1
|
Myint SLL, Rodsiri R, Benya-Aphikul H, Rojanaratha T, Ritthidej G, Islamie R. Nasal Delivery of Asiatic Acid Ameliorates Scopolamine-Induced Memory Dysfunction in Mice. Adv Pharmacol Pharm Sci 2024; 2024:9941034. [PMID: 39286638 PMCID: PMC11405110 DOI: 10.1155/2024/9941034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Asiatic acid (AA) has previously shown its neuroprotective effects, but low oral bioavailability limits its penetration into the brain. This study aimed to investigate the effect of intranasal AA administration in mice with memory dysfunction induced by scopolamine. Mice received either intranasal AA (INAA), oral AA (POAA3 or POAA30), or donepezil, followed by scopolamine for 10 days. Morris water maze (MWM) was performed on days 0-5, 30 min after treatment. Locomotor activity was conducted on day 6 followed by brain collection. In MWM, INAA treatment had significantly reduced escape latency on days 2-4, while POAA3 decreased escape latency on day 3 and POAA30 and donepezil decreased escape latency on day 4. INAA inhibited acetylcholinesterase activity, increased catalase protein expression, and decreased malondialdehyde levels in the brain tissue. Therefore, intranasal administration of AA produced a rapid onset in the protection of learning and memory deficits induced by scopolamine through acetylcholinesterase inhibition and antioxidant effect.
Collapse
Affiliation(s)
- Su Lwin Lwin Myint
- Department of Pharmacology and Physiology Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
| | - Ratchanee Rodsiri
- Department of Pharmacology and Physiology Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit Chulalongkorn University, Bangkok 10330, Thailand
| | - Hattaya Benya-Aphikul
- Department of Pharmacology and Physiology Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit Chulalongkorn University, Bangkok 10330, Thailand
| | - Tissana Rojanaratha
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
| | - Garnpimol Ritthidej
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
- Queen Saovabha Memorial Institute The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Ridho Islamie
- Department of Pharmacology and Physiology Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical and Community Pharmacy Faculty of Pharmacy University of Surabaya, Surabaya 60293, Indonesia
| |
Collapse
|
2
|
Song Z, Li W, He Q, Xie X, Wang X, Guo J. Natural products - Dawn of keloid treatment. Fitoterapia 2024; 175:105918. [PMID: 38554887 DOI: 10.1016/j.fitote.2024.105918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/15/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Keloids are prevalent pathological scars, often leading to cosmetic deformities and hindering joint mobility.They cause discomfort, including burning and itching, while gradually expanding and potentially posing a risk of cancer.Developing effective drugs and treatments for keloids has been a persistent challenge in the medical field. Natural products are an important source of innovative drugs and a breakthrough for many knotty disease.Herein, keywords of "natural, plant, compound, extract" were combined with "keloid" and searched in PubMed and Google Scholar, respectively. A total of 32 natural products as well as 9 extracts possessing the potential for treating keloids were ultimately identified.Current research in this field faces a significant challenge due to the lack of suitable animal models, resulting in a predominant reliance on in vitro studies.In vivo and clinical studies are notably scarce as a result.Moreover, there is a notable deficiency in research focusing on the role of nutrients in keloid formation and treatment.The appropriate dosage form (oral, topical, injectable) is crucial for the development of natural product drugs. Finally, the conclusion was hereby made that natural products, when used as adjuncts to other treatments, hold significant potential in the management of keloids.By summarizing the natural products and elucidating their mechanisms in keloid treatment, the present study aims to stimulate further discoveries and research in drug development for effectively addressing this challenging condition.
Collapse
Affiliation(s)
- Zongzhou Song
- Department of Dermatological, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610036, China
| | - Wenquan Li
- Department of Dermatological, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610036, China
| | - Qingying He
- Department of Dermatological, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610036, China
| | - Xin Xie
- Department of Dermatological, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610036, China
| | - Xurui Wang
- Department of Dermatological, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610036, China
| | - Jing Guo
- Department of Dermatological, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610036, China.
| |
Collapse
|
3
|
Murakami T, Shigeki S. Pharmacotherapy for Keloids and Hypertrophic Scars. Int J Mol Sci 2024; 25:4674. [PMID: 38731893 PMCID: PMC11083137 DOI: 10.3390/ijms25094674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Keloids (KD) and hypertrophic scars (HTS), which are quite raised and pigmented and have increased vascularization and cellularity, are formed due to the impaired healing process of cutaneous injuries in some individuals having family history and genetic factors. These scars decrease the quality of life (QOL) of patients greatly, due to the pain, itching, contracture, cosmetic problems, and so on, depending on the location of the scars. Treatment/prevention that will satisfy patients' QOL is still under development. In this article, we review pharmacotherapy for treating KD and HTS, including the prevention of postsurgical recurrence (especially KD). Pharmacotherapy involves monotherapy using a single drug and combination pharmacotherapy using multiple drugs, where drugs are administered orally, topically and/or through intralesional injection. In addition, pharmacotherapy for KD/HTS is sometimes combined with surgical excision and/or with physical therapy such as cryotherapy, laser therapy, radiotherapy including brachytherapy, and silicone gel/sheeting. The results regarding the clinical effectiveness of each mono-pharmacotherapy for KD/HTS are not always consistent but rather scattered among researchers. Multimodal combination pharmacotherapy that targets multiple sites simultaneously is more effective than mono-pharmacotherapy. The literature was searched using PubMed, Google Scholar, and Online search engines.
Collapse
Affiliation(s)
- Teruo Murakami
- Laboratory of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hiroshima International University, Higashi-Hiroshima 731-2631, Japan;
| | - Sadayuki Shigeki
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima 731-2631, Japan
| |
Collapse
|
4
|
Boo YC. Insights into How Plant-Derived Extracts and Compounds Can Help in the Prevention and Treatment of Keloid Disease: Established and Emerging Therapeutic Targets. Int J Mol Sci 2024; 25:1235. [PMID: 38279232 PMCID: PMC10816582 DOI: 10.3390/ijms25021235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Keloid is a disease in which fibroblasts abnormally proliferate and synthesize excessive amounts of extracellular matrix, including collagen and fibronectin, during the healing process of skin wounds, causing larger scars that exceed the boundaries of the original wound. Currently, surgical excision, cryotherapy, radiation, laser treatment, photodynamic therapy, pressure therapy, silicone gel sheeting, and pharmacotherapy are used alone or in combinations to treat this disease, but the outcomes are usually unsatisfactory. The purpose of this review is to examine whether natural products can help treat keloid disease. I introduce well-established therapeutic targets for this disease and various other emerging therapeutic targets that have been proposed based on the phenotypic difference between keloid-derived fibroblasts (KFs) and normal epidermal fibroblasts (NFs). We then present recent studies on the biological effects of various plant-derived extracts and compounds on KFs and NFs. Associated ex vivo, in vivo, and clinical studies are also presented. Finally, we discuss the mechanisms of action of the plant-derived extracts and compounds, the pros and cons, and the future tasks for natural product-based therapy for keloid disease, as compared with existing other therapies. Extracts of Astragalus membranaceus, Salvia miltiorrhiza, Aneilema keisak, Galla Chinensis, Lycium chinense, Physalis angulate, Allium sepa, and Camellia sinensis appear to modulate cell proliferation, migration, and/or extracellular matrix (ECM) production in KFs, supporting their therapeutic potential. Various phenolic compounds, terpenoids, alkaloids, and other plant-derived compounds could modulate different cell signaling pathways associated with the pathogenesis of keloids. For now, many studies are limited to in vitro experiments; additional research and development are needed to proceed to clinical trials. Many emerging therapeutic targets could accelerate the discovery of plant-derived substances for the prevention and treatment of keloid disease. I hope that this review will bridge past, present, and future research on this subject and provide insight into new therapeutic targets and pharmaceuticals, aiming for effective keloid treatment.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| |
Collapse
|
5
|
Meetam T, Angspatt A, Aramwit P. Evidence of Potential Natural Products for the Management of Hypertrophic Scars. J Evid Based Integr Med 2024; 29:2515690X241271948. [PMID: 39196306 PMCID: PMC11359448 DOI: 10.1177/2515690x241271948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/29/2024] [Accepted: 06/26/2024] [Indexed: 08/29/2024] Open
Abstract
Hypertrophic scarring is an aberrant wound-healing response to reestablish dermal integrity after an injury and can cause significant abnormalities in physical, aesthetic, functional, and psychological symptoms, impacting the patient's quality of life. There is currently no gold standard for preventing and treating hypertrophic scars. Therefore, many researchers have attempted to search for antihypertrophic scar agents with greater efficacy and fewer side effects. Natural therapeutics are becoming attractive as potential alternative anti-scarring agents because of their high efficacy, safety, biocompatibility, low cost, and easy accessibility. This review demonstrates various kinds of natural product-based therapeutics, including onion, vitamin E, Gotu kola, green tea, resveratrol, emodin, curcumin, and others, in terms of their mechanisms of action, evidence of efficacy and safety, advantages, and disadvantages when used as anti-scarring agents. We reviewed the literature based on data from in vitro, in vivo, and clinical trials. A total of 23 clinical trials were identified in this review; most clinical trials were ranked as having uncertain results (level of evidence 2b; n = 16). Although these natural products showed beneficial effects in both in vitro and in vivo studies of potential anti-scarring agents, there was limited clinical evidence to support their efficacy due to the limited quality of the studies, with individual flaws including small sample sizes, poor randomization, and blinding, and short follow-up durations. More robust and well-designed clinical trials with large-scale and prolonged follow-up durations are required to clarify the benefits and risks of these agents.
Collapse
Affiliation(s)
- Thunyaluk Meetam
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand
- Sirindhorn College of Public Health Trang, Faculty of Public Health and Allied Health Sciences, Praboromarajchanok Institute, Trang, Thailand
| | - Apichai Angspatt
- Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok,
Thailand
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| |
Collapse
|
6
|
Liang D, Liu L, Zhao Y, Luo Z, He Y, Li Y, Tang S, Tang J, Chen N. Targeting extracellular matrix through phytochemicals: a promising approach of multi-step actions on the treatment and prevention of cancer. Front Pharmacol 2023; 14:1186712. [PMID: 37560476 PMCID: PMC10407561 DOI: 10.3389/fphar.2023.1186712] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
Extracellular matrix (ECM) plays a pivotal and dynamic role in the construction of tumor microenvironment (TME), becoming the focus in cancer research and treatment. Multiple cell signaling in ECM remodeling contribute to uncontrolled proliferation, metastasis, immune evasion and drug resistance of cancer. Targeting trilogy of ECM remodeling could be a new strategy during the early-, middle-, advanced-stages of cancer and overcoming drug resistance. Currently nearly 60% of the alternative anticancer drugs are derived from natural products or active ingredients or structural analogs isolated from plants. According to the characteristics of ECM, this manuscript proposes three phases of whole-process management of cancer, including prevention of cancer development in the early stage of cancer (Phase I); prevent the metastasis of tumor in the middle stage of cancer (Phase II); provide a novel method in the use of immunotherapy for advanced cancer (Phase III), and present novel insights on the contribution of natural products use as innovative strategies to exert anticancer effects by targeting components in ECM. Herein, we focus on trilogy of ECM remodeling and the interaction among ECM, cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs), and sort out the intervention effects of natural products on the ECM and related targets in the tumor progression, provide a reference for the development of new drugs against tumor metastasis and recurrence.
Collapse
Affiliation(s)
- Dan Liang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunjie Zhao
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Zhenyi Luo
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Yadi He
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanping Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyun Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nianzhi Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Johnson W, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Gill LJ, Heldreth B. Safety Assessment of Centella asiatica-Derived Ingredients as Used in Cosmetics. Int J Toxicol 2023; 42:5S-22S. [PMID: 36812692 DOI: 10.1177/10915818231158272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of 9 Centella asiatica-derived ingredients, which reportedly function primarily as skin conditioning agents in cosmetic products. The Panel reviewed relevant data relating to the safety of these ingredients. The Panel concluded that Centella Asiatica Extract, Centella Asiatica Callus Culture, Centella Asiatica Flower/Leaf/Stem Extract, Centella Asiatica Leaf Cell Culture Extract, Centella Asiatica Leaf Extract, Centella Asiatica Leaf Water, Centella Asiatica Meristem Cell Culture, Centella Asiatica Meristem Cell Culture Extract, and Centella Asiatica Root Extract are safe in the present practices of use and concentration in cosmetics, as described in this safety assessment, when formulated to be non-sensitizing.
Collapse
Affiliation(s)
- Wilbur Johnson
- Cosmetic Ingredient Review Former Senior Scientific Analyst/Writer
| | | | | | - Ronald A Hill
- Expert Panel for Cosmetic Ingredient Safety Former Member
| | | | | | - James G Marks
- Expert Panel for Cosmetic Ingredient Safety Former Member
| | - Ronald C Shank
- Expert Panel for Cosmetic Ingredient Safety Former Member
| | | | | | | | | |
Collapse
|
8
|
Centella asiatica and Its Metabolite Asiatic Acid: Wound Healing Effects and Therapeutic Potential. Metabolites 2023; 13:metabo13020276. [PMID: 36837896 PMCID: PMC9966672 DOI: 10.3390/metabo13020276] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
An intense effort has been focused on new therapeutic approaches and the development of technologies for more efficient and rapid wound healing. The research for plants used for long time in traditional medicine in the treatment of wound has become a promising strategy to obtain drugs therapeutically useful in the acute and chronic wound management. In this context, Centella asiatica (Apiaceae) has been used to treat a variety of skin diseases, such as leprosy, lupus, varicose ulcers, eczema and psoriasis, in Asiatic traditional medicine for thousands of years. Studies have shown that Centella asiatica extracts (CAE) display activity in tissue regeneration, cell migration and wound repair process by promoting fibroblast proliferation and collagen synthesis. Preliminary findings have shown that the asiatic acid is one of the main active constituents of C. asiatica, directly associated with its healing activity. Thus, this study discusses aspects of the effects of Centella asiatica and its active component, asiatic acid, in different stages of the healing process of cutaneous wounds, including phytochemical and antimicrobial aspects that contribute to its therapeutic potential.
Collapse
|
9
|
Li Y, He XL, Zhou LP, Huang XZ, Li S, Guan S, Li J, Zhang L. Asiatic acid alleviates liver fibrosis via multiple signaling pathways based on integrated network pharmacology and lipidomics. Eur J Pharmacol 2022; 931:175193. [PMID: 35963324 DOI: 10.1016/j.ejphar.2022.175193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
Liver fibrosis is characterized by the abnormal deposition of the extracellular matrix with a severe inflammatory response and/or metabolic disorder. Asiatic acid (AA), a natural compound derived from Centella asiatica, exhibited potent anti-fibrosis effects. This investigation first confirmed the anti-fibrosis effects of AA in TGF-β-LX-2 cells and CCl4-induced liver fibrosis mice, and then sought to elucidate a novel mechanism of action by integrating network pharmacology and lipidomics. Network pharmacology was used to find potential targets of AA, while lipidomics was used to identify differential metabolites between fibrosis and recovered cohorts. AA could suppress hepatic stellate cell activation in vitro and improve liver fibrosis in vivo. Network pharmacology unveiled the genes involved in pathways in cancer, peroxisome proliferators-activated receptors signaling pathway, and arachidonic acid metabolism pathway. Furthermore, five key genes were found in the both human and mouse databases, indicating that arachidonic acid metabolism was important. Changes in lyso-phosphocholine (22:5), prostaglandin F2α, and other related lipid metabolites also suggested the involvement of arachidonic acid metabolism the anti-fibrotic effect. In summary, our integrated strategies demonstrated that AA targeted multiple targets and impeded the progression of liver fibrosis by ameliorating arachidonic acid metabolism.
Collapse
Affiliation(s)
- Yong Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China; Department of Pharmacology & Toxicology, Guangdong Sunshine Lake Pharma Co. Ltd, Dongguan, 523000, PR China
| | - Xu-Lin He
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Li-Ping Zhou
- Evaluation and Monitoring Center of Occupational Health, Guangzhou Twelfth People's Hospital, Guangzhou, 510006, PR China.
| | - Xiao-Zhong Huang
- Department of Pharmacology & Toxicology, Guangdong Sunshine Lake Pharma Co. Ltd, Dongguan, 523000, PR China
| | - Shan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Su Guan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Jing Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Lei Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
10
|
Huang J, Zhou X, Wang W, Zhou G, Zhang W, Gao Z, Wu X, Liu W. Combined analyses of RNA-sequence and Hi-C along with GWAS loci—A novel approach to dissect keloid disorder genetic mechanism. PLoS Genet 2022; 18:e1010168. [PMID: 35709140 PMCID: PMC9202908 DOI: 10.1371/journal.pgen.1010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/25/2022] [Indexed: 12/05/2022] Open
Abstract
Keloid disorder is a tumour-like disease with invasive growth and a high recurrence rate. Genetic contribution is well expected due to the presence of autosomal dominant inheritance and various genetic mutations in keloid lesions. However, GWAS failed to reveal functional variants in exon regions but single nucleotide polymorphisms in the non-coding regions, suggesting the necessity of innovative genetic investigation. This study employed combined GWAS, RNA-sequence and Hi-C analyses to dissect keloid disorder genetic mechanisms using paired keloid tissues and normal skins. Differentially expressed genes, miRNAs and lncRNAs mined by RNA-sequence were identified to construct a network. From which, 8 significant pathways involved in keloid disorder pathogenesis were enriched and 6 of them were verified. Furthermore, topologically associated domains at susceptible loci were located via the Hi-C database and ten differentially expressed RNAs were identified. Among them, the functions of six molecules for cell proliferation, cell cycle and apoptosis were particularly examined and confirmed by overexpressing and knocking-down assays. This study firstly revealed unknown key biomarkers and pathways in keloid lesions using RNA-sequence and previously reported mutation loci, indicating a feasible approach to reveal the genetic contribution to keloid disorder and possibly to other diseases that are failed by GWAS analysis alone. Keloid disorder is a benign skin tumour characterized by uncontrolled fibroproliferative tissue growth, which only occurs in human beings with severe reoccurrence post-therapy. It affects several hundred million people with difficulty to control its growth and relapse. It has been long thought that exonic gene mutations must play an important role, but large-scaled GWAS analyses only revealed 3 single nucleotide polymorphisms in the non-coding regions as previously reported. For the first time, this study demonstrated that the true genetic mechanism is likely to be the dysfunctional epigenetic regulation caused by mutations in regulatory elements at the non-coding region as revealed by the combined analyses of GWAS, RNA-sequence and Hi-C data. This approach may lead to the breakthrough of keloid disorder genetic/epigenetic mechanism, if further large-scaled analyses are performed along with human keloid tissue Hi-C data.
Collapse
Affiliation(s)
- Jia Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China
| | - Xiaobo Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China
| | - Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China
- National Tissue Engineering Centre of China, Shanghai, China
| | - WenJie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China
- National Tissue Engineering Centre of China, Shanghai, China
| | - Zhen Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Wu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China
- National Tissue Engineering Centre of China, Shanghai, China
- * E-mail:
| |
Collapse
|
11
|
Niu K, Bai P, Yang B, Feng X, Qiu F. Asiatic acid alleviates metabolism disorders in ob/ob mice: mechanistic insights. Food Funct 2022; 13:6934-6946. [PMID: 35696250 DOI: 10.1039/d2fo01069k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glucolipid metabolism disorders pose a serious and global health problem, and more effective prevention and treatment methods are urgently needed. In this study, ob/ob mice were used to explore the potential mechanism explaining how asiatic acid (AA) regulates glucolipid metabolism disorders. Five-week AA treatment (30 mg kg-1) significantly improved a host of metabolic factors in ob/ob mice, including hyperglycemia, hyperlipidemia, insulin resistance, and liver histopathology. Combined analysis of untargeted liver metabolomics, liver transcriptomics, and the gut microbiome was conducted, and the results showed that AA alleviates metabolic disorders in ob/ob mice through regulating pyrimidine metabolism, activating PPAR-γ, and modulating gut microbiota. AA treatment remarkedly increased the levels of cytosine and cytidine, two crucial endogenous metabolites related to pyrimidine metabolism, which were significantly decreased in ob/ob mice. AA treatment also affected the levels of 13-S-hydroxyoctadecadienoic acid, an endogenous PPAR-γ agonist. The abundances of Lachnospiraceae_NK4A136_group and norank_f__norank_o__Clostridia_UCG-014 were increased after AA treatment. Meanwhile, correlation analysis showed that endogenous metabolites and gut microbiota were strongly correlated. These findings indicated that AA supplements might be beneficial for the prevention of metabolic disorders.
Collapse
Affiliation(s)
- Kaixia Niu
- School of Chinese Materia Medica, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Pengpeng Bai
- School of Chinese Materia Medica, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Bingbing Yang
- School of Chinese Materia Medica, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xinchi Feng
- School of Chinese Materia Medica, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Feng Qiu
- School of Chinese Materia Medica, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
12
|
Liu D, Qian T, Li P, Li W, Sun S, Jiang JJ. Asiatic Acid Improves Extracellular Matrix Remodeling in Vocal Fold Scarring Via SMAD7 Activation. Laryngoscope 2021; 132:1237-1244. [PMID: 34591990 DOI: 10.1002/lary.29884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVES/HYPOTHESIS Vocal fold (VF) fibroblasts are the central target for developing new strategies for the treatment of VF scarring and fibrosis. Asiatic acid (AA) is a triterpenoid derivate with antifibrotic properties. However, the effect of AA in VF scarring is poorly understood. The objective of this study was to investigate the potential application of AA as a therapeutic treatment in VF scarring. STUDY DESIGN Xxxxx. METHODS The functional expression of SMAD7 was knocked down with recombinant adenoviruses and adeno-associated viruses carrying shRNAs in the in vitro and in vivo models, which were constructed to investigate AA's antifibrotic function. The expression of collagens and SMADs in cultured human and rabbit cell lines and animal models was evaluated with quantitative reverse transcription polymerase chain reaction and immunohistochemistry labeling, respectively. Cell migration capacity and contraction in VF fibroblast cell lines were also evaluated. RESULTS AA downregulated the downstream fibrotic activation in a dose-dependent manner. Meanwhile, AA attenuated VF scarring/fibrosis by reducing collagen deposition. Furthermore, the antifibrotic effects of AA were associated with the upregulation of SMAD7. In contrast, knockdown of SMAD7 inhibited the effect of AA on transforming growth factor-beta-1 (TGF-β1) stimulation, which suggests a central role for SMAD7 in AA-induced antifibrotic activities during VF fibrosis. CONCLUSION We concluded that AA, which is a novel therapeutic candidate for preventing VF scarring/fibrosis, might exert its antifibrotic effect via the TGF-β1/SMAD signaling pathway. LEVEL OF EVIDENCE N/A Laryngoscope, 2021.
Collapse
Affiliation(s)
- Danling Liu
- ENT Institute and Otorhinolaryngology, Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.,Fudan University School of Basic Medical Sciences, NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Shanghai, China
| | - Tingting Qian
- ENT Institute and Otorhinolaryngology, Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.,Fudan University School of Basic Medical Sciences, NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Shanghai, China
| | - Peifan Li
- ENT Institute and Otorhinolaryngology, Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.,Fudan University School of Basic Medical Sciences, NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Shanghai, China
| | - Wen Li
- ENT Institute and Otorhinolaryngology, Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.,Fudan University School of Basic Medical Sciences, NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Shanghai, China
| | - Shan Sun
- ENT Institute and Otorhinolaryngology, Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.,Fudan University School of Basic Medical Sciences, NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Shanghai, China.,Department of Surgery, Division of Otolaryngology, University of Wisconsin, School of Medicine and Public Health, Madison, WI, USA
| | - Jack J Jiang
- ENT Institute and Otorhinolaryngology, Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.,Fudan University School of Basic Medical Sciences, NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Shanghai, China
| |
Collapse
|
13
|
Actions and Therapeutic Potential of Madecassoside and Other Major Constituents of Centella asiatica: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188475] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Centella asiatica is a popular herb well-known for its wide range of therapeutic effects and its use as a folk medicine for many years. Its therapeutic properties have been well correlated with the presence of asiaticoside, madecassoside, asiatic and madecassic acids, the pentacyclic triterpenes. The herb has been extensively known to treat skin conditions; nevertheless, several pre-clinical and clinical studies have scientifically demonstrated its effectiveness in other disorders. Among the active constituents that have been identified in Centella asiatica, madecassoside has been the subject of only a relatively small number of scientific reports. Therefore, this review, while including other major constituents of this plant, focuses on the therapeutic potential, pharmacokinetics and toxicity of madecassoside.
Collapse
|
14
|
Qi JJ, Li XX, Zhang Y, Diao YF, Hu WY, Wang DL, Jiang H, Zhang JB, Sun BX, Liang S. Supplementation with asiatic acid during in vitro maturation improves porcine oocyte developmental competence by regulating oxidative stress. Theriogenology 2021; 172:169-177. [PMID: 34174755 DOI: 10.1016/j.theriogenology.2021.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/08/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022]
Abstract
Asiatic acid is a natural triterpene found in Centella asiatica that acts as an effective free radical scavenger. Our previous research showed that asiatic acid delayed porcine oocyte ageing in vitro and improved preimplantation embryo development competence in vitro; however, the protective effects of asiatic acid against oxidative stress in porcine oocyte maturation are still unclear. Here, we investigated the effects of asiatic acid on porcine oocyte in vitro maturation (IVM) and subsequent embryonic development competence after parthenogenetic activation (PA) and in vitro fertilization (IVF). The results of the present research showed that 10 μM asiatic acid supplementation did not affect the expansion of cumulus cells or polar body extrusion of porcine oocytes, while asiatic acid application significantly increased the subsequent blastocyst formation rate and quality of porcine PA and IVF embryos. Hydrogen peroxide (H2O2) is a reactive oxygen species (ROS) that induces oxidative stress in porcine oocytes. As expected, asiatic acid supplementation not only decreased intracellular ROS levels but also attenuated H2O2-induced intracellular ROS generation. Further analysis revealed that asiatic acid supplementation enhanced intracellular glutathione production, mitochondrial membrane potential, and ATP generation at the end of IVM. In summary, our results reveal that asiatic acid supplementation exerts beneficial effects on porcine oocytes by regulating oxidative stress during the IVM process and could act as a potential antioxidant in porcine oocytes matured in vitro production systems.
Collapse
Affiliation(s)
- Jia-Jia Qi
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Xiao-Xia Li
- College of Animal Science and Technology, Jilin Agriculture Science and Technology University, Jilin, China; Jilin Province Key Laboratory of Preventive Veterinary Medicine, Jilin Agriculture Science and Technology University, Jilin, China
| | - Yan Zhang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China; Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Yun-Fei Diao
- College of Animal Science and Technology, Jilin Agriculture Science and Technology University, Jilin, China; Jilin Province Key Laboratory of Preventive Veterinary Medicine, Jilin Agriculture Science and Technology University, Jilin, China
| | - Wei-Yi Hu
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Da-Li Wang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Hao Jiang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Jia-Bao Zhang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Bo-Xing Sun
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China.
| | - Shuang Liang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China.
| |
Collapse
|
15
|
Huang J, Zhou X, Xia L, Liu W, Guo F, Liu J, Liu W. Inhibition of hypertrophic scar formation with oral asiaticoside treatment in a rabbit ear scar model. Int Wound J 2021; 18:598-607. [PMID: 33666348 PMCID: PMC8450800 DOI: 10.1111/iwj.13561] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Hypertrophic scar (HS) is a fibrotic skin disease characterised by over‐productive collagen and excessive inflammatory reaction, which can be functionally and cosmetically problematic. A scar‐prone constitute will accelerate HS formation and functional disorder, which deserves systemic therapy with oral medicine. To examine the oral therapeutic effectiveness on HS with convincing evidence of gross view and histological improvement, a rabbit ear HS model was employed with oral administration of asiaticoside (AS) at the doses of 12 and 24 mg kg−1 d−1 daily for 60 consecutive days. Gross observation and histological findings showed that oral AS treatment could significantly inhibit HS formation in a dose dependent manner. Semi‐quantification of scar elevation index at days 7, 15, 30, and 60, and quantitative polymerase chain reaction at days 30 and 60 also provided the evidences of reduced scar thickness and inhibited fibrotic gene expressions of collagens I, III, TGF‐β1, interleukins 1β, 6 and 8, and enhanced gene expression of SMAD 7 and PPAR‐γ with a dose‐dependent manner. These results indicated that AS is likely to serve as a systemic therapeutic agent of HS treatment for those who may have scar‐prone constitute via anti‐inflammation, inhibiting fibrotic process, and enhancing matrix degradation.
Collapse
Affiliation(s)
- Jia Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China
| | - Xiaobo Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China
| | - Lingling Xia
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China
| | - Weiwei Liu
- Department of marketing, Shanghai Modern Pharmaceutical Company, Shanghai, China
| | - Fei Guo
- Department of marketing, Shanghai Modern Pharmaceutical Company, Shanghai, China
| | - Jianhui Liu
- Department of marketing, Shanghai Modern Pharmaceutical Company, Shanghai, China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China
| |
Collapse
|
16
|
Antifibrotic effects of Hypocrellin A combined with LED red light irradiation on keloid fibroblasts by counteracting the TGF-β/Smad/autophagy/apoptosis signalling pathway. Photodiagnosis Photodyn Ther 2021; 34:102202. [PMID: 33556618 DOI: 10.1016/j.pdpdt.2021.102202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 11/23/2022]
Abstract
Keloids are characterized by abnormal proliferation of fibroblasts and continuous deposition of extracellular matrix (ECM) components. In the field of dermopathy, photodynamic therapy (PDT) with visible light has been increasingly investigated. The natural photosensitizer Hypocrellin A (HA) was shown to have excellent light induced anticancer, antimicrobial and antiviral activities. In this experiment, we investigated the impacts of HA united light-emitting diode (LED) red light irradiation on human keloid fibroblast cells (KFs). Our results showed that HA combined with red light irradiation treatment (HA-R-PDT) decreased KF viability, reduced KF collagen production and ECM accumulation, inhibited cell proliferation, suppressed cell invasion and induced cell apoptosis. Moreover, our observations demonstrated that the TGF-β/Smad signalling pathway and autophagy were restrained by HA-R-PDT. TGF-β1 could promote autophagy in KFs through both the Smad and ERK pathways, while inhibition of autophagy altered the TGF-β1 levels through negative feedback. Therefore, HA-R-PDT suppressed cell hyperproliferation, collagen synthesis and ECM accumulation of KFs by regulating the TGF-β1-ERK-autophagy-apoptosis signalling pathway. HA-R-PDT deserves systematic investigation as a potential therapeutic strategy for keloids, and autophagy might be a promising candidate in the treatment of KFs.
Collapse
|
17
|
Islam MT, Ali ES, Uddin SJ, Khan IN, Shill MC, de Castro E Sousa JM, de Alencar MVOB, Melo-Cavalcante AAC, Mubarak MS. Anti-Cancer Effects of Asiatic Acid, a Triterpene from Centilla asiatica L: A Review. Anticancer Agents Med Chem 2021; 20:536-547. [PMID: 31823705 DOI: 10.2174/1871520619666191211103006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/05/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Centilla asiatica L is a medicinal herb that has been widely used in folk medicine to treat various diseases. Asiatic Acid (AA), a triterpene and a known component of this herb, has been shown to display important biological activities, including anti-inflammatory, antibacterial, antidiabetic and antihyperlipidemic, neuroprotective, anxiolytic and antidepressant, hepatoprotective, pancreas protective, and cardio- protective. OBJECTIVE This review focuses on AA's anti-cancer effects on the basis of published literature found in a number of databases such as PubMed and Science Direct. Emphasis has been given to the mechanisms of action of its anti-cancer effect. METHODS A literature survey was conducted using known databases such as PubMed and Science Direct using the keywords 'Asiatic acid', pairing with 'cancer', 'tumor', 'anti-cancer effect', 'cytotoxic effect', 'anti-tumor activity', 'cell line', 'animal cancer', and 'human cancer'. RESULTS Findings suggest that AA exerts anti-cancer effects in several test systems through various pathways, including oxidative/antioxidant, anti-inflammatory, cytotoxicity, apoptotic cell death, necrosis, anti-angiogenesis, inhibition of proliferation and cell migration, and chemoprevention. CONCLUSION AA may be an effective plant-based cancer chemotherapeutic agent and a promising lead for the development of potent anticancer drugs.
Collapse
Affiliation(s)
- Muhammad T Islam
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam.,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Eunus S Ali
- Gaco Pharmaceuticals Limited, Dhaka-1000, Bangladesh.,College of Medicine and Public Health, Flinders University, Bedford Park-5042, Adelaide, Australia
| | - Shaikh J Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna-9208, Bangladesh
| | - Ishaq N Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, 25000, Pakistan
| | - Manik C Shill
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - João M de Castro E Sousa
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piaui, Teresina, 64 049-550, Brazil.,Department of Biological Sciences, Federal University of Piauí, Picos, Piauí, 64 067-670, Brazil
| | | | - Ana A C Melo-Cavalcante
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piaui, Teresina, 64 049-550, Brazil
| | | |
Collapse
|
18
|
Li D, Yang E, Zhao J, Zhang H. Association between MeCP2 and Smad7 in the pathogenesis and development of pathological scars. J Plast Surg Hand Surg 2021; 55:284-293. [PMID: 33475023 DOI: 10.1080/2000656x.2021.1874399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
To explore the relationship between methylated binding protein 2 (MeCP2) and mothers against decapentaplegic homolog 7 (Smad7) in the pathogenesis and development of pathological scars. Immunohistochemistry, Western blot and real-time polymerase chain reaction (RT-PCR) were used to detect the expression of MeCP2 in different types of human scars and hypertrophic scars at different growth times. The methylation status of Smad7 gene promoter in different scar tissues was determined by methylation-specific PCR. After transfection with MeCP2-siRNA (small interfering RNA) in human keloid fibroblasts, MTT assay was used to assess the proliferation activity of keloid fibroblasts, while RT-PCR and Western blot assays were used to detect the expression levels of MeCP2, transforming growth factor-β1 (TGF-β1), α-smooth muscle actin (α-SMA), phospho-Smad2 (p-Smad2) and Smad7. MeCP2 was mainly expressed in the nucleus of fibroblasts. The mRNA and protein levels of MeCP2 were significantly higher in keloids than in hypertrophic scars, normal scars and normal skin (p<.05). The expression level of MeCP2 in hypertrophic scars during the growth period of <6 months was markedly higher than that of >6 months (p<.05). The methylation level of Smad7 was significantly higher in keloids compared to normal skin. After MeCP2 silencing, the proliferation rate of human keloid fibroblasts was decreased, the mRNA and protein levels of Smad7 were increased, and the expression levels of TGF-β1, α-SMA and p-Smad2 were decreased (p<.05). MeCP2 and Smad7 play an important role in formation of pathological scars. During keloid formation, MeCP2 weakens the inhibitory effect of Smad7 on p-Smad2/3 by downregulating the expression of Smad7, which in turn promotes fibrosis and scar hyperplasia.
Collapse
Affiliation(s)
- Dan Li
- Department of Plastic and Burn Surgery, Chongqing Medical University First Affiliated Hospital, Chongqing, China
| | - E Yang
- Department of Plastic and Burn Surgery, Chongqing Medical University First Affiliated Hospital, Chongqing, China
| | - Juan Zhao
- Department of Plastic and Burn Surgery, Chongqing Medical University First Affiliated Hospital, Chongqing, China
| | - Hengshu Zhang
- Department of Plastic and Burn Surgery, Chongqing Medical University First Affiliated Hospital, Chongqing, China
| |
Collapse
|
19
|
Ghiulai R, Roşca OJ, Antal DS, Mioc M, Mioc A, Racoviceanu R, Macaşoi I, Olariu T, Dehelean C, Creţu OM, Voicu M, Şoica C. Tetracyclic and Pentacyclic Triterpenes with High Therapeutic Efficiency in Wound Healing Approaches. Molecules 2020; 25:E5557. [PMID: 33256207 PMCID: PMC7730621 DOI: 10.3390/molecules25235557] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Wounds are among the most common skin conditions, displaying a large etiological diversity and being characterized by different degrees of severity. Wound healing is a complex process that involves multiple steps such as inflammation, proliferation and maturation and ends with scar formation. Since ancient times, a widely used option for treating skin wounds are plant- based treatments which currently have become the subject of modern pharmaceutical formulations. Triterpenes with tetracyclic and pentacyclic structure are extensively studied for their implication in wound healing as well as to determine their molecular mechanisms of action. The current review aims to summarize the main results of in vitro, in vivo and clinical studies conducted on lupane, ursane, oleanane, dammarane, lanostane and cycloartane type triterpenes as potential wound healing treatments.
Collapse
Affiliation(s)
- Roxana Ghiulai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania; (R.G.); (O.J.R.); (M.M.); (R.R.); (C.Ş.)
| | - Oana Janina Roşca
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania; (R.G.); (O.J.R.); (M.M.); (R.R.); (C.Ş.)
| | - Diana Simona Antal
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania
| | - Marius Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania; (R.G.); (O.J.R.); (M.M.); (R.R.); (C.Ş.)
| | - Alexandra Mioc
- Department of Anatomy, Physiology, Pathophysiology, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania;
| | - Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania; (R.G.); (O.J.R.); (M.M.); (R.R.); (C.Ş.)
| | - Ioana Macaşoi
- Department of Toxicology, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd EftimieMurgu Sq., 300041 Timişoara, Romania; (I.M.); (C.D.)
| | - Tudor Olariu
- Department of Organic Chemistry, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd EftimieMurgu Sq., 300041 Timişoara, Romania;
| | - Cristina Dehelean
- Department of Toxicology, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd EftimieMurgu Sq., 300041 Timişoara, Romania; (I.M.); (C.D.)
| | - Octavian Marius Creţu
- Department of Surgery, Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, 2nd EftimieMurgu Sq., 300041 Timişoara, Romania;
| | - Mirela Voicu
- Department of Pharmacology, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd EftimieMurgu Sq., 300041 Timişoara, Romania
| | - Codruţa Şoica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania; (R.G.); (O.J.R.); (M.M.); (R.R.); (C.Ş.)
| |
Collapse
|
20
|
Azim KF, Ahmed SR, Banik A, Khan MMR, Deb A, Somana SR. Screening and druggability analysis of some plant metabolites against SARS-CoV-2: An integrative computational approach. INFORMATICS IN MEDICINE UNLOCKED 2020; 20:100367. [PMID: 32537482 PMCID: PMC7280834 DOI: 10.1016/j.imu.2020.100367] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/16/2022] Open
Abstract
The sudden outbreak of novel coronavirus has caused a global concern due to its infection rate and mortality. Despite extensive research, there are still no specific drugs or vaccines to combat SARS-CoV-2 infection. Hence, this study was designed to evaluate some plant-based active compounds for drug candidacy against SARS-CoV-2 by using virtual screening methods and various computational analyses. A total of 27 plant metabolites were screened against SARS-CoV-2 main protease proteins (MPP), Nsp9 RNA binding protein, spike receptor binding domain, spike ecto-domain and HR2 domain using a molecular docking approach. Four metabolites, i.e., asiatic acid, avicularin, guajaverin, and withaferin showed maximum binding affinity with all key proteins in terms of lowest global binding energy. The crucial binding sites and drug surface hotspots were unravelled for each viral protein. The top candidates were further employed for ADME (absorption, distribution, metabolism, and excretion) analysis to investigate their drug profiles. Results suggest that none of the compounds render any undesirable consequences that could reduce their drug likeness properties. The analysis of toxicity pattern revealed no significant tumorigenic, mutagenic, irritating, or reproductive effects by the compounds. However, withaferin was comparatively toxic among the top four candidates with considerable cytotoxicity and immunotoxicity. Most of the target class by top drug candidates belonged to enzyme groups (e.g. oxidoreductases hydrolases, phosphatases). Moreover, results of drug similarity prediction revealed two approved structural analogs of Asiatic acid i.e. Hydrocortisone (DB00741) (previously used for SARS-CoV-1 and MERS) and Dinoprost-tromethamine (DB01160) from DrugBank. In addition, two other biologically active compounds, Mupirocin (DB00410) and Simvastatin (DB00641) could be an option for the treatment of viral infections. The study may pave the way to develop effective medications and preventive measure against SARS-CoV-2. Due to the encouraging results, we highly recommend further in vivo trials for the experimental validation of our findings.
Collapse
Affiliation(s)
- Kazi Faizul Azim
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
- Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Sheikh Rashel Ahmed
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
- Department of Plant and Environmental Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Anik Banik
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Md Mostafigur Rahman Khan
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Anamika Deb
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Saneya Risa Somana
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| |
Collapse
|
21
|
Huang H, Wang ZJ, Zhang HB, Liang JX, Cao WD, Wu Q, He CP, Chen C. The Function of PPARγ/AMPK/SIRT-1 Pathway in Inflammatory Response of Human Articular Chondrocytes Stimulated by Advanced Glycation End Products. Biol Pharm Bull 2020; 42:1303-1309. [PMID: 31366866 DOI: 10.1248/bpb.b19-00036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Accumulation of advanced glycation end products (AGEs) in the articular cartilage is a major risk factor for osteoarthritis (OA). To determine the mechanistic basis of AGE action in OA, we treated human articular chondrocytes with AGEs, and found that they not only up-regulated the pro-inflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α, but also inhibited AMP-activated protein kinase (AMPK) phosphorylation and decreased sirtuin 1 (SIRT-1) levels in a concentration- and time-dependent manner. Pioglitazone, a peroxisome proliferator-activated receptor-γ (PPARγ) agonist restored the inhibited AMPK and SIRT-1 by AGEs. Pre-treatment of the cells with the agonists or antagonists of AMPK and SIRT-1 respectively abolished and augmented the inflammatory state induced by AGEs. Furthermore, AMPK agonist also restored the levels of SIRT-1 in the AGE-stimulated chondrocytes. Our findings indicate AGEs induce an inflammatory response in human articular chondrocytes via the PPARγ/AMPK/SIRT-1 pathway, which is therefore a potential target in OA therapy.
Collapse
Affiliation(s)
- Hao Huang
- Department of Orthopedics, The 921st Hospital of the People's Liberation Army, The Second Affiliated Hospital of Hunan Normal University
| | - Zhao-Jun Wang
- Department of Orthopedics, The 921st Hospital of the People's Liberation Army, The Second Affiliated Hospital of Hunan Normal University
| | - Hai-Bin Zhang
- Department of Orthopedics, The 921st Hospital of the People's Liberation Army, The Second Affiliated Hospital of Hunan Normal University
| | - Jian-Xia Liang
- Department of Orthopedics, The 921st Hospital of the People's Liberation Army, The Second Affiliated Hospital of Hunan Normal University
| | - Wen-Dong Cao
- Department of Orthopedics, The 921st Hospital of the People's Liberation Army, The Second Affiliated Hospital of Hunan Normal University
| | - Qi Wu
- Department of Orthopedics, The 921st Hospital of the People's Liberation Army, The Second Affiliated Hospital of Hunan Normal University
| | - Chao-Peng He
- Department of Orthopedics, The 921st Hospital of the People's Liberation Army, The Second Affiliated Hospital of Hunan Normal University
| | - Cheng Chen
- Department of Orthopedics, The 921st Hospital of the People's Liberation Army, The Second Affiliated Hospital of Hunan Normal University
| |
Collapse
|
22
|
Chen X, Zhang Y, Zhao P, Chen Y, Zhou Y, Wang S, Yin L. Preparation and evaluation of PEGylated asiatic acid nanostructured lipid carriers on anti-fibrosis effects. Drug Dev Ind Pharm 2020; 46:57-69. [DOI: 10.1080/03639045.2019.1701002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Xiaoxiao Chen
- College of Pharmacy, Zhejiang Chinese Medicine University, Hangzhou, China
- Institute of Materia Medica, Zhejiang Academy of Medical Science, Hangzhou, China
| | - Yawen Zhang
- Institute of Materia Medica, Zhejiang Academy of Medical Science, Hangzhou, China
| | - Pengfei Zhao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Chen
- College of Pharmacy, Zhejiang Chinese Medicine University, Hangzhou, China
- Institute of Materia Medica, Zhejiang Academy of Medical Science, Hangzhou, China
| | - Yunli Zhou
- College of Pharmacy, Zhejiang Chinese Medicine University, Hangzhou, China
- Institute of Materia Medica, Zhejiang Academy of Medical Science, Hangzhou, China
| | - Shenghao Wang
- College of Pharmacy, Zhejiang Chinese Medicine University, Hangzhou, China
- Institute of Materia Medica, Zhejiang Academy of Medical Science, Hangzhou, China
| | - Lina Yin
- Institute of Materia Medica, Zhejiang Academy of Medical Science, Hangzhou, China
| |
Collapse
|
23
|
Asiatic acid inhibits cardiac fibrosis throughNrf2/HO-1 and TGF-β1/Smads signaling pathways in spontaneous hypertension rats. Int Immunopharmacol 2019; 74:105712. [DOI: 10.1016/j.intimp.2019.105712] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 05/26/2019] [Accepted: 06/18/2019] [Indexed: 01/13/2023]
|
24
|
Asiatic acid enhances intratumor delivery and the antitumor effect of pegylated liposomal doxorubicin by reducing tumor-stroma collagen. Acta Pharmacol Sin 2019; 40:539-545. [PMID: 29921887 DOI: 10.1038/s41401-018-0038-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/03/2018] [Indexed: 02/06/2023] Open
Abstract
Tumor-targeted drug delivery systems (Tt-DDSs) are proposed as a promising strategy for cancer care. However, the dense collagen network in tumors stroma significantly reduces the penetration and efficacy of Tt-DDS. In order to investigate the effect of asiatic acid (AA) on antitumor effect of pegylated liposomal doxorubicin (PLD) by attenuating stroma-collagen, colon cancer xenograft mice (SW620 cell line) were treated by PLD, AA, or combined regimes, respectively; the collagen levels were estimated by Sirius red/fast green dual staining and immunohistochemistry (IHC) staining; the intratumor exposure of doxorubicin was visualized by ex vivo fluorescence imaging and quantified by HPLC/MS analysis. In addition, the impact of AA on collagen synthesis of fibroblast cell (HFL-1) and cytotoxic effect of PLD and doxorubicin to cancer cell (SW620) were studied in vitro. In the presence of AA (4 mg/kg), the intratumor collagen level was restricted in vivo (reduced by 22%, from 4.14% ± 0.30% to 3.24% ± 0.25%, P = 0.051) and in vitro. Subsequently, doxorubicin level was increased by ~30%. The antitumor activity of PLD was significantly improved (57.3% inhibition of tumor growth and 44% reduction in tumor weight) by AA combination. Additionally, no significant improvement in cytotoxic effect of PLD or doxorubicin induced by AA was observed. In conclusion, AA is a promising sensitizer for tumor treatment by enhancing intratumor drug exposure via stromal remodeling.
Collapse
|
25
|
Ibrahim SM, Saudi WM, Abozeid MF, Elsaie ML. Early fractional carbon dioxide laser intervention for postsurgical scars in skin of color. Clin Cosmet Investig Dermatol 2019; 12:29-34. [PMID: 30655685 PMCID: PMC6324605 DOI: 10.2147/ccid.s177622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Fractional CO2 laser is one of the most effective treatment options used to resurface scars. Objective To evaluate the efficacy and safety of early treatment of postsurgical scar by fractional ablative CO2 laser. Methods A total of 27 Egyptian patients with recent postoperative scars were enrolled in this study. Three sessions of fractional CO2 laser with a 1-month interval were started 4 weeks after surgery. Vancouver Scar Scale (VSS) was used as an assessment tool at 1 and 3 months after the final treatment. Patients reported their satisfaction using a subjective 4-point scale. Results Results demonstrated a statistically significant overall average improvement of the VSS (5.33±1.33) before compared with (2.55±1.06) 3 months after the last laser treatment (P≤0.001). Among the individual parameters in the VSS, the most significant improvements were found in pigmentation, height, and pliability. Patient's subjective satisfaction scores showed a significant greater degree of satisfaction after laser treatment. Conclusion Fractional ablative CO2 laser is an effective and safe treatment modality for surgical scars in the early postsurgical period.
Collapse
Affiliation(s)
- Shady M Ibrahim
- Department of Dermatology, Al Azhar University, Cairo, Egypt
| | - Wael M Saudi
- Department of Dermatology, Misr University for Science & Technology, 6th of October City, Egypt
| | | | - Mohamed L Elsaie
- Department of Dermatology, National Research Centre, Cairo, Egypt,
| |
Collapse
|
26
|
Guo L, Cui Y, Hao K. Effects of glycyrrhizin on the pharmacokinetics of asiatic acid in rats and its potential mechanism. PHARMACEUTICAL BIOLOGY 2018; 56:119-123. [PMID: 29357733 PMCID: PMC6130451 DOI: 10.1080/13880209.2018.1428634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
CONTEXT Asiatic acid has been reported to possess a wide range of pharmacological activities. OBJECTIVE This study investigates the effects of glycyrrhizin on the pharmacokinetics of asiatic acid in rats and its potential mechanism. MATERIALS AND METHODS The pharmacokinetics of orally administered asiatic acid (20 mg/kg) with or without glycyrrhizin pretreatment (100 mg/kg/day for seven days) were investigated using a LC-MS method. Additionally, the Caco-2 cell transwell model and rat liver microsome incubation systems were used to investigate the potential mechanism of glycyrrhizin's effects on the pharmacokinetics of asiatic acid. RESULTS The results showed that the Cmax (221.33 ± 21.06 vs. 324.67 ± 28.64 ng/mL), AUC0-inf (496.12 ± 109.31 vs. 749.15 ± 163.95 μg·h/L) and the t1/2 (1.21 ± 0.27 vs. 2.04 ± 0.32 h) of asiatic acid decreased significantly (p < 0.05) with the pretreatment of glycyrrhizin. The oral clearance of asiatic acid increased significantly from 27.59 ± 5.34 to 41.57 ± 9.19 L/h/kg (p < 0.05). The Caco-2 cell transwell experiments indicated that glycyrrhizin could increase the efflux ratio of asiatic acid from 1.63 to 2.74, and the rat liver microsome incubation experiments showed that glycyrrhizin could increase the intrinsic clearance rate of asiatic acid from 138.32 ± 11.20 to 221.76 ± 16.85 μL/min/mg protein. DISCUSSION AND CONCLUSIONS In conclusion, these results indicated that glycyrrhizin could decrease the system exposure of asiatic acid, possibly by inducing the activity of P-gp or CYP450 enzyme.
Collapse
Affiliation(s)
- Ling Guo
- Department of Nursing, Yidu Central Hospital of Weifang, Shandong, China
- CONTACT Ling Guo Department of Nursing, Yidu Central Hospital of Weifang, No. 4138, South Linglongshan Road, Weifang262500, Shandong, China
| | - Ying Cui
- Department of Nursing, Yidu Central Hospital of Weifang, Shandong, China
| | - Kaijun Hao
- Qingzhou Hospital for Disabled Soldiers, Shandong, China
| |
Collapse
|
27
|
Scano A, Ebau F, Manca ML, Cabras V, Cesare Marincola F, Manconi M, Pilloni M, Fadda AM, Ennas G. Novel drug delivery systems for natural extracts: The case study of Vitis Vinifera extract-SiO 2 nanocomposites. Int J Pharm 2018; 551:84-96. [PMID: 30194010 DOI: 10.1016/j.ijpharm.2018.08.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 11/29/2022]
Abstract
Ball Milling technique has been used to prepare for the first time Vitis Vinifera extract-silica nanocomposites (VV-SiO2 NCs), which combine the pharmacological effects of the extract with the effectiveness of silica as drug delivery system and active component in the treatment of wound healing. Different contents (1.0, 9.0 and 33.0 wt%) of Vitis Vinifera ethanolic extract were loaded into the silica matrix by grinding the extract with fumed silica using a planetary mill apparatus. The effect of the starting mixture composition and milling time on the final products was examined. The efficiency of the milling process was studied by X-ray Powder Diffraction, Nuclear Magnetic Resonance, and Infrared Spectroscopy, indicating that the natural extract was not affected by the increasing of the milling time. The successful loading of the extract was demonstrated by Nitrogen adsorption/desorption measurements, which showed a decrease in the SSA and pore volume of the silica with the increasing of the extract amount. Morphology of the nanocomposites, investigated by Scanning Electron Microscopy, showed an increased agglomeration in the nanocomposites with the increment of the VV extract amount. Studies on the total phenol quantification and antioxidant activity of the natural extract before and after incorporation in the silica matrix were also carried out. The obtained results indicate that the milling process does not alter the VV extract components, which result to be embedded in the silica matrix. An increase of the antioxidant activity with the increment of the extract amount in the nanocomposites, up to values comparable to the pure VV extract, was also observed.
Collapse
Affiliation(s)
- A Scano
- Chemical and Geological Science Dept., University of Cagliari and Cagliari Research Unit of the National Consortium of Materials Science and Technology (INSTM), Cittadella Universitaria di Monserrato, 09042 Monserrato, CA, Italy.
| | - F Ebau
- Chemical and Geological Science Dept., University of Cagliari and Cagliari Research Unit of the National Consortium of Materials Science and Technology (INSTM), Cittadella Universitaria di Monserrato, 09042 Monserrato, CA, Italy
| | - M L Manca
- Life and Environment Science Dept., Section of Drug Sciences, CNBS, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - V Cabras
- Chemical and Geological Science Dept., University of Cagliari and Cagliari Research Unit of the National Consortium of Materials Science and Technology (INSTM), Cittadella Universitaria di Monserrato, 09042 Monserrato, CA, Italy
| | - F Cesare Marincola
- Chemical and Geological Science Dept., University of Cagliari and Cagliari Research Unit of the National Consortium of Materials Science and Technology (INSTM), Cittadella Universitaria di Monserrato, 09042 Monserrato, CA, Italy
| | - M Manconi
- Life and Environment Science Dept., Section of Drug Sciences, CNBS, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - M Pilloni
- Chemical and Geological Science Dept., University of Cagliari and Cagliari Research Unit of the National Consortium of Materials Science and Technology (INSTM), Cittadella Universitaria di Monserrato, 09042 Monserrato, CA, Italy
| | - A M Fadda
- Life and Environment Science Dept., Section of Drug Sciences, CNBS, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - G Ennas
- Chemical and Geological Science Dept., University of Cagliari and Cagliari Research Unit of the National Consortium of Materials Science and Technology (INSTM), Cittadella Universitaria di Monserrato, 09042 Monserrato, CA, Italy.
| |
Collapse
|
28
|
Ames PRJ, Bucci T, Merashli M, Amaral M, Arcaro A, Gentile F, Nourooz-Zadeh J, DelgadoAlves J. Oxidative/nitrative stress in the pathogenesis of systemic sclerosis: are antioxidants beneficial? Free Radic Res 2018; 52:1063-1082. [PMID: 30226391 DOI: 10.1080/10715762.2018.1525712] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Systemic sclerosis (SSc) is a multisystem autoimmune disease: characterised from the clinical side by progressive vasculopathy and fibrosis of the skin and different organs and from the biochemical side by fibroblast deregulation with excessive production of collagen and increased expression of nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4). The latter contributes to an overproduction of reactive oxygen species that through an autocrine loop maintains NOX4 in a state of activation. Reactive oxygen and nitrogen species are implicated in the origin and perpetuation of several clinical manifestations of SSc having vascular damage in common; attempts to dampen oxidative and nitrative stress through different agents with antioxidant properties have not translated into a sustained clinical benefit. Objective of this narrative review is to describe the origin and clinical implications of oxidative and nitrative stress in SSc, with particular focus on the central role of NOX4 and its interactions, to re-evaluate the antioxidant approaches so far used to limit disease progression, to appraise the complexity of antioxidant treatment and to touch on novel pathways elements of which may represent specific treatment targets in the not so distant future.
Collapse
Affiliation(s)
- Paul R J Ames
- a Immune Response and Vascular Disease Unit , CEDOC, Nova University , Lisboa , Portugal.,b Department of Haematology , Dumfries Royal Infirmary , Dumfries , UK
| | - Tommaso Bucci
- c Division of Allergy and Clinical Immunology, Department of Internal Medicine , University of Salerno , Baronissi , Italy
| | - Mira Merashli
- d Department of Rheumatology , American University of Beirut , Beirut , Lebanon
| | - Marta Amaral
- a Immune Response and Vascular Disease Unit , CEDOC, Nova University , Lisboa , Portugal
| | - Alessia Arcaro
- e Department of Medicine & Health Sciences , Universita' del Molise , Campobasso , Italy
| | - Fabrizio Gentile
- e Department of Medicine & Health Sciences , Universita' del Molise , Campobasso , Italy
| | - Jaffar Nourooz-Zadeh
- f Nephrology & Kidney Transplantation Research Center , Urmia University of Medical Sciences , Urmia , Iran
| | - Jose DelgadoAlves
- a Immune Response and Vascular Disease Unit , CEDOC, Nova University , Lisboa , Portugal.,g Immunomediated Systemic Diseases Unit, Medicine 4 , Hospital Fernando Fonseca , Amadora , Portugal
| |
Collapse
|
29
|
A Prospective Randomized, Controlled, Double-Blind Trial of the Efficacy Using Centella Cream for Scar Improvement. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9525624. [PMID: 30310413 PMCID: PMC6166374 DOI: 10.1155/2018/9525624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/03/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022]
Abstract
Objective This study was performed to evaluate the efficacy of Centella asiatica extract in cream, a preparation for the prevention of scar development of the split-thickness skin graft (STSG) donor site. Methods A prospective randomized, double-blind control study was performed to evaluate the efficacy of Centella cream in 30 patients who underwent a STSG operation. Both Centella cream and placebo were applied equally to the donor site at least 2 weeks after epithelialization was completed. A scar assessment using the Vancouver Scar Scale (VSS) was taken at 4, 8, and 12 weeks. Results Of the original 30 patients, 23 patients completed evaluation. There were significant differences in pigmentation parameter of VSS and comparative total VSS scores between 4 and 12 weeks in Centella cream group. Conclusion The effect of Centella cream on scar development of a STSG operation may be attainable in terms of better pigmentation. By means of objective measurements and longer follow-up times, Centella cream may prove to be an alternative product for hypertrophic scar amelioration.
Collapse
|
30
|
Nagoor Meeran MF, Goyal SN, Suchal K, Sharma C, Patil CR, Ojha SK. Pharmacological Properties, Molecular Mechanisms, and Pharmaceutical Development of Asiatic Acid: A Pentacyclic Triterpenoid of Therapeutic Promise. Front Pharmacol 2018; 9:892. [PMID: 30233358 PMCID: PMC6131672 DOI: 10.3389/fphar.2018.00892] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022] Open
Abstract
Asiatic acid (AA) is a naturally occurring aglycone of ursane type pentacyclic triterpenoids. It is abundantly present in many edible and medicinal plants including Centella asiatica that is a reputed herb in many traditional medicine formulations for wound healing and neuropsychiatric diseases. AA possesses numerous pharmacological activities such as antioxidant and anti-inflammatory and regulates apoptosis that attributes its therapeutic effects in numerous diseases. AA showed potent antihypertensive, nootropic, neuroprotective, cardioprotective, antimicrobial, and antitumor activities in preclinical studies. In various in vitro and in vivo studies, AA found to affect many enzymes, receptors, growth factors, transcription factors, apoptotic proteins, and cell signaling cascades. This review aims to represent the available reports on therapeutic potential and the underlying pharmacological and molecular mechanisms of AA. The review also also discusses the challenges and prospects on the pharmaceutical development of AA such as pharmacokinetics, physicochemical properties, analysis and structural modifications, and drug delivery. AA showed favorable pharmacokinetics and found bioavailable following oral or interaperitoneal administration. The studies demonstrate the polypharmacological properties, therapeutic potential and molecular mechanisms of AA in numerous diseases. Taken together the evidences from available studies, AA appears one of the important multitargeted polypharmacological agents of natural origin for further pharmaceutical development and clinical application. Provided the favorable pharmacokinetics, safety, and efficacy, AA can be a promising agent or adjuvant along with currently used modern medicines with a pharmacological basis of its use in therapeutics.
Collapse
Affiliation(s)
- Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Kapil Suchal
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Charu Sharma
- Department of Internal Meicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Chandragouda R. Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Shreesh K. Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
31
|
Liu L, Pan Y, Zhai C, Zhu Y, Ke R, Shi W, Wang J, Yan X, Su X, Song Y, Gao L, Li M. Activation of peroxisome proliferation-activated receptor-γ inhibits transforming growth factor-β1-induced airway smooth muscle cell proliferation by suppressing Smad-miR-21 signaling. J Cell Physiol 2018; 234:669-681. [PMID: 30132829 DOI: 10.1002/jcp.26839] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/10/2018] [Indexed: 12/15/2022]
Abstract
The aims of the current study were to examine the signaling mechanisms for transforming growth factor-β1 (TGF-β1)-induced rat airway smooth muscle cell (ASMC) proliferation and to determine the effect of activation of peroxisome proliferation-activated receptor-γ (PPAR-γ) on TGF-β1-induced rat ASMC proliferation and its underlying mechanisms. TGF-β1 upregulated microRNA 21 (miR-21) expression by activating Smad2/3, and this in turn downregulated forkhead box O1 (FOXO1) mRNA expression. In addition, TGF-β1-Smad-miR-21 signaling also downregulated phosphatase and tensin homolog deleted on chromosome ten (PTEN) expression and thus de-repressed the PI3K-Akt pathway. Depletion of PTEN reduced the nuclear FOXO1 protein level without affecting its mRNA level. Inhibition of the PI3K-Akt pathway or proteasome function reversed PTEN knockdown-induced nuclear FOXO1 protein reduction. Our study further showed that loss of FOXO1 increased cyclin D1 expression, leading to rat ASMC proliferation. Preincubation of rat ASMCs with pioglitazone, a PPAR-γ activator, blocked TGF-β1-induced activation of Smad2/3 and its downstream targets changes of miR-21, PTEN, Akt, FOXO1, and cyclin D1, resulting in the inhibition of rat ASMC proliferation. Our study suggests that the activation of PPAR-γ inhibits rat ASMC proliferation by suppressing Smad-miR-21 signaling and therefore has a potential value in the prevention and treatment of asthma by negatively modulating airway remodeling.
Collapse
Affiliation(s)
- Lu Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yilin Pan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Cui Zhai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanting Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rui Ke
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Yan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaofan Su
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Song
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Gao
- Division of Allergy and Clinical Immunology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
32
|
Xia X, Dai C, Yu H, Huang X, Chen A, Tan Y, Wang L. Asiatic acid prevents the development of interstitial lung disease in a hypochlorous acid-induced mouse model of scleroderma. Oncol Lett 2018; 15:8711-8716. [PMID: 29805609 DOI: 10.3892/ol.2018.8412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 02/15/2018] [Indexed: 12/15/2022] Open
Abstract
Interstitial lung disease is the most common complication of systemic sclerosis (SSc) and is associated with a high rate of mortality. Due to the complex pathogenesis of SSc, the therapies currently available remain limited. In the present study, the effect of asiatic acid (AA) on SSc-associated pulmonary fibrosis (PF) and its association with the transforming growth factor-β1 (TGF-β1)/Smad2/3 signaling pathway were evaluated. A hypochlorous acid (HOCl)-induced model of SSc was used to evaluate the therapeutic effect of AA on PF in SSc, where AA was administered to SSc mice by gavage. PF was alleviated in the AA-treated SSc mice groups when examined under light microscopy. In addition, there was a decrease in histopathological progression and collagen in the lungs. AA significantly reduced expression of type I collagen in the lungs of mice with SSc. It also significantly suppressed α-smooth muscle actin expression, which attenuated the conversion of fibroblasts into muscle fibroblasts. These AA-associated antifibrosis and anti-immune effects were mediated through the significant downregulation of advanced oxidation protein product, E-selectin, and anti-DNA topoisomerase-1 autoantibody levels in the serum. Furthermore, the expression levels of TGF-β1 and the phosphorylated-Smad2/3/Smad2/3 ratios in AA-treated SSc mice were similar to the control. The presence of pulmonary inflammation and fibrosis was confirmed in the HOCl-induced SSc mice and the results demonstrated that selective inhibition of reactive oxygen species prevented PF. By focusing on the classical TGF-β1/Smad2/3 signaling pathway, a mechanism of action of AA was identified to be associated with the inhibition of Smad2/3 activation through negative regulation of Smad2/3 phosphorylation.
Collapse
Affiliation(s)
- Xiaoru Xia
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Caijun Dai
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Zhejiang University Jinhua Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Hua Yu
- Department of Geriatric Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiaoying Huang
- Department of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ali Chen
- Department of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yingxia Tan
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Liangxing Wang
- Department of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
33
|
Adtani P, Malathi N, Ranganathan K, Lokeswari S, Punnoose AM. Antifibrotic effect of Ocimum basilicum L. and linalool on arecoline-induced fibrosis in human buccal fibroblasts. TRANSLATIONAL RESEARCH IN ORAL ONCOLOGY 2018. [DOI: 10.1177/2057178x18764471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aim: To explore Ocimum basilicum L. (sweet basil) and linalool for their antifibrotic activity in an arecoline-induced in vitro fibrotic model. Methods: Leaf extract of O. basilicum L. (LEOB) and linalool were used as experimental agents to test their antifibrogenic activity in vitro. Half-maximal inhibitory concentration (IC50) for arecoline, ethanolic LEOB, and linalool was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. To evaluate the antifibrotic effect of ethanolic LEOB and linalool on pretreatment, that is, both the testing agents were added to the human buccal fibroblasts (HBFs) prior to induction with arecoline, and reverse transcriptase polymerase chain reaction (RT-PCR) was carried out to study the response of transforming growth factor beta (TGFβ), collagen 1 subtype A2 (COL1A2), and collagen 3 subtype A1 (COL3A1). To appreciate the morphological alterations in HBFs on treatment with arecoline, ethanolic LEOB, and linalool, Masson’s trichrome staining was performed. Results: Arecoline enhanced fibrotic activity by upregulating TGFβ1, COL1A2, and COL3A1 levels, whereas ethanolic LEOB and linalool on pretreatment significantly downregulated the increased levels of TGFβ1, COL1A2, and COL3A1 in primary HBF cell cultures. Conclusion and implication to clinic: Both ethanolic LEOB and linalool exhibited significant antifibrotic activity in an in vitro model. Further studies in an in vitro model can help attain a foundation for an herbal formulation in gel form that can be prescribed to patients diagnosed with oral submucous fibrosis for topical application. It can also be used synergistically with Western medicine.
Collapse
Affiliation(s)
- Pooja Adtani
- Gulf Medical University, Ajman, United Arab Emirates
| | - Narasimhan Malathi
- Sri Ramachandra Medical College and Research Institute (DU), Chennai, Tamil Nadu, India
| | | | - Sivaswamy Lokeswari
- Sri Ramachandra Medical College and Research Institute (DU), Chennai, Tamil Nadu, India
| | - Alan Mathew Punnoose
- Sri Ramachandra Medical College and Research Institute (DU), Chennai, Tamil Nadu, India
| |
Collapse
|
34
|
Anti inflammatory effect of asiaticoside on human umbilical vein endothelial cells induced by ox-LDL. Cytotechnology 2018; 70:855-864. [PMID: 29460197 DOI: 10.1007/s10616-018-0198-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 01/24/2018] [Indexed: 01/11/2023] Open
Abstract
Early diagnosis and changes associated with atherosclerosis are crucial in clinical medicine. However, atherosclerosis is a multifactorial disease. Asiaticoside (AA), a triterpenoid derived from Centella asiatica, has anti-inflammatory activity. Endothelium-derived nitric oxide is important in modulating vascular tone in a distinct vessel size-dependent manner; it plays a dominant role in conduit arteries and endothelium-dependent hyperpolarisation in resistance vessels. This study evaluated the effects of AA administration on human umbilical endothelial cells with oxidised low-density lipoprotein-induced inflammation. We measured the levels of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Our results indicated that 10-30 μM AA modulated endothelial hyper permeability, adenosine triphosphate levels, ICAM-1 expression, VCAM-1 expression, E-selectin levels, and PECAM-1 expression to 90% (p < 0.005), 80% (p < 0.05), 105% (p < 0.01), 65% (p < 0.005), 70% (p < 0.05), and 105% (p < 0.01), respectively. Taken together, our data suggest that AA inhibits the augmentation of endothelial permeability, thus preventing the early events of atherosclerosis.
Collapse
|
35
|
Lv J, Sharma A, Zhang T, Wu Y, Ding X. Pharmacological Review on Asiatic Acid and Its Derivatives: A Potential Compound. SLAS Technol 2018; 23:111-127. [PMID: 29361877 DOI: 10.1177/2472630317751840] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural triterpenes represent a group of pharmacologically active and structurally diverse organic compounds. The focus on these phytochemicals has been enormous in the past few years, worldwide. Asiatic acid (AA), a naturally occurring pentacyclic triterpenoid, is found mainly in the traditional medicinal herb Centella asiatica. Triterpenoid saponins, which are the primary constituents of C. asiatica, are commonly believed to be responsible for their extensive therapeutic actions. Published research work has described the molecular mechanisms underlying the various biological activities of AA and its derivatives, which vary for each chronic disease. However, a compilation of the various pharmacological properties of AA has not yet been done. Herein, we describe in detail the pharmacological properties of AA and its derivatives that inhibit multiple pathways of intracellular signaling molecules and transcription factors that are involved in the various stages of chronic diseases. Furthermore, the pharmacological activities of AA were compared with two natural compounds: curcumin and resveratrol. This review summarizes the research on AA and its derivatives and helps to provide future directions in the area of drug development.
Collapse
Affiliation(s)
- Junwei Lv
- 1 School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Alok Sharma
- 1 School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Zhang
- 1 School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yuchen Wu
- 1 School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xianting Ding
- 1 School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Xu Y, Yao J, Zou C, Zhang H, Zhang S, Liu J, Ma G, Jiang P, Zhang W. Asiatic acid protects against hepatic ischemia/reperfusion injury by inactivation of Kupffer cells via PPARγ/NLRP3 inflammasome signaling pathway. Oncotarget 2017; 8:86339-86355. [PMID: 29156799 PMCID: PMC5689689 DOI: 10.18632/oncotarget.21151] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 08/21/2017] [Indexed: 01/17/2023] Open
Abstract
Hepatic ischemia/reperfusion (I/R) contributes to major complications in clinical practice affecting perioperative morbidity and mortality. Recent evidence suggests the key role of nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammaosme activation on the pathogenesis of I/R injury. Asiatic acid (AA) is a pentacyclic triterpene derivative presented with versatile activities, including antioxidant, anti-inflammation and hepatoprotective effects. This study was designed to determine whether AA had potential hepatoprotective benefits against hepatic I/R injury, as well as to unveil the underlying mechanisms involved in the putative effects. Mice subjected to warm hepatic I/R, and Kupffer cells (KCs) or RAW264.7 cells challenged with lipopolysaccharide (LPS)/H2O2, were pretreated with AA. Administration of AA significantly attenuated hepatic histopathological damage, global inflammatory level, apoptotic signaling level, as well as NLRP3 inflammasome activation. These effects were correlated with increased expression of peroxisome proliferator-activated receptor gamma (PPARγ). Conversely, pharmacological inhibition of PPARγ by GW9662 abolished the protective effects of AA on hepatic I/R injury and in turn aggravated NLRP3 inflammasome activation. Activation of NLRP3 inflammasome was most significant in nonparenchymal cells (NPCs). Depletion of KCs by gadolinium chloride (GdCl3) further attenuated the detrimental effects of GW9662 on hepatic I/R as well as NLRP3 activation. In vitro, AA concentration-dependently inhibited LPS/H2O2-induced NLRP3 inflammaosome activation in KCs and RAW264.7 cells. Either GW9662 or genetic knockdown of PPARγ abolished the AA-mediated inactivation of NLRP3 inflammasome. Mechanistically, AA attenuated I/R or LPS/H2O2-induced ROS production and phosphorylation level of JNK, p38 MAPK and IκBα but not ERK, a mechanism dependent on PPARγ. Finally, AA blocked the deleterious effects of LPS/H2O2-induced macrophage activation on hepatocyte viability in vitro, and improved survival in a lethal hepatic I/R injury model in vivo. Collectively, these data suggest that AA is effective in mitigating hepatic I/R injury through attenuation of KCs activation via PPARγ/NLRP3 inflammasome signaling pathway.
Collapse
Affiliation(s)
- Ying Xu
- Department of Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jun Yao
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Zou
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Heng Zhang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Shouliang Zhang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jun Liu
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Gui Ma
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Pengcheng Jiang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Wenbo Zhang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
37
|
Madecassic acid, the contributor to the anti-colitis effect of madecassoside, enhances the shift of Th17 toward Treg cells via the PPARγ/AMPK/ACC1 pathway. Cell Death Dis 2017; 8:e2723. [PMID: 28358365 PMCID: PMC5386545 DOI: 10.1038/cddis.2017.150] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 02/07/2023]
Abstract
The imbalance between Th17 and Treg cells substantially contributes to the intestinal immune disturbance and subsequent tissue injury in ulcerative colitis. The triterpenoid-rich fraction of Centella asiatica was able to ameliorate dextran sulfate sodium-induced colitis in mice. Here we explored its active ingredient and underlying mechanism with a focus on restoring the Th17/Treg balance. The four main triterpenoids occurring in C. asiatica were shown to attenuate colitis in mice by oral administration. The most effective ingredient madecassoside lost anti-colitis effect when applied topically in the colon, and madecassic acid was recognized to be the active form of madecassoside. Oral administration of madecassic acid decreased the percentage of Th17 cells and downregulated the expression of RORγt, IL-17A, IL-17F, IL-21 and IL-22 and increased the percentage of Treg cells and the expression of Foxp3 and IL-10 in the colons of mice with colitis, but it did not affect Th1 and Th2 cells. Under Th17-polarizing conditions, madecassic acid downregulated ACC1 expression and enhanced the shift of Th17 cells toward Treg cells, but it did not affect the differentiation of Treg cells under Treg-polarizing conditions. Both compound C and AMPK siRNA inhibited the madecassic acid-mediated downregulation of ACC1 expression and shift of Th17 cells to Treg cells under Th17-polarizing conditions. GW9662, T0070907 and PPARγ siRNA blocked the effect of madecassic acid on AMPK activation, ACC1 expression and shift of Th17 cells to Treg cells. Furthermore, madecassic acid was identified as a PPARγ agonist, as it promoted PPARγ transactivation. The correlation between activation of PPARγ and AMPK, downregulation of ACC1 expression, restoration of Th17/Treg balance and attenuation of colitis by madecassic acid was validated in mice with DSS-induced colitis. In conclusion, madecassic acid was the active form of madecassoside in ameliorating colitis by restoring the Th17/Treg balance via regulating the PPARγ/AMPK/ACC1 pathway.
Collapse
|
38
|
Wu X, Bian D, Dou Y, Gong Z, Tan Q, Xia Y, Dai Y. Asiaticoside hinders the invasive growth of keloid fibroblasts through inhibition of the GDF-9/MAPK/Smad pathway. J Biochem Mol Toxicol 2017; 31. [DOI: 10.1002/jbt.21922] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/20/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Xin Wu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica; China Pharmaceutical University; Nanjing 210009 People's Republic of China
| | - Difei Bian
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica; China Pharmaceutical University; Nanjing 210009 People's Republic of China
| | - Yannong Dou
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica; China Pharmaceutical University; Nanjing 210009 People's Republic of China
| | - Zhunan Gong
- Center for New Drug Research & Development, College of Life Science; Nanjing Normal University; Nanjing 210024 People's Republic of China
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital; Medical School of Nanjing University; Nanjing 210008 People's Republic of China
| | - Yufeng Xia
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica; China Pharmaceutical University; Nanjing 210009 People's Republic of China
| | - Yue Dai
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica; China Pharmaceutical University; Nanjing 210009 People's Republic of China
| |
Collapse
|
39
|
Zhou D, Wang J, He LN, Li BH, Ding YN, Chen YW, Fan JG. Prolyl oligopeptidase attenuates hepatic stellate cell activation through induction of Smad7 and PPAR-γ. Exp Ther Med 2017; 13:780-786. [PMID: 28352366 DOI: 10.3892/etm.2017.4033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/21/2016] [Indexed: 12/30/2022] Open
Abstract
Prolyl oligopeptidase (POP) is a serine endopeptidase widely distributed in vivo with high activity in the liver. However, its biological functions in the liver have remained largely elusive. A previous study by our group has shown that POP produced N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) and thereby exerted an anti-fibrogenic effect on hepatic stellate cells (HSCs) in vitro. It was therefore hypothesized that POP may affect the activation state of HSCs and has an important role in liver fibrosis. The HSC-T6 immortalized rat liver stellate cell line was treated with the POP inhibitor S17092 or transfected with recombinant lentivirus to overexpress POP. Cell proliferation and apoptosis were determined using a Cell Counting Kit-8 and flow cytometry, respectively. The activation status of HSCs was determined by examination of the expression of α-smooth muscle actin (α-SMA), collagen I, monocyte chemoattractant protein-1 (MCP-1), transforming growth factor (TGF)-β-Smad signaling and peroxisome proliferator activated receptor-γ (PPAR-γ). Inhibition by S17092 decreased, whereas lentiviral expression increased the activity of POP and cell proliferation, while neither of the treatments affected cell apoptosis. Of note, S17092 significantly increased, whereas POP overexpression decreased the expression of α-SMA and MCP-1 without affecting the expression of collagen I and TGF-β1. Furthermore, S17092 caused a reduction, whereas POP overexpression caused an upregulation of Smad7 protein and PPAR-γ, but not phosphorylated-Smad2/3 expression. In conclusion, POP attenuated the activation of HSCs through inhibition of TGF-β signaling and induction of PPAR-γ, which may have therapeutic potential in liver fibrosis.
Collapse
Affiliation(s)
- Da Zhou
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Jing Wang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Ling-Nan He
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Bing-Hang Li
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Yong-Nian Ding
- Department of Gastroenterology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830028, P.R. China
| | - Yuan-Wen Chen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
40
|
Expression Profile of Long Noncoding RNAs in Human Earlobe Keloids: A Microarray Analysis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5893481. [PMID: 28101509 PMCID: PMC5215475 DOI: 10.1155/2016/5893481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/14/2016] [Accepted: 11/01/2016] [Indexed: 11/17/2022]
Abstract
Background. Long noncoding RNAs (lncRNAs) play key roles in a wide range of biological processes and their deregulation results in human disease, including keloids. Earlobe keloid is a type of pathological skin scar, and the molecular pathogenesis of this disease remains largely unknown. Methods. In this study, microarray analysis was used to determine the expression profiles of lncRNAs and mRNAs between 3 pairs of earlobe keloid and normal specimens. Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to identify the main functions of the differentially expressed genes and earlobe keloid-related pathways. Results. A total of 2068 lncRNAs and 1511 mRNAs were differentially expressed between earlobe keloid and normal tissues. Among them, 1290 lncRNAs and 1092 mRNAs were upregulated, and 778 lncRNAs and 419 mRNAs were downregulated. Pathway analysis revealed that 24 pathways were correlated to the upregulated transcripts, while 11 pathways were associated with the downregulated transcripts. Conclusion. We characterized the expression profiles of lncRNA and mRNA in earlobe keloids and suggest that lncRNAs may serve as diagnostic biomarkers for the therapy of earlobe keloid.
Collapse
|
41
|
Ma HL, Zhao XF, Chen GZ, Fang RH, Zhang FR. Silencing NLRC5 inhibits extracellular matrix expression in keloid fibroblasts via inhibition of transforming growth factor-β1/Smad signaling pathway. Biomed Pharmacother 2016; 83:1016-1021. [DOI: 10.1016/j.biopha.2016.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/24/2016] [Accepted: 08/05/2016] [Indexed: 12/17/2022] Open
|
42
|
Dong S, Chen QL, Song YN, Sun Y, Wei B, Li XY, Hu YY, Liu P, Su SB. Mechanisms of CCl4-induced liver fibrosis with combined transcriptomic and proteomic analysis. J Toxicol Sci 2016; 41:561-72. [PMID: 27452039 DOI: 10.2131/jts.41.561] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The classic toxicity of carbon tetrachloride (CCl4) is to induce liver lesion and liver fibrosis. Liver fibrosis is a consequence of chronic liver lesion, which can progress into liver cirrhosis even hepatocarcinoma. However, the toxicological mechanisms of CCl4-induced liver fibrosis remain not fully understood. We combined transcriptomic and proteomic analysis and biological network technology, predicted toxicological targets and regulatory networks of CCl4 in liver fibrosis. Wistar rats were treated with CCl4 for 9 weeks. Histopathological changes, hydroxyproline (Hyp) contents, serum ALT and AST in the CCl4-treated group were significantly higher than that of CCl4-untreated group. CCl4-treated and -untreated liver tissues were examined by microarray and iTRAQ. The results showed that 3535 genes (fold change ≥ 1.5, P < 0.05) and 1412 proteins (fold change ≥ 1.2, P < 0.05) were differentially expressed. Moreover, the integrative analysis of transcriptomics and proteomics data showed 523 overlapped proteins, enriched in 182 GO terms including oxidation reduction, response to oxidative stress, inflammatory response, extracellular matrix organization, etc. Furthermore, KEGG pathway analysis showed that 36 pathways including retinol metabolism, PPAR signaling pathway, glycolysis/gluconeogenesis, arachidonic acid metabolism, metabolism of xenobiotics by cytochrome P450 and drug metabolism. Network of protein-protein interaction (PPI) and key function with their related targets were performed and the degree of network was calculated with Cytoscape. The expression of key targets such as CYP4A3, ALDH2 and ALDH7A1 decreased after CCl4 treatment. Therefore, the toxicological mechanisms of CCl4-induced liver fibrosis may be related with multi biological process, pathway and targets which may provide potential protection reaction mechanism for CCl4 detoxication in the liver.
Collapse
Affiliation(s)
- Shu Dong
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Xia Y, Xia Y, Lv Q, Yue M, Qiao S, Yang Y, Wei Z, Dai Y. Madecassoside ameliorates bleomycin-induced pulmonary fibrosis in mice through promoting the generation of hepatocyte growth factor via PPAR-γ in colon. Br J Pharmacol 2016; 173:1219-35. [PMID: 26750154 PMCID: PMC5341335 DOI: 10.1111/bph.13421] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 01/04/2016] [Accepted: 01/07/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Madecassoside has potent anti-pulmonary fibrosis (PF) effects when administered p.o., despite having extremely low oral bioavailability. Herein, we explored the mechanism of this anti-PF effect with regard to gut hormones. EXPERIMENTAL APPROACH A PF model was established in mice by intratracheal instillation of bleomycin. Haematoxylin and eosin stain and Masson's trichrome stain were used to assess histological changes in the lung. Quantitative-PCR and Western blot detected mRNA and protein levels, respectively, and cytokines were measured by ELISA. Small interfering RNA was used for gene-silencing. EMSA was applied to detect DNA-binding activity. KEY RESULTS Administration of madecassoside, p.o., but not its main metabolite madecassic acid, exhibited a direct anti-PF effect in mice. However, i.p. madecassoside had no anti-PF effect. Madecassoside increased the expression of hepatocyte growth factor (HGF) in colon tissues, and HGF receptor antagonists attenuated its anti-PF effect. Madecassoside facilitated the secretion of HGF from colonic epithelial cells by activating the PPAR-γ pathway, as shown by an up-regulation of PPAR-γ mRNA expression, nuclear translocation and DNA-binding activity both in vitro and in vivo. Also GW9662, a selective PPAR-γ antagonist, almost completely prevented the madecassoside-induced increased expression of HGF and amelioration of PF. CONCLUSIONS AND IMPLICATIONS The potent anti-PF effects induced by p.o. madecassoside in mice are not mediated by its metabolites or itself after absorption into blood. Instead, madecassoside increases the activity of PPAR-γ, which subsequently increases HGF expression in colonic epithelial cells. HGF then enters into the circulation and lung tissue to exert an anti-PF effect.
Collapse
Affiliation(s)
- Ying Xia
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia MedicaChina Pharmaceutical University24 Tong Jia XiangNanjing210009China
| | - Yu‐Feng Xia
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia MedicaChina Pharmaceutical University24 Tong Jia XiangNanjing210009China
| | - Qi Lv
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia MedicaChina Pharmaceutical University24 Tong Jia XiangNanjing210009China
| | - Meng‐Fan Yue
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia MedicaChina Pharmaceutical University24 Tong Jia XiangNanjing210009China
| | - Si‐Miao Qiao
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia MedicaChina Pharmaceutical University24 Tong Jia XiangNanjing210009China
| | - Yan Yang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia MedicaChina Pharmaceutical University24 Tong Jia XiangNanjing210009China
| | - Zhi‐Feng Wei
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia MedicaChina Pharmaceutical University24 Tong Jia XiangNanjing210009China
| | - Yue Dai
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia MedicaChina Pharmaceutical University24 Tong Jia XiangNanjing210009China
| |
Collapse
|
44
|
Garcia-Rodriguez L, Jones L, Chen KM, Datta I, Divine G, Worsham MJ. Causal network analysis of head and neck keloid tissue identifies potential master regulators. Laryngoscope 2016; 126:E319-24. [PMID: 26990118 DOI: 10.1002/lary.25958] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/09/2016] [Indexed: 12/31/2022]
Abstract
OBJECTIVES/HYPOTHESIS To generate novel insights and hypotheses in keloid development from potential master regulators. STUDY DESIGN Prospective cohort. METHODS Six fresh keloid and six normal skin samples from 12 anonymous donors were used in a prospective cohort study. Genome-wide profiling was done previously on the cohort using the Infinium HumanMethylation450 BeadChip (Illumina, San Diego, CA). The 190 statistically significant CpG islands between keloid and normal tissue mapped to 152 genes (P < .05). The top 10 statistically significant genes (VAMP5, ACTR3C, GALNT3, KCNAB2, LRRC61, SCML4, SYNGR1, TNS1, PLEKHG5, PPP1R13-α, false discovery rate <.015) were uploaded into the Ingenuity Pathway Analysis software's Causal Network Analysis (QIAGEN, Redwood City, CA). To reflect expected gene expression direction in the context of methylation changes, the inverse of the methylation ratio from keloid versus normal tissue was used for the analysis. Causal Network Analysis identified disease-specific master regulator molecules based on downstream differentially expressed keloid-specific genes and expected directionality of expression (hypermethylated vs. hypomethylated). RESULTS Causal Network Analysis software identified four hierarchical networks that included four master regulators (pyroxamide, tributyrin, PRKG2, and PENK) and 19 intermediate regulators. CONCLUSIONS Causal Network Analysis of differentiated methylated gene data of keloid versus normal skin demonstrated four causal networks with four master regulators. These hierarchical networks suggest potential driver roles for their downstream keloid gene targets in the pathogenesis of the keloid phenotype, likely triggered due to perturbation/injury to normal tissue. LEVEL OF EVIDENCE NA Laryngoscope, 126:E319-E324, 2016.
Collapse
Affiliation(s)
- Laura Garcia-Rodriguez
- Department of Otolaryngology-Head and Neck Surgery, Henry Ford Hospital, Detroit, Michigan, U.S.A
| | - Lamont Jones
- Department of Otolaryngology-Head and Neck Surgery, Henry Ford Hospital, Detroit, Michigan, U.S.A.
| | - Kang Mei Chen
- Department of Otolaryngology-Head and Neck Surgery, Henry Ford Hospital, Detroit, Michigan, U.S.A
| | - Indrani Datta
- Department of Public Health Sciences Center for Bioinformatics, Henry Ford Health System, Detroit, Michigan, U.S.A
| | - George Divine
- Department of Public Health Sciences Center for Bioinformatics, Henry Ford Health System, Detroit, Michigan, U.S.A
| | - Maria J Worsham
- Department of Otolaryngology-Head and Neck Surgery, Henry Ford Hospital, Detroit, Michigan, U.S.A
| |
Collapse
|
45
|
Al-Mohamady AESAEH, Ibrahim SMA, Muhammad MM. Pulsed dye laser versus long-pulsed Nd:YAG laser in the treatment of hypertrophic scars and keloid: A comparative randomized split-scar trial. J COSMET LASER THER 2016; 18:208-12. [DOI: 10.3109/14764172.2015.1114648] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
Han L, Bian H, Ouyang J, Bi Y, Yang L, Ye S. Wenyang Huazhuo Tongluo formula, a Chinese herbal decoction, improves skin fibrosis by promoting apoptosis and inhibiting proliferation through down-regulation of survivin and cyclin D1 in systemic sclerosis. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:69. [PMID: 26897030 PMCID: PMC4761193 DOI: 10.1186/s12906-016-1056-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/16/2016] [Indexed: 12/15/2022]
Abstract
Background Fibrosis is a major contributor to systemic sclerosis (SSc)-related morbidity, and rapid, progressive skin involvement predicts later mortality. Western medicine therapies for SSc cannot produce satisfactory effects currently, while Traditional Chinese Medicine (TCM), such as the Wenyang Huazhuo Tongluo (WYHZTL) formula, a Chinese herbal decoction, has shown amazing anti-fibrosis efficacy on SSc in clinical applications. This study is aiming to investigate the anti-fibrotic mechanism of WYHZTL formula for the treatment of SSc. Methods Fibroblasts from primary culture of skin lesions of SSc patients were exposed to rat medicated sera containing WYHZTL or XAV939, a small-molecule inhibitor of both tankyrase 1/2 and Wnt/β-catenin pathway. Cell counting kit-8 assay and Annexin V FITC/PI apoptosis kit were used to analyze cell proliferation and apoptosis in fibroblasts, respectively. Reverse transcription-polymerase chain reaction (RT-PCR) and western blotting were used to detect the mRNA and protein levels of cyclin D1 and survivin. Results After 28, 48 and 72 h of incubation, the proliferative ability of the fibroblasts cells was obviously reduced by the sera containing WYHZTL compared with that in the control group; the percentage of apoptotic cell population in the sera containing WYHZTL treated fibroblasts cells was significantly higher than that in those treated with the control sera, and was about similar to that in those treated with XAV939. The sera containing WYHZTL could down-regulate both mRNA and protein levels of cyclin D1 and survivin, compared with the control group. Conclusions The present study demonstrates the antiproliferative and pro-apoptotic actions of WYHZTL formula against fibroblasts and the effect may be related to the down-regulation of mRNA and protein levels of cyclin D1 and survivin in SSc.
Collapse
|
47
|
Fong LY, Ng CT, Cheok ZL, Mohd Moklas MA, Hakim MN, Ahmad Z. Barrier protective effect of asiatic acid in TNF-α-induced activation of human aortic endothelial cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:191-199. [PMID: 26926181 DOI: 10.1016/j.phymed.2015.11.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/17/2015] [Accepted: 11/26/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Endothelial cell activation is characterized by increased endothelial permeability and increased expression of cell adhesion molecules (CAMs). This allows monocyte adherence and migration across the endothelium to occur and thereby initiates atherogenesis process. Asiatic acid is a major triterpene isolated from Centella asiatica (L.) Urban and has been shown to possess anti-oxidant, anti-hyperlipidemia and anti-inflammatory activities. PURPOSE We aimed to investigate protective effects of asiatic acid on tumor necrosis factor-α (TNF-α)-induced endothelial cell activation using human aortic endothelial cells (HAECs). STUDY DESIGN For cell viability assays, HAECs were treated with asiatic acid for 24 h. For other assays, HAECs were pretreated with various doses of asiatic acid (10-40 µM) for 6 h followed by stimulation with TNF-α (10 ng/ml) for 6 h. METHODS Fluorescein isothiocyanate (FITC)-dextran permeability assay was performed using commercial kits. Total protein expression of CAMs such as E-selectin, ICAM-1, VCAM-1 and PECAM-1 as well as phosphorylation of IκB-α were determined using western blot. The levels of soluble form of CAMs were measured using flow cytometry. Besides, we also examined the effects of asiatic acid on U937 monocyte adhesion and monocyte migration in HAECs using fluorescent-based assays. RESULTS Asiatic acid significantly suppressed endothelial hyperpermeability, increased VCAM-1 expression and increased levels of soluble CAMs (sE-selectin, sICAM-1, sVCAM-1 and sPECAM-1) triggered by TNF-α. Neither TNF-α nor asiatic acid affects PECAM-1 expression. However, asiatic acid did not inhibit TNF-α-induced increased monocyte adhesion and migration. Interestingly, asiatic acid suppressed increased phosphorylation of IκB-α stimulated by TNF-α. CONCLUSION These results suggest that asiatic acid protects against endothelial barrier disruption and this might be associated with the inhibition of NF-κB activation. We have demonstrated a novel protective role of asiatic acid on endothelial function. This reveals the possibility to further explore beneficial effects of asiatic acid on chronic inflammatory diseases that are initiated by endothelial cell activation.
Collapse
Affiliation(s)
- Lai Yen Fong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Chin Theng Ng
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Zhi Li Cheok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohamad Aris Mohd Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Muhammad Nazrul Hakim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Zuraini Ahmad
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
48
|
Adtani PN, Narasimhan M, Punnoose AM, Kambalachenu HR. Antifibrotic effect of Centella asiatica Linn and asiatic acid on arecoline-induced fibrosis in human buccal fibroblasts. ACTA ACUST UNITED AC 2016; 8. [PMID: 26840561 DOI: 10.1111/jicd.12208] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/24/2015] [Indexed: 12/28/2022]
Abstract
AIM The aim of the present study was to investigate the in vitro antifibrogenic effects of Centella asiatica Linn (CA) and its bioactive triterpene aglycone asiatic acid (AA) on arecoline-induced fibrosis in primary human buccal fibroblasts (HBF). METHODS An ethanolic extract of CA was prepared, and AA was purchased commercially. High-performance thin-layer chromatography (HPTLC) was performed to quantify AA in the CA extract; colorimetric assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) was performed to determine an half-maximal inhibitory concentration. HBF were cultured and stimulated with arecoline. The inhibitory effects of CA and AA at different concentrations were assessed using gene-expression studies on fibrosis-related markers: transforming growth factor-β1, collagen 1 type 2, and collagen 3 type 1. The stimulatory effect of arecoline and the inhibitory effect of AA on fibroblast morphology and extracellular matrix were assessed qualitatively using Masson trichrome stain. RESULTS The HPTLC analysis determined 1.2% AA per 100 g of CA extract. Arecoline produced a concentration-dependent increase in the fibrotic markers, treatment with CA significantly downregulated fibrotic markers at higher concentrations, and AA downregulated at lower concentrations. Arecoline altered fibroblast morphology and stained strongly positive for collagen, and AA treatment regained fibroblast morphology with faint collagen staining. CONCLUSION CA and AA can be used as antifibrotic agents.
Collapse
Affiliation(s)
- Pooja Narain Adtani
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, Sri Ramachandra University and Research Institute, Chennai, India
| | - Malathi Narasimhan
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, Sri Ramachandra University and Research Institute, Chennai, India
| | - Alan M Punnoose
- Center for Regenerative Medicine and Stem Cell Research, Central Research Facility, Sri Ramachandra University and Research Institute, Chennai, India
| | | |
Collapse
|
49
|
Asiatic Acid Attenuates the Progression of Left Ventricular Hypertrophy and Heart Failure Induced by Pressure Overload by Inhibiting Myocardial Remodeling in Mice. J Cardiovasc Pharmacol 2015; 66:558-68. [DOI: 10.1097/fjc.0000000000000304] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
50
|
Huo L, Shi W, Chong L, Wang J, Zhang K, Li Y. Asiatic acid inhibits left ventricular remodeling and improves cardiac function in a rat model of myocardial infarction. Exp Ther Med 2015; 11:57-64. [PMID: 26889217 PMCID: PMC4726871 DOI: 10.3892/etm.2015.2871] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 10/30/2015] [Indexed: 11/05/2022] Open
Abstract
Left ventricular remodeling results in cardiac dysfunction and accounts for the majority of the morbidity and mortality following myocardial infarction (MI). The aim of the present study was to investigate the effect of asiatic acid (AA) on cardiac function and left ventricular remodeling in a rat model of MI and explore the underlying mechanisms. Rats were subjected to coronary artery ligation to model MI and orally treated with AA. After 4 weeks, cardiac function was assessed by echocardiography. Cardiomyocyte cross-sectional area was recorded, and the expression levels of a number of inflammatory cytokines were detected using ELISA. The degree of interstitial fibrosis was determined by evaluating the mRNA expression levels of collagen II and III. Western blot analysis was performed to detect the expression levels of total and phosphorylated p38 MAPK and ERK1/2, to investigate whether they are involved in the mechanism underlying the effect of AA on the heart. Rats subjected to MI displayed significantly impaired cardiac function compared with those subjected to a sham procedure, while this change was reversed by treatment with AA. Furthermore, AA markedly inhibited cardiac hypertrophy, reduced the mRNA expression levels of inflammatory cytokines and decreased interstitial fibrosis in the infarct border zone of MI model rats compared with those in vehicle-treated MI model rats. Furthermore, the phosphorylation of p38 MAPK and ERK1/2 was blocked by AA in the MI rats but not in the sham rats. In summary, AA treatment preserved cardiac function and inhibited left ventricular remodeling, potentially by blocking the phosphorylation of p38 MAPK and ERK1/2 in the infarct border zone of the ischemic myocardium, indicating that AA may be a novel candidate for development as a therapy for MI.
Collapse
Affiliation(s)
- Lianying Huo
- Department of Cardiology, Shanxian Dongda Hospital, Shanxian, Shandong 274300, P.R. China
| | - Wenbing Shi
- Department of Cardiology, Shanxian Dongda Hospital, Shanxian, Shandong 274300, P.R. China
| | - Ling Chong
- Department of Cardiology, Shanxian Dongda Hospital, Shanxian, Shandong 274300, P.R. China
| | - Jinlong Wang
- Department of Cardiology, Heze Shili Hospital, Heze, Shandong 274000, P.R. China
| | - Kai Zhang
- Department of Cardiology, Shanxian Dongda Hospital, Shanxian, Shandong 274300, P.R. China
| | - Yufeng Li
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|