1
|
Tang R, Zhang Z, Liu X, Zhu L, Xu Y, Chai R, Zhan W, Shen S, Liang G. Fibroblast Growth Factor Receptor 1-Specific Dehydrogelation to Release Its Inhibitor for Enhanced Lung Tumor Therapy. ACS NANO 2024; 18:29223-29232. [PMID: 39392940 DOI: 10.1021/acsnano.4c11548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Fibroblast growth factor receptor 1 (FGFR1) is emerging as a promising molecular target of lung cancer, and various FGFR1 inhibitors have exhibited significant therapeutic effects on lung cancer in preclinical research. Due to their low targeting ability or bioavailability, direct administration of these inhibitors may cause side effects. Herein, a hydrogelator, Nap-Phe-Phe-Phe-Glu-Thr-Glu-Leu-Tyr-OH (Nap-Y), was rationally designed to coassemble with an FGFR1 inhibitor nintedanib (Nin) to form a peptide hydrogel Gel Y/Nin for localized administration and FGFR1-triggered release of Nin. Upon specific phosphorylation by FGFR1 overexpressed on lung cancer cells, Nap-Y in Gel Y/Nin is converted to the hydrophilic product Nap-Phe-Phe-Phe-Glu-Thr-Glu-Leu-Tyr(H2PO3)-OH (Nap-Yp), leading to dehydrogelation of the gel and subsequent Nin release. In vitro experiments demonstrate that the release of Nin in a sustained manner from Gel Y/Nin significantly suppresses the survival, migration, and invasion of A549 cells by inhibiting FGFR1 expression and its phosphorylation function on downstream signaling molecules. Nude mouse studies show that Gel Y/Nin exhibits enhanced therapeutic efficacy on lung tumor than free Nin. We anticipate that Gel Y/Nin will be utilized for lung cancer treatment in clinical settings in the near future.
Collapse
Affiliation(s)
- Runqun Tang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Ziyi Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Liangxi Zhu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Yuting Xu
- Breast Surgery, Wenzhou Central Hospital, Wenzhou 325000, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
| | - Wenjun Zhan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Shurong Shen
- Breast Surgery, Wenzhou Central Hospital, Wenzhou 325000, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
2
|
Gorska-Arcisz M, Popeda M, Braun M, Piasecka D, Nowak JI, Kitowska K, Stasilojc G, Okroj M, Romanska HM, Sadej R. FGFR2-triggered autophagy and activation of Nrf-2 reduce breast cancer cell response to anti-ER drugs. Cell Mol Biol Lett 2024; 29:71. [PMID: 38745155 PMCID: PMC11092031 DOI: 10.1186/s11658-024-00586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Genetic abnormalities in the FGFR signalling occur in 40% of breast cancer (BCa) patients resistant to anti-ER therapy, which emphasizes the potential of FGFR-targeting strategies. Recent findings indicate that not only mutated FGFR is a driver of tumour progression but co-mutational landscapes and other markers should be also investigated. Autophagy has been recognized as one of the major mechanisms underlying the role of tumour microenvironment in promotion of cancer cell survival, and resistance to anti-ER drugs. The selective autophagy receptor p62/SQSTM1 promotes Nrf-2 activation by Keap1/Nrf-2 complex dissociation. Herein, we have analysed whether the negative effect of FGFR2 on BCa cell response to anti-ER treatment involves the autophagy process and/or p62/Keap1/Nrf-2 axis. METHODS The activity of autophagy in ER-positive MCF7 and T47D BCa cell lines was determined by analysis of expression level of autophagy markers (p62 and LC3B) and monitoring of autophagosomes' maturation. Western blot, qPCR and proximity ligation assay were used to determine the Keap1/Nrf-2 interaction and Nrf-2 activation. Analysis of 3D cell growth in Matrigel® was used to assess BCa cell response to applied treatments. In silico gene expression analysis was performed to determine FGFR2/Nrf-2 prognostic value. RESULTS We have found that FGFR2 signalling induced autophagy in AMPKα/ULK1-dependent manner. FGFR2 activity promoted dissociation of Keap1/Nrf-2 complex and activation of Nrf-2. Both, FGFR2-dependent autophagy and activation of Nrf-2 were found to counteract the effect of anti-ER drugs on BCa cell growth. Moreover, in silico analysis showed that high expression of NFE2L2 (gene encoding Nrf-2) combined with high FGFR2 expression was associated with poor relapse-free survival (RFS) of ER+ BCa patients. CONCLUSIONS This study revealed the unknown role of FGFR2 signalling in activation of autophagy and regulation of the p62/Keap1/Nrf-2 interdependence, which has a negative impact on the response of ER+ BCa cells to anti-ER therapies. The data from in silico analyses suggest that expression of Nrf-2 could act as a marker indicating potential benefits of implementation of anti-FGFR therapy in patients with ER+ BCa, in particular, when used in combination with anti-ER drugs.
Collapse
Affiliation(s)
- Monika Gorska-Arcisz
- Laboratory of Enzymology and Molecular Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland
| | - Marta Popeda
- Department of Pathomorphology, Medical University of Gdansk, Gdansk, Poland
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Dominika Piasecka
- Laboratory of Enzymology and Molecular Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland
| | - Joanna I Nowak
- Department of Histology, Medical University of Gdansk, Gdansk, Poland
| | - Kamila Kitowska
- Laboratory of Enzymology and Molecular Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland
| | - Grzegorz Stasilojc
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Marcin Okroj
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Hanna M Romanska
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland.
| | - Rafal Sadej
- Laboratory of Enzymology and Molecular Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland.
| |
Collapse
|
3
|
Zhou J, Li C, Lu M, Jiang G, Chen S, Li H, Lu K. Pharmacological induction of autophagy reduces inflammation in macrophages by degrading immunoproteasome subunits. PLoS Biol 2024; 22:e3002537. [PMID: 38447109 PMCID: PMC10917451 DOI: 10.1371/journal.pbio.3002537] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Defective autophagy is linked to proinflammatory diseases. However, the mechanisms by which autophagy limits inflammation remain elusive. Here, we found that the pan-FGFR inhibitor LY2874455 efficiently activated autophagy and suppressed expression of proinflammatory factors in macrophages stimulated by lipopolysaccharide (LPS). Multiplex proteomic profiling identified the immunoproteasome, which is a specific isoform of the 20s constitutive proteasome, as a substrate that is degraded by selective autophagy. SQSTM1/p62 was found to be a selective autophagy-related receptor that mediated this degradation. Autophagy deficiency or p62 knockdown blocked the effects of LY2874455, leading to the accumulation of immunoproteasomes and increases in inflammatory reactions. Expression of proinflammatory factors in autophagy-deficient macrophages could be reversed by immunoproteasome inhibitors, confirming the pivotal role of immunoproteasome turnover in the autophagy-mediated suppression on the expression of proinflammatory factors. In mice, LY2874455 protected against LPS-induced acute lung injury and dextran sulfate sodium (DSS)-induced colitis and caused low levels of proinflammatory cytokines and immunoproteasomes. These findings suggested that selective autophagy of the immunoproteasome was a key regulator of signaling via the innate immune system.
Collapse
Affiliation(s)
- Jiao Zhou
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Chunxia Li
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Meng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Gaoyue Jiang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Shanze Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen, China
| | - Huihui Li
- West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
4
|
Tian K, Deng B, Han X, Zheng H, Lin T, Wang Z, Zhang Y, Wang G. Over-expression of microRNA-145 Elevating Autophagy Activities via Downregulating FRS2 Expression. Comb Chem High Throughput Screen 2024; 27:127-135. [PMID: 37264620 DOI: 10.2174/1386207326666230602090848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023]
Abstract
OBJECTIVES Osteoarthritis (OA) is one of the most common chronic and progressive joint diseases characterized by cartilage degeneration and chondrocyte death. In this study, we aimed to identify the modulation effect of miR-145 on chondrocytes' autophagy during the development of OA. BACKGROUND Osteoarthritis (OA) is one of the most prevalent types of chronic and progressive joint disorder with the symptoms of joint pain and stiffness, and it leads to disability at the end stage. In recent years, microRNA-145 (miR-145) has been found to activate autophagy in various cell types, including mesenchymal stem cells, cardiomyocytes, and osteosarcoma cells. However, it is unknown whether miR-145 regulates the progression of OA by influencing chondrocyte autophagy. METHODS Before investigating the regulatory effect of miR-145 on the autophagic activity of chondrocytes, the expression of miR-145 in human joint samples was analyzed. The targeting relationship between miR-145 and FRS2 was detected by dual luciferase assay. The effect of FRS2 and miR-145 on the autophagic activity of chondrocytes was observed by bidirectional expression of FRS2 and miR-145. RESULTS The miR-145 expression and LC3-II/LC3-I ratio were significantly decreased and the SQSTM1 expression was increased in OA patients. The miR-145 overexpression in C20A4 cells increased LC3-II/LC3-I ratio, decreased SQSTM1 expression, and was positively correlated with autophagic activity. Under oxidative stress, miR-145 overexpression significantly improved chondrocyte viability through autophagy stimulation. FRS2 is a potential target of miR-145 via a binding sequence within its 3' UTR. FRS2 acts as the downstream mediator of miR-145 to suppress autophagy through activating PI3K/Akt/mTOR pathways. CONCLUSION The miR-145 acts as a protective factor against chondrocytes by regulating miRFRS2- autophagy axis. The decrease of miR-145 in articular synovial fluid may turn out to be an important marker for early diagnosis of OA, and modulation of miR-145 may represent a promising therapeutic strategy for OA.
Collapse
Affiliation(s)
- Ke Tian
- Department of Orthopedics and Joint, Affiiated Hospital of Jining Medical University, Shandong, 272001, China
| | - Bin Deng
- Department of Orthopedics, Affiliated Hospital of Jining Medical University, Shandong Province, Zoucheng District, Jining, 273500, Shandong, People's Republic of China
| | - Xiaodong Han
- Department of Orthopedics, Affiliated Hospital of Jining Medical University, Shandong Province, Zoucheng District, Jining, 273500, Shandong, People's Republic of China
| | - Haiyi Zheng
- Department of Orthopedics and Joint, Affiiated Hospital of Jining Medical University, Shandong, 272001, China
| | - Tao Lin
- Department of Orthopedics and Joint, Affiiated Hospital of Jining Medical University, Shandong, 272001, China
| | - Zhimeng Wang
- Department of Orthopedics and Joint, Affiiated Hospital of Jining Medical University, Shandong, 272001, China
| | - Yuanmin Zhang
- Department of Orthopedics and Joint, Affiiated Hospital of Jining Medical University, Shandong, 272001, China
| | - Guodong Wang
- Department of Orthopedics and Joint, Affiiated Hospital of Jining Medical University, Shandong, 272001, China
| |
Collapse
|
5
|
Li X, Li Y, Liu B, Chen L, Lyu F, Zhang P, He Q, Cheng L, Liu C, Song Y, Xing Y. P4HA2-mediated HIF-1α stabilization promotes erdafitinib-resistance in FGFR3-alteration bladder cancer. FASEB J 2023; 37:e22840. [PMID: 36943397 DOI: 10.1096/fj.202201247r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/03/2023] [Accepted: 02/14/2023] [Indexed: 03/23/2023]
Abstract
Erdafitinib is a novel fibroblast growth factor receptor (FGFR) inhibitor that has shown great therapeutic promise for solid tumor patients with FGFR3 alterations, especially in urothelial carcinoma. However, the mechanisms of resistance to FGFR inhibitors remain poorly understood. In this study, we found Erdafitinib could kill cells by inducing incomplete autophagy and increasing intracellular reactive oxygen species levels. We have established an Erdafitinib-resistant cell line, RT-112-RS. whole transcriptome RNA sequencing (RNA-Seq) and Cytospace analysis performed on Erdafitinib-resistant RT-112-RS cells and parental RT-112 cells introduced P4HA2 as a linchpin to Erdafitinib resistance. The gain and loss of function study provided evidence for P4HA2 conferring such resistance in RT-112 cells. Furthermore, P4HA2 could stabilize the HIF-1α protein which then activated downstream target genes to reduce reactive oxygen species levels in bladder cancer. In turn, HIF-1α could directly bind to P4HA2 promoter, indicating a positive loop between P4HA2 and HIF-1α in bladder cancer. These results suggest a substantial role of P4HA2 in mediating acquired resistance to Erdafitinib and provide a potential target for bladder cancer treatment.
Collapse
Affiliation(s)
- Xuexiang Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunxue Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Lyu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pu Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingliu He
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lulin Cheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyu Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yarong Song
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifei Xing
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Meng F, Shen F, Ling H, Jin P, Zhou D, Li Q. CircARHGAP12 Triggers Mesenchymal Stromal Cell Autophagy to Facilitate its Effect on Repairing Diabetic Wounds by Sponging miR-301b-3p/ATG16L1 and miR-301b-3p/ULK2. J Invest Dermatol 2022; 142:1976-1989.e4. [PMID: 34933019 DOI: 10.1016/j.jid.2021.11.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 11/07/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
Circular RNAs have been confirmed to play vital roles in the development of human diseases. Nevertheless, their effects on modulating mesenchymal stromal cells (MSCs) to heal diabetic wounds are still elusive. In this study, our data revealed that MSCs treated with high glucose displayed an evident reduction in circARHGAP12 expression, whereas autophagy mediated by circARHGAP12 suppressed high glucose-triggered apoptosis of MSCs. Mechanistically, circARHGAP12 was capable of directly interacting with miR-301b-3p and subsequently sponged microRNA to modulate the expression of the miR-301b-3p target genes ATG16L1 and ULK2 and the downstream signaling pathway. Moreover, circARHGAP12 promoted the survival of MSCs in diabetic wounds in vivo and accelerated wound healing. Collectively, these results suggest that circARHGAP12/miR-301b-3p/ATG16L1 and circARHGAP12/miR-301b-3p/ULK2 regulatory networks might be an underlying therapeutic target for MSCs in diabetic wound healing.
Collapse
Affiliation(s)
- Fandong Meng
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Fengjie Shen
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hongwei Ling
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Peisheng Jin
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dongmei Zhou
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qiang Li
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
7
|
The Interplay between Autophagy and Redox Signaling in Cardiovascular Diseases. Cells 2022; 11:cells11071203. [PMID: 35406767 PMCID: PMC8997791 DOI: 10.3390/cells11071203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen and nitrogen species produced at low levels under normal cellular metabolism act as important signal molecules. However, at increased production, they cause damage associated with oxidative stress, which can lead to the development of many diseases, such as cardiovascular, metabolic, neurodegenerative, diabetes, and cancer. The defense systems used to maintain normal redox homeostasis plays an important role in cellular responses to oxidative stress. The key players here are Nrf2-regulated redox signaling and autophagy. A tight interface has been described between these two processes under stress conditions and their role in oxidative stress-induced diseases progression. In this review, we focus on the role of Nrf2 as a key player in redox regulation in cell response to oxidative stress. We also summarize the current knowledge about the autophagy regulation and the role of redox signaling in this process. In line with the focus of our review, we describe in more detail information about the interplay between Nrf2 and autophagy pathways in myocardium and the role of these processes in cardiovascular disease development.
Collapse
|
8
|
Suh J, Kim DH, Kim SJ, Cho NC, Lee YH, Jang JH, Surh YJ. Nuclear Localization of Fibroblast Growth Factor Receptor 1 in Breast Cancer Cells Interacting with Cancer Associated Fibroblasts. J Cancer Prev 2022; 27:68-76. [PMID: 35419302 PMCID: PMC8984647 DOI: 10.15430/jcp.2022.27.1.68] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) represent a major component of the tumor microenvironment and interplay with cancer cells by secreting cytokines, growth factors and extracellular matrix proteins. When estrogen receptor-negative breast cancer MDA-MB-231 cells were treated with the CAF-conditioned medium (CAF-CM), Akt and STAT3 involved in cell proliferation and survival were activated through phosphorylation. CAFs secrete fibroblast growth factor 2 (FGF2), thereby stimulating breast cancer cell progression. Akt activation induced by CAF-CM in MDA-MB-231 cells was abolished when FGF2-neutralizing antibody was added. Treatment of MDA-MB-231 cells directly with FGF2 enhanced the phosphorylation of Akt and the FGF receptor (FGFR) substrate, FRS2α. These events were abrogated by siRNA-mediated silencing of FGFR1. In a xenograft mouse model, co-injection of MDA-MB-231 cells with activated fibroblasts expressing FGF2 dramatically enhanced activation of Akt. Stable knockdown of FGFR1 blunted Akt phosphorylation in xenograft tumors. MDA-MB-231 cells co-cultured with CAFs or directly stimulated with FGF2 exhibited enhanced nuclear localization of FGFR1. Notably, FGF2 stimulation produced reactive oxygen species (ROS) accumulation in MDA-MB-231 cells, and FGF2-induced nuclear accumulation of FGFR1 was abrogated by the ROS scavenging agent, N-acetylcysteine.
Collapse
Affiliation(s)
- Jinyoung Suh
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, Korea
| | - Su-Jung Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Nam-Chul Cho
- Drug Information Platfom Center, Korea Chemical Bank, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Yeon-Hwa Lee
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Jeong-Hoon Jang
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
9
|
Zhang R, Xie L, Wu F, Xu J, Lu L, Cao L, Li L, Meng W, Zhang H, Shao C, Li X, Chen D. ALG-bFGF Hydrogel Inhibiting Autophagy Contributes to Protection of Blood-Spinal Cord Barrier Integrity via PI3K/Akt/FOXO1/KLF4 Pathway After SCI. Front Pharmacol 2022; 13:828896. [PMID: 35330841 PMCID: PMC8940228 DOI: 10.3389/fphar.2022.828896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
Promoting blood–spinal cord barrier (BSCB) repair at the early stage plays a crucial role in treatment of spinal cord injury (SCI). Excessive activation of autophagy can prevent recovery of BSCB after SCI. Basic fibroblast growth factor (bFGF) has been shown to promote BSCB repair and locomotor function recovery in SCI. However, the therapeutic effect of bFGF via direct administration on SCI is limited because of its rapid degradation and dilution at injury site. Based on these considerations, controlled release of bFGF in the lesion area is becoming an attractive strategy for SCI repair. At present, we have designed a sustained-release system of bFGF (called ALG-bFGF) using sodium alginate hydrogel, which is able to load large amounts of bFGF and suitable for in situ administration of bFGF in vivo. Here, traumatic SCI mice models and oxygen glucose deprivation (OGD)–stimulated human brain microvascular endothelial cells were performed to explore the effects and the underlying mechanisms of ALG-bFGF in promoting SCI repair. After a single in situ injection of ALG-bFGF hydrogel into the injured spinal cord, sustained release of bFGF from ALG hydrogel distinctly prevented BSCB destruction and improved motor functional recovery in mice after SCI, which showed better therapeutic effect than those in mice treated with bFGF solution or ALG. Evidences have demonstrated that autophagy is involved in maintaining BSCB integrity and functional restoration in animals after SCI. In this study, SCI/OGD exposure–induced significant upregulations of autophagy activation-related proteins (Beclin1, ATG5, LC3II/I) were distinctly decreased by ALG-bFGF hydrogel near the baseline and not less than it both in vivo and in vitro, and this inhibitory effect contributed to prevent BSCB destruction. Finally, PI3K inhibitor LY294002 and KLF4 inhibitor NSC-664704 were applied to further explore the underlying mechanism by which ALG-bFGF attenuated autophagy activation to alleviate BSCB destruction after SCI. The results further indicated that ALG-bFGF hydrogel maintaining BSCB integrity by inhibiting autophagy activation was regulated by PI3K/Akt/FOXO1/KLF4 pathway. In summary, our current study revealed a novel mechanism by which ALG-bFGF hydrogel improves BSCB and motor function recovery after SCI, providing an effective therapeutic strategy for SCI repair.
Collapse
Affiliation(s)
- Renkan Zhang
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ling Xie
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fangfang Wu
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ji Xu
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Leilei Lu
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lin Cao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lei Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weiyang Meng
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chuxiao Shao
- Department of Hepatopancreatobiliary Surgery, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Daqing Chen
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Agrawal S, Maity S, AlRaawi Z, Al-Ameer M, Kumar TKS. Targeting Drugs Against Fibroblast Growth Factor(s)-Induced Cell Signaling. Curr Drug Targets 2021; 22:214-240. [PMID: 33045958 DOI: 10.2174/1389450121999201012201926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The fibroblast growth factor (FGF) family is comprised of 23 highly regulated monomeric proteins that regulate a plethora of developmental and pathophysiological processes, including tissue repair, wound healing, angiogenesis, and embryonic development. Binding of FGF to fibroblast growth factor receptor (FGFR), a tyrosine kinase receptor, is facilitated by a glycosaminoglycan, heparin. Activated FGFRs phosphorylate the tyrosine kinase residues that mediate induction of downstream signaling pathways, such as RAS-MAPK, PI3K-AKT, PLCγ, and STAT. Dysregulation of the FGF/FGFR signaling occurs frequently in cancer due to gene amplification, FGF activating mutations, chromosomal rearrangements, integration, and oncogenic fusions. Aberrant FGFR signaling also affects organogenesis, embryonic development, tissue homeostasis, and has been associated with cell proliferation, angiogenesis, cancer, and other pathophysiological changes. OBJECTIVE This comprehensive review will discuss the biology, chemistry, and functions of FGFs, and its current applications toward wound healing, diabetes, repair and regeneration of tissues, and fatty liver diseases. In addition, specific aberrations in FGFR signaling and drugs that target FGFR and aid in mitigating various disorders, such as cancer, are also discussed in detail. CONCLUSION Inhibitors of FGFR signaling are promising drugs in the treatment of several types of cancers. The clinical benefits of FGF/FGFR targeting therapies are impeded due to the activation of other RTK signaling mechanisms or due to the mutations that abolish the drug inhibitory activity on FGFR. Thus, the development of drugs with a different mechanism of action for FGF/FGFR targeting therapies is the recent focus of several preclinical and clinical studies.
Collapse
Affiliation(s)
- Shilpi Agrawal
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | - Sanhita Maity
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | - Zeina AlRaawi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | - Musaab Al-Ameer
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | | |
Collapse
|
11
|
Wang F, Li X, Wang C. Editorial: Resident and Ectopic FGF Signaling in Development and Disease. Front Cell Dev Biol 2020; 8:720. [PMID: 32984306 PMCID: PMC7479059 DOI: 10.3389/fcell.2020.00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/14/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Fen Wang
- Texas A&M Health Science Center, Institute of Biosciences and Technology, College Station, TX, United States.,Department of Translational Medicine, College of Medicine, Texas A&M University, College Station, TX, United States
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Cong Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Wang C, Li Y, Li H, Zhang Y, Ying Z, Wang X, Zhang T, Zhang W, Fan Z, Li X, Ma J, Pan X. Disruption of FGF Signaling Ameliorates Inflammatory Response in Hepatic Stellate Cells. Front Cell Dev Biol 2020; 8:601. [PMID: 32793588 PMCID: PMC7387415 DOI: 10.3389/fcell.2020.00601] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
It is a well-documented event that fibroblast growth factors (FGFs) regulate liver development and homeostasis in autocrine, paracrine, and endocrine manners via binding and activating FGF receptors (FGFRs) tyrosine kinase in hepatocytes. Recent research reveals that hepatic stellate cells (HSCs) play a fundamental role in liver immunology. However, how FGF signaling in HSCs regulates liver inflammation remains unclear. Here, we report that FGF promoted NF-κB signaling, an inflammatory pathway, in human HSCs, which was associated with FGFR1 expression. Both FGF and NF-κB signaling in HSCs were compromised by FGFR1 tyrosine kinase inhibitor. After stimulating HSCs with proinflammatory cytokines, expression of multiple FGF ligands was significantly increased. However, disruption of FGF signaling with FGFR inhibitors prominently reduced the apoptosis, inflammatory response, NF-κB nuclear translocation, and expression of matrix metalloproteinase-9 (MMP-9) induced by TNFα in HSCs. Interestingly, FGF21 significantly alleviated the inflammation responses in the concanavalin A (Con A)-induced acutely injured liver. Unlike canonic FGFs that elicit signals through activating the FGFR–heparan sulfate complex, FGF21 activates the FGFR–KLB complex and elicits a different set of signals. Therefore, the finding here indicates the urgency of developing pathway-specific inhibitors that only suppress canonical FGF, but not non-canonical FGF21, signaling for alleviating inflammation in the liver, which is presented in all stages of diseased liver.
Collapse
Affiliation(s)
- Cong Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuelong Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hao Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yali Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhangguo Ying
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xuye Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tingting Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenshu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhichao Fan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jisheng Ma
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xuebo Pan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Zhang L, Deng Y, Zhang Y, Liu C, Zhang S, Zhu W, Tang Y, Deng N. The Design, Characterizations, and Tumor Angiogenesis Inhibition of a Multi-Epitope Peptibody With bFGF/VEGFA. Front Oncol 2020; 10:1190. [PMID: 32766160 PMCID: PMC7379876 DOI: 10.3389/fonc.2020.01190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor angiogenesis is dependent on growth factors, and inhibition of their pathways is one of the promising strategies in cancer therapy. However, resistance to single pathway has been a great concern in clinical trials so that it necessitates multiple targetable factors for developing tumor angiogenesis inhibitors. Moreover, the strategy of Fc fusion protein is an attractive platform for novel peptide agents, which gains increasing importance with FDA approval because of better immunogenicity and stability. Here, we applied the Fc fusion protein concept to bFGF/VEGFA pathways and designed a multi-epitope Peptibody with immunogenic peptides derived from human bFGF and VEGFA sequences. Immunization with Peptibody could elicit high-titer anti-bFGF and anti-VEGFA antibodies, activate T cells, and induce Th1/Th2-type cytokines. In in vitro experiments, the isolated anti-Peptibody antibody inhibited the proliferation and migration of A549 cells and human umbilical vein endothelial cells (HUVECs) by decreasing the MAPK/Akt/mTOR signal pathways. In the murine tumor model, pre-immunization with Peptibody suppressed the tumor growth and neovascularization of lung cancer by decreasing the production of bFGF/VEGFA/PDGF, the MAPK/Akt/mTOR signal pathways, and the activation of suppressive cells in tumor sites. Further, the biological characterizations of the recombinant Peptibody were investigated systematically, including protein primary structure, secondary structure, stability, and toxicity. Collectively, the results highlighted the strategy of bFGF/VEGFA pathways and Fc fusion protein in suppressing tumor progression and angiogenesis, which emphasized the potential of multiple targetable factors for producing enduring clinical responses in tumor patients.
Collapse
Affiliation(s)
- Ligang Zhang
- Department of Biology, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Guangzhou, China
| | - Yanrui Deng
- Department of Biology, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Guangzhou, China
| | - Yinmei Zhang
- Department of Biology, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Guangzhou, China
| | - Chunyan Liu
- Department of Biology, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Guangzhou, China
| | - Simin Zhang
- Department of Biology, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Guangzhou, China
| | - Wenhui Zhu
- Department of Biology, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Guangzhou, China
| | - Yong Tang
- Department of Biology, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Guangzhou, China
| | - Ning Deng
- Department of Biology, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Tan Y, Qiao Y, Chen Z, Liu J, Guo Y, Tran T, Tan KS, Wang DY, Yan Y. FGF2, an Immunomodulatory Factor in Asthma and Chronic Obstructive Pulmonary Disease (COPD). Front Cell Dev Biol 2020; 8:223. [PMID: 32300593 PMCID: PMC7142218 DOI: 10.3389/fcell.2020.00223] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
The fibroblast growth factor 2 (FGF2) is a potent mitogenic factor belonging to the FGF family. It plays a role in airway remodeling associated with chronic inflammatory airway diseases, including asthma and chronic obstructive pulmonary disease (COPD). Recently, research interest has been raised in the immunomodulatory function of FGF2 in asthma and COPD, through its involvement in not only the regulation of inflammatory cells but also its participation as a mediator between immune cells and airway structural cells. Herein, this review provides the current knowledge on the biology of FGF2, its expression pattern in asthma and COPD patients, and its role as an immunomodulatory factor. The potential that FGF2 is involved in regulating inflammation indicates that FGF2 could be a therapeutic target for chronic inflammatory diseases.
Collapse
Affiliation(s)
- Yuanyang Tan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | | | - Zhuanggui Chen
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Liu
- Department of Respiratory Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yanrong Guo
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Thai Tran
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kai Sen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, University Health System, National University of Singapore, Singapore, Singapore
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, University Health System, National University of Singapore, Singapore, Singapore
| | - Yan Yan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
15
|
Khandelwal AR, Kent B, Hillary S, Alam MM, Ma X, Gu X, DiGiovanni J, Nathan CAO. Fibroblast growth factor receptor promotes progression of cutaneous squamous cell carcinoma. Mol Carcinog 2019; 58:1715-1725. [PMID: 31254372 DOI: 10.1002/mc.23012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/14/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a keratinocyte-derived invasive and metastatic tumor of the skin. It is the second-most commonly diagnosed form of skin cancer striking 200 000 Americans annually. Further, in organ transplant patients, there is a 65- to 100-fold increased incidence of cSCC compared to the general population. Excision of cSCC of the head and neck results in significant facial disfigurement. Therefore, increased understanding of the mechanisms involved in the pathogeneses of cSCC could identify means to prevent, inhibit, and reverse this process. In our previous studies, inhibition of fibroblast growth factor receptor (FGFR) significantly decreased ultraviolet B-induced epidermal hyperplasia and hyperproliferation in SKH-1 mice, suggesting an important role for FGFR signaling in skin cancer development. However, the role of FGFR signaling in the progression of cSCC is not yet elucidated. Analysis of the expression of FGFR in cSCC cells and normal epidermal keratinocytes revealed protein overexpression and increased FGFR2 activation in cSCC cells compared to normal keratinocytes. Further, tumor cell-specific overexpression of FGFR2 was detected in human cSCCs, whereas the expression of FGFR2 was low in premalignant lesions and normal skin. Pretreatment with the pan-FGFR inhibitor; AZD4547 significantly decreased cSCC cell-cycle traverse, proliferation, migration, and motility. Interestingly, AZD4547 also significantly downregulated mammalian target of rapamycin complex 1 and AKT activation in cSCC cells, suggesting an important role of these signaling pathways in FGFR-mediated effects. To further bolster the in vitro studies, NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice with SCC12A tumor xenografts treated with AZD4547 (15 mg/kg/bw, twice weekly oral gavage) exhibited significantly decreased tumor volume compared to the vehicle-only treatment group. The current studies provide mechanistic evidence for the role of FGFR and selectively FGFR2 in the early progression of cSCC and identifies FGFR as a putative therapeutic target in the treatment of skin cancer.
Collapse
Affiliation(s)
- Alok R Khandelwal
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana.,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Burton Kent
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Savage Hillary
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Md Maksudul Alam
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Xiaohua Ma
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Xin Gu
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Cherie-Ann O Nathan
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana.,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana.,Department of Surgery, Overton Brooks Veterans Affairs Hospital, Shreveport, Louisiana
| |
Collapse
|
16
|
Nanni M, Ranieri D, Persechino F, Torrisi MR, Belleudi F. The Aberrant Expression of the Mesenchymal Variant of FGFR2 in the Epithelial Context Inhibits Autophagy. Cells 2019; 8:cells8070653. [PMID: 31261937 PMCID: PMC6678203 DOI: 10.3390/cells8070653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/23/2022] Open
Abstract
Signaling of the epithelial splice variant of fibroblast growth factor receptor 2 (FGFR2b) triggers both differentiation and autophagy, while the aberrant expression of the mesenchymal FGFR2c isoform in epithelial cells induces impaired differentiation, epithelial mesenchymal transition (EMT) and tumorigenic features. Here we analyzed in the human keratinocyte cell line, as well as in primary cultured cells, the possible impact of FGFR2c forced expression on the autophagic process. Biochemical and quantitative immunofluorescence analysis, coupled to the use of autophagic flux sensors, specific substrate inhibitors or silencing approaches, showed that ectopic expression and the activation of FGFR2c inhibit the autophagosome formation and that AKT/MTOR is the downstream signaling mainly involved. Interestingly, the selective inhibition of AKT or MTOR substrates caused a reversion of the effects of FGFR2c on autophagy, which could also arise from the imbalance of the interplay between AKT/MTOR pathway and JNK1 signaling in favor of JNK1 activation, BCL-2 phosphorylation and possibly phagophore nucleation. Finally, silencing experiments of depletion of ESRP1, responsible for FGFR2 splicing and consequent FGFR2b expression, indicated that the switching from FGFR2b to FGFR2c isoform could represent the key event underlying the inhibition of the autophagic process in the epithelial context. Our results provide the first evidence of a negative impact of the out-of-context expression of FGFR2c on autophagy, suggesting a possible role of this receptor in the modulation of the recently proposed negative loop between autophagy and EMT during carcinogenesis.
Collapse
Affiliation(s)
- Monica Nanni
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Danilo Ranieri
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Flavia Persechino
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Rosaria Torrisi
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy.
- S. Andrea University Hospital, 00189 Rome, Italy.
| | - Francesca Belleudi
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
17
|
Iezaki T, Horie T, Fukasawa K, Kitabatake M, Nakamura Y, Park G, Onishi Y, Ozaki K, Kanayama T, Hiraiwa M, Kitaguchi Y, Kaneda K, Manabe T, Ishigaki Y, Ohno M, Hinoi E. Translational Control of Sox9 RNA by mTORC1 Contributes to Skeletogenesis. Stem Cell Reports 2018; 11:228-241. [PMID: 30008325 PMCID: PMC6117477 DOI: 10.1016/j.stemcr.2018.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 11/18/2022] Open
Abstract
The mechanistic/mammalian target of rapamycin complex 1 (mTORC1) regulates cellular function in various cell types. Although the role of mTORC1 in skeletogenesis has been investigated previously, here we show a critical role of mTORC1/4E-BPs/SOX9 axis in regulating skeletogenesis through its expression in undifferentiated mesenchymal cells. Inactivation of Raptor, a component of mTORC1, in limb buds before mesenchymal condensations resulted in a marked loss of both cartilage and bone. Mechanistically, we demonstrated that mTORC1 selectively controls the RNA translation of Sox9, which harbors a 5′ terminal oligopyrimidine tract motif, via inhibition of the 4E-BPs. Indeed, introduction of Sox9 or a knockdown of 4E-BP1/2 in undifferentiated mesenchymal cells markedly rescued the deficiency of the condensation observed in Raptor-deficient mice. Furthermore, introduction of the Sox9 transgene rescued phenotypes of deficient skeletal growth in Raptor-deficient mice. These findings highlight a critical role of mTORC1 in mammalian skeletogenesis, at least in part, through translational control of Sox9 RNA. mTORC1 controls skeletogenesis both in skeletogenic progenitors and in chondrocytes mTORC1/4E-BPs cascade regulates the translation of Sox9 RNA SOX9 is a critical mediator in the control of skeletogenesis by mTORC1 in vivo
Collapse
Affiliation(s)
- Takashi Iezaki
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Venture Business Laboratory, Organization of Frontier Science and Innovation, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Tetsuhiro Horie
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kazuya Fukasawa
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Makoto Kitabatake
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Yuka Nakamura
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa 920-0293, Japan
| | - Gyujin Park
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuki Onishi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kakeru Ozaki
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Takashi Kanayama
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Manami Hiraiwa
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuka Kitaguchi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Takayuki Manabe
- Department of Neuroanatomy and Neuropharmacology, Faculty of Nursing, Chukyogakuin University, Mizunami, Gifu 509-6192, Japan
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa 920-0293, Japan
| | - Mutsuhito Ohno
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| |
Collapse
|
18
|
Asai E, Yamamoto M, Ueda K, Waguri S. Spatiotemporal alterations of autophagy marker LC3 in rat skin fibroblasts during wound healing process. Fukushima J Med Sci 2018; 64:15-22. [PMID: 29343655 DOI: 10.5387/fms.2016-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
To investigate the possible implications of autophagy, one of the degradation pathways induced by metabolic stress, in the dynamic reconstructive process of wound healing, the appearance and changes of punctate structures for microtubule-associated protein 1 light chain 3 (LC3), an autophagosome marker, were examined in a rat skin wound healing model. Although the ratio of LC3-II/LC3-I in Western blotting was not evidently changed during the wound healing process, LC3-positive dots were clearly observed in fibroblasts and myofibroblasts, and occasionally in macrophages, by immunohistofluorescence microscopy. Some of the LC3-positive dots were colocalized with Atg16L signal, an isolation membrane marker, and electron microscopy revealed the presence of typical autophagosomes in fibroblasts near the margin of the wound. The number of LC3-positive dots per fibroblast increased during the later period of the proliferation phase, and interestingly, it was higher in the margin than the center of the wound. It was also high in the periwound skin area. These results suggest that drastic functional changes in fibroblasts during wound healing process are accompanied by the alteration of the autophagy-lysosomal degradation system.
Collapse
Affiliation(s)
- Emiko Asai
- Department of Plastic and Reconstructive Surgery, Fukushima Medical University
| | - Masaya Yamamoto
- Department of Anatomy and Histology, Fukushima Medical University
| | - Kazuki Ueda
- Department of Plastic and Reconstructive Surgery, Fukushima Medical University
| | - Satoshi Waguri
- Department of Anatomy and Histology, Fukushima Medical University
| |
Collapse
|
19
|
Trichlorobenzene-substituted azaaryl compounds as novel FGFR inhibitors exhibiting potent antitumor activity in bladder cancer cells in vitro and in vivo. Oncotarget 2018; 7:26374-87. [PMID: 27029060 PMCID: PMC5041986 DOI: 10.18632/oncotarget.8380] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/14/2016] [Indexed: 01/16/2023] Open
Abstract
In the present study, we examined the antitumor activity of a series of trichlorobenzene-substituted azaaryl compounds and identified MPT0L145 as a novel FGFR inhibitor with better selectivity for FGFR1, 2 and 3. It was preferentially effective in FGFR-activated cancer cells, including bladder cancer cell lines expressing FGFR3-TACC3 fusion proteins (RT-112, RT-4). MPT0L145 decreased the phosphorylation of FGFR1, FGFR3 and their downstream proteins (FRS2, ERK and Akt). Mechanistically, cDNA microarray analysis revealed that MPT0L145 decreased genes associated cell cycle progression, and increased genes associated with autophagy pathway. Accordingly, the data revealed that MPT0L145 induced G0/G1 cell cycle arrest and decreased protein levels of cyclin E. Moreover, we provided the evidence that autophagy contributes to FGFR inhibitor-related cell death. Finally, MPT0L145 exhibited comparable antitumor activity to cisplatin with better safety in a RT-112 xenograft model. Taken together, these findings support the utility of MPT0L145 as a novel FGFR inhibitor, providing a strong rationale for further evaluation of this compound as a therapeutic agent for bladder cancers.
Collapse
|
20
|
Fraser J, Cabodevilla AG, Simpson J, Gammoh N. Interplay of autophagy, receptor tyrosine kinase signalling and endocytic trafficking. Essays Biochem 2017; 61:597-607. [PMID: 29233871 PMCID: PMC5869858 DOI: 10.1042/ebc20170091] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 01/15/2023]
Abstract
Vesicular trafficking events play key roles in the compartmentalization and proper sorting of cellular components. These events have crucial roles in sensing external signals, regulating protein activities and stimulating cell growth or death decisions. Although mutations in vesicle trafficking players are not direct drivers of cellular transformation, their activities are important in facilitating oncogenic pathways. One such pathway is the sensing of external stimuli and signalling through receptor tyrosine kinases (RTKs). The regulation of RTK activity by the endocytic pathway has been extensively studied. Compelling recent studies have begun to highlight the association between autophagy and RTK signalling. The influence of this interplay on cellular status and its relevance in disease settings will be discussed here.
Collapse
Affiliation(s)
- Jane Fraser
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K
| | - Ainara G Cabodevilla
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K
| | - Joanne Simpson
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K
| | - Noor Gammoh
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
| |
Collapse
|
21
|
Xu HL, Xu J, Zhang SS, Zhu QY, Jin BH, ZhuGe DL, Shen BX, Wu XQ, Xiao J, Zhao YZ. Temperature-sensitive heparin-modified poloxamer hydrogel with affinity to KGF facilitate the morphologic and functional recovery of the injured rat uterus. Drug Deliv 2017; 24:867-881. [PMID: 28574291 PMCID: PMC8241134 DOI: 10.1080/10717544.2017.1333173] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/13/2017] [Accepted: 05/17/2017] [Indexed: 02/06/2023] Open
Abstract
Endometrial injury usually results in intrauterine adhesion (IUA), which is an important cause of infertility and recurrent miscarriage in reproductive women. There is still lack of an effective therapeutic strategy to prevent occurrence of IUA. Keratinocyte growth factor (KGF) is a potent repair factor for epithelial tissues. Here, a temperature-sensitive heparin-modified poloxamer (HP) hydrogel with affinity to KGF (KGF-HP) was used as a support matrix to prevent IUA and deliver KGF. The rheology of KGF-HP hydrogel was carefully characterized. The cold KGF-HP solution was rapidly transited to hydrogel with suitable storage modulus (G') and loss modulus (G″) for the applications of uterus cavity at temperature of 33 °C. In vitro release demonstrated that KGF was released from HP hydrogels in sustained release manner for a long time. In vivo bioluminescence imaging showed that KGF-HP hydrogel was able to prolong the retention of the encapsulated KGF in injured uterus of rat model. Moreover, the morphology and function of the injured uterus were significantly recovered after administration of KGF-HP hydrogel, which were evaluated by two-dimensional ultrasound imaging and receptive fertility. Not only proliferation of endometrial glandular epithelial cells and luminal epithelial cells but also angiogenesis of injured uterus were observed by Ki67 and CD31 staining after 7 d of treatment with KGF-HP hydrogel. Finally, a close relatively relationship between autophagy and proliferation of endometrial epithelial cells (EEC) and angiogenesis was firstly confirmed by detecting expression of LC3-II and P62 after KGF treatment. Overall, KGF-HP may be used as a promising candidate for IUA treatment.
Collapse
Affiliation(s)
- He-Lin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, PR China
| | - Jie Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, PR China
| | - Si-Si Zhang
- First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, PR China
| | - Qun-Yan Zhu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, PR China
| | - Bing-Hui Jin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, PR China
| | - De-Li ZhuGe
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, PR China
| | - Bi-Xin Shen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, PR China
| | - Xue-Qing Wu
- First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, PR China
| | - Jian Xiao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, PR China
| | - Ying-Zheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, PR China
| |
Collapse
|
22
|
FGF2 Attenuates Neural Cell Death via Suppressing Autophagy after Rat Mild Traumatic Brain Injury. Stem Cells Int 2017; 2017:2923182. [PMID: 29181034 PMCID: PMC5664312 DOI: 10.1155/2017/2923182] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/26/2017] [Accepted: 09/11/2017] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) can lead to physical and cognitive deficits, which are caused by the secondary injury process. Effective pharmacotherapies for TBI patients are still lacking. Fibroblast growth factor-2 (FGF2) is an important neurotrophic factor that can stimulate neurogenesis and angiogenesis and has been shown to have neuroprotective effects after brain insults. Previous studies indicated that FGF2's neuroprotective effects might be related to its function of regulating autophagy. The present study investigated FGF2's beneficial effects in the early stage of rat mild TBI and the underlying mechanisms. One hundred and forty-four rats were used for creating controlled cortical impact (CCI) models to simulate the pathological damage after TBI. Our results indicated that pretreatment of FGF2 played a neuroprotective role in the early stage of rat mild TBI through alleviating brain edema, reducing neurological deficits, preventing tissue loss, and increasing the number of surviving neurons in injured cortex and the ipsilateral hippocampus. FGF2 could also protect cells from various forms of death such as apoptosis or necrosis through inhibition of autophagy. Finally, autophagy activator rapamycin could abolish the protective effects of FGF2. This study extended our understanding of FGF2's neuroprotective effects and shed lights on the pharmacological therapy after TBI.
Collapse
|
23
|
Nanni M, Ranieri D, Raffa S, Torrisi MR, Belleudi F. Interplay between FGFR2b-induced autophagy and phagocytosis: role of PLCγ-mediated signalling. J Cell Mol Med 2017; 22:668-683. [PMID: 28994193 PMCID: PMC6193413 DOI: 10.1111/jcmm.13352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/19/2017] [Indexed: 12/25/2022] Open
Abstract
Signalling of the epithelial splicing variant of the fibroblast growth factor receptor 2 (FGFR2b) induces both autophagy and phagocytosis in human keratinocytes. Here, we investigated, in the cell model of HaCaT keratinocytes, whether the two processes might be related and the possible involvement of PLCγ signalling. Using fluorescence and electron microscopy, we demonstrated that the FGFR2b-induced phagocytosis and autophagy involve converging autophagosomal and phagosomal compartments. Moreover, the forced expression of FGFR2b signalling mutants and the use of specific inhibitors of FGFR2b substrates showed that the receptor-triggered autophagy requires PLCγ signalling, which in turn activates JNK1 via PKCδ. Finally, we found that in primary human keratinocytes derived from light or dark pigmented skin and expressing different levels of FGFR2b, the rate of phagocytosis and autophagy and the convergence of the two intracellular pathways are dependent on the level of receptor expression, suggesting that FGFR2b signalling would control in vivo the number of melanosomes in keratinocytes, determining skin pigmentation.
Collapse
Affiliation(s)
- Monica Nanni
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Danilo Ranieri
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Salvatore Raffa
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy.,S. Andrea University Hospital, Rome, Italy
| | - Maria Rosaria Torrisi
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy.,S. Andrea University Hospital, Rome, Italy
| | - Francesca Belleudi
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
24
|
Dolivo DM, Larson SA, Dominko T. Fibroblast Growth Factor 2 as an Antifibrotic: Antagonism of Myofibroblast Differentiation and Suppression of Pro-Fibrotic Gene Expression. Cytokine Growth Factor Rev 2017; 38:49-58. [PMID: 28967471 DOI: 10.1016/j.cytogfr.2017.09.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 09/22/2017] [Indexed: 02/08/2023]
Abstract
Fibrosis is a pathological condition that is characterized by the replacement of dead or damaged tissue with a nonfunctional, mechanically aberrant scar, and fibrotic pathologies account for nearly half of all deaths worldwide. The causes of fibrosis differ somewhat from tissue to tissue and pathology to pathology, but in general some of the cellular and molecular mechanisms remain constant regardless of the specific pathology in question. One of the common mechanisms underlying fibroses is the paradigm of the activated fibroblast, termed the "myofibroblast," a differentiated mesenchymal cell with demonstrated contractile activity and a high rate of collagen deposition. Fibroblast growth factor 2 (FGF2), one of the members of the mammalian fibroblast growth factor family, is a cytokine with demonstrated antifibrotic activity in non-human animal, human, and in vitro models. FGF2 is highly pleiotropic and its receptors are present on many different cell types throughout the body, lending a great deal of variety to the potential mechanisms of FGF2 effects on fibrosis. However, recent reports demonstrate that a substantial contribution to the antifibrotic effects of FGF2 comes from the inhibitory effects of FGF2 on connective tissue fibroblasts, activated myofibroblasts, and myofibroblast progenitors. FGF2 demonstrates effects antagonistic towards fibroblast activation and towards mesenchymal transition of potential myofibroblast-forming cells, as well as promotes a gene expression paradigm more reminiscent of regenerative healing, such as that which occurs in the fetal wound healing response, than fibrotic resolution. With a better understanding of the mechanisms by which FGF2 alters the wound healing cascade and results in a shift away from scar formation and towards functional tissue regeneration, we may be able to further address the critical need of therapy for varied fibrotic pathologies across myriad tissue types.
Collapse
Affiliation(s)
- David M Dolivo
- Worcester Polytechnic Institute, Department of Biology and Biotechnology,100 Institute Road, Worcester, MA, 01609, United States
| | - Sara A Larson
- Worcester Polytechnic Institute, Department of Biology and Biotechnology,100 Institute Road, Worcester, MA, 01609, United States
| | - Tanja Dominko
- Worcester Polytechnic Institute, Department of Biology and Biotechnology,100 Institute Road, Worcester, MA, 01609, United States.
| |
Collapse
|
25
|
Recombinant Thrombomodulin Exerts Anti-autophagic Action in Endothelial Cells and Provides Anti-atherosclerosis Effect in Apolipoprotein E Deficient Mice. Sci Rep 2017; 7:3284. [PMID: 28607460 PMCID: PMC5468323 DOI: 10.1038/s41598-017-03443-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/27/2017] [Indexed: 12/16/2022] Open
Abstract
Stress-induced alteration in endothelial cells (ECs) integrity precedes the development of atherosclerosis. Previous studies showed that the soluble recombinant thrombomodulin (rTM) not only increases ECs proliferation but also exerts anti-apoptotic activity in ECs. However, the functional significance of soluble rTM on autophagy-related apoptosis in ECs is still undetermined. Implicating a cytoprotective role for rTM in persistent serum starvation (SS)-induced autophagy in cultured ECs, we found that treatment of rTM decreased the expression of SS-induced autophagy-related proteins, ATG5 and LC3, and the formation of autophagosomes through activation of AKT/mTOR pathway. In addition, treatment of rTM decreased SS-induced EC apoptosis, but this effect of rTM could not be recapitulated by co-treatment with a potent autophagy inducer, rapamycin and in ECs with ATG5 knockdown. In human atherosclerosis specimens, expression of autophagy markers, ATG13 and LC3, were more abundant in aortic intimal ECs with severe atherosclerosis than those without atherosclerosis. Moreover, compared to saline treatment group, administration of rTM reduced LC3 and ATG13 expression, intimal EC apoptosis, and atherosclerotic lesion severity in the aorta of apolipoprotein E deficient mice. In conclusion, treatment with rTM suppressed stress-induced autophagy overactivation in ECs, provided ECs protective effects, and decreased atherosclerosis in apolipoprotein E deficient mice.
Collapse
|
26
|
Yuan H, Li ZM, Shao J, Ji WX, Xia W, Lu S. FGF2/FGFR1 regulates autophagy in FGFR1-amplified non-small cell lung cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:72. [PMID: 28558758 PMCID: PMC5450166 DOI: 10.1186/s13046-017-0534-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/25/2017] [Indexed: 12/03/2022]
Abstract
Background Autophagy is a conserved catabolic process to degrade cellular organelles. The role of autophagy in cancer development is complex. Amplification of fibroblast growth factor receptor 1 (FGFR1) is one of the most frequent targets in lung squamous cell carcinoma (SQCC). Whether fibroblast growth factor 2 (FGF2)/FGFR1 contributes to the regulation of autophagy remains elusive. Methods Autophagic activity was evaluated by immunoblotting for microtubule-associated protein 1 light chain 3 (LC3), formation of GFP-LC3 puncta, and monodansylcadaverine (MDC) staining. The effect of autophagy inhibition on cell survival was assessed by cell viability and apoptosis assays. Results We elucidated that FGFR1 activation suppressed autophagy. Pharmacological or genetic inhibition of FGFR1 by AZD4547 or FGFR1 short hairpin RNA (shRNA) induced autophagy in FGFR1-amplified non-small cell lung cancer (NSCLC) cells, H1581 and H520 cells. Mechanistic study revealed that the induction of autophagy by FGFR1 inhibition was mediated through inhibiting the ERK/MAPK pathway not by AKT pathway, accompanied by upregulation of beclin-1. Furthermore, activation of ERK/MAPK by transfection with a constitutively active MEK1 (caMEK1) construct or knockdown of beclin-1 by RNAi could attenuate autophagy induced by FGFR1 inhibition. Beclin-1 expression was inversely correlated with MEK1 phosphorylation. Inhibition of autophagy by beclin-1 silencing could enhance apoptosis after AZD4547 treatment in H1581 and H520 cells. High levels of LC3B mRNA was a marker of poor prognosis in NSCLC patients. Conclusions Simultaneously inhibiting FGFR1 and autophagy could enhance cell death which should be further explored in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0534-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong Yuan
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zi-Ming Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jiaxiang Shao
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Wen-Xiang Ji
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Weiliang Xia
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
27
|
Khandelwal AR, Rong X, Moore-Medlin T, Ekshyyan O, Abreo F, Gu X, Nathan CAO. Photopreventive Effect and Mechanism of AZD4547 and Curcumin C3 Complex on UVB-Induced Epidermal Hyperplasia. Cancer Prev Res (Phila) 2016; 9:296-304. [PMID: 26862088 DOI: 10.1158/1940-6207.capr-15-0366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/26/2016] [Indexed: 11/16/2022]
Abstract
Aggressive cutaneous squamous cell carcinoma (cSCC) of the skin is the second most common type of skin cancer in the United States due to high exposure to ultraviolet B (UVB) radiation. In our previous studies, Curcumin C3 complex (C3), a standardized preparation of three curcumonoids, delayed UVB-induced tumor incidence and inhibited multiplicity. Exposure to UVB activates mTOR and FGFR signaling that play a key role in skin tumorigenesis. The purpose of this study was to investigate the efficacy of C3 complex to afford protection against acute UVB-induced hyperproliferation by targeting the mTOR and FGFR signaling pathways. Pretreatment with C3 complex significantly inhibited UVB-induced FGF-2 induction, FGF-2-induced cell proliferation, progression and colony formation, mTORC1 and mTORC2 activation, and FGFR2 phosphorylation in the promotion-sensitive JB6 cells epithelial cells. Further, FGFR was critical for UVB-induced mTOR activation, suggesting an important role of FGFR2 in UVB-induced mTOR signaling. SKH-1 mice pretreated with C3 (15 mg/kg/b.w.) for 2 weeks followed by a single exposure to UVB (180 mj/cm(2)) significantly attenuated UVB-induced mTORC1, mTORC2, and FGFR2 activation. To further assess the role of FGFR in UVB-induced hyperproliferation, SKH-1 mice were pretreated with AZD4547 (5 mg/kg/b.w.); a selective pan-FGFR kinase inhibitor followed by single exposure to UVB (180 mj/cm(2)). AZD4547 significantly inhibited UVB-induced mTORC1 and mTORC2 activation, epidermal hyperplasia and hyperproliferation. Our studies underscore the importance of FGFR signaling in UVB-induced acute skin changes and the role of FGFR/mTOR signaling in mediating the effects of C3 complex in the pathogenesis of skin cancer.
Collapse
Affiliation(s)
- Alok R Khandelwal
- Department of Otolaryngology-Head and Neck Surgery, LSU-Health Shreveport, Shreveport, Louisiana
| | - Xiaohua Rong
- Department of Otolaryngology-Head and Neck Surgery, LSU-Health Shreveport, Shreveport, Louisiana
| | - Tara Moore-Medlin
- Department of Otolaryngology-Head and Neck Surgery, LSU-Health Shreveport, Shreveport, Louisiana
| | - Oleksandr Ekshyyan
- Department of Otolaryngology-Head and Neck Surgery, LSU-Health Shreveport, Shreveport, Louisiana
| | - Fleurette Abreo
- Department of Pathology, LSU-Health Shreveport, Shreveport, Louisiana
| | - Xin Gu
- Department of Pathology, LSU-Health Shreveport, Shreveport, Louisiana
| | - Cherie-Ann O Nathan
- Department of Otolaryngology-Head and Neck Surgery, LSU-Health Shreveport, Shreveport, Louisiana. Department of Surgery, Overton Brooks Veterans Medical Center, Shreveport, Louisiana.
| |
Collapse
|
28
|
Wang X, Qi H, Wang Q, Zhu Y, Wang X, Jin M, Tan Q, Huang Q, Xu W, Li X, Kuang L, Tang Y, Du X, Chen D, Chen L. FGFR3/fibroblast growth factor receptor 3 inhibits autophagy through decreasing the ATG12-ATG5 conjugate, leading to the delay of cartilage development in achondroplasia. Autophagy 2015; 11:1998-2013. [PMID: 26491898 PMCID: PMC4824585 DOI: 10.1080/15548627.2015.1091551] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 08/26/2015] [Accepted: 09/03/2015] [Indexed: 01/15/2023] Open
Abstract
FGFR3 (fibroblast growth factor receptor 3) is a negative regulator of endochondral ossification. Gain-of-function mutations in FGFR3 are responsible for achondroplasia, the most common genetic form of dwarfism in humans. Autophagy, an evolutionarily conserved catabolic process, maintains chondrocyte viability in the growth plate under stress conditions, such as hypoxia and nutritional deficiencies. However, the role of autophagy and its underlying molecular mechanisms in achondroplasia remain elusive. In this study, we found activated FGFR3 signaling inhibited autophagic activity in chondrocytes, both in vivo and in vitro. By employing an embryonic bone culture system, we demonstrated that treatment with autophagy inhibitor 3-MA or chloroquine led to cartilage growth retardation, which mimics the effect of activated-FGFR3 signaling on chondrogenesis. Furthermore, we found that FGFR3 interacted with ATG12-ATG5 conjugate by binding to ATG5. More intriguingly, FGFR3 signaling was found to decrease the protein level of ATG12-ATG5 conjugate. Consistently, using in vitro chondrogenic differentiation assay system, we showed that the ATG12-ATG5 conjugate was essential for the viability and differentiation of chondrocytes. Transient transfection of ATG5 partially rescued FGFR3-mediated inhibition on chondrocyte viability and differentiation. Our findings reveal that FGFR3 inhibits the autophagic activity by decreasing the ATG12-ATG5 conjugate level, which may play an essential role in the pathogenesis of achondroplasia.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Center of Bone Metabolism and Repair (CBMR); Trauma Center; Institute of Surgery Research; Daping Hospital; Third Military Medical University; Chongqing,China
- State Key Laboratory of Trauma; Burns and Combined Injury; Third Military Medical University; Chongqing, China
- Department of Rehabilitation Medicine; Institute of Surgery Research; Daping Hospital; Third Military Medical University; Chongqing, China
| | - Huabing Qi
- Center of Bone Metabolism and Repair (CBMR); Trauma Center; Institute of Surgery Research; Daping Hospital; Third Military Medical University; Chongqing,China
- State Key Laboratory of Trauma; Burns and Combined Injury; Third Military Medical University; Chongqing, China
- Department of Rehabilitation Medicine; Institute of Surgery Research; Daping Hospital; Third Military Medical University; Chongqing, China
| | - Quan Wang
- Center of Bone Metabolism and Repair (CBMR); Trauma Center; Institute of Surgery Research; Daping Hospital; Third Military Medical University; Chongqing,China
- State Key Laboratory of Trauma; Burns and Combined Injury; Third Military Medical University; Chongqing, China
- Department of Rehabilitation Medicine; Institute of Surgery Research; Daping Hospital; Third Military Medical University; Chongqing, China
| | - Ying Zhu
- Center of Bone Metabolism and Repair (CBMR); Trauma Center; Institute of Surgery Research; Daping Hospital; Third Military Medical University; Chongqing,China
- State Key Laboratory of Trauma; Burns and Combined Injury; Third Military Medical University; Chongqing, China
- Department of Rehabilitation Medicine; Institute of Surgery Research; Daping Hospital; Third Military Medical University; Chongqing, China
| | - Xianxing Wang
- Center of Bone Metabolism and Repair (CBMR); Trauma Center; Institute of Surgery Research; Daping Hospital; Third Military Medical University; Chongqing,China
- State Key Laboratory of Trauma; Burns and Combined Injury; Third Military Medical University; Chongqing, China
- Department of Rehabilitation Medicine; Institute of Surgery Research; Daping Hospital; Third Military Medical University; Chongqing, China
| | - Min Jin
- Center of Bone Metabolism and Repair (CBMR); Trauma Center; Institute of Surgery Research; Daping Hospital; Third Military Medical University; Chongqing,China
- State Key Laboratory of Trauma; Burns and Combined Injury; Third Military Medical University; Chongqing, China
- Department of Rehabilitation Medicine; Institute of Surgery Research; Daping Hospital; Third Military Medical University; Chongqing, China
| | - Qiaoyan Tan
- Center of Bone Metabolism and Repair (CBMR); Trauma Center; Institute of Surgery Research; Daping Hospital; Third Military Medical University; Chongqing,China
- State Key Laboratory of Trauma; Burns and Combined Injury; Third Military Medical University; Chongqing, China
- Department of Rehabilitation Medicine; Institute of Surgery Research; Daping Hospital; Third Military Medical University; Chongqing, China
| | - Qizhao Huang
- Center of Bone Metabolism and Repair (CBMR); Trauma Center; Institute of Surgery Research; Daping Hospital; Third Military Medical University; Chongqing,China
- State Key Laboratory of Trauma; Burns and Combined Injury; Third Military Medical University; Chongqing, China
- Department of Rehabilitation Medicine; Institute of Surgery Research; Daping Hospital; Third Military Medical University; Chongqing, China
| | - Wei Xu
- Center of Bone Metabolism and Repair (CBMR); Trauma Center; Institute of Surgery Research; Daping Hospital; Third Military Medical University; Chongqing,China
- State Key Laboratory of Trauma; Burns and Combined Injury; Third Military Medical University; Chongqing, China
- Department of Rehabilitation Medicine; Institute of Surgery Research; Daping Hospital; Third Military Medical University; Chongqing, China
| | - Xiaogang Li
- Center of Bone Metabolism and Repair (CBMR); Trauma Center; Institute of Surgery Research; Daping Hospital; Third Military Medical University; Chongqing,China
- State Key Laboratory of Trauma; Burns and Combined Injury; Third Military Medical University; Chongqing, China
- Department of Rehabilitation Medicine; Institute of Surgery Research; Daping Hospital; Third Military Medical University; Chongqing, China
| | - Liang Kuang
- Center of Bone Metabolism and Repair (CBMR); Trauma Center; Institute of Surgery Research; Daping Hospital; Third Military Medical University; Chongqing,China
- State Key Laboratory of Trauma; Burns and Combined Injury; Third Military Medical University; Chongqing, China
- Department of Rehabilitation Medicine; Institute of Surgery Research; Daping Hospital; Third Military Medical University; Chongqing, China
| | - Yubing Tang
- Center of Bone Metabolism and Repair (CBMR); Trauma Center; Institute of Surgery Research; Daping Hospital; Third Military Medical University; Chongqing,China
- State Key Laboratory of Trauma; Burns and Combined Injury; Third Military Medical University; Chongqing, China
- Department of Rehabilitation Medicine; Institute of Surgery Research; Daping Hospital; Third Military Medical University; Chongqing, China
| | - Xiaolan Du
- Center of Bone Metabolism and Repair (CBMR); Trauma Center; Institute of Surgery Research; Daping Hospital; Third Military Medical University; Chongqing,China
- State Key Laboratory of Trauma; Burns and Combined Injury; Third Military Medical University; Chongqing, China
- Department of Rehabilitation Medicine; Institute of Surgery Research; Daping Hospital; Third Military Medical University; Chongqing, China
| | - Di Chen
- Department of Biochemistry; Rush University Medical Center; Chicago, IL USA
| | - Lin Chen
- Center of Bone Metabolism and Repair (CBMR); Trauma Center; Institute of Surgery Research; Daping Hospital; Third Military Medical University; Chongqing,China
- State Key Laboratory of Trauma; Burns and Combined Injury; Third Military Medical University; Chongqing, China
- Department of Rehabilitation Medicine; Institute of Surgery Research; Daping Hospital; Third Military Medical University; Chongqing, China
| |
Collapse
|
29
|
Wang ZG, Wang Y, Huang Y, Lu Q, Zheng L, Hu D, Feng WK, Liu YL, Ji KT, Zhang HY, Fu XB, Li XK, Chu MP, Xiao J. bFGF regulates autophagy and ubiquitinated protein accumulation induced by myocardial ischemia/reperfusion via the activation of the PI3K/Akt/mTOR pathway. Sci Rep 2015; 5:9287. [PMID: 25787015 PMCID: PMC4365411 DOI: 10.1038/srep09287] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 02/17/2015] [Indexed: 01/13/2023] Open
Abstract
Autophagy is involved in the development and/or progression of many diseases, including myocardial ischemia/reperfusion (I/R). In this study, we hypothesized a protective role of basic fibroblast growth factor (bFGF) both in vivo and in vitro and demonstrated that excessive autophagy and ubiquitinated protein accumulation is involved in the myocardial I/R model. Our results showed that bFGF improved heart function recovery and increased the survival of cardiomyocytes in myocardial I/R model. The protective effect of bFGF is related to the inhibition of LC3II levels. Additionally, bFGF enhances the clearance of Ub by p62 and increases the survival of H9C2 cells. Moreover, silencing of p62 partially blocks the clearance of Ub and abolishes the anti-apoptosis effect of bFGF. An shRNA against the autophagic machinery Atg7 increased the survival of H9C2 cells co-treated with bFGF and rapamycin. bFGF activates the downstream signaling of the PI3K/Akt/mTOR pathway. These results indicate that the role of bFGF in myocardial I/R recovery is related to the inhibition of excessive autophagy and increased ubiquitinated protein clearance via the activation of PI3K/Akt/mTOR signaling. Overall, our study suggests a new direction for bFGF drug development for heart disease and identifies protein signaling pathways involved in bFGF action.
Collapse
Affiliation(s)
- Zhou-Guang Wang
- 1] School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China [2] Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, 130012, China
| | - Yue Wang
- 1] School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China [2] Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, 130012, China
| | - Yan Huang
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Qin Lu
- Department of Pediatric Cardiology, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Lei Zheng
- Department of Ultrasound, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Dong Hu
- Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan 232001, China
| | - Wen-Ke Feng
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Yan-Long Liu
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Kang-Ting Ji
- Department of Pediatric Cardiology, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Hong-Yu Zhang
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiao-Bing Fu
- Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiao-Kun Li
- 1] School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China [2] Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, 130012, China
| | - Mao-Ping Chu
- Department of Pediatric Cardiology, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jian Xiao
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
30
|
Belleudi F, Purpura V, Caputo S, Torrisi MR. FGF7/KGF regulates autophagy in keratinocytes: A novel dual role in the induction of both assembly and turnover of autophagosomes. Autophagy 2014; 10:803-21. [PMID: 24577098 PMCID: PMC5119059 DOI: 10.4161/auto.28145] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Autophagy is a degradative pathway through which cells overcome stressful conditions and rapidly change their phenotype during differentiation. Despite its protective role, when exacerbated, autophagy may lead to cell death. Several growth factors involved in cell survival and in preventing differentiation are able to inhibit autophagy. Here we investigated the autophagic role of FGF7/KGF, an important player in epithelial cell protection and differentiation. Biochemical and quantitative fluorescence approaches showed that FGF7 and its signaling induce autophagy in human keratinocytes and the use of specific inhibitors indicated that this effect is independent of the PI3K-AKT-MTOR pathway. The selective block of autophagosome-to-lysosome fusion clarified that FGF7 induces autophagy stimulating autophagosome formation. However, quantitative fluorescence approaches also indicated that, upon a prolonged autophagic stimulus, FGF7 is able to accelerate autophagosome turnover. Moreover, in differentiating keratinocytes, the use of the autophagic inhibitor 3-MA as well as the depletion of BECN1 and ATG5, 2 essential regulators of the process, counteracted the FGF7-induced increase of the differentiation marker KRT1/K1, suggesting that autophagy is required for the FGF7-mediated early differentiation. These results provide the first evidence of a role of FGF7 in the regulation of sequential steps of the autophagic process and strengthen the hypothesis of a direct interplay between autophagy and differentiation. On the other hand, the ability of FGF7 to accelerate autophagosome turnover, preventing their dangerous accumulation, is consistent with the well-established protective role played by the growth factor in epithelial cells.
Collapse
Affiliation(s)
- Francesca Belleudi
- Istituto Pasteur-Fondazione Cenci Bolognetti; Dipartimento di Medicina Clinica e Molecolare; Sapienza Università di Roma; Rome, Italy
| | - Valeria Purpura
- Istituto Pasteur-Fondazione Cenci Bolognetti; Dipartimento di Medicina Clinica e Molecolare; Sapienza Università di Roma; Rome, Italy
| | - Silvia Caputo
- Istituto Pasteur-Fondazione Cenci Bolognetti; Dipartimento di Medicina Clinica e Molecolare; Sapienza Università di Roma; Rome, Italy
| | - Maria Rosaria Torrisi
- Istituto Pasteur-Fondazione Cenci Bolognetti; Dipartimento di Medicina Clinica e Molecolare; Sapienza Università di Roma; Rome, Italy; Azienda Ospedaliera S. Andrea; Rome, Italy
| |
Collapse
|
31
|
Perucho J, Casarejos MJ, Gómez A, Ruíz C, Fernández-Estevez MÁ, Muñoz MP, de Yébenes JG, Mena MÁ. Striatal infusion of glial conditioned medium diminishes huntingtin pathology in r6/1 mice. PLoS One 2013; 8:e73120. [PMID: 24069174 PMCID: PMC3771920 DOI: 10.1371/journal.pone.0073120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/24/2013] [Indexed: 01/02/2023] Open
Abstract
Huntington's disease is a neurodegenerative disorder caused by an expansion of CAG repeats in the huntingtin gene which produces widespread neuronal and glial pathology. We here investigated the possible therapeutic role of glia or glial products in Huntington's disease using striatal glial conditioned medium (GCM) from fetus mice (E16) continuously infused for 15 and 30 days with osmotic minipumps into the left striatum of R6/1 mice. Animals infused with GCM had significantly less huntingtin inclusions in the ipsilateral cerebral cortex and in the ipsilateral and contralateral striata than mice infused with cerebrospinal fluid. The numbers of DARPP-32 and TH positive neurons were also greater in the ipsilateral but not contralateral striata and substantia nigra, respectively, suggesting a neuroprotective effect of GCM on efferent striatal and nigro-striatal dopamine neurons. GCM increases activity of the autophagic pathway, as shown by the reduction of autophagic substrate, p-62, and the augmentation of LC3 II, Beclin-1 and LAMP-2 protein levels, direct markers of autophagy, in GCM infused mice. GCM also increases BDNF levels. These results suggest that CGM should be further explored as a putative neuroprotective agent in Huntington's disease.
Collapse
Affiliation(s)
- Juan Perucho
- Department of Neurobiology, Hospital “Ramón y Cajal”, Madrid, Spain
- CIBERNED, Madrid, Spain
| | - Maria José Casarejos
- Department of Neurobiology, Hospital “Ramón y Cajal”, Madrid, Spain
- CIBERNED, Madrid, Spain
| | - Ana Gómez
- Department of Neurobiology, Hospital “Ramón y Cajal”, Madrid, Spain
- CIBERNED, Madrid, Spain
| | - Carolina Ruíz
- Department of Neurology, Hospital “Ramón y Cajal”, Madrid, Spain
- CIBERNED, Madrid, Spain
| | | | - Maria Paz Muñoz
- Department of Neurobiology, Hospital “Ramón y Cajal”, Madrid, Spain
- CIBERNED, Madrid, Spain
| | | | - Maria Ángeles Mena
- Department of Neurobiology, Hospital “Ramón y Cajal”, Madrid, Spain
- CIBERNED, Madrid, Spain
- * E-mail:
| |
Collapse
|
32
|
Zhang HY, Wang ZG, Wu FZ, Kong XX, Yang J, Lin BB, Zhu SP, Lin L, Gan CS, Fu XB, Li XK, Xu HZ, Xiao J. Regulation of autophagy and ubiquitinated protein accumulation by bFGF promotes functional recovery and neural protection in a rat model of spinal cord injury. Mol Neurobiol 2013; 48:452-64. [PMID: 23516099 DOI: 10.1007/s12035-013-8432-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 02/26/2013] [Indexed: 12/27/2022]
Abstract
The role of autophagy in the recovery of spinal cord injury remains controversial; in particular, the mechanism of autophagy regulated degradation of ubiquitinated proteins has not been discussed to date. In this study, we investigated the protective role of basic fibroblast growth factor (bFGF) both in vivo and in vitro and demonstrated that excessive autophagy and ubiquitinated protein accumulation is involved in the rat model of trauma. bFGF administration improved recovery and increased the survival of neurons in spinal cord lesions in the rat model. The protective effect of bFGF is related to the inhibition of autophagic protein LC3II levels; bFGF treatment also enhances clearance of ubiquitinated proteins by p62, which also increases the survival of neuronal PC-12 cells. The activation of the downstream signals of the PI3K/Akt/mTOR pathway by bFGF treatment was detected both in vivo and in vitro. Combination therapy including the autophagy activator rapamycin partially abolished the protective effect of bFGF. The present study illustrates that the role of bFGF in SCI recovery is related to the inhibition of excessive autophagy and enhancement of ubiquitinated protein clearance via the activation of PI3K/Akt/mTOR signaling. Overall, our study suggests a new trend for bFGF drug development for central nervous system injuries and sheds light on protein signaling involved in bFGF action.
Collapse
Affiliation(s)
- Hong-Yu Zhang
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical College, Wenzhou, 325035, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang J, Liu J, Huang Y, Chang JYF, Liu L, McKeehan WL, Martin JF, Wang F. FRS2α-mediated FGF signals suppress premature differentiation of cardiac stem cells through regulating autophagy activity. Circ Res 2011; 110:e29-39. [PMID: 22207710 DOI: 10.1161/circresaha.111.255950] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE Although the fibroblast growth factor (FGF) signaling axis plays important roles in heart development, the molecular mechanism by which the FGF regulates cardiogenesis is not fully understood. OBJECTIVE To investigate the mechanism by which FGF signaling regulates cardiac progenitor cell differentiation. METHODS AND RESULTS Using mice with tissue-specific ablation of FGF receptors and FGF receptor substrate 2α (Frs2α) in heart progenitor cells, we demonstrate that disruption of FGF signaling leads to premature differentiation of cardiac progenitor cells in mice. Using embryoid body cultures of mouse embryonic stem cells, we reveal that FGF signaling promotes mesoderm differentiation in embryonic stem cells but inhibits cardiomyocyte differentiation of the mesoderm cells at later stages. Furthermore, we also report that inhibiting FRS2α-mediated signals increases autophagy and that activating autophagy promotes myocardial differentiation and vice versa. CONCLUSIONS The results indicate that the FGF/FRS2α-mediated signals prevent premature differentiation of heart progenitor cells through suppressing autophagy. The findings provide the first evidence that autophagy plays a role in heart progenitor differentiation.
Collapse
Affiliation(s)
- Jue Zhang
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030-3303, USA
| | | | | | | | | | | | | | | |
Collapse
|