those for which no methodology currently exists.
Collapse
Affiliation(s)
- Caitlin A Cooper
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Arjun Challagulla
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Kristie A Jenkins
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Terry G Wise
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Terri E O'Neil
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Kirsten R Morris
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Mark L Tizard
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Timothy J Doran
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia.
| |
Collapse
|
16
|
Albadri S, Del Bene F, Revenu C. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish. Methods 2017; 121-122:77-85. [PMID: 28300641 DOI: 10.1016/j.ymeth.2017.03.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/13/2017] [Accepted: 03/03/2017] [Indexed: 12/19/2022] Open
Abstract
With its variety of applications, the CRISPR/Cas9 genome editing technology has been rapidly evolving in the last few years. In the zebrafish community, knock-out reports are constantly increasing but insertion studies have been so far more challenging. With this review, we aim at giving an overview of the homologous directed repair (HDR)-based knock-in generation in zebrafish. We address the critical points and limitations of the procedure such as cutting efficiency of the chosen single guide RNA, use of cas9 mRNA or Cas9 protein, homology arm size etc. but also ways to circumvent encountered issues with HDR insertions by the development of non-homologous dependent strategies. While imprecise, these homology-independent mechanisms based on non-homologous-end-joining (NHEJ) repair have been employed in zebrafish to generate reporter lines or to accurately edit an open reading frame by the use of intron-targeting modifications. Therefore, with higher efficiency and insertion rate, NHEJ-based knock-in seems to be a promising approach to target endogenous loci and to circumvent the limitations of HDR whenever it is possible and appropriate. In this perspective, we propose new strategies to generate cDNA edited or tagged insertions, which once established will constitute a new and versatile toolbox for CRISPR/Cas9-based knock-ins in zebrafish.
Collapse
Affiliation(s)
- Shahad Albadri
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex 05, France
| | - Filippo Del Bene
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex 05, France.
| | - Céline Revenu
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex 05, France
| |
Collapse
|
17
|
Abstract
Iron is a crucial component of heme- and iron-sulfur clusters, involved in vital cellular functions such as oxygen transport, DNA synthesis, and respiration. Both excess and insufficient levels of iron and heme-precursors cause human disease, such as iron-deficiency anemia, hemochromatosis, and porphyrias. Hence, their levels must be tightly regulated, requiring a complex network of transporters and feedback mechanisms. The use of zebrafish to study these pathways and the underlying genetics offers many advantages, among others their optical transparency, ex-vivo development and high genetic and physiological conservations. This chapter first reviews well-established methods, such as large-scale mutagenesis screens that have led to the initial identification of a series of iron and heme transporters and the generation of a variety of mutant lines. Other widely used techniques are based on injection of RNA, including complementary morpholino knockdown and gene overexpression. In addition, we highlight several recently developed approaches, most notably endonuclease-based gene knockouts such as TALENs or the CRISPR/Cas9 system that have been used to study how loss of function can induce human disease phenocopies in zebrafish. Rescue by chemical complementation with iron-based compounds or small molecules can subsequently be used to confirm causality of the genetic defect for the observed phenotype. All together, zebrafish have proven to be - and will continue to serve as an ideal model to advance our understanding of the pathogenesis of human iron and heme-related diseases and to develop novel therapies to treat these conditions.
Collapse
Affiliation(s)
| | - Barry H. Paw
- Brigham & Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Dana-Farber Cancer Institute, Boston, MA, United States
- Boston Children’s Hospital, Boston, MA, United States
| |
Collapse
|
18
|
Kostyrko K, Neuenschwander S, Junier T, Regamey A, Iseli C, Schmid-Siegert E, Bosshard S, Majocchi S, Le Fourn V, Girod PA, Xenarios I, Mermod N. MAR-Mediated transgene integration into permissive chromatin and increased expression by recombination pathway engineering. Biotechnol Bioeng 2016; 114:384-396. [PMID: 27575535 PMCID: PMC5215416 DOI: 10.1002/bit.26086] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/03/2016] [Accepted: 08/25/2016] [Indexed: 12/27/2022]
Abstract
Untargeted plasmid integration into mammalian cell genomes remains a poorly understood and inefficient process. The formation of plasmid concatemers and their genomic integration has been ascribed either to non-homologous end-joining (NHEJ) or homologous recombination (HR) DNA repair pathways. However, a direct involvement of these pathways has remained unclear. Here, we show that the silencing of many HR factors enhanced plasmid concatemer formation and stable expression of the gene of interest in Chinese hamster ovary (CHO) cells, while the inhibition of NHEJ had no effect. However, genomic integration was decreased by the silencing of specific HR components, such as Rad51, and DNA synthesis-dependent microhomology-mediated end-joining (SD-MMEJ) activities. Genome-wide analysis of the integration loci and junction sequences validated the prevalent use of the SD-MMEJ pathway for transgene integration close to cellular genes, an effect shared with matrix attachment region (MAR) DNA elements that stimulate plasmid integration and expression. Overall, we conclude that SD-MMEJ is the main mechanism driving the illegitimate genomic integration of foreign DNA in CHO cells, and we provide a recombination engineering approach that increases transgene integration and recombinant protein expression in these cells. Biotechnol. Bioeng. 2017;114: 384-396. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kaja Kostyrko
- Department of Fundamental Microbiology, Institute of Biotechnology, University of Lausanne, and Center for Biotechnology UNIL-EPFL, Lausanne, Switzerland
| | | | - Thomas Junier
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | | | | | - Sandra Bosshard
- Department of Fundamental Microbiology, Institute of Biotechnology, University of Lausanne, and Center for Biotechnology UNIL-EPFL, Lausanne, Switzerland
| | - Stefano Majocchi
- Department of Fundamental Microbiology, Institute of Biotechnology, University of Lausanne, and Center for Biotechnology UNIL-EPFL, Lausanne, Switzerland
| | | | | | | | - Nicolas Mermod
- Department of Fundamental Microbiology, Institute of Biotechnology, University of Lausanne, and Center for Biotechnology UNIL-EPFL, Lausanne, Switzerland
| |
Collapse
|
19
|
Intron-based genomic editing: a highly efficient method for generating knockin zebrafish. Oncotarget 2016; 6:17891-4. [PMID: 26143640 PMCID: PMC4627223 DOI: 10.18632/oncotarget.4547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 06/06/2015] [Indexed: 01/17/2023] Open
Abstract
The TALEN and CRISPR/Cas9 nuclease systems have been extensively utilized in genomic engineering of model organisms. In zebrafish, the nuclease systems have been successfully applied in generating loss-of–function knockout lines. However, genome-specific knockin techniques in zebrafish are still at the beginning. In this perspective, we briefly summarize the recent progresses on knockin approaches in zebrafish with a special focus on the newly developed intron-based knockin method.
Collapse
|
20
|
The integration characteristics of the exogenous growth hormone gene in a transgenic common carp (Cyprinus carpio L.) with fast-growth performance. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0893-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Using transgenic reporter assays to functionally characterize enhancers in animals. Genomics 2015; 106:185-192. [PMID: 26072435 DOI: 10.1016/j.ygeno.2015.06.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 05/11/2015] [Accepted: 06/09/2015] [Indexed: 11/21/2022]
Abstract
Enhancers or cis-regulatory modules play an instructive role in regulating gene expression during animal development and in response to the environment. Despite their importance, we only have an incomplete map of enhancers in the genome and our understanding of the mechanisms governing their function is still limited. Recent advances in genomics provided powerful tools to generate genome-wide maps of potential enhancers. However, most of these methods are based on indirect measures of enhancer activity and have to be followed by functional testing. Animal transgenesis has been a valuable method to functionally test and characterize enhancers in vivo. In this review I discuss how different transgenic strategies are utilized to characterize enhancers in model organisms focusing on studies in Drosophila and mouse. I will further discuss recent large-scale transgenic efforts to systematically identify and catalog enhancers as well as highlight the challenges and future directions in the field.
Collapse
|
22
|
Wyatt C, Bartoszek EM, Yaksi E. Methods for studying the zebrafish brain: past, present and future. Eur J Neurosci 2015; 42:1746-63. [PMID: 25900095 DOI: 10.1111/ejn.12932] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 01/16/2023]
Abstract
The zebrafish (Danio rerio) is one of the most promising new model organisms. The increasing popularity of this amazing small vertebrate is evident from the exponentially growing numbers of research articles, funded projects and new discoveries associated with the use of zebrafish for studying development, brain function, human diseases and screening for new drugs. Thanks to the development of novel technologies, the range of zebrafish research is constantly expanding with new tools synergistically enhancing traditional techniques. In this review we will highlight the past and present techniques which have made, and continue to make, zebrafish an attractive model organism for various fields of biology, with a specific focus on neuroscience.
Collapse
Affiliation(s)
- Cameron Wyatt
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef, Leuven, Belgium.,VIB, Leuven, Belgium
| | - Ewelina M Bartoszek
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef, Leuven, Belgium.,VIB, Leuven, Belgium.,Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Emre Yaksi
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef, Leuven, Belgium.,VIB, Leuven, Belgium.,KU Leuven, Leuven, Belgium.,Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
23
|
Li J, Zhang BB, Ren YG, Gu SY, Xiang YH, Du JL. Intron targeting-mediated and endogenous gene integrity-maintaining knockin in zebrafish using the CRISPR/Cas9 system. Cell Res 2015; 25:634-7. [PMID: 25849248 PMCID: PMC4423083 DOI: 10.1038/cr.2015.43] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Jia Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Bai-bing Zhang
- 1] Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China [2] Graduate School, University of Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Yong-gang Ren
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Shan-ye Gu
- 1] Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China [2] Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cai-Lun Road, Shanghai 201203, China
| | - Yuan-hang Xiang
- School of Life Science and Technology, ShanghaiTech University, 319 Yue-Yang Road, Shanghai 200031, China
| | - Jiu-lin Du
- 1] Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China [2] Graduate School, University of Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China [3] School of Life Science and Technology, ShanghaiTech University, 319 Yue-Yang Road, Shanghai 200031, China
| |
Collapse
|
24
|
Qiu C, Cheng B, Zhang Y, Huang R, Liao L, Li Y, Luo D, Hu W, Wang Y. Efficient knockout of transplanted green fluorescent protein gene in medaka using TALENs. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:674-683. [PMID: 25056495 DOI: 10.1007/s10126-014-9584-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/03/2014] [Indexed: 06/03/2023]
Abstract
Transcription activator-like effector nucleases (TALENs) are used for gene knockout and genome-editing studies in zebrafish, and these techniques have the potential to be applied to other fish species. Here, we show that TALENs can directly knock out a green fluorescent protein (GFP) transgene in medaka by affecting translation and synthesis of the GFP. We constructed a transgenic plasmid (pGFP-RFP) carrying the GFP and red fluorescent protein (RFP) genes, and used a modified TALEN method to assemble a pair of TALENs for the core chromophore Y66 region of GFP. Embryo toxicity of TALEN messenger RNA (mRNA) was far lower than the linearized plasmid; meanwhile, 76.3 % embryos, green fluorescence of embryos decreased significantly after co-injection of TALEN mRNA and the linearized plasmid, but red fluorescence showed no significant change. Real-time quantitative polymerase chain reaction and sequencing results showed that nearly 100 % mutated GFP position was disrupted at the Y66 region of GFP in the co-injected medaka embryos, caused by TALENs. This led to random insertion-deletion of nucleotides, which affected the translation of GFP and disrupted GFP synthesis. This provides new experimental evidence for designing TALEN sites in genes for which only key functional domains are known. Our results show that a modified TALEN method can efficiently and specifically mediate a transgene knockout in medaka. This report may promote the application of TALENs in gene-editing studies of fish species other than zebrafish.
Collapse
Affiliation(s)
- Chao Qiu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuhan, 430072, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Auer TO, Del Bene F. CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish. Methods 2014; 69:142-50. [DOI: 10.1016/j.ymeth.2014.03.027] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/07/2014] [Accepted: 03/24/2014] [Indexed: 12/26/2022] Open
|
26
|
Remy S, Tesson L, Menoret S, Usal C, De Cian A, Thepenier V, Thinard R, Baron D, Charpentier M, Renaud JB, Buelow R, Cost GJ, Giovannangeli C, Fraichard A, Concordet JP, Anegon I. Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases. Genome Res 2014; 24:1371-83. [PMID: 24989021 PMCID: PMC4120090 DOI: 10.1101/gr.171538.113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The generation of genetically modified animals is important for both research and commercial purposes. The rat is an important model organism that until recently lacked efficient genetic engineering tools. Sequence-specific nucleases, such as ZFNs, TALE nucleases, and CRISPR/Cas9 have allowed the creation of rat knockout models. Genetic engineering by homology-directed repair (HDR) is utilized to create animals expressing transgenes in a controlled way and to introduce precise genetic modifications. We applied TALE nucleases and donor DNA microinjection into zygotes to generate HDR-modified rats with large new sequences introduced into three different loci with high efficiency (0.62%–5.13% of microinjected zygotes). Two of these loci (Rosa26 and Hprt1) are known to allow robust and reproducible transgene expression and were targeted for integration of a GFP expression cassette driven by the CAG promoter. GFP-expressing embryos and four Rosa26 GFP rat lines analyzed showed strong and widespread GFP expression in most cells of all analyzed tissues. The third targeted locus was Ighm, where we performed successful exon exchange of rat exon 2 for the human one. At all three loci we observed HDR only when using linear and not circular donor DNA. Mild hypothermic (30°C) culture of zygotes after microinjection increased HDR efficiency for some loci. Our study demonstrates that TALE nuclease and donor DNA microinjection into rat zygotes results in efficient and reproducible targeted donor integration by HDR. This allowed creation of genetically modified rats in a work-, cost-, and time-effective manner.
Collapse
Affiliation(s)
- Séverine Remy
- INSERM UMR 1064-ITUN, CHU de Nantes, Nantes F44093, France; Platform Rat Transgenesis, Nantes F44093, France
| | - Laurent Tesson
- INSERM UMR 1064-ITUN, CHU de Nantes, Nantes F44093, France; Platform Rat Transgenesis, Nantes F44093, France
| | - Séverine Menoret
- INSERM UMR 1064-ITUN, CHU de Nantes, Nantes F44093, France; Platform Rat Transgenesis, Nantes F44093, France
| | - Claire Usal
- INSERM UMR 1064-ITUN, CHU de Nantes, Nantes F44093, France; Platform Rat Transgenesis, Nantes F44093, France
| | - Anne De Cian
- INSERM U565, CNRS UMR7196, Museum National d'Histoire Naturelle, F75005 Paris, France
| | - Virginie Thepenier
- INSERM UMR 1064-ITUN, CHU de Nantes, Nantes F44093, France; Platform Rat Transgenesis, Nantes F44093, France
| | - Reynald Thinard
- INSERM UMR 1064-ITUN, CHU de Nantes, Nantes F44093, France; Platform Rat Transgenesis, Nantes F44093, France
| | - Daniel Baron
- INSERM UMR 1064-ITUN, CHU de Nantes, Nantes F44093, France
| | - Marine Charpentier
- INSERM U565, CNRS UMR7196, Museum National d'Histoire Naturelle, F75005 Paris, France
| | - Jean-Baptiste Renaud
- INSERM U565, CNRS UMR7196, Museum National d'Histoire Naturelle, F75005 Paris, France
| | - Roland Buelow
- Open Monoclonal Technologies, Palo Alto, California 94303, USA
| | | | - Carine Giovannangeli
- INSERM U565, CNRS UMR7196, Museum National d'Histoire Naturelle, F75005 Paris, France
| | | | - Jean-Paul Concordet
- INSERM U565, CNRS UMR7196, Museum National d'Histoire Naturelle, F75005 Paris, France
| | - Ignacio Anegon
- INSERM UMR 1064-ITUN, CHU de Nantes, Nantes F44093, France; Platform Rat Transgenesis, Nantes F44093, France
| |
Collapse
|
27
|
Abstract
Genome editing using the Cas9 endonuclease of Streptococcus pyogenes has demonstrated unprecedented efficacy and facility in a wide variety of biological systems. In zebrafish, specifically, studies have shown that Cas9 can be directed to user-defined genomic target sites via synthetic guide RNAs, enabling random or homology-directed sequence alterations, long-range chromosomal deletions, simultaneous disruption of multiple genes, and targeted integration of several kilobases of DNA. Altogether, these methods are opening new doors for the engineering of knock-outs, conditional alleles, tagged proteins, reporter lines, and disease models. In addition, the ease and high efficiency of generating Cas9-mediated gene knock-outs provides great promise for high-throughput functional genomics studies in zebrafish. In this chapter, we briefly review the origin of CRISPR/Cas technology and discuss current Cas9-based genome-editing applications in zebrafish with particular emphasis on their designs and implementations.
Collapse
Affiliation(s)
- Andrew P W Gonzales
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jing-Ruey Joanna Yeh
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
28
|
Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 2014; 24:142-53. [PMID: 24179142 PMCID: PMC3875856 DOI: 10.1101/gr.161638.113] [Citation(s) in RCA: 453] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/28/2013] [Indexed: 01/25/2023]
Abstract
Sequence-specific nucleases like TALENs and the CRISPR/Cas9 system have greatly expanded the genome editing possibilities in model organisms such as zebrafish. Both systems have recently been used to create knock-out alleles with great efficiency, and TALENs have also been successfully employed in knock-in of DNA cassettes at defined loci via homologous recombination (HR). Here we report CRISPR/Cas9-mediated knock-in of DNA cassettes into the zebrafish genome at a very high rate by homology-independent double-strand break (DSB) repair pathways. After co-injection of a donor plasmid with a short guide RNA (sgRNA) and Cas9 nuclease mRNA, concurrent cleavage of donor plasmid DNA and the selected chromosomal integration site resulted in efficient targeted integration of donor DNA. We successfully employed this approach to convert eGFP into Gal4 transgenic lines, and the same plasmids and sgRNAs can be applied in any species where eGFP lines were generated as part of enhancer and gene trap screens. In addition, we show the possibility of easily targeting DNA integration at endogenous loci, thus greatly facilitating the creation of reporter and loss-of-function alleles. Due to its simplicity, flexibility, and very high efficiency, our method greatly expands the repertoire for genome editing in zebrafish and can be readily adapted to many other organisms.
Collapse
Affiliation(s)
- Thomas O. Auer
- Institut Curie, Centre de Recherche, Paris F-75248, France
- CNRS UMR 3215, Paris F-75248, France
- INSERM U934, F-75248 Paris, France
- Centre for Organismal Studies Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Karine Duroure
- Institut Curie, Centre de Recherche, Paris F-75248, France
- CNRS UMR 3215, Paris F-75248, France
- INSERM U934, F-75248 Paris, France
| | - Anne De Cian
- Muséum National d'Histoire Naturelle, Paris F-75231, France
- CNRS UMR 7196, Paris F-75231, France
- INSERM U565, Paris F-75231, France
| | - Jean-Paul Concordet
- Muséum National d'Histoire Naturelle, Paris F-75231, France
- CNRS UMR 7196, Paris F-75231, France
- INSERM U565, Paris F-75231, France
| | - Filippo Del Bene
- Institut Curie, Centre de Recherche, Paris F-75248, France
- CNRS UMR 3215, Paris F-75248, France
- INSERM U934, F-75248 Paris, France
| |
Collapse
|
29
|
Cho YS, Kim DS, Nam YK. Characterization of estrogen-responsive transgenic marine medaka Oryzias dancena germlines harboring red fluorescent protein gene under the control by endogenous choriogenin H promoter. Transgenic Res 2013; 22:501-17. [PMID: 22972478 DOI: 10.1007/s11248-012-9650-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 08/30/2012] [Indexed: 10/27/2022]
Abstract
Transgenic marine medaka (Oryzias dancena) germlines were generated by the microinjection of the red fluorescent protein (RFP) reporter gene (rfp) driven by the endogenous choriogenin H gene (chgH) promoter. The selected transgenic lines contained multiple copies of the transgene (3-42 copies per cell) in their genomes. Although all the founders were mosaic, the transgene was stably transmitted from the F1 generation to all subsequent generations following a Mendelian pattern. Different transgenic lines showed different responsiveness to estradiol-17β (E2) exposure at the mRNA and protein levels, and the expression efficiency was dependent upon the transgene copy number. The induction of RFP was significantly affected by the developmental stage of transgenic larvae: later-stage larvae (older than 7 days post-hatching) showed higher sensitivity to E2 exposure than earlier-stage larvae. The response of transgenic expression to E2 was fairly dependent upon the E2 dose (200-3,200 ng/L) and exposure period (1-7 days), according to both a microscopic examination of RFP intensity and a qRT-PCR assay. The transgenic marine medaka showed similar transgenic responses to E2 under freshwater, brackish, and seawater conditions. In addition to E2, the transgenic RFP signal was also successfully induced during 1-week exposure to various other natural (1 μg/L estrone and 10 μg/L estriol) and synthetic (xeno)estrogens (0.1 μg/L 17α-ethynylestradiol, 1 μg/L diethylstilbestrol, and 10 mg/L bisphenol A). The efficiency of transgene expression varied greatly among the chemicals tested. The results of this study suggest that the chgH-rfp transgenic marine medaka species will be useful in the in vivo detection of waterborne estrogens under a wide range of salinity conditions.
Collapse
Affiliation(s)
- Young Sun Cho
- Institute of Marine Living Modified Organisms, Pukyong National University, Busan 608-737, South Korea
| | | | | |
Collapse
|
30
|
Li B, Shang ZF, Yin JJ, Xu QZ, Liu XD, Wang Y, Zhang SM, Guan H, Zhou PK. PIG3 functions in DNA damage response through regulating DNA-PKcs homeostasis. Int J Biol Sci 2013; 9:425-34. [PMID: 23678292 PMCID: PMC3654439 DOI: 10.7150/ijbs.6068] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/22/2013] [Indexed: 11/29/2022] Open
Abstract
The p53-inducible gene 3 (PIG3) recently has been reported to be a new player in DNA damage signaling and response, but the crucial mechanism remains unclear. In the present study, the potential mechanism of PIG3 participation in the DNA damage response induced by ionizing radiation (IR) was investigated in multiple cell lines with depleted expression of PIG3 transiently or stably by the small interference RNA and lentivirus-mediated shRNA expression strategies. PIG3 knockdown led to an abnormal DNA damage response, including decreased IR-induced phosphorylation of H2AX, Chk1, Chk2 and Kap-1 as well as a prolonged G2-M arrest and aberrant mitotic progression. Notably, PIG3 knockdown resulted in a striking depression of cellular DNA-PKcs protein level, and was accompanied by a downregulation of ATM. Re-expression of PIG3 effectively rescued the depression of DNA-PKcs in PIG3-depleted cells. This negative regulation of DNA-PKcs by depleting PIG3 seemed to take place at the translational level but not at the levels of transcription or protein degradation. However, a compensatory feedback of increased mRNA expression of DNA-PKcs was formed in PIG3-depleted cells after a few passages or cell cycles of subculture, which led the recovery of the DNA-PKcs protein level and the consequent recovered efficiency of the DNA damage response. These results provide a new insight into the mechanism of PIG3's functioning in DNA damage signaling and the regulation network of cellular DNA-PKcs expression homeostasis.
Collapse
Affiliation(s)
- Bing Li
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pei DS, Strauss PR. Zebrafish as a model system to study DNA damage and repair. Mutat Res 2013; 743-744:151-159. [PMID: 23211879 DOI: 10.1016/j.mrfmmm.2012.10.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 05/20/2023]
Abstract
Zebrafish (Danio rerio) have become a popular vertebrate model to study embryological development, because of unique advantages not found in other model systems. Zebrafish share many gene functions with other vertebrates including humans, making zebrafish a useful system for studying cancer etiology. However, systematic studies of DNA damage and repair pathways using adult or embryonic zebrafish have not been extensively reported. The zebrafish genome contains nearly all the genes involved in different DNA repair pathways in eukaryotes, including direct reversal (DR), mismatch repair (MMR) nucleotide excision repair (NER), base excision repair (BER), homologous recombination (HR), non-homologous end joining (NHEJ) and translesion synthesis (TLS). It also includes the genes of the p53-mediated damage recognition pathway. Therefore, zebrafish provide an ideal model for gaining fundamental insights into mechanisms of DNA damage and repair, especially during embryological development. This review introduces recent work on different DNA damage and repair studies in zebrafish, with special emphasis on the role of BER in zebrafish early embryological development. AP endonuclease 1 (Apex1), a critical protein in the BER pathway, not only regulates BER but also controls cyclic AMP response binding protein (Creb1), which itself regulates ∼25% of eukaryotic coding sequences. In addition, Apex1 indirectly regulates levels of p53. As these findings also occur in murine B cells, they illustrate the usefulness of the zebrafish system in elucidating fundamental mechanisms.
Collapse
Affiliation(s)
- De-Sheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122, China; Department of Biology, Northeastern University, Boston, MA 02115, USA.
| | - Phyllis R Strauss
- Department of Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|