1
|
Yin L, Mao L, Yin R, Lv C, Shi X, Yue C, Chen Y, Lu C, Wu Z, Xu K, Cao W. ACE Loss Drives Renal Cell Carcinoma Growth and Invasion by Modulating AKT-FOXO1. Biologics 2024; 18:397-412. [PMID: 39717370 PMCID: PMC11665188 DOI: 10.2147/btt.s485178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
Purpose Emerging literature links the role of the renin-angiotensin-aldosterone system (RAAS) to the progression of cancers. However, the function of RAAS has not been verified in Clear-cell renal cell carcinoma (ccRCC). Methods ACE expression in ccRCC tissues was determined using RT-PCR, Western blot, and immunohistochemistry staining. The clinical significance of ACE was evaluated through Cox regression analysis. To assess the impact of ACE expression on ccRCC cell growth, metastasis, and glucose activity, CCK-8 assays, transwell assays, Seahorse detection, and xenograft models were utilized. The mechanisms of ACE and its upstream and downstream regulatory factors were investigated using RNA-seq, chromatin immunoprecipitation (ChIP), and luciferase reporter assays. Results RAAS-related gene Angiotensin-Converting Enzyme (ACE) was significantly under expressed in ccRCC cells and tissues. High ACE expression was positively associated with a favorable prognosis in ccRCC patients. Functional studies showed that ACE overexpression suppressed ccRCC cell line OS-RC-2 and A498 growth, metastasis, and glycolysis activities, while its knockdown had the opposite effect. Mechanistically, ACE inhibited ccRCC progression and epithelial-mesenchymal transition (EMT) by disrupting the AKT-FOXO1 signaling pathway. Furthermore, we provide evidence that ACE could enhance everolimus (approved agent for ccRCC) antitumor effect and ACE expression is transcriptionally regulated by ZBTB26. Conclusion Our findings investigated the roles and mechanisms of ACE in ccRCC. ACE inhibits the growth and metastasis of ccRCC cells in vitro and in vivo by promoting FOXO1 expression, which is the downstream target of PI3K-AKT pathway. Thus, this research suggests that ACE may be a promising target for new therapeutic strategy in ccRCC.
Collapse
Affiliation(s)
- Lei Yin
- Department of Urology, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, People’s Republic of China
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, People’s Republic of China
| | - Lixin Mao
- Department of Urology, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, 213000, People’s Republic of China
| | - Rui Yin
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250012, People’s Republic of China
| | - Chengxun Lv
- Department of Urology, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, People’s Republic of China
| | - Xiaokai Shi
- Department of Urology, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, 213000, People’s Republic of China
| | - Chuang Yue
- Department of Urology, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, 213000, People’s Republic of China
| | - Yin Chen
- Department of Urology, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, 213000, People’s Republic of China
| | - Chao Lu
- Department of Urology, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, 213000, People’s Republic of China
| | - Zonglin Wu
- Department of Urology, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, People’s Republic of China
| | - Kai Xu
- Department of Urology, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, 213000, People’s Republic of China
| | - Wei Cao
- Department of Urology, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, 213000, People’s Republic of China
| |
Collapse
|
2
|
Lin MW, Lin CH, Chang JR, Chiang HH, Wu TH, Lin CS. The influence of PM2.5 exposure on SARS-CoV-2 infection via modulating the expression of angiotensin converting enzyme II. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136887. [PMID: 39700942 DOI: 10.1016/j.jhazmat.2024.136887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/22/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Particulate matter 2.5 (PM2.5) pollution and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic are the greatest environmental health issues worldwide. Several statistics revealed the significant positive correlation between the morbidity of coronavirus disease-19 (COVID-19) and the levels of air pollution. Nevertheless, there is no direct experimental evidence to indicate the effect of PM2.5 exposure on SARS-CoV-2 infection. The objective of this study was to evaluate whether the infection of SARS-CoV-2 affected by PM2.5 through angiotensin-converting enzyme II (ACE2) expression enhances and investigate the function of ACE2 in lung injury induced by PM2.5. An animal model of PM2.5-induced lung injury was established using wild-type (WT, C57BL/6), human ACE2 transgenic (K18-hACE2 TG), and murine ACE2 gene knockout (mACE2 KO) mice. The results indicate that PM2.5 exposure facilitates SARS-CoV-2 infection through inducing ACE2 expression in vitro (10 μg/mL) and in vivo (6.25 mg/kg/day in 50 μL saline). The levels of ACE, inflammatory cytokines, and mitogen-activated protein kinase (MAPK) proteins in WT, K18-hACE TG and mACE2 KO mice were significantly increased after PM2.5 instillation. The severest PM2.5-induced lung damage was observed in mACE2 KO mice. In summary, ACE2 plays a double-edged sword role in lung injury, PM2.5 exposure contributed to SARS-CoV-2 infection through inducing ACE2 expression, but ACE2 also protected pulmonary inflammation from PM2.5 challenge.
Collapse
Affiliation(s)
- Meng-Wei Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.
| | - Cheng-Han Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.
| | - Jia-Rong Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.
| | - Hua-Hsin Chiang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.
| | - Ting-Hsuan Wu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.
| |
Collapse
|
3
|
Zeng Q, Lv C, Qi L, Wang Y, Hao S, Li G, Sun H, Du L, Li J, Wang C, Zhang Y, Wang X, Ma R, Wang T, Li Q. Sodium selenite inhibits cervical cancer progression via ROS-mediated suppression of glucose metabolic reprogramming. Life Sci 2024; 357:123109. [PMID: 39384146 DOI: 10.1016/j.lfs.2024.123109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
AIMS This study aims to explore the inhibitory effect of selenium on cervical cancer through suppression of glucose metabolic reprogramming and its underlying mechanisms. METHODS Sodium selenite (SS) treated HeLa and SiHa cells were assessed for proliferation using the CCK-8 assay and immunofluorescence. DNA synthesis was measured with the EdU assay. A nude mouse xenograft model evaluated SS's anti-cervical cancer effects. Reactive oxygen species (ROS) and mitochondrial membrane potential were measured using flow cytometry, DCFH-DA, and JC-1 probes, respectively. Apoptosis was detected via Annexin V/PI staining and Western blot. Glucose uptake, lactate production, and ATP generation were determined using 2-NBDG probes and assay kits. The mRNA and protein levels of glycolysis-related genes HK2, GLUT1, and PDK1 were measured using RT-qPCR and Western blot. KEY FINDINGS SS inhibited HeLa and SiHa cells viability in a dose- and time-dependent manner. Intraperitoneal injection of SS in nude mice significantly inhibited HeLa cell xenograft growth without evident hepatotoxicity or nephrotoxicity. SS inhibited glucose metabolic reprogramming in cancer cells primarily via ROS-mediated AKT/mTOR/HIF-1α pathway inhibition. Pretreatment with N-acetylcysteine (NAC) or MHY1485 (an mTOR activator) partially reversed the inhibitory effects of SS on glucose metabolic reprogramming, cell proliferation, and migration, as well as its pro-apoptotic effects. SIGNIFICANCE SS exhibited anti-cervical cancer effects, likely through the induction of ROS generation and inhibition of glucose metabolic reprogramming in cervical cancer cells, thereby inhibiting cell proliferation and promoting apoptosis. These findings provide new insights into understanding the molecular mechanisms underlying SS for potential new drug development for cervical cancer.
Collapse
Affiliation(s)
- Qingyu Zeng
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| | - Cunqi Lv
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Lei Qi
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; School of Public Health, Qiqihar Medical University, Qiqihar 161003, Heilongjiang, China
| | - Yuanyuan Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Shuxiu Hao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Guijin Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Huixin Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Linlin Du
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Jiacheng Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Cheng Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Yu Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Xinshu Wang
- Nanchang University Queen Mary School, Nanchang 330000, China
| | - Rong Ma
- Department of Gynecological Oncoology, Harbin Medical University Cancer Hospital, Harbin 150081, China.
| | - Tong Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| | - Qi Li
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, China.
| |
Collapse
|
4
|
Liu D, Shan M, Zeng R, He M, Dai X, Lu L, Yang M, He H, Zhang Y, Xiang L, Chen A, Sun L, He F, Lian J. Inhibition of KIAA1429/HK1 axis enhances the sensitivity of liver cancer cells to sorafenib by regulating the Warburg effect. Biochem Pharmacol 2024; 227:116419. [PMID: 38996929 DOI: 10.1016/j.bcp.2024.116419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/06/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
N6-methyladenosine (m6A) serves as the most abundant posttranscription modification. However, the role of m6A in tumorigenesis and chemotherapeutic drugs sensitivity remains largely unclear. Present research focuses on the potential function of the m6A writer KIAA1429 in tumor development and sorafenib sensitivity in liver cancer. We found that the level of KIAA1429 was significantly elevated in liver cancer tissues and cells and was closely associated with poorer prognosis. Functionally, KIAA1429 promoted the proliferation and Warburg effect of liver cancer cells in vitro and in vivo. RNA-seq and MeRIP-seq analysis revealed the glycolysis was one of the most affected pathways by KIAA1429, and m6A-modified HK1 was the most likely targeted gene to regulate the Warburg effect. KIAA1429 depletion decreased Warburg effect and increased sorafenib sensitivity in liver cancer. Mechanistically, KIAA1429 could affect the m6A level of HK1 mRNA through directly binding with it. Moreover, KIAA1429 cooperated with the m6A reader HuR to enhance HK1 mRNA stability, thereby upregulating its expression. These findings demonstrated that KIAA1429/HK1 axis decreases the sensitivity of liver cancer cells to sorafenib by regulating the Warburg effect, which may provide a novel therapeutic target for liver cancer treatment.
Collapse
Affiliation(s)
- Dong Liu
- Department of Clinical Biochemistry, Army Medical University, Chongqing 400038, China
| | - Meihua Shan
- Department of Clinical Biochemistry, Army Medical University, Chongqing 400038, China
| | - Rong Zeng
- Department of Medicinal Chemistry, Army Medical University, Chongqing 400038, China
| | - Meng He
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing 400038, China
| | - Xufang Dai
- College of Education Science, Chongqing Normal University, Chongqing 400047, China
| | - Lu Lu
- Department of Clinical Biochemistry, Army Medical University, Chongqing 400038, China
| | - Mingzhen Yang
- Department of Clinical Biochemistry, Army Medical University, Chongqing 400038, China
| | - Haiyan He
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing 400038, China
| | - Yang Zhang
- Department of Clinical Biochemistry, Army Medical University, Chongqing 400038, China
| | - Li Xiang
- Department of Clinical Biochemistry, Army Medical University, Chongqing 400038, China
| | - An Chen
- Department of Clinical Biochemistry, Army Medical University, Chongqing 400038, China
| | - Liangbo Sun
- Department of Clinical Biochemistry, Army Medical University, Chongqing 400038, China.
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing 400038, China.
| | - Jiqin Lian
- Department of Clinical Biochemistry, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
5
|
Hao X, Zhao W, Zhang X, Lu X, Wang C, Zhang Z. Treatment of tumor-associated macrophages with PD-1 monoclonal antibodies affects vascular generation in cervical cancer via the PD-1/IRE1α/SHP2/HIF1α signaling pathway. Aging (Albany NY) 2024; 16:12335-12345. [PMID: 39207449 PMCID: PMC11424572 DOI: 10.18632/aging.206090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE To investigate the effect of PD-1 monoclonal antibodies in tumor-associated macrophages on angiogenesis in cervical cancer and its mechanism of action. METHODS The effect of PD-1 monoclonal antibodies on the progression of cervical cancer was assessed using the nude mouse xenograft model and HE staining; the impact of PD-1 monoclonal antibodies on cervical cancer cell migration was evaluated using wound healing assay and Transwell assay; the effect on vascular formation in cervical cancer cells was examined using an angiogenesis assay; the impact on the expression of related proteins was tested using Western blotting. RESULTS PD-1 monoclonal antibodies in tumor-associated macrophages can regulate and thus inhibit the progression of cervical cancer while promoting the expression of SHP2. Additionally, Sindilizumab inhibited the expression of tissue-type fibrinogen activator K and HIF1α through the PD-1/IRE1α/SHP2 signaling pathway, which inhibited the migration and neovascularization of cervical cancer cells. CONCLUSIONS This study discovered that PD-1 monoclonal antibodies in tumor-associated macrophages inhibit vascular generation inside cervical cancer by affecting the PD-1/IRE1α/SHP2/HIF1α signaling pathway, providing a new therapeutic target for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Xiaohui Hao
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Weiwei Zhao
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Xianyu Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Xiurong Lu
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Cong Wang
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Zhilin Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| |
Collapse
|
6
|
McGrath MS, Wentworth BJ. The Renin-Angiotensin System in Liver Disease. Int J Mol Sci 2024; 25:5807. [PMID: 38891995 PMCID: PMC11172481 DOI: 10.3390/ijms25115807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
The renin-angiotensin system (RAS) is a complex homeostatic entity with multiorgan systemic and local effects. Traditionally, RAS works in conjunction with the kidney to control effective arterial circulation, systemic vascular resistance, and electrolyte balance. However, chronic hepatic injury and resulting splanchnic dilation may disrupt this delicate balance. The role of RAS in liver disease, however, is even more extensive, modulating hepatic fibrosis and portal hypertension. Recognition of an alternative RAS pathway in the past few decades has changed our understanding of RAS in liver disease, and the concept of opposing vs. "rebalanced" forces is an ongoing focus of research. Whether RAS inhibition is beneficial in patients with chronic liver disease appears to be context-dependent, but further study is needed to optimize clinical management and reduce organ-specific morbidity and mortality. This review presents the current understanding of RAS in liver disease, acknowledges areas of uncertainty, and describes potential areas of future investigation.
Collapse
Affiliation(s)
- Mary S. McGrath
- Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA;
| | - Brian J. Wentworth
- Division of Gastroenterology & Hepatology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
7
|
Han S, Chen S, Wang J, Huang S, Xiao Y, Deng G. Erianin promotes apoptosis and inhibits Akt-mediated aerobic glycolysis of cancer cells. J Cancer 2024; 15:2380-2390. [PMID: 38495480 PMCID: PMC10937289 DOI: 10.7150/jca.92780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/02/2024] [Indexed: 03/19/2024] Open
Abstract
Highly activated aerobic glycolysis provides the metabolic requirements for tumor cell growth and proliferation. Erianin, a natural product isolated from Dendrobium chrysotoxum Lindl, has been reported to exert antitumor activity in multiple cancers. However, whether Erianin exerts inhibitory effects on aerobic glycolysis and the inherent mechanism remain poorly defined in non-small cell lung cancer (NSCLC). Here, we showed that Erianin inhibited the cell viability and proliferation, and induced apoptosis in NSCLC cells. Moreover, Erianin overtly suppressed aerobic glycolysis via decreasing HK2 expression. Mechanistically, Erianin dose-dependently curbed the Akt-GSK3β signaling pathway phosphorylation activation, which afterwards downregulated HK2 expression. Meanwhile, Erianin inhibited HCC827 tumor growth in vivo. Taken together, our results suggest that the natural product Erianin can suppress aerobic glycolysis and exert potent anticancer effects via the Akt-GSK3β signaling pathway in NSCLC cells.
Collapse
Affiliation(s)
- Shuangze Han
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sijin Chen
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan, China
| | - Jidong Wang
- Department of Oral and Maxillofacial Surgery, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde 415000, Hunan, China
| | - Sheng Huang
- Department of General, Hunan Chest Hospital, Changsha 410013, Hunan, China
| | - Yeqing Xiao
- Department of Ultrasonography, Hunan Chest Hospital, Changsha 410013, Hunan, China
| | - Gaoyan Deng
- Department of Thoracic Surgery, Hunan Chest Hospital, Changsha 410013, Hunan, China
| |
Collapse
|
8
|
Hassani B, Attar Z, Firouzabadi N. The renin-angiotensin-aldosterone system (RAAS) signaling pathways and cancer: foes versus allies. Cancer Cell Int 2023; 23:254. [PMID: 37891636 PMCID: PMC10604988 DOI: 10.1186/s12935-023-03080-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The renin-angiotensin-aldosterone system (RAAS), is an old system with new fundamental roles in cancer biology which influences cell growth, migration, death, and metastasis. RAAS signaling enhances cell proliferation in malignancy directly and indirectly by affecting tumor cells and modulating angiogenesis. Cancer development may be influenced by the balance between the ACE/Ang II/AT1R and the ACE2/Ang 1-7/Mas receptor pathways. The interactions between Ang II/AT1R and Ang I/AT2R as well as Ang1-7/Mas and alamandine/MrgD receptors in the RAAS pathway can significantly impact the development of cancer. Ang I/AT2R, Ang1-7/Mas, and alamandine/MrgD interactions can have anticancer effects while Ang II/AT1R interactions can be involved in the development of cancer. Evidence suggests that inhibitors of the RAAS, which are conventionally used to treat cardiovascular diseases, may be beneficial in cancer therapies.Herein, we aim to provide a thorough description of the elements of RAAS and their molecular play in cancer. Alongside this, the role of RAAS components in sex-dependent cancers as well as GI cancers will be discussed with the hope of enlightening new venues for adjuvant cancer treatment.
Collapse
Affiliation(s)
- Bahareh Hassani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Attar
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|