1
|
Wang Y, Lai J, Chen Z, Sun L, Ma Y, Wu J. Exploring the therapeutic mechanisms of heart failure with Chinese herbal medicine: a focus on miRNA-mediated regulation. Front Pharmacol 2024; 15:1475975. [PMID: 39564110 PMCID: PMC11573571 DOI: 10.3389/fphar.2024.1475975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024] Open
Abstract
Heart failure (HF) is a clinical condition caused by abnormalities in the heart's structure or function, primarily manifested as diminished ability of the heart to pump blood, which leads to compensatory activation of neurohormones and increased left ventricular filling pressure. HF is one of the fastest-growing cardiovascular diseases globally in terms of incidence and mortality, negatively impacting patients' quality of life and imposing significant medical and economic burdens. Despite advancements in the treatment of HF, hospitalization and mortality remain rates high. In China, Chinese herbal medicine (CHM) has historically played a prominent role in addressing HF, with significant proven efficacy. MicroRNA (miRNA) exerts a pivotal regulatory influence on the maintenance of regular cardiac activity and the progression of HF. MiRNAs, a category of single-stranded RNA molecules, are characterized by their inability to code for proteins. They regulate gene expression by binding to the 3'-untranslated region (3'-UTR) of target mRNAs, thereby influencing the onset and progression of various diseases. Abnormal expression of specific miRNAs is closely associated with HF pathological processes, such as cardiomyocyte apoptosis, myocardial fibrosis, and cardiac hypertrophy. This abnormal expression can influence the pathological progression of HF through the regulation of miRNA expression. This article reviews the regulatory role of miRNAs in HF pathology discusses how CHM compounds and their active ingredients can ameliorate HF pathology through the regulation of miRNA expression. In conclusion, miRNAs represent promising therapeutic targets for HF, and CHM provides a novel strategy for treatment through the regulation of miRNA expression. Future studies must delve deeper into the precise mechanisms by which CHM modulates miRNAs and fully explore its potential for clinical application in HF treatment.
Collapse
Affiliation(s)
- Yang Wang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Junyu Lai
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhengtao Chen
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Liqiang Sun
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Yirong Ma
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jianguang Wu
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Wei W, Heng YY, Wu FF, Dong HY, Zhang PF, Li JX, Liu CY, Yang BJ, Fu JN, Liang XY. Sodium Tanshinone IIA Sulfonate alleviates vascular senescence in diabetic mice by modulating the A20-NFκB-NLRP3 inflammasome-catalase pathway. Sci Rep 2024; 14:17665. [PMID: 39085294 PMCID: PMC11291694 DOI: 10.1038/s41598-024-68169-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Diabetes accelerates vascular senescence, which is the basis for atherosclerosis and stiffness. The activation of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and oxidative stress are closely associated with the deteriorative senescence in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). For decades, Sodium Tanshinone IIA Sulfonate (STS) has been utilized as a cardiovascular medicine with acknowledged anti-inflammatory and anti-oxidative properties. Nevertheless, the impact of STS on vascular senescence remains unexplored in diabetes. Diabetic mice, primary ECs and VSMCs were transfected with the NLRP3 overexpression/knockout plasmid, the tumor necrosis factor alpha-induced protein 3 (TNFAIP3/A20) overexpression/knockout plasmid, and treated with STS to detect senescence-associated markers. In diabetic mice, STS treatment maintained catalase (CAT) level and vascular relaxation, reduced hydrogen peroxide probe (ROSgreen) fluorescence, p21 immunofluorescence, Senescence β-Galactosidase Staining (SA-β-gal) staining area, and collagen deposition in aortas. Mechanistically, STS inhibited NLRP3 phosphorylation (serine 194), NLRP3 dimer formation, NLRP3 expression, and NLRP3-PYCARD (ASC) colocalization. It also suppressed the phosphorylation of IkappaB alpha (IκBα) and NFκB, preserved A20 and CAT levels, reduced ROSgreen density, and decreased the expression of p21 and SA-β-gal staining in ECs and VSMCs under HG culture. Our findings indicate that STS mitigates vascular senescence by modulating the A20-NFκB-NLRP3 inflammasome-CAT pathway in hyperglycemia conditions, offering novel insights into NLRP3 inflammasome activation and ECs and VSMCs senescence under HG culture. This study highlights the potential mechanism of STS in alleviating senescence in diabetic blood vessels, and provides essential evidence for its future clinical application.
Collapse
MESH Headings
- Animals
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Inflammasomes/metabolism
- Mice
- NF-kappa B/metabolism
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Phenanthrenes/pharmacology
- Cellular Senescence/drug effects
- Signal Transduction/drug effects
- Catalase/metabolism
- Male
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Endothelial Cells/metabolism
- Endothelial Cells/drug effects
- Mice, Inbred C57BL
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
Collapse
Affiliation(s)
- Wei Wei
- Department of Pharmacology, Changzhi Medical College, No.161, Jiefang East Street, Changzhi, 046000, Shanxi, China.
- Department of Endocrinology and Institute of Endocrinology and Metabolic Disease, Heping Hospital Affiliated to Changzhi Medical College, No.110, Yanan Road South, Changzhi, 046000, Shanxi, China.
- Department of Clinical Central Laboratory, Heping Hospital Affiliated to Changzhi Medical College, No.110, Yan'an South Road, Changzhi, Shanxi, China.
| | - Yan-Yan Heng
- Department of Nephrology Heping Hospital, Affiliated to Changzhi Medical College, No.110, Yanan Road South, Changzhi, Shanxi, China
| | - Fei-Fei Wu
- Department of Endocrinology and Institute of Endocrinology and Metabolic Disease, Heping Hospital Affiliated to Changzhi Medical College, No.110, Yanan Road South, Changzhi, 046000, Shanxi, China
| | - Hao-Yu Dong
- Department of Endocrinology and Institute of Endocrinology and Metabolic Disease, Heping Hospital Affiliated to Changzhi Medical College, No.110, Yanan Road South, Changzhi, 046000, Shanxi, China
| | - Peng-Fei Zhang
- Department of Nephrology Heping Hospital, Affiliated to Changzhi Medical College, No.110, Yanan Road South, Changzhi, Shanxi, China
| | - Jing-Xia Li
- Department of Anesthesia, Changzhi Medical College, No.161, Jiefang East Street, Changzhi, Shanxi, China
| | - Chun-Yan Liu
- Department of Anesthesia, Changzhi Medical College, No.161, Jiefang East Street, Changzhi, Shanxi, China
| | - Bing-Jie Yang
- Department of Stomatology, Changzhi Medical College, No.161, Jiefang East Street, Changzhi, Shanxi, China
| | - Jia-Ning Fu
- Department of Stomatology, Changzhi Medical College, No.161, Jiefang East Street, Changzhi, Shanxi, China
| | - Xin-Yue Liang
- Department of Medical Imageology, Changzhi Medical College, No.161, Jiefang East Street, Changzhi, Shanxi, China
| |
Collapse
|
3
|
Zhao L, Qian X, Ren Z, Wang A. miR-31-5p suppresses myocardial hypertrophy by targeting Nfatc2ip. J Cell Mol Med 2024; 28:e18413. [PMID: 38894694 PMCID: PMC11187844 DOI: 10.1111/jcmm.18413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 06/21/2024] Open
Abstract
Cardiac hypertrophy, worldwide known as an adaptive functional compensatory state of myocardial stress, is mainly believed to proceed to severe heart diseases, even to sudden death. Emerging studies have explored the microRNA alteration during hypertrophy. However, the mechanisms of microRNAs involved in cardiac hypertrophy are still uncertain. We studied young rats to establish abdominal aorta coarctation (AAC) for 4 weeks. With the significant downregulated cardiac function and upregulated hypertrophic biomarkers, AAC-induced rats showed enlarged myocardiocytes and alterations in microRNAs, especially downregulated miR-31-5p. miR-31-5p targets the 3'UTR of Nfatc2ip and inhibits myocardial hypertrophy in vitro and in vivo. Furthermore, we verified that Nfatc2ip is necessary and sufficient for cardiac hypertrophy in neonatal rat cardiomyocytes. Moreover, we found miR-31-5p inhibited the colocalization of Nfatc2ip and hypertrophic gene β-Mhc. Luciferase assay and ChiP-qPCR test demonstrated that Nfatc2ip binded to the core-promoter of β-Mhc and enhanced its transcriptional activity. Above all, our study found a new pathway, mir-31-5p/Nfatc2ip/β-Mhc, which is involved in cardiac hypertrophy, suggesting a potential target for intervention of cardiac hypertrophy.
Collapse
Affiliation(s)
- Lamei Zhao
- Department of Cardiology1st Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Xiaotao Qian
- Department of Oncology, Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiChina
| | - Zhenxing Ren
- Department of Anatomy, The Research Center of Basic Integrative MedicineGuangzhou University of Traditional Chinese MedicineGuangzhouGuangdongChina
| | - Ailing Wang
- Department of Cardiology1st Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
4
|
Yang Y, Shao M, Cheng W, Yao J, Ma L, Wang Y, Wang W. A Pharmacological Review of Tanshinones, Naturally Occurring Monomers from Salvia miltiorrhiza for the Treatment of Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3801908. [PMID: 36793978 PMCID: PMC9925269 DOI: 10.1155/2023/3801908] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/23/2022] [Accepted: 11/25/2022] [Indexed: 02/09/2023]
Abstract
Cardiovascular diseases (CVDs) are a set of heart and blood vessel disorders that include coronary heart disease (CHD), rheumatic heart disease, and other conditions. Traditional Chinese Medicine (TCM) has definite effects on CVDs due to its multitarget and multicomponent properties, which are gradually gaining national attention. Tanshinones, the major active chemical compounds extracted from Salvia miltiorrhiza, exhibit beneficial improvement on multiple diseases, especially CVDs. At the level of biological activities, they play significant roles, including anti-inflammation, anti-oxidation, anti-apoptosis and anti-necroptosis, anti-hypertrophy, vasodilation, angiogenesis, combat against proliferation and migration of smooth muscle cells (SMCs), as well as anti-myocardial fibrosis and ventricular remodeling, which are all effective strategies in preventing and treating CVDs. Additionally, at the cellular level, Tanshinones produce marked effects on cardiomyocytes, macrophages, endothelia, SMCs, and fibroblasts in myocardia. In this review, we have summarized a brief overview of the chemical structures and pharmacological effects of Tanshinones as a CVD treatment to expound on different pharmacological properties in various cell types in myocardia.
Collapse
Affiliation(s)
- Ye Yang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
| | - Mingyan Shao
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenkun Cheng
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Junkai Yao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
| | - Lin Ma
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Wang
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Wang
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Zhang M, Chen Y, Chen H, Shen Y, Pang L, Wu W, Yu Z. Tanshinone IIA alleviates cardiac hypertrophy through m6A modification of galectin-3. Bioengineered 2022; 13:4260-4270. [PMID: 35191812 PMCID: PMC8973617 DOI: 10.1080/21655979.2022.2031388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cardiac hypertrophy results from the adaptive response of the myocardium to pressure overload on the heart. Tanshinone IIA (Tan IIA) is the major active compound extracted from Salvia miltiorrhiza Bunge, which possesses various pharmacological benefits. In the present study, the effect and mechanism of action of Tan IIA on cardiac hypertrophy were studied. Ang II–induced and transverse aortic constriction (TAC)-induced cardiomyocyte hypertrophy models were used to evaluate the effect of Tan IIA. An adenoviral vector system was utilized to overexpress galectin-3. The results revealed that Tan IIA significantly inhibited Ang II–induced hypertrophy in vitro and TAC-induced cardiac hypertrophy in vivo. Furthermore, Tan IIA notably inhibited the expression of galectin-3. Rescue experiments indicated that galectin-3 overexpression reversed the effects of Tan IIA, which further validated the interaction between Tan IIA and galectin-3. Additionally, Tan IIA suppressed alkB homolog 5, RNA demethylase (ALKBH5)-mediated N6-methyladenosine (m6A) modification of galectin-3. In summary, the results of the present study indicated that Tan IIA attenuates cardiac hypertrophy by targeting galectin-3, suggesting that galectin-3 plays a critical role in cardiac hypertrophy and represents a new therapeutic target.
Collapse
Affiliation(s)
- Meiqi Zhang
- Department of Intensive Care Unit, Hangzhou Hospital of Traditional Chinese Medicine (Dingqiao District), Guangxing Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yun Chen
- Department of Intensive Care Unit, Hangzhou Hospital of Traditional Chinese Medicine (Dingqiao District), Guangxing Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huan Chen
- Department of Emergency Medicine, Zhejiang Provincial People' s Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Ye Shen
- Department of Emergency Medicine, Zhejiang Provincial People' s Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Lingxiao Pang
- Department of Emergency Medicine, Zhejiang Provincial People' s Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Weihua Wu
- Department of Intensive Care Unit, Hangzhou Hospital of Traditional Chinese Medicine (Dingqiao District), Guangxing Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhenfei Yu
- Department of Intensive Care Unit, Hangzhou Hospital of Traditional Chinese Medicine (Dingqiao District), Guangxing Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Gao L, Li T, Li S, Song Z, Chang Y, Yuan L. Schisandrin A protects against isoproterenol‑induced chronic heart failure via miR‑155. Mol Med Rep 2021; 25:24. [PMID: 34812475 PMCID: PMC8630813 DOI: 10.3892/mmr.2021.12540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
Schisandrin A (Sch A) has a protective effect on cardiomyocytes. Circulating miR-155 levels are related to chronic heart failure (CHF). The present study aimed to clarify the role and the molecular mechanism of Sch A in CHF. C57BL/6JGpt mice were used for an isoproterenol (ISO)-induced CHF model to collect heart samples. Echocardiography was employed to detect heartbeat indicators. The degree of myocardial hypertrophy was evaluated based on the measurement of heart weight (HW), body weight (BW) and tibia length (TL) and the observation using hematoxylin-eosin staining. Sprague-Dawley rats were purchased for the separation of neonatal rat ventricular myocytes (NRVMs), which were treated with ISO for 24 h. Transfection regulated the level of miR-155. The viability of NRVMs was detected via MTT assay. The mRNA and protein levels were measured via reverse transcription-quantitative PCR and western blotting and immunofluorescence was used to detect the content of α-smooth muscle actin (α-SMA). Treatment with ISO resulted in rising left ventricular posterior wall thickness, intra-ventricular septum diastole, left ventricular end diastolic diameter, left ventricular end systolic diameter, HW/BW, HW/TL and falling ejection fraction and fractional shortening, the trend of which could be reversed by Sch A. Sch A ameliorated myocardial hypertrophy in CHF mice. In addition, Sch A inhibited ISO-induced upregulated expressions of atrial natriuretic peptide, B-type natriuretic peptide, B-myosin heavy chain and miR-155 in myocardial tissue. Based on the results in vitro, Sch A had no significant effect on the viability of NRVMs when its concentration was <24 µmol/l. Sch A inhibited the levels of miR-155, α-SMA and the phosphorylation levels of AKT and cyclic AMP response-element binding protein (CREB) in ISO-induced NRVMs, which was reversed by the upregulation of miR-155. Schisandrin A mediated the AKT/CREB signaling pathway to prevent CHF by regulating the expression of miR-155, which may shed light on a possible therapeutic target for CHF.
Collapse
Affiliation(s)
- Lijing Gao
- Medical College, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Ting Li
- Medical College, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Shufen Li
- Medical College, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Zhuohui Song
- Medical College, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Yongli Chang
- Medical College, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Li Yuan
- Medical College, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| |
Collapse
|
7
|
Gui M, Yao L, Lu B, Wang J, Zhou X, Li J, Dong Z, Fu D. Huoxue Qianyang Qutan recipe attenuates Ang II-induced cardiomyocyte hypertrophy by regulating reactive oxygen species production. Exp Ther Med 2021; 22:1446. [PMID: 34721688 PMCID: PMC8549094 DOI: 10.3892/etm.2021.10881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/15/2021] [Indexed: 12/03/2022] Open
Abstract
Continuous and irreversible cardiac hypertrophy can induce cardiac maladaptation and cardiac remodeling, resulting in increased risk of developing cardiovascular diseases. The present study was conducted to investigate the therapeutic effect of Huoxue Qianyang Qutan recipe (HQQR) on angiotensin II (Ang II)-induced cardiomyocyte hypertrophy. Primary cardiomyocytes were isolated from the cardiac tissue of neonatal rats, followed by flow cytometry detection to confirm the proportion of primary cardiomyocytes. Cell Counting Kit-8 assay and immunofluorescence detection were performed to examine the effect of Ang II and HQQR on cardiomyocyte hypertrophy. Reactive oxygen species (ROS) and a series of metabolic indicators were quantified to investigate the effect of HQQR on Ang II-induced cardiomyocyte hypertrophy. Mitochondrial electron transport chain complex activity and related coding gene expression were determined to explore the effect of HQQR on mitochondrial function. HQQR significantly inhibited Ang II-induced cardiomyocyte hypertrophy and restored Ang II-induced ROS accumulation, metabolic indicators, and membrane potential levels. HQQR also regulated the mitochondrial function related to the sirtuin 1 pathway in Ang II-induced cardiomyocytes by increasing the activity of the mitochondrial electron transport chain complex and affecting the expression of genes encoding mitochondrial electron transport chain complex subunits. HQQR could alleviate Ang II-induced cardiomyocyte hypertrophy by modulating oxidative stress, accumulating ROS and increasing mitochondrial electron transport chain activity.
Collapse
Affiliation(s)
- Mingtai Gui
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Lei Yao
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Bo Lu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Jing Wang
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Xunjie Zhou
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Jianhua Li
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Zhenhua Dong
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Deyu Fu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| |
Collapse
|
8
|
Li Y, Zhang Z, Li S, Yu T, Jia Z. Therapeutic Effects of Traditional Chinese Medicine on Cardiovascular Diseases: the Central Role of Calcium Signaling. Front Pharmacol 2021; 12:682273. [PMID: 34305595 PMCID: PMC8299363 DOI: 10.3389/fphar.2021.682273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022] Open
Abstract
Calcium, as a second messenger, plays an important role in the pathogenesis of cardiovascular diseases (CVDs). The malfunction of calcium signaling in endothelial cells and vascular smooth muscle cells promotes hypertension. In cardiomyocytes, calcium overload induces apoptosis, leading to myocardial infarction and arrhythmias. Moreover, the calcium–calcineurin–nuclear factor of activated T cells (NFAT) pathway is essential for expressing the cardiac pro-hypertrophic gene. Heart failure is also characterized by reduced calcium transient amplitude and enhanced sarcoplasmic reticulum (SR) calcium leakage. Traditional Chinese medicine (TCM) has been used to treat CVDs for thousands of years in China. Because of its multicomponent and multitarget characteristics, TCM's unique advantages in CVD treatment are closely related to the modulation of multiple calcium handling proteins and calcium signaling pathways in different types of cells involved in distinct CVDs. Thus, we systematically review the diverse mechanisms of TCM in regulating calcium pathways to treat various types of CVDs, ranging from hypertrophic cardiomyopathy to diabetic heart disease.
Collapse
Affiliation(s)
- Yuxin Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhang Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaoqi Jia
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Ho TJ, Wu HC, Bharath Kumar V, Kuo WW, Weng YS, Yeh YL, Mahalakshmi B, Day CH, Li CC, Huang CY. Danshen (Salvia miltiorhiza) inhibits Leu27 IGF-II-induced hypertrophy in H9c2 cells. ENVIRONMENTAL TOXICOLOGY 2020; 35:1043-1049. [PMID: 32415908 DOI: 10.1002/tox.22940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/11/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
In this study, we used ICI 182 780 (ICI), an estrogen receptor (ER) antagonist, to investigate the estrogenic activity of Danshen, and to further explored whether Danshen extract can block Leu27IGF-II-induced hypertrophy in H9c2 cardiomyoblast cells. We first used an IGF-II analog Leu27IGF-II, which specifically activates IGF2R signaling cascades and induces H9c2 cardiomyoblast cell hypertrophy. However, Danshen extract completely inhibited Leu27IGF-II-induced cell size increase, ANP and BNP hypertrophic marker expression, and IGF2R induction. We also observed that Danshen extract inhibited calcineurin protein expression and NFAT3 nuclear translocation, leading to suppression of Leu27IGF-II-induced cardiac hypertrophy. Moreover, the anti-Leu27IGF-II-IGF2R signaling effect of Danshen was totally reversed by ICI, which suggest the cardio protective effect of Danshen is mediated through estrogen receptors. Our study suggests that, Danshen exerts estrogenic activity, and thus, it could be used as a selective ER modulator in IGFIIR induced hypertrophy model.
Collapse
Affiliation(s)
- Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
- School of Post-Baccalaure-ate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Hsi Chin Wu
- Department of Urology, China Medical University Beigang Hospital, Yunlin, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - V Bharath Kumar
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Yueh-Shan Weng
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Yu-Lan Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - B Mahalakshmi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | | | - Chi-Cheng Li
- Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chih-Yang Huang
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Holistic Education Center, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
10
|
Zhao Z, Wang X, Wang S, Zhou R, Su Q, Liu Y, Cheng T, Li Q, Lin S, Liu H, Mao J. Research based on the core pathogenesis in the treatment according to traditional Chinese medicine syndrome differentiation for heart failure with normal ejection fraction. Medicine (Baltimore) 2020; 99:e21663. [PMID: 32925713 PMCID: PMC7489596 DOI: 10.1097/md.0000000000021663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The incidence of heart failure with normal ejection fraction (HFNEF) is increasing yearly, accounting for approximately half of all heart failure cases. Even after standardized treatment, the patient's prognosis is not good. Therefore, it is necessary to explore new treatment methods for HFNEF. Yangyin Shuxin Decoction, a traditional Chinese medicine prescription from our clinical experience in the treatment of HFNEF, has a potential cardioprotective effect. Preliminary clinical trials have shown that this prescription can improve the quality of life of HFNEF. This prompted us to use more objective indicators to further evaluate whether Yangyin Shuxin Decoction can improve the exercise capacity in HENEF patients. METHODS This is a single-center parallel randomized controlled trial. The 64 patients who met the inclusion criteria were from the Cardiovascular Clinic. They will be randomly assigned to the treatment group (Yangying Shuxin Decoction combined with standard treatment) or the control group (standard treatment) according to the ratio of 1:1. The course of treatment will be 2 weeks. Both groups were interviewed at the following time points: of at enrollment (V1), and week 2 (V2), week 4 (V3), week 8 (V4), and week 12 (V5) after enrollment. The primary indicator is the peak oxygen consumption (Peak VO2) of the cardiopulmonary exercise test (CPET). Secondary indicators include CPET indicators such as anaerobic threshold oxygen consumption, carbon dioxide ventilation equivalent slope, echocardiographic indicators such as the ratio of mitral peak velocity of early filling to early diastolic mitral annular velocity(E/e'), left atrial volume index (LAVI), left ventricular mass index (LVMI), the peak velocity of tricuspid regurgitation (TR), B-type natriuretic peptide (BNP), New York Heart Association (NYHA) cardiac function grading, and so on. These indicators will be used to evaluate the effect of Yangyin Shuxin Decoction on exercise capacity in patients with HFNEF. DISCUSSION At present, it is unclear whether the exercise capacity can be maintained after long-term use of Yangyin Shuxin Decoction. In this study, we will evaluate whether Yangyin Shuxin Decoction can improve the exercise capacity and quality of life of patients with HFNEF. This will provide an objective basis for the therapeutic effect of traditional Chinese medicine on HFNEF. TRIAL REGISTRATION This study protocol has been listed in the Chinese Clinical Trial Registry (registration number: ChiCTR-IOR-17014206, http://www.chictr.org.cn/showproj.aspx?proj=24304) on December 28, 2017.
Collapse
|
11
|
Li JM, Pan XC, Ding YY, Tong YF, Chen XH, Liu Y, Zhang HG. Effect of Triptolide on Temporal Expression of Cell Cycle Regulators During Cardiac Hypertrophy. Front Pharmacol 2020; 11:566938. [PMID: 33013405 PMCID: PMC7498627 DOI: 10.3389/fphar.2020.566938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Adult mammalian cardiomyocytes may reenter the cell cycle and cause cardiac hypertrophy. Triptolide (TP) can regulate the expressions of various cell cycle regulators in cancer cells. However, its effects on cell cycle regulators during myocardial hypertrophy and mechanism are unclear. This study was designed to explore the profile of cell cycle of cardiomyocytes and the temporal expression of their regulators during cardiac hypertrophy, as well as the effects of TP. The hypertrophy models employed were neonatal rat ventricular myocytes (NRVMs) stimulated with angiotensin II (Ang II) for scheduled times (from 5 min to 48 h) in vitro and mice treated with isoprenaline (Iso) for from 1 to 21 days, respectively. TP was used in vitro at 1 μg/L and in vivo at 10 μg/kg. NRVMs were analyzed using flow cytometry to detect the cell cycle, and the expression levels of mRNA and protein of various cell cycle regulators were determined using real-time PCR and Western blot. It was found NRVM numbers in phases S and G2 increased, while that in the G1 phase decreased significantly after Ang II stimulation. The mRNA expression levels of p21 and p27 increased soon after stimulation, and thereafter, mRNA expression levels of all cell cycle factors showed a decreasing trend and reached their lowest levels in 1–3 h, except for cyclin-dependent kinase 1 (CDK1) and CDK4 mRNA. The mRNA expression levels of CDK1, p21, and p27 increased markedly after stimulation with Ang II for 24–48 h. In myocardium tissue, CDK and cyclin expression levels peaked in 3–7 days, followed by a decreasing trend, while those of p21 and p27 mRNA remained at a high level on day 21. Expression levels of all protein were consistent with the results of mRNA in NRVMs or mice. The influence of Ang II or Iso on protein expression was more obvious than that on mRNA. TP treatment effectively prevented the imbalance in the expression of cell cycle regulators in the hypertrophy model group. In Conclusion, an imbalance in the expression of cell cycle regulators occurs during cardiac hypertrophy, and triptolide corrects these abnormal expression levels and attenuates cardiac hypertrophy.
Collapse
Affiliation(s)
- Jing-Mei Li
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China.,Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Xi-Chun Pan
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuan-Yuan Ding
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yang-Fei Tong
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Pharmacy, Chongqing Traditional Medicine Hospital, Chongqing, China
| | - Xiao-Hong Chen
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ya Liu
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hai-Gang Zhang
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
12
|
Li Q, Jiang W, Wan Z, Ni Y, Lei L, Wei J. Polyphyllin I attenuates pressure over-load induced cardiac hypertrophy via inhibition of Wnt/β-catenin signaling pathway. Life Sci 2020; 252:117624. [PMID: 32259602 DOI: 10.1016/j.lfs.2020.117624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
Abstract
AIMS Cardiac hypertrophy is one of most important risk factors for cardiovascular mortality. Activation of Wnt/β-catenin signaling pathway is acknowledged to be an important mechanism for pathogenesis of cardiac hypertrophy. Polyphyllin I (PPI), a component in the traditional Chinese medicinal herb, has shown anticancer effect partially via interruption of Wnt/β-catenin signaling pathway. Our aim was to test whether PPI attenuates cardiac hypertrophy. MATERIALS AND METHODS Adult male C57BL/6J mice were subjected to either pressure overload generated by transverse aortic constriction (TAC) or sham surgery (control group). Angiotensin-II (Ang-II) was used to induce cardiomyocyte hypertrophy in vitro. PPI was intraperitoneally administrated daily for 4 weeks after TAC surgery and then cardiac function was determined by echocardiography and histological analysis was performed. KEY FINDINGS PPI significantly ameliorated cardiac dysfunction of mice subjected to TAC. Meanwhile, PPI attenuated TAC induced cardiac hypertrophy indicated by blunted increase in heart mass, cross section area of cardiomyocyte, cardiac fibrosis and expression of hypertrophic biomarkers ANP, BNP and β-MHC. In addition, PPI also ameliorated Ang-II induced cardiomyocyte hypertrophy in vitro. Importantly, PPI decreased protein expression of active β-catenin/total β-catenin, phosphorylation of GSK3β and Wnt target genes c-myc, c-jun, c-fos and cyclin D1 and its anti-hypertrophic effect was blunted by supplementation of Wnt 3a. SIGNIFICANCE Our results suggest that PPI attenuates cardiac dysfunction and attenuate development of pressure over-load induced cardiac hypertrophic via suppressing Wnt/β-catenin signaling pathway. PPI might be a candidate drug for treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Qing Li
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Wei Jiang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Zhaofei Wan
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Yajuan Ni
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Lei Lei
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Jin Wei
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China.
| |
Collapse
|
13
|
Zhang Y, Chen W, Wang Y. STING is an essential regulator of heart inflammation and fibrosis in mice with pathological cardiac hypertrophy via endoplasmic reticulum (ER) stress. Biomed Pharmacother 2020; 125:110022. [PMID: 32106379 DOI: 10.1016/j.biopha.2020.110022] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Pathological cardiac hypertrophy is characterized by myocyte enlargement and cardiac dysfunction. However, the pathogenesis for this disease is still poorly understood. Stimulator of interferon genes (STING) could meditate inflammation and immune response in various kinds of diseases. In this work, we demonstrated that STING was critical for pressure overload-induced cardiac hypertrophy. Results showed that STING expression was up-regulated in human and mouse hypertrophic hearts. STING knockout attenuated cardiac hypertrophy induced by aortic banding (AB). The effects of STING deficiency on the improvement of cardiac hypertrophy and dysfunction were associated with the restrained macrophage infiltration, inflammatory response and fibrosis. Moreover, ER stress was detected in hearts of AB-operated mice, as evidenced by the increased expression of phospho-protein kinase RNA-like endoplasmic reticulum kinase (PERK), phospho-eukaryotic initiation factor 2 alpha (eIF2α) and phospho-inositol-requiring kinase (IRE)-1α. Importantly, these proteins were restrained in mice with STING knockout after AB surgery. What's more, angiotensin II (Ang II)-induced STING could be accelerated by ER stress activator, while being markedly abolished by the ER stress inhibitor. We then found that whether co-treated with or without transforming growth factor-beta 1 (TGF-β1), cardiac fibroblasts cultured in the conditional medium (CM) from Ang II-incubated cardiomyocytes with STING knockdown exhibited significantly reduced fibrosis, as displayed by the clearly down-regulated expression of α-SMA, Collagen type I (Col I) and Collagen type III (Col III). Therefore, we defined STING as an important signal contributing to cardiac hypertrophy closely associated with ER stress.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, 710004, China
| | - Wenzhong Chen
- Department of Cardiovascular Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Yan Wang
- Department of General Medicine, The Second Affiliated Hospital of Shenzhen University(People's Hospital of Shenzhen Baoan District), Shenzhen City, 518101, China.
| |
Collapse
|
14
|
Zhang M, Jiang Y, Guo X, Zhang B, Wu J, Sun J, Liang H, Shan H, Zhang Y, Liu J, Wang Y, Wang L, Zhang R, Yang B, Xu C. Long non-coding RNA cardiac hypertrophy-associated regulator governs cardiac hypertrophy via regulating miR-20b and the downstream PTEN/AKT pathway. J Cell Mol Med 2019; 23:7685-7698. [PMID: 31465630 PMCID: PMC6815784 DOI: 10.1111/jcmm.14641] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/03/2019] [Accepted: 07/30/2019] [Indexed: 12/28/2022] Open
Abstract
Pathological cardiac hypertrophy (CH) is a key factor leading to heart failure and ultimately sudden death. Long non‐coding RNAs (lncRNAs) are emerging as a new player in gene regulation relevant to a wide spectrum of human disease including cardiac disorders. Here, we characterize the role of a specific lncRNA named cardiac hypertrophy‐associated regulator (CHAR) in CH and delineate the underlying signalling pathway. CHAR was found markedly down‐regulated in both in vivo mouse model of cardiac hypertrophy induced by pressure overload and in vitro cellular model of cardiomyocyte hypertrophy induced by angiotensin II (AngII) insult. CHAR down‐regulation alone was sufficient to induce hypertrophic phenotypes in healthy mice and neonatal rat ventricular cells (NRVCs). Overexpression of CHAR reduced the hypertrophic responses. CHAR was found to act as a competitive endogenous RNA (ceRNA) to down‐regulate miR‐20b that we established as a pro‐hypertrophic miRNA. We experimentally established phosphatase and tensin homolog (PTEN), an anti‐hypertrophic signalling molecule, as a target gene for miR‐20b. We found that miR‐20b induced CH by directly repressing PTEN expression and indirectly increasing AKT activity. Moreover, CHAR overexpression mitigated the repression of PTEN and activation of AKT by miR‐20b, and as such, it abrogated the deleterious effects of miR‐20b on CH. Collectively, this study characterized a new lncRNA CHAR and unravelled a new pro‐hypertrophic signalling pathway: lncRNA‐CHAR/miR‐20b/PTEN/AKT. The findings therefore should improve our understanding of the cellular functionality and pathophysiological role of lncRNAs in the heart.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuan Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiaofei Guo
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bowen Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiangjiao Wu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiabin Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaqi Liu
- Center of Chronic Diseases and Drug Research of Mudanjiang Medical, University of Alliance of Sino-Russian Medical Universities, Mudanjiang Medical University, Mudanjiang, China
| | - Ying Wang
- Center of Chronic Diseases and Drug Research of Mudanjiang Medical, University of Alliance of Sino-Russian Medical Universities, Mudanjiang Medical University, Mudanjiang, China
| | - Lu Wang
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Rong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chaoqian Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,Center of Chronic Diseases and Drug Research of Mudanjiang Medical, University of Alliance of Sino-Russian Medical Universities, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
15
|
Genistein reverses isoproterenol-induced cardiac hypertrophy by regulating miR-451/TIMP2. Biomed Pharmacother 2019; 112:108618. [DOI: 10.1016/j.biopha.2019.108618] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 11/21/2022] Open
|
16
|
Lin KH, Shibu MA, Peramaiyan R, Chen YF, Shen CY, Hsieh YL, Chen RJ, Viswanadha VP, Kuo WW, Huang CY. Bioactive flavone fisetin attenuates hypertension associated cardiac hypertrophy in H9c2 cells and in spontaneously hypertension rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.10.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
17
|
Suppression of MIF-induced neuronal apoptosis may underlie the therapeutic effects of effective components of Fufang Danshen in the treatment of Alzheimer's disease. Acta Pharmacol Sin 2018; 39:1421-1438. [PMID: 29770796 DOI: 10.1038/aps.2017.210] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/26/2017] [Indexed: 01/10/2023] Open
Abstract
Fufang Danshen (FFDS or Compound Danshen) consists of three Chinese herbs Danshen (Salviae miltiorrhizae radix et rhizome), Sanqi (Notoginseng radix et rhizome) and Tianranbingpian (Borneolum, or D-borneol), which has been show to significantly improve the function of the nervous system and brain metabolism. In this study we explored the possible mechanisms underlying the therapeutic effects of the combination of the effective components of FFDS (Tan IIA, NG-R1 and Borneol) in the treatment of Alzheimer's disease (AD) based on network pharmacology. We firstly constructed AD-related FFDS component protein interaction networks, and revealed that macrophage migration inhibitory factor (MIF) might regulate neuronal apoptosis through Bad in the progression of AD. Then we investigated the apoptosis-inducing effects of MIF and the impact of the effective components of FFDS in human neuroblastoma SH-SY5Y cells. We observed the characteristics of a "Pendular state" of MIF, where MIF (8 ng/mL) increased the ratio of p-Bad/Bad by activating Akt and the IKKα/β signaling pathway to assure cell survival, whereas MIF (50 ng/mL) up-regulated the expression of Bad to trigger apoptosis of SH-SY5Y cells. MIF displayed neurotoxicity similar to Aβ1-42, which was associated with the MIF-induced increased expression of Bad. Application of the FFDS composite solution significantly decreased the expression levels of Bad, suppressed MIF-induced apoptosis in SH-SY5Y cells. In a D-galactose- and AlCl3-induced AD mouse model, administration of the FFDS composite solution significantly improved the learning and memory, as well as neuronal morphology, and decreased the serum levels of INF-γ. Therefore, the FFDS composite solution exerts neuroprotective effects through down-regulating the level of Bad stimulated by MIF.
Collapse
|
18
|
Wang L, Li Y, Deng W, Dong Z, Li X, Liu D, Zhao L, Fu W, Cho K, Niu H, Guo D, Cheng J, Jiang B. Cardio-protection of ultrafine granular powder for Salvia miltiorrhiza Bunge against myocardial infarction. JOURNAL OF ETHNOPHARMACOLOGY 2018; 222:99-106. [PMID: 29694847 DOI: 10.1016/j.jep.2018.04.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Myocardial infarction (MI) is considered as the major inducer to the morbidity and mortality related to coronary occlusion. Salvia miltiorrhiza Bunge is widely applied in the clinic for the prevention and treatment of heart diseases. The preparation of traditional herb decoction (THD) is not only time consuming but also difficult to keep uniform for every time. New usage form of Salvia miltiorrhiza Bunge with characteristics of convenience, uniform and efficiency is needed. AIM OF THE STUDY The aims of present study were to investigate the cardio-protection of ultrafine granular powder (UGP) of Salvia miltiorrhiza Bunge; and further compare the characteristics of UGP with THD. MATERIALS AND METHODS MI was induced by ligation of the left anterior descending coronary artery near the main pulmonary artery. Cardio-protection of UGP or THD was evaluated based on two sets of experiments, one was acute myocardial infarction (AMI) through 7 days preventive administration, and the other one was chronic cardiac remodeling through 28 days therapeutic administration. Hemodynamic measurement was conducted to evaluate heart function and histopathological detection was used to evaluate heart structure. RESULTS No significant improvement of heart structure and function was detected for preventive administration of UGP or THD on AMI rats. While, more significant improvements on left ventricular systolic and diastolic function were detected with therapeutic treatment with 0.81 g/kg UGP than same dose of THD on rats against chronic cardiac remodeling. Both UGP and THD showed the protective effects on heart structure, especially against fibrosis with long-term therapeutic treatment. CONCLUSIONS As a new usage form of Salvia miltiorrhiza Bunge, UGP showed significant cardio-protection against myocardial remodeling with therapeutic treatment. Comparing with THD, UGP also holds the advantages of uniform, convenience and efficiency.
Collapse
Affiliation(s)
- Linlin Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuanmin Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wen Deng
- Key Laboratory of Technologies and Applications of Ultrafine Granular Powder of Chinese Materia Medica, State Administration of Traditional Chinese Medicine, China
| | - Zhihui Dong
- Departments of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xue Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dan Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lijie Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Weiguo Fu
- Departments of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kenka Cho
- Takarazuka University of Medical and Health Care, Hanayashiki-Midorigaoka, Takarazuka City, Japan
| | | | - Dean Guo
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jinle Cheng
- Key Laboratory of Technologies and Applications of Ultrafine Granular Powder of Chinese Materia Medica, State Administration of Traditional Chinese Medicine, China.
| | - Baohong Jiang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
19
|
Hu G, Song Y, Ke S, Cao H, Zhang C, Deng G, Yang F, Zhou S, Liu P, Guo X, Liu P. Tanshinone IIA protects against pulmonary arterial hypertension in broilers. Poult Sci 2018; 96:1132-1138. [PMID: 27702914 DOI: 10.3382/ps/pew322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/31/2016] [Indexed: 12/30/2022] Open
Abstract
This investigation was conducted to study the effects of tanshinone IIA (TIIA) on pulmonary arterial hypertension (PAH) in broilers. Two-hundred newly hatched Arbor Acre commercial broilers were randomly divided into 3 groups. All groups, with the exception of the control group (tap water), were given NaCl water (0.3%) starting on the d 15, and broilers in the protected group were fed a diet supplemented with TIIA (2.5 g/kg) starting on the d 15. On d 28, 35, 42, and 49, the ratio of the right ventricular weight to the total ventricular weight (RV: TV) and the values of other biochemical indicators for each group chickens were determined. The concentrations of interleukin-6 (IL-6), interleukin-1β (IL-1β), nuclear factor kappa (NF-κB), and P38 (a mitogen-activated protein kinase) were measured using enzyme-linked immune sorbent assays (ELISA). The results showed that the proportion of chickens in the diseased group with an RV:TV ratio in the range of 0.250 to 0.299 (10%) was significantly higher (25 to 30%) compared to that of the other groups (P < 0.05), and the proportion in all chickens was 28%. In addition, the IL-6, IL-1β, NF-κB, and P38 protein concentrations were higher in the diseased group, whereas there were no differences between the control group and the protected group. Moreover, the measurements of body weight, liver function, kidney function and electrolytes showed significant differences between the diseased group and the other groups. These findings suggest that tanshinone IIA may protect broilers from PAH, which is an important piece of information for the poultry industry.
Collapse
|
20
|
Li ZM, Xu SW, Liu PQ. Salvia miltiorrhizaBurge (Danshen): a golden herbal medicine in cardiovascular therapeutics. Acta Pharmacol Sin 2018; 39:802-824. [PMID: 29698387 PMCID: PMC5943903 DOI: 10.1038/aps.2017.193] [Citation(s) in RCA: 314] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023] Open
Abstract
Salvia miltiorrhiza Burge (Danshen) is an eminent medicinal herb that possesses broad cardiovascular and cerebrovascular protective actions and has been used in Asian countries for many centuries. Accumulating evidence suggests that Danshen and its components prevent vascular diseases, in particular, atherosclerosis and cardiac diseases, including myocardial infarction, myocardial ischemia/reperfusion injury, arrhythmia, cardiac hypertrophy and cardiac fibrosis. The published literature indicates that lipophilic constituents (tanshinone I, tanshinone IIa, tanshinone IIb, cryptotanshinone, dihydrotanshinone, etc) as well as hydrophilic constituents (danshensu, salvianolic acid A and B, protocatechuic aldehyde, etc) contribute to the cardiovascular protective actions of Danshen, suggesting a potential synergism among these constituents. Herein, we provide a systematic up-to-date review on the cardiovascular actions and therapeutic potential of major pharmacologically active constituents of Danshen. These bioactive compounds will serve as excellent drug candidates in small-molecule cardiovascular drug discovery. This article also provides a scientific rationale for understanding the traditional use of Danshen in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Zhuo-ming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| | - Suo-wen Xu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| | - Pei-qing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
21
|
Feng J, Chen HW, Pi LJ, Wang J, Zhan DQ. Protective effect of tanshinone IIA against cardiac hypertrophy in spontaneously hypertensive rats through inhibiting the Cys-C/Wnt signaling pathway. Oncotarget 2018; 8:10161-10170. [PMID: 28053285 PMCID: PMC5354649 DOI: 10.18632/oncotarget.14328] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 11/09/2016] [Indexed: 12/17/2022] Open
Abstract
The study aimed to investigate the protective effect of tanshinone IIA against cardiac hypertrophy in spontaneously hypertensive rats (SHRs) through the Cys-C/Wnt signaling pathway. Thirty SHRs were randomly divided into cardiac hypertrophy, low- and high-dose tanshinone IIA groups. Ten Wistar-Kyoto rats were selected as control group. The systolic blood pressure (SBP), heart weight (HW), left ventricular weight (LVW) and body weight (BW) of all rats were recorded. HE staining and qRT-PCR were applied to observe the morphology of myocardial tissue and mRNA expressions of COL1A1 and COL3A1. ELISA and Western blotting were used to measure the serum asymmetric dimethylarginine (ADMA), nitric oxide (NO) and cardiac troponin I (cTnI) levels, and the expressions of the Cys-C/Wnt signaling pathway-related proteins, eNOS and Nox4. Compared with the cardiac hypertrophy group, the SBP, HW/BW, LVW/BW, swelling degree of myocardial cells, COL1A1 and COL3A1 mRNA expressions, serum cTnI and ADMA levels, and the Cys-C/Wnt signaling pathway-related proteins and Nox4 expressions in the low- and high-dose tanshinone IIA groups were decreased, but the endothelial NO synthase (eNOS), phosphorylated eNOS (Ser1177) and NO expressions were increased. No significant difference was found between the low- and high-dose tanshinone IIA groups. Our study indicated a protective effect of tanshinone IIA against cardiac hypertrophy in SHRs through inhibiting the Cys-C/Wnt signaling pathway.
Collapse
Affiliation(s)
- Jun Feng
- Department of Emergency Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| | - Hua-Wen Chen
- Department of Emergency Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| | - Li-Juan Pi
- Department of Emergency Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| | - Jin Wang
- Department of Emergency Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| | - Da-Qian Zhan
- Department of Emergency Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| |
Collapse
|
22
|
Feng CC, Liao PH, Tsai HI, Cheng SM, Yang LY, PadmaViswanadha V, Pan LF, Chen RJ, Lo JF, Huang CY. Tumorous imaginal disc 1 (TID1) inhibits isoproterenol-induced cardiac hypertrophy and apoptosis by regulating c-terminus of hsc70-interacting protein (CHIP) mediated degradation of Gαs. Int J Med Sci 2018; 15:1537-1546. [PMID: 30443176 PMCID: PMC6216068 DOI: 10.7150/ijms.24296] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is the most common form of non-ischemic cardiomyopathy. It is characterized by ventricular chamber dilation, and myocyte hypertrophy. Human tumorous imaginal disc 1 (Tid1), a chaperone protein and response to regulate number of signaling molecules in the mitochondria or cytosol. Tid1 also plays a major role in preventing DCM; however, the role of Tid1 in isoproterenol (ISO)-induced cardiac apoptosis and hypertrophy remains unclear. H9c2 cells were pretreated Tid1 before ISO-induced hypertrophy and apoptosis and then evaluated by IHC, TUNEL assay, IFC, Co-IP, and Western blot. From the IHC experiment, we found that Tid1 proteins were increased in tissues from different stages of human myocardial infarction. Using H9c2 cardiomyoblast cells we found that Tid1 was decreased by ISO treatment. However, over-expression of Tid1S suppressed NFATc3, BNP and calcineurin protein expression and inhibited NFATc3 nuclear translocation in ISO induced cardiomyoblast cells. On the other hand, Tid1S over-expression activated survival proteins p-AKTser473 and decreased caspase-3 and cytochrome c expression. We also found that overexpression of Tid1 enhanced CHIP expression, and induced CHIP to ubiquitinate Gαs, resulting in increased Gαs degradation. Our study showed that Gαs is a novel substrate of CHIP, and we also found that the Tid1-CHIP complex plays an essential role in inhibiting ISO induced cardiomyoblast hypertrophy and apoptosis.
Collapse
Affiliation(s)
- Chih-Chung Feng
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Po-Hsiang Liao
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Medical Research Center For Exosomes and Mitochondria Related Diseases, China Medical University Hospital, Taichung, Taiwan
| | - Hsiang-I Tsai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Shiu-Min Cheng
- Department of Psychology, Asia University, Taichung, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | | | - Lung-Fa Pan
- Cardiology Department of Taichung Armed Forced General Hospital, Taichung, Taiwan.,Department of Medical Imaging and Radiological Sciences of Central Taiwan University of Science and Technology
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jeng-Fan Lo
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Medical Research Center For Exosomes and Mitochondria Related Diseases, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Biological Science, Asia University, Taichung, Taiwan
| |
Collapse
|
23
|
The lncRNA Plscr4 Controls Cardiac Hypertrophy by Regulating miR-214. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 10:387-397. [PMID: 29499950 PMCID: PMC5862136 DOI: 10.1016/j.omtn.2017.12.018] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 01/09/2023]
Abstract
Cardiac hypertrophy accompanied by maladaptive cardiac remodeling is the uppermost risk factor for the development of heart failure. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have various biological functions, and their vital role in the regulation of cardiac hypertrophy still needs to be explored. In this study, we demonstrated that lncRNA Plscr4 was upregulated in hypertrophic mice hearts and in angiotensin II (Ang II)–treated cardiomyocytes. Next, we observed that overexpression of Plscr4 attenuated Ang II-induced cardiomyocyte hypertrophy. Conversely, the inhibition of Plscr4 gave rise to cardiomyocyte hypertrophy. Furthermore, overexpression of Plscr4 attenuated TAC (transverse aortic constriction)-induced cardiac hypertrophy. Finally, we demonstrated that Plscr4 acted as an endogenous sponge of miR-214 and forced expression of Plscr4 downregulated miR-214 expression to promote Mfn2 and attenuate hypertrophy. In contrast, knockdown of Plscr4 upregulated miR-214 to induce cardiomyocyte hypertrophy. Additionally, luciferase assay showed that miR-214 was the direct target of Plscr4, and overexpression of miR-214 counteracted the anti-hypertrophy effect of Plscr4. Collectively, these findings identify Plscr4 as a negative regulator of cardiac hypertrophy in vivo and in vitro due to its regulation of the miR-214-Mfn2 axis, suggesting that Plscr4 might act as a therapeutic target for the treatment of cardiac hypertrophy and heart failure.
Collapse
|
24
|
Su H, Pistolozzi M, Shi X, Sun X, Tan W. Alterations in NO/ROS ratio and expression of Trx1 and Prdx2 in isoproterenol-induced cardiac hypertrophy. Acta Biochim Biophys Sin (Shanghai) 2017; 49:1022-1028. [PMID: 29036266 DOI: 10.1093/abbs/gmx102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Indexed: 12/27/2022] Open
Abstract
The development of cardiac hypertrophy is a complicated process, which undergoes a transition from compensatory hypertrophy to heart failure, and the identification of new biomarkers and targets for this disease is greatly needed. Here we investigated the development of isoproterenol (ISO)-induced cardiac hypertrophy in an in vitro experimental model. After the induction of hypertrophy with ISO treatment in H9c2 cells, cell surface area, cell viability, cellular reactive oxygen species (ROS), and nitric oxide (NO) levels were tested. Our data showed that the cell viability, mitochondrial membrane potential, and NO/ROS balance varied during the development of cardiac hypertrophy in H9c2 cells. It was also found that the expression of thioredoxin1 (Trx1) and peroxiredoxin2 (Prdx2) was decreased during the cardiac hypertrophy of H9c2 cells. These results suggest a critical role for Trx1 and Prdx2 in the cardiac hypertrophy of H9c2 cells and in the transition from compensated hypertrophy to de-compensated hypertrophy in H9c2 cells, and our findings may have important implications for the management of this disease.
Collapse
Affiliation(s)
- Hao Su
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Marco Pistolozzi
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Xingjuan Shi
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Wen Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
25
|
Chen YF, Lee NH, Pai PY, Chung LC, Shen CY, Rajendran P, Chen YF, Chen RJ, Padma Viswanadha V, Kuo WW, Huang CY. Tanshinone-induced ERs suppresses IGFII activation to alleviate Ang II-mediated cardiac hypertrophy. J Recept Signal Transduct Res 2017; 37:493-499. [DOI: 10.1080/10799893.2017.1360349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ya-Fang Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Taichung Veteran’s General Hospital, Taichung, Taiwan
| | - Nien-Hung Lee
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Pei-Ying Pai
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Li-Chin Chung
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy & Science, Tainan County, Taiwan
| | - Chia-Yao Shen
- Department of Nursing, MeiHo University, Pingtung, Taiwan
| | - Peramaiyan Rajendran
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Yu-Feng Chen
- Division of Cardiology, Department of Internal Medicine, Armed Force Taichung General Hospital, Taichung, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
26
|
17β-Estradiol and/or estrogen receptor alpha blocks isoproterenol-induced calcium accumulation and hypertrophy via GSK3β/PP2A/NFAT3/ANP pathway. Mol Cell Biochem 2017; 434:181-195. [DOI: 10.1007/s11010-017-3048-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/25/2017] [Indexed: 12/13/2022]
|
27
|
Hao P, Jiang F, Cheng J, Ma L, Zhang Y, Zhao Y. Traditional Chinese Medicine for Cardiovascular Disease. J Am Coll Cardiol 2017; 69:2952-2966. [DOI: 10.1016/j.jacc.2017.04.041] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
|
28
|
Tanshinones and mental diseases: from chemistry to medicine. Rev Neurosci 2016; 27:777-791. [DOI: 10.1515/revneuro-2016-0012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/03/2016] [Indexed: 11/15/2022]
Abstract
AbstractThe prevalence of mental diseases, especially neurodegenerative disorders, is ever-increasing, while treatment options for such disorders are limited and insufficient. In this scarcity of available medication, it is a feasible strategy to search for potential drugs among natural compounds, such as those found in plants. One such plant source is the root of Chinese sage, Salvia miltiorrhiza Bunge (Labiatae), which contains several compounds reported to possess neuroprotective activities. The most important of these compounds are tanshinones, which have been reported to possess ameliorative activity against a myriad of mental diseases such as Alzheimer’s disease, cerebral ischemia/reperfusion injury, and glioma, along with promoting neuronal differentiation and manifesting antinociceptive and anticonvulsant outcomes. This review offers a critical evaluation of the utility of tanshinones to treat mental illnesses, and sheds light on the underlying mechanisms through which these naturally occurring compounds confer neuroprotection.
Collapse
|
29
|
miR-106a promotes cardiac hypertrophy by targeting mitofusin 2. J Mol Cell Cardiol 2016; 99:207-217. [DOI: 10.1016/j.yjmcc.2016.08.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/11/2016] [Accepted: 08/22/2016] [Indexed: 11/20/2022]
|
30
|
Manivasagam S, Subramanian V, Tumala A, Vellaichamy E. Differential expression and regulation of anti-hypertrophic genes Npr1 and Npr2 during β-adrenergic receptor activation-induced hypertrophic growth in rats. Mol Cell Endocrinol 2016; 433:117-29. [PMID: 27283501 DOI: 10.1016/j.mce.2016.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 06/04/2016] [Accepted: 06/05/2016] [Indexed: 12/22/2022]
Abstract
We sought to determine the effect of chronic activation of β-adrenergic receptor (β-AR) on the left ventricular (LV) expression profile of Npr1 and Npr2 (coding for NPR-A and NPR-B, respectively) genes, and the functional activity of these receptors in adult Wistar rat hearts. The Npr1 gene expression was markedly reduced (3.5-fold), while the Npr2 gene expression was up regulated (4-fold) in Isoproterenol (ISO)-treated heart as compared with controls. A gradual reduction in NPR-A protein (3-fold), cGMP levels (75%) and a steady increased expression of NPR-B protein (4-fold), were noticed in ISO hearts. Further, in-vitro membranes assay shows that NPR-A dependent guanylyl cyclase (GC) activity was down-regulated (2-fold), whereas NPR-B dependent GC activity was increased (5-fold) in ISO treated hearts. Atenolol treatment normalized the altered expression of Npr1 and Npr2 genes. In conclusion, the chronic β-AR activation differentially regulates Npr1 and Npr2 genes in the heart. Npr1 down regulation is positively associated with the development of left ventricular hypertrophy (LVH) in ISO rats.
Collapse
Affiliation(s)
| | - Vimala Subramanian
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, 600025, India
| | - Anusha Tumala
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, 600025, India
| | - Elangovan Vellaichamy
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, 600025, India.
| |
Collapse
|
31
|
Zhang Z, Li Y, Sheng C, Yang C, Chen L, Sun J. Tanshinone IIA inhibits apoptosis in the myocardium by inducing microRNA-152-3p expression and thereby downregulating PTEN. Am J Transl Res 2016; 8:3124-3132. [PMID: 27508033 PMCID: PMC4969449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/03/2016] [Indexed: 06/06/2023]
Abstract
Progressive loss of cardiac myocytes through apoptosis contributes to heart failure (HF). In this study, we tested whether tanshinone IIA, one of the most abundant constituents of the root of Salvia miltiorrhiza, protects rat myocardium-derived H9C2 cells against apoptosis. Treatment of H9C2 cells with tanshinone IIA inhibited angiotensin II-induced apoptosis by downregulating the expression of PTEN (phosphatase and tensin homolog), a tumor suppressor that plays a critical role in apoptosis. Furthermore, tanshinone IIA was found to inhibit PTEN expression by upregulating the microRNA miR-152-3p, a potential PTEN regulator that is highly conserved in both rat and human. Notably, the antiapoptotic effect of tanshinone IIA was partially reversed when H9C2 cells were transfected with an inhibitor of miR-152-3p. Collectively, our findings reveal a previously unrecognized mechanism underlying the cardioprotective role of tanshinone IIA, and further suggest that tanshinone IIA could represent a promising drug candidate for HF therapy.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Pediatric ICU, The First Affiliated Hospital of Jilin UniversityChangchun 130021, Jilin, China
| | - Yumei Li
- Department of Pediatric ICU, The First Affiliated Hospital of Jilin UniversityChangchun 130021, Jilin, China
| | - Chuqiao Sheng
- Department of Pediatric ICU, The First Affiliated Hospital of Jilin UniversityChangchun 130021, Jilin, China
| | - Chunfeng Yang
- Department of Pediatric ICU, The First Affiliated Hospital of Jilin UniversityChangchun 130021, Jilin, China
| | - Liping Chen
- Department of Cardiology, The First Affiliated Hospital of Jilin UniversityChangchun 130021, Jilin, China
| | - Jinghui Sun
- Department of Pediatric Cardiology, The First Affiliated Hospital of Jilin UniversityChangchun 130021, Jilin, China
| |
Collapse
|
32
|
Mao HP, Wang XY, Gao YH, Chang YX, Chen L, Niu ZC, Ai JQ, Gao XM. Danhong injection attenuates isoproterenol-induced cardiac hypertrophy by regulating p38 and NF-κb pathway. JOURNAL OF ETHNOPHARMACOLOGY 2016; 186:20-29. [PMID: 26970569 DOI: 10.1016/j.jep.2016.03.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/23/2015] [Accepted: 03/07/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danhong injection (DHI), derived from Rhizoma Salviae Miltiorrhizae (Salvia miltiorrhiza Bge., Labiatae, Danshen in Chinese) and Flos Carthami (Carthamus tinctorius L., Compositae, Salvia militiorrhiza Bunge), is an extensively-used Chinese material standardized clinical product for treatment of cardiovascular diseases. AIM OF THE STUDY Cardiac hypertrophy (CH) is an adaptive response of cardiomyocytes. Long-lasting cardiac hypertrophy results in the loss of compensation by cardiomyocytes which could ultimately develop into heart failure. In the present study, we aimed to investigate the effect and exact mechanisms of DHI on isoproterenol (ISO)-induced CH. MATERIALS AND METHODS H9c2 cells and male Wistar rats were stimulated by ISO in the present study to establish CH models in vitro and in vivo. CCk-8 assay, Western blot, real time-polymerase chain reaction (RT-PCR), electrophoretic mobility shift assay (EMSA) and Echocardiography were used in the present study. RESULTS DHI significantly attenuated ISO-induced CH of H9c2 cells (p<0.01). DHI decreased ISO-induced atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) elevation both at the mRNA and protein levels (p<0.05 and p<0.01, respectively). Western blot showed that DHI down-regulated the phosphorylation of p38. Furthermore, we found that DHI inhibited the nuclear translocation and activation of NF-κb. Echocardiography from ISO-induced CH rats showed that DHI significantly decreased left ventricle (LV) mass, the thickness of the LV end-systolic posterior wall (LVPWs), and the LV end-diastolic posterior wall (LVPWd) elevated by ISO (p<0.01 and p<0.05, respectively). CONCLUSION These data demonstrate that DHI might exert anti-cardiac hypertrophic effects by regulating p38 and NF-κb pathway.
Collapse
Affiliation(s)
- Hao-Ping Mao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, and Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xing-Ye Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, and Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yun Hang Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, and Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yan-Xu Chang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, and Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Chen
- Tianjin State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, and Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Zi-Chang Niu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Ju-Qing Ai
- Tianjin State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, and Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xiu-Mei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, and Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
33
|
Law BYK, Mok SWF, Wu AG, Lam CWK, Yu MXY, Wong VKW. New Potential Pharmacological Functions of Chinese Herbal Medicines via Regulation of Autophagy. Molecules 2016; 21:359. [PMID: 26999089 PMCID: PMC6274228 DOI: 10.3390/molecules21030359] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/29/2016] [Accepted: 03/09/2016] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a universal catabolic cellular process for quality control of cytoplasm and maintenance of cellular homeostasis upon nutrient deprivation and environmental stimulus. It involves the lysosomal degradation of cellular components such as misfolded proteins or damaged organelles. Defects in autophagy are implicated in the pathogenesis of diseases including cancers, myopathy, neurodegenerations, infections and cardiovascular diseases. In the recent decade, traditional drugs with new clinical applications are not only commonly found in Western medicines, but also highlighted in Chinese herbal medicines (CHM). For instance, pharmacological studies have revealed that active components or fractions from Chaihu (Radix bupleuri), Hu Zhang (Rhizoma polygoni cuspidati), Donglingcao (Rabdosia rubesens), Hou po (Cortex magnoliae officinalis) and Chuan xiong (Rhizoma chuanxiong) modulate cancers, neurodegeneration and cardiovascular disease via autophagy. These findings shed light on the potential new applications and formulation of CHM decoctions via regulation of autophagy. This article reviews the roles of autophagy in the pharmacological actions of CHM and discusses their new potential clinical applications in various human diseases.
Collapse
Affiliation(s)
- Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Simon Wing Fai Mok
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - An Guo Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Margaret Xin Yi Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
34
|
Akaberi M, Iranshahi M, Mehri S. Molecular Signaling Pathways Behind the Biological Effects of Salvia Species Diterpenes in Neuropharmacology and Cardiology. Phytother Res 2016; 30:878-93. [PMID: 26988179 DOI: 10.1002/ptr.5599] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 12/14/2022]
Abstract
The genus Salvia, from the Lamiaceae family, has diverse biological properties that are primarily attributable to their diterpene contents. There is no comprehensive review on the molecular signaling pathways of these active components. In this review, we investigated the molecular targets of bioactive Salvia diterpenes responsible for the treatment of nervous and cardiovascular diseases. The effects on different pathways, including apoptosis signaling, oxidative stress phenomena, the accumulation of amyloid beta plaques, and tau phosphorylation, have all been considered to be mechanisms of the anti-Alzheimer properties of Salvia diterpenes. Additionally, effects on the benzodiazepine and kappa opioid receptors and neuroprotective effects are noted as neuropharmacological properties of Salvia diterpenes, including tanshinone IIA, salvinorin A, cryptotanshinone, and miltirone. Tanshinone IIA, as the primary diterpene of Salvia miltiorrhiza, has beneficial activities in heart diseases because of its ability to scavenge free radicals and its effects on transcription factors, such as nuclear transcription factor-kappa B (NF-κB) and the mitogen-activated protein kinases (MAPKs). Additionally, tanshinone IIA has also been proposed to have cardioprotective properties including antiarrhythmic activities and effects on myocardial infarction. With respect to the potential therapeutic effects of Salvia diterpenes, comprehensive clinical trials are warranted to evaluate these valuable molecules as lead compounds. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- M Akaberi
- Student Research Committee, Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M Iranshahi
- Biotechnology Research Center and School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - S Mehri
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
35
|
Yeh YL, Tsai HI, Cheng SM, Pai P, Ho TJ, Chen RJ, Lai CH, Huang PJ, Padma VV, Huang CY. Mechanism of Taiwan Mingjian Oolong Tea to Inhibit Isoproterenol-Induced Hypertrophy and Apoptosis in Cardiomyoblasts. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:77-86. [DOI: 10.1142/s0192415x16500051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study investigates the cardio-protective effect of Nos. 1 and 5 extracts from Taiwan Mingjian Oolong Tea on H9c2 cardiomyoblast cells treated with isoproterenol (ISO). Treatment with Nos. 1 and 5 extracts increased cell viability and blocked apoptosis in ISO exposed H9c2 cells. Moreover, Nos. 1 and 5 extracts blocked hypertrophy markers like G[Formula: see text]s, calcineurin, NFATc3, and BNP, thereby increasing cell proliferation markers -PI3K and AKT in a dose dependent manner. In contrast, apoptotic proteins, such as caspase-3 and cytochrome c were decreased in H9c2 cells treated with Nos. 1 and 5 extracts. We confirmed that the protective effect of No. 1 extract was partially mediated through the expression of ERK and p38, however, the No. 5 extract showed a protective effect via the ERK, JNK, and p38 pathways. This evidence provides new insights into the pharmacological role and therapeutic mechanism of Taiwan Mingjian Oolong Tea in heart diseases.
Collapse
Affiliation(s)
- Yu-Lan Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Hsiang-I Tsai
- Graduate Institute of Basic Medical Science, Taichung, Taiwan
| | - Shiu-Min Cheng
- Department of Psychology, Asia University, Taichung, Taiwan
| | - Peiying Pai
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Tsung-Jung Ho
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Department, China Medical University Beigang Hospital, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chao-Hung Lai
- Division of Cardiology, Department of Internal Medicine, Armed Force Taichung General Hospital, Taichung, Taiwan
| | - Pei-Jane Huang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - V. Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore 641046, India
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
- Chinese Medicine Department, China Medical University Beigang Hospital, Taiwan
| |
Collapse
|
36
|
Abstract
Tanshinones are lipophilic compounds derived fromSalvia miltiorrhiza(Danshen) that has been widely used to treat coronary heart diseases in China. The cardioprotective actions of tanshinones have been extensively studied in various models of myocardial infarction, cardiac ischemia reperfusion injury, cardiac hypertrophy, atherosclerosis, hypoxia, and cardiomyopathy. This review outlines the recent development in understanding the molecular mechanisms and signaling pathways involved in the cardioprotective actions of tanshinones, in particular on mitochondrial apoptosis, calcium, nitric oxide, ROS, TNF-α, PKC, PI3K/Akt, IKK/NF-κB, and TGF-β1/Smad mechanisms, which highlights the potential of these compounds as therapeutic agents for treating cardiovascular diseases.
Collapse
|
37
|
Trikka FA, Nikolaidis A, Ignea C, Tsaballa A, Tziveleka LA, Ioannou E, Roussis V, Stea EA, Božić D, Argiriou A, Kanellis AK, Kampranis SC, Makris AM. Combined metabolome and transcriptome profiling provides new insights into diterpene biosynthesis in S. pomifera glandular trichomes. BMC Genomics 2015; 16:935. [PMID: 26572682 PMCID: PMC4647624 DOI: 10.1186/s12864-015-2147-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 10/26/2015] [Indexed: 12/13/2022] Open
Abstract
Background Salvia diterpenes have been found to have health promoting properties. Among them, carnosic acid and carnosol, tanshinones and sclareol are well known for their cardiovascular, antitumor, antiinflammatory and antioxidant activities. However, many of these compounds are not available at a constant supply and developing biotechnological methods for their production could provide a sustainable alternative. The transcriptome of S.pomifera glandular trichomes was analysed aiming to identify genes that could be used in the engineering of synthetic microbial systems. Results In the present study, a thorough metabolite analysis of S. pomifera leaves led to the isolation and structure elucidation of carnosic acid-family metabolites including one new natural product. These labdane diterpenes seem to be synthesized through miltiradiene and ferruginol. Transcriptomic analysis of the glandular trichomes from the S. pomifera leaves revealed two genes likely involved in miltiradiene synthesis. Their products were identified and the corresponding enzymes were characterized as copalyl diphosphate synthase (SpCDS) and miltiradiene synthase (SpMilS). In addition, several CYP-encoding transcripts were identified providing a valuable resource for the identification of the biosynthetic mechanism responsible for the production of carnosic acid-family metabolites in S. pomifera. Conclusions Our work has uncovered the key enzymes involved in miltiradiene biosynthesis in S. pomifera leaf glandular trichomes. The transcriptomic dataset obtained provides a valuable tool for the identification of the CYPs involved in the synthesis of carnosic acid-family metabolites. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2147-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fotini A Trikka
- Institute of Applied Biosciences/CERTH, P.O. Box 60361, Thermi, 57001, , Thessaloniki, Greece.
| | - Alexandros Nikolaidis
- Institute of Applied Biosciences/CERTH, P.O. Box 60361, Thermi, 57001, , Thessaloniki, Greece.
| | - Codruta Ignea
- Department of Biochemistry, School of Medicine, University of Crete, P.O. Box 2208, Heraklion, 71003, Greece.
| | - Aphrodite Tsaballa
- Institute of Applied Biosciences/CERTH, P.O. Box 60361, Thermi, 57001, , Thessaloniki, Greece.
| | - Leto-Aikaterini Tziveleka
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece.
| | - Efstathia Ioannou
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece.
| | - Vassilios Roussis
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece.
| | - Eleni A Stea
- Institute of Applied Biosciences/CERTH, P.O. Box 60361, Thermi, 57001, , Thessaloniki, Greece.
| | - Dragana Božić
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece. .,Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia.
| | - Anagnostis Argiriou
- Institute of Applied Biosciences/CERTH, P.O. Box 60361, Thermi, 57001, , Thessaloniki, Greece.
| | - Angelos K Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| | - Sotirios C Kampranis
- Department of Biochemistry, School of Medicine, University of Crete, P.O. Box 2208, Heraklion, 71003, Greece.
| | - Antonios M Makris
- Institute of Applied Biosciences/CERTH, P.O. Box 60361, Thermi, 57001, , Thessaloniki, Greece.
| |
Collapse
|
38
|
Dai HL, Jia GZ, Zhao S. Total glycosides of Ranunculus japonius prevent hypertrophy in cardiomyocytes via alleviating chronic Ca(2+) overload. ACTA ACUST UNITED AC 2015; 30:37-43. [PMID: 25837359 DOI: 10.1016/s1001-9294(15)30007-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To evaluate the in vitro anti-hypertrophic effect of total Glycosides of Ranunculus Japonius (TGRJ). METHODS Neonatal rat cardiomyocytes were cultured and hypertrophy was induced by administrating isoproterenol (ISO, 10 µmol/L) or angiotensin 2 (Ang 2, 1 µmol/L) for 48 hours. In the treatment groups, cells were pretreated with TGRJ (0.3 g/L) for 30 minutes prior to hypertrophic stimuli. The anti-hypertrophic effects of TGRJ were examined by measuring cell size, total protein content, and protein synthesis. Intracellular free Ca(2+) concentration ([Ca(2+)]i) was evaluated using fluorescence dye Fura-2/AM. Sacroplasmic/endoplasmic reticulum Ca(2+) ATPase 2a (SERCA2a), atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), and beta-myosin heavy chain (β-MHC) protein expression levels were measured by Western blotting . SERCA2a activity was assayed by p-nitrophenal phosphate disodium salt hexahydrate method. RESULTS Increased cell size, total protein content, and protein synthesis following ISO or Ang 2 stimulation were significantly inhibited by pretreatment with TGRJ (all P<0.05). This anti-hypertrophic effect of TGRJ was confirmed by its suppressing effect on elevated expression of the three hypertrophic related genetic markers, ANP, BNP, and β-MHC. In addition, TGRJ inhibited ISO or Ang 2 induced up-regulation of [Ca(2+)]i under chronic but not acute conditions. And ISO or Ang 2 induced down-regulation of SERCA2a expression and activity was also effectively rectified by TGRJ pretreatment. CONCLUSIONS The results of present study suggested that TGRJ could prevent ISO or Ang 2 induced cardiac hypertrophy through improving chronic [Ca(2+)]i disorder, might via normalizing SERCA2a expression and activity.
Collapse
Affiliation(s)
- Hong-liang Dai
- Department of Community Health Nursing, Liaoning Medical University, Jinzhou, Liaoning 121001, China
| | - Gui-zhi Jia
- Department of Biochemistry and Molecular Biology, Liaoning Medical University, Jinzhou, Liaoning 121001, China
| | - Song Zhao
- Centre of Scientific Experiment, Liaoning Medical University, Jinzhou, Liaoning 121001, China
| |
Collapse
|
39
|
Luan A, Tang F, Yang Y, Lu M, Wang H, Zhang Y. Astragalus polysaccharide attenuates isoproterenol-induced cardiac hypertrophy by regulating TNF-α/PGC-1α signaling mediated energy biosynthesis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:1081-90. [PMID: 25880160 DOI: 10.1016/j.etap.2015.03.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/22/2015] [Accepted: 03/24/2015] [Indexed: 05/21/2023]
Abstract
We previously reported that Astragalus polysaccharide (APS) extracted from Chinese medicine Astragalus membranaceus (Fisch.) Bge, attenuates hypertrophy of neonatal rat ventricular myocytes (NRVMs) induced by isoproterenol (Iso). The present study was designed to investigate the effects and the possible mechanism of APS on Iso-induced hypertrophy in rats and NRVMs with focus on tumor necrosis factor α (TNF-α)/peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) signaling mediated energy biosynthesis. 36-Week old rats were randomly divided into 3 groups: (1) Control, rats received vehicle; (2) Iso, rats received isoproterenol injections; (3) Iso+APS, rats received isoproterenol injections and APS. NRVMs were divided into similar groups as rats. The results showed that combination of APS with Iso significantly attenuated the pathological changes, reduced the ratios of heart weight/body weight (HW/BW) and left ventricular weight/BW (LVW/BW), improved the cardiac hemodynamics, down-regulated mRNA and protein expression of atrial natriuretic peptide (ANP), increased the ratios of ATP/ADP and ATP/AMP, and decreased the content of free fatty acid (FFA) in heart tissue of rats compared with Iso alone. In addition, pretreatment with APS significantly decreased the surface area and protein content, down-regulated mRNA and protein expression of ANP, increased the ratios of ATP/ADP and ATP/AMP, and decreased the content of FFA in NRVMs compared with Iso alone. Furthermore, APS increased the protein expressions of ATP5D, the σ subunit of ATP synthase, PGC-1α and pyruvate dehydrogenase kinase 4 (PDK4) in tissue and NRVMs respectively and inhibited the production of TNF-α in serum and culture medium compared with Iso alone. The results suggested that APS attenuates Iso-induced cardiac hypertrophy through regulating TNF-α/PGC-1α signaling mediated energy biosynthesis.
Collapse
Affiliation(s)
- Aina Luan
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Drug Research Institute, Liaoning Medical University, No. 40, Section 3, Songpo Road, Jinzhou 121001, PR China; Internal Medicine-Cardiovascular Department, The First Affiliated Hospital of Liaoning Medical University, No. 2, Section 5, Renming Jie, Jinzhou 121001, PR China
| | - Futian Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Drug Research Institute, Liaoning Medical University, No. 40, Section 3, Songpo Road, Jinzhou 121001, PR China
| | - Yuhong Yang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Drug Research Institute, Liaoning Medical University, No. 40, Section 3, Songpo Road, Jinzhou 121001, PR China
| | - Meili Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Drug Research Institute, Liaoning Medical University, No. 40, Section 3, Songpo Road, Jinzhou 121001, PR China
| | - Hongxin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Drug Research Institute, Liaoning Medical University, No. 40, Section 3, Songpo Road, Jinzhou 121001, PR China.
| | - Yingjie Zhang
- Internal Medicine-Cardiovascular Department, The First Affiliated Hospital of Liaoning Medical University, No. 2, Section 5, Renming Jie, Jinzhou 121001, PR China.
| |
Collapse
|
40
|
Hang P, Zhao J, Cai B, Tian S, Huang W, Guo J, Sun C, Li Y, Du Z. Brain-derived neurotrophic factor regulates TRPC3/6 channels and protects against myocardial infarction in rodents. Int J Biol Sci 2015; 11:536-45. [PMID: 25892961 PMCID: PMC4400385 DOI: 10.7150/ijbs.10754] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/23/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is associated with coronary artery diseases. However, its role and mechanism in myocardial infarction (MI) is not fully understood. METHODS Wistar rat and Kunming mouse model of MI were induced by the ligation of left coronary artery. Blood samples were collected from MI rats and patients. Plasma BDNF level, protein expression of BDNF, tropomyosin-related kinase B (TrkB) and its downstream transient receptor potential canonical (TRPC)3/6 channels were examined by enzyme-linked immunosorbent assay and Western blot. Infarct size, cardiac function and cardiomyocyte apoptosis were measured after intra-myocardium injection with recombinant human BDNF. Protective role of BDNF against cardiomyocyte apoptosis was confirmed by BDNF scavenger TrkB-Fc. The regulation of TRPC3/6 channels by BDNF was validated by pretreating with TRPC blocker (2-Aminoethyl diphenylborinate, 2-APB) and TRPC3/6 siRNAs. RESULTS Circulating BDNF was significantly enhanced in MI rats and patients. Protein expression of BDNF, TrkB and TRPC3/6 channels were upregulated in MI. 3 days post-MI, BDNF treatment markedly reduced the infarct size and serum lactate dehydrogenase activity. Meanwhile, echocardiography indicated that BDNF significantly improved cardiac function of MI mice. Furthermore, BDNF markedly inhibited cardiomyocyte apoptosis by upregulating Bcl-2 expression and downregulating caspase-3 expression and activity in ischemic myocardium. In neonatal rat ventricular myocytes, cell viability was dramatically increased by BDNF in hypoxia, which was restored by TrkB-Fc. Furthermore, protective role of BDNF against hypoxia-induced apoptosis was reversed by 2-APB and TRPC3/6 siRNAs. CONCLUSION BDNF/TrkB alleviated cardiac ischemic injury and inhibited cardiomyocytes apoptosis by regulating TRPC3/6 channels, which provides a novel potential therapeutic candidate for MI.
Collapse
Affiliation(s)
- Pengzhou Hang
- 1. Institute of Clinical Pharmacology of the Second Affiliated Hospital (Key Laboratory of Drug Research, Heilongjiang Higher Education Institutions), Harbin Medical University, Harbin 150086, China
| | - Jing Zhao
- 2. Department of Cardiology of the First Affiliated Hospital (Key Laboratory of Cardiac Diseases and Heart Failure), Harbin Medical University, Harbin 150001, China
| | - Benzhi Cai
- 3. Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Shanshan Tian
- 1. Institute of Clinical Pharmacology of the Second Affiliated Hospital (Key Laboratory of Drug Research, Heilongjiang Higher Education Institutions), Harbin Medical University, Harbin 150086, China
| | - Wei Huang
- 1. Institute of Clinical Pharmacology of the Second Affiliated Hospital (Key Laboratory of Drug Research, Heilongjiang Higher Education Institutions), Harbin Medical University, Harbin 150086, China
| | - Jing Guo
- 1. Institute of Clinical Pharmacology of the Second Affiliated Hospital (Key Laboratory of Drug Research, Heilongjiang Higher Education Institutions), Harbin Medical University, Harbin 150086, China
| | - Chuan Sun
- 1. Institute of Clinical Pharmacology of the Second Affiliated Hospital (Key Laboratory of Drug Research, Heilongjiang Higher Education Institutions), Harbin Medical University, Harbin 150086, China
| | - Yue Li
- 2. Department of Cardiology of the First Affiliated Hospital (Key Laboratory of Cardiac Diseases and Heart Failure), Harbin Medical University, Harbin 150001, China
| | - Zhimin Du
- 1. Institute of Clinical Pharmacology of the Second Affiliated Hospital (Key Laboratory of Drug Research, Heilongjiang Higher Education Institutions), Harbin Medical University, Harbin 150086, China
| |
Collapse
|
41
|
Zheng L, Liu M, Wei M, Liu Y, Dong M, Luo Y, Zhao P, Dong H, Niu W, Yan Z, Li Z. Tanshinone IIA attenuates hypoxic pulmonary hypertension via modulating KV currents. Respir Physiol Neurobiol 2015; 205:120-8. [PMID: 25305099 DOI: 10.1016/j.resp.2014.09.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/22/2014] [Accepted: 09/30/2014] [Indexed: 01/10/2023]
|
42
|
Lu B, Wu X. Clinical Study of Sulfotanshinone Sodium Injection in Treating Non-Ischemic Retinal Vein Occlusion. Chin Med 2015. [DOI: 10.4236/cm.2015.62009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
43
|
Dai H, Jia G, Liu X, Liu Z, Wang H. Astragalus polysaccharide inhibits isoprenaline-induced cardiac hypertrophy via suppressing Ca²⁺-mediated calcineurin/NFATc3 and CaMKII signaling cascades. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:263-271. [PMID: 24975447 DOI: 10.1016/j.etap.2014.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/15/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
Pathological cardiac hypertrophy induced by increased sympathetic drive can subsequently lead to congestive heart failure, which represents the major cause of morbidity and mortality worldwide. Astragalus polysaccharide (APS) is an active compound extracted from Chinese herb Astragalus membranaceus (AM), a frequently used "Qi-invigorating" herbal medicine in traditional medicine broadly used for the treatment of cardiovascular and other diseases. Currently, little is known about the effect of APS on cardiac hypertrophy. In the present study, we aimed to investigate its effect on cardiac hypertrophy and to clarify its possible mechanisms. In vitro cardiac hypertrophic model induced by isoprenaline (ISO) was employed to explore the anti-hypertrophic action of APS. We found that 10 μM ISO treatment for 48 h caused cultured cardiomyocytes to undergo significant increases in cell surface area, total protein content, protein synthesis as well as the expression of hypertrophic markers, including atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP), which were effectively inhibited by APS in a dose dependent manner. Moreover, we found that APS pretreatment alleviated the augment of intracellular free calcium during cardiac hypertrophy induced by ISO. Our further study revealed that the upregulated expression of calcineurin, translocation of nuclear factor of activated T cells, cytoplasmic 3 (NFATc3) into nucleus and activation of calmodulin kinase II (reflected by p-CaMKII) were dose dependently suppressed by the application of APS. According to this research, APS exerted its anti-hypertrophic action via inhibiting Ca(2+)-mediated calcineurin/NFATc3 and CaMKII signaling cascades, which provided new insights into the application of APS to the therapy of heart diseases.
Collapse
Affiliation(s)
- Hongliang Dai
- School of Nursing, Liaoning Medical University, Jinzhou 121001, Liaoning Province, PR China
| | - Guizhi Jia
- Department of Biochemistry and Molecular Biology, Liaoning Medical University, Jinzhou 121001, Liaoning Province, PR China
| | - Xin Liu
- First Affiliated Hospital, Liaoning Medical University, Jinzhou 121001, Liaoning Province, PR China
| | - Zhining Liu
- First Affiliated Hospital, Liaoning Medical University, Jinzhou 121001, Liaoning Province, PR China
| | - Hongxin Wang
- Department of Pharmacology, Liaoning Medical University, Jinzhou 121001, Liaoning Province, PR China.
| |
Collapse
|
44
|
Cisapride protects against cardiac hypertrophy via inhibiting the up-regulation of calcineurin and NFATc-3. Eur J Pharmacol 2014; 735:202-10. [DOI: 10.1016/j.ejphar.2014.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 04/06/2014] [Accepted: 04/09/2014] [Indexed: 11/23/2022]
|
45
|
Lee KH, Morris-Natschke S, Qian K, Dong Y, Yang X, Zhou T, Belding E, Wu SF, Wada K, Akiyama T. Recent Progress of Research on Herbal Products Used in Traditional Chinese Medicine: the Herbs belonging to The Divine Husbandman's Herbal Foundation Canon ( Shén Nóng Běn Cǎo Jīng). J Tradit Complement Med 2014; 2:6-26. [PMID: 24716110 PMCID: PMC3943012 DOI: 10.1016/s2225-4110(16)30066-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
This article will review selected herbal products from Chinese Materia Medica that are used in Traditional Chinese Medicine. The herbs come from the upper, middle, and lower class medicines as listed in The Divine Husbandman's Herbal Foundation Canon (神農本草經 Shén Nóng Běn Cǎo Jīng). The review will focus on the active constituents of the herbs and their bioactivities, with emphasis on the most recent progress in research for the period of 2003 to 2011.
Collapse
Affiliation(s)
- Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA ; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| | - Susan Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA
| | - Keduo Qian
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA
| | - Yizhou Dong
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA
| | - Xiaoming Yang
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA
| | - Ting Zhou
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA
| | - Eileen Belding
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA
| | - Shou-Fang Wu
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA
| | - Koji Wada
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA
| | - Toshiyuki Akiyama
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568 USA
| |
Collapse
|
46
|
Li C, Li X, Gao X, Zhang R, Zhang Y, Liang H, Xu C, Du W, Zhang Y, Liu X, Ma N, Xu Z, Wang L, Chen X, Lu Y, Ju J, Yang B, Shan H. MicroRNA-328 as a regulator of cardiac hypertrophy. Int J Cardiol 2014; 173:268-76. [DOI: 10.1016/j.ijcard.2014.02.035] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 01/22/2014] [Accepted: 02/22/2014] [Indexed: 01/23/2023]
|
47
|
Pang H, Han B, Yu T, Peng Z. The complex regulation of tanshinone IIA in rats with hypertension-induced left ventricular hypertrophy. PLoS One 2014; 9:e92216. [PMID: 24647357 PMCID: PMC3960224 DOI: 10.1371/journal.pone.0092216] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/20/2014] [Indexed: 02/07/2023] Open
Abstract
Tanshinone IIA has definite protective effects on various cardiovascular diseases. However, in hypertension-induced left ventricular hypertrophy (H-LVH), the signaling pathways of tanshinone IIA in inhibition of remodeling and cardiac dysfunction remain unclear. Two-kidney, one-clip induced hypertensive rats (n = 32) were randomized to receive tanshinone IIA (5, 10, 15 mg/kg per day) or 5% glucose injection (GS). Sham-operated rats (n = 8) received 5%GS as control. Cardiac function and dimensions were assessed by using an echocardiography system. Histological determination of the fibrosis and apoptosis was performed using hematoxylin eosin, Masson's trichrome and TUNEL staining. Matrix metalloproteinase 2 (MMP2) and tissue inhibitor of matrix metalloproteinases type 2 (TIMP2) protein expressions in rat myocardial tissues were detected by immunohistochemistry. Rat cardiomyocytes were isolated by a Langendorff perfusion method. After 48 h culture, the supernatant and cardiomyocytes were collected to determine the potential related proteins impact on cardiac fibrosis and apoptosis. Compared with the sham rats, the heart tissues of H-LVH (5%GS) group suffered severely from the oxidative damage, apoptosis of cardiomyocytes and extracellular matrix (ECM) deposition. In the H-LVH group, tanshinone IIA treated decreased malondialdehyde (MDA) content and increased superoxide dismutase (SOD) activity. Tanshinone IIA inhibited cardiomyocytes apoptosis as confirmed by the reduction of TUNEL positive cardiomyocytes and the down-regulation of Caspase-3 activity and Bax/Bcl-2 ratio. Meanwhile, plasma apelin level increased with down-regulation of APJ receptor. Tanshinone IIA suppressed cardiac fibrosis through regulating the paracrine factors released by cardiomyocytes and the TGF-β/Smads signaling pathway activity. In conclusion, our in vivo study showed that tanshinone IIA could improve heart function by enhancing myocardial contractility, inhibiting ECM deposition, and limiting apoptosis of cardiomyocytes and oxidative damage.
Collapse
Affiliation(s)
- Hui Pang
- Department of Cardiovascular Medicine, Central Hospital of Xuzhou, Xuzhou Clinical School of Xuzhou Medical College, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| | - Bing Han
- Department of Cardiovascular Medicine, Central Hospital of Xuzhou, Xuzhou Clinical School of Xuzhou Medical College, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| | - Tao Yu
- Department of Cardiovascular Medicine, Central Hospital of Xuzhou, Xuzhou Clinical School of Xuzhou Medical College, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| | - Zhen Peng
- Department of Ultrasonography, Central Hospital of Xuzhou, Xuzhou Clinical School of Xuzhou Medical College, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| |
Collapse
|
48
|
Qi J, Tian S, Zhang Z, Zha C, Zhang Y, Hang P, Du Z. Choline prevents cardiac hypertrophy by inhibiting protein kinase C-δ dependent transient receptor potential canonical 6 channel. Int J Cardiol 2014; 172:e525-6. [PMID: 24486061 DOI: 10.1016/j.ijcard.2014.01.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/18/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Jiancui Qi
- Institute of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Shanshan Tian
- Institute of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Zhihua Zhang
- Institute of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Chuanqin Zha
- Institute of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Yong Zhang
- Department of Pharmacology, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Pengzhou Hang
- Institute of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin 150086, Heilongjiang Province, China; Key Laboratory of Drug Research, Harbin Medical University, Heilongjiang Higher Education Institutions, Harbin 150086, Heilongjiang Province, China
| | - Zhimin Du
- Institute of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin 150086, Heilongjiang Province, China; Key Laboratory of Drug Research, Harbin Medical University, Heilongjiang Higher Education Institutions, Harbin 150086, Heilongjiang Province, China.
| |
Collapse
|
49
|
Calcineurin suppresses AMPK-dependent cytoprotective autophagy in cardiomyocytes under oxidative stress. Cell Death Dis 2014; 5:e997. [PMID: 24434520 PMCID: PMC4040710 DOI: 10.1038/cddis.2013.533] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/24/2013] [Accepted: 12/02/2013] [Indexed: 02/07/2023]
Abstract
Calcineurin signalling plays a critical role in the pathogenesis of many cardiovascular diseases. Calcineurin has been proven to affect a series of signalling pathways and to exert a proapoptotic effect in cardiomyocytes. However, whether it is able to regulate autophagy remains largely unknown. Here, we report that prolonged oxidative stress-induced activation of calcineurin contributes to the attenuation of adaptive AMP-activated protein kinase (AMPK) signalling and inhibits autophagy in cardiomyocytes. Primary cardiomyocytes exhibited rapid formation of autophagosomes, microtubule-associated protein 1 light chain 3 (LC3) expression and phosphorylation of AMPK in response to hydrogen peroxide (H2O2) treatment. However, prolonged (12 h) H2O2 treatment attenuated these effects and was accompanied by a significant increase in calcineurin activity and apoptosis. Inhibition of calcineurin by FK506 restored AMPK function and LC3 expression, and decreased the extent of apoptosis caused by prolonged oxidative stress. In contrast, overexpression of the constitutively active form of calcineurin markedly attenuated the increase in LC3 induced by short-term (3 h) H2O2 treatment and sensitised cells to apoptosis. In addition, FK506 failed to induce autophagy and alleviate apoptosis in cardiomyocytes expressing a kinase-dead K45R AMPK mutant. Furthermore, inhibition of autophagy by 3-methylanine (3-MA) or by knockdown of the essential autophagy-related gene ATG7 abrogated the protective effect of FK506. These findings suggest a novel role of calcineurin in suppressing adaptive autophagy during oxidative stress by downregulating the AMPK signalling pathway. The results also provide insight into how altered calcineurin and autophagic signalling is integrated to control cell survival during oxidative stress and may guide strategies to prevent cardiac oxidative damage.
Collapse
|
50
|
Zhao Y, Wang C, Wu J, Wang Y, Zhu W, Zhang Y, Du Z. Choline protects against cardiac hypertrophy induced by increased after-load. Int J Biol Sci 2013; 9:295-302. [PMID: 23493786 PMCID: PMC3596715 DOI: 10.7150/ijbs.5976] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 02/26/2013] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Although inadequate intake of essential nutrient choline has been known to significantly increase cardiovascular risk, whether additional supplement of choline offering a protection against cardiac hypertrophy remain unstudied. METHODS The effects of choline supplements on pathological cardiac hypertrophic growth induced by transverse aorta constriction (TAC) for three weeks and cardiomyocyte hypertrophy in cultured cells induced by isoproterenol (ISO) 10 μM for 48 h stimulation were investigated. Western blot analysis and real-time PCR were used to determine the expression of ANP, BNP, β-MHC, miR-133a and Calcineurin. RESULTS Administration of 14 mg/kg choline to mice undergone TAC effectively attenuated the cardiac hypertrophic responses, as indicated by the reduced heart weight, left ventricular weight, ventricular thickness, and reduced expression of biomarker genes of cardiac hypertrophy. This anti-hypertrophic efficacy was reproduced in a cellular model of cardiomyocyte hypertrophy induced by isoproterenol in cultured neonatal cardiomyocytes. Our results further showed that choline rescued the aberrant downregulation of the muscle-specific microRNA miR-133a expression, a recently identified anti-hypertrophic factor, and restored the elevated calcineurin protein level, the key signaling molecule for the development of cardiac hypertrophy. These effects of choline were abolished by the M3 mAChR-specific antagonist 4-DAMP. CONCLUSION Our study unraveled for the first time the cardioprotection of choline against cardiac hypertrophy, with correction of expression of miR-133a and calcineurin as a possible mechanism. Our findings suggest that choline supplement may be considered for adjunct anti-hypertrophy therapy.
Collapse
Affiliation(s)
- Yilei Zhao
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University, China
| | | | | | | | | | | | | |
Collapse
|