1
|
Banisefid E, Nasiri E, Pourebrahimian Leilabadi S, Hamzehzadeh S, Akbarzadeh MA, Hosseini MS. The paradox of Helicobacter pylori: how does H. pylori infection protect against esophageal cancer? Ann Med Surg (Lond) 2024; 86:7221-7226. [PMID: 39649904 PMCID: PMC11623814 DOI: 10.1097/ms9.0000000000002674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/10/2024] [Indexed: 12/11/2024] Open
Abstract
Helicobacter pylori is a microaerophilic gram-negative bacterium infecting around half of the world's population. Despite its well-known role in gastric malignancies, its impact on esophageal cancer comes with a complex paradox. Several mechanisms have been proposed to explain its observed lack of carcinogenic activity in the esophagus, including the trigger of anti-inflammatory pathways, promoting atrophic gastritis, and esophageal microbiome modulation. However, recent studies have highlighted a significantly more complicated interplay, where H. pylori, typically considered a pathogen, may even deliver a protective effect against esophageal carcinogenesis. This paper aims to evaluate the prevalence of H. pylori infection among patients with esophageal carcinoma, discussing the underlying mechanisms of the paradoxical effects of H. pylori on esophageal cancer.
Collapse
Affiliation(s)
- Erfan Banisefid
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Nasiri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sina Hamzehzadeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Medical Philosophy and History Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amin Akbarzadeh
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A JBI Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Salar Hosseini
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Wu ZL, Wang Y, Jia XY, Wang YG, Wang H. Receptor tyrosine kinase-like orphan receptor 1: A novel antitumor target in gastrointestinal cancers. World J Clin Oncol 2024; 15:603-613. [PMID: 38835843 PMCID: PMC11145958 DOI: 10.5306/wjco.v15.i5.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024] Open
Abstract
Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a member of the type I receptor tyrosine kinase family. ROR1 is pivotal in embryonic development and cancer, and serves as a biomarker and therapeutic target. It has soluble and membrane-bound subtypes, with the latter highly expressed in tumors. ROR1 is conserved throughout evolution and may play a role in the development of gastrointestinal cancer through multiple signaling pathways and molecular mechanisms. Studies suggest that overexpression of ROR1 may increase tumor invasiveness and metastasis. Additionally, ROR1 may regulate the cell cycle, stem cell characteristics, and interact with other signaling pathways to affect cancer progression. This review explores the structure, expression and role of ROR1 in the development of gastrointestinal cancers. It discusses current antitumor strategies, outlining challenges and prospects for treatment.
Collapse
Affiliation(s)
- Zheng-Long Wu
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou 311201, Zhejiang Province, China
| | - Ying Wang
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Xiao-Yuan Jia
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Yi-Gang Wang
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Hui Wang
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou 311201, Zhejiang Province, China
| |
Collapse
|
3
|
Chen S, Yang Y, Zheng Z, Zhang M, Chen X, Xiao N, Liu H. IL-1β promotes esophageal squamous cell carcinoma growth and metastasis through FOXO3A by activating the PI3K/AKT pathway. Cell Death Discov 2024; 10:238. [PMID: 38762529 PMCID: PMC11102492 DOI: 10.1038/s41420-024-02008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024] Open
Abstract
Esophageal cancer is a common type of cancer that poses a significant threat to human health. While the pro-inflammatory cytokine IL-1β has been known to contribute to the development of various types of tumors, its role in regulating esophageal cancer progression has not been extensively studied. Our studies found that the expression of IL-1β and FOXO3A was increased in esophageal squamous cell carcinoma (ESCC). IL-1β not only increased the proliferation, migration, and invasion of two ESCC cell lines but also promoted tumor growth and metastasis in nude mice. We also observed that IL-1β and FOXO3A regulated the process of epithelial-mesenchymal transition (EMT) and autophagy. The PI3K/AKT pathway was found to be involved in the changes of FOXO3A with the expression level of IL-1β. The AKT agonist (SC79) reversed the reduction of FOXO3A expression caused by the knockdown of IL-1β, indicating that IL-1β plays a role through the PI3K/AKT/FOXO3A pathway. Furthermore, the knockdown of FOXO3A inhibited ESCC development and attenuated the pro-cancer effect of overexpressed IL-1β. Targeting IL-1β and FOXO3A may be potentially valuable for the diagnosis and treatment of ESCC.
Collapse
Affiliation(s)
- Shuangshuang Chen
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, 450002, China
| | - Ying Yang
- Department of Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhaoyang Zheng
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, 450002, China
| | - Man Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xixian Chen
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, 450002, China
| | - Nan Xiao
- Department of Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hongchun Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
4
|
Yang XT, Niu PQ, Li XF, Sun MM, Wei W, Chen YQ, Zheng JY. Differential cytokine expression in gastric tissues highlights helicobacter pylori's role in gastritis. Sci Rep 2024; 14:7683. [PMID: 38561502 PMCID: PMC10984929 DOI: 10.1038/s41598-024-58407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Helicobacter pylori (H. pylori), known for causing gastric inflammation, gastritis and gastric cancer, prompted our study to investigate the differential expression of cytokines in gastric tissues, which is crucial for understanding H. pylori infection and its potential progression to gastric cancer. Focusing on Il-1β, IL-6, IL-8, IL-12, IL-18, and TNF-α, we analysed gene and protein levels to differentiate between H. pylori-infected and non-infected gastritis. We utilised real-time quantitative polymerase chain reaction (RT-qPCR) for gene quantification, immunohistochemical staining, and ELISA for protein measurement. Gastric samples from patients with gastritis were divided into three groups: (1) non-gastritis (N-group) group, (2) gastritis without H. pylori infection (G-group), and (3) gastritis with H. pylori infection (GH-group), each consisting of 8 samples. Our findings revealed a statistically significant variation in cytokine expression. Generally, cytokine levels were higher in gastritis, but in H. pylori-infected gastritis, IL-1β, IL-6, and IL-8 levels were lower compared to H. pylori-independent gastritis, while IL-12, IL-18, and TNF-α levels were higher. This distinct cytokine expression pattern in H. pylori-infected gastritis underscores a unique inflammatory response, providing deeper insights into its pathogenesis.
Collapse
Affiliation(s)
- Xing-Tang Yang
- Department of Gastroenterology, Chongming Branch, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 66 Xiangyangdong Road, Bao Town, Chongming District, Shanghai, 202157, People's Republic of China.
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China.
| | - Pei-Qin Niu
- Department of Gastroenterology, Chongming Branch, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 66 Xiangyangdong Road, Bao Town, Chongming District, Shanghai, 202157, People's Republic of China.
| | - Xiao-Feng Li
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Ming-Ming Sun
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Wei Wei
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Yan-Qing Chen
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Jia-Yi Zheng
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| |
Collapse
|
5
|
MOLODOZHNIKOVA N, BERESTOVA A, BERECHIKIDZE I, SHORINA D, MORUGINA O. Changes in the tissue elements of the gastric mucosa interacting with different strains of Helicobacter pylori, taking into consideration the patient's genotype. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:213-221. [PMID: 38966050 PMCID: PMC11220335 DOI: 10.12938/bmfh.2023-070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/22/2024] [Indexed: 07/06/2024]
Abstract
The present study aimed to investigate the peculiarities of adaptation of tissue elements of the gastric mucosa during interaction with Helicobacter pylori, as determined by genetic characteristics of the bacterium and the host. Venous blood and biopsy samples of the mucosa of the antrum and body of the stomach from young patients (18 to 25 years old) were examined. The condition of the gastric mucosa was assessed using stained histological preparations. Venous blood was collected from the patients to ascertain the polymorphisms of the IL-lß and IL-IRN genes. The most pronounced changes were observed in the parameters of reparative regeneration of epithelial differentiation during colonization of the gastric mucosa by H. pylori strains carrying the CagA(+) and BabA2(+) genes. These included an increase in proliferation and apoptosis rates and alterations in epithelial differentiation markers characterized by elevated production of Shh and MUC5AC, as well as a reduction in the production of the protective mucin MUC6 by isthmus gland cells. The presence of the vacAs1 and vacAs2 genes of H. pylori results in a high level of apoptosis in epithelial cells without accelerating proliferation. It was found that after eradication, patients with preserved cellular infiltrates in their gastric mucosa plates were carriers of mainly the IL-1ß*T/IL-1RN*2R haplotypes after 12 months.
Collapse
Affiliation(s)
- Natalia MOLODOZHNIKOVA
- Department of Biology and General Genetics, I.M. Sechenov
First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya str., Moscow
119991, Russian Federation
| | - Anna BERESTOVA
- Institute of Clinical Morphology and Digital Pathology, I.M.
Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya
str., Moscow 119991, Russian Federation
| | - Iza BERECHIKIDZE
- Department of Biology and General Genetics, I.M. Sechenov
First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya str., Moscow
119991, Russian Federation
| | - Dariya SHORINA
- Department of Polyclinic Therapy, I.M. Sechenov First Moscow
State Medical University (Sechenov University), 8-2 Trubetskaya str., Moscow 119991,
Russian Federation
| | - Olga MORUGINA
- Department of Nursing Management and Social Work, I.M.
Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya
str., Moscow 119991, Russian Federation
| |
Collapse
|
6
|
Summer M, Sajjad A, Ali S, Hussain T. Exploring the underlying correlation between microbiota, immune system, hormones, and inflammation with breast cancer and the role of probiotics, prebiotics and postbiotics. Arch Microbiol 2024; 206:145. [PMID: 38461447 DOI: 10.1007/s00203-024-03868-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 03/12/2024]
Abstract
According to recent research, bacterial imbalance in the gut microbiota and breast tissue may be linked to breast cancer. It has been discovered that alterations in the makeup and function of different types of bacteria found in the breast and gut may contribute to growth and advancement of breast cancer in several ways. The main role of gut microbiota is to control the metabolism of steroid hormones, such as estrogen, which are important in raising the risk of breast cancer, especially in women going through menopause. On the other hand, because the microbiota can influence mucosal and systemic immune responses, they are linked to the mutual interactions between cancer cells and their local environment in the breast and the gut. In this regard, the current review thoroughly explains the mode of action of probiotics and microbiota to eradicate the malignancy. Furthermore, immunomodulation by microbiota and probiotics is described with pathways of their activity.
Collapse
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Ayesha Sajjad
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Tauqeer Hussain
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
7
|
Llach J, Salces I, Guerra A, Peñas B, Rodriguez-Alcalde D, Redondo PD, Cubiella J, Murcia Ó, Escalante M, Gratacós-Ginès J, Pocurull A, Daca-Alvarez M, Luzko I, Sánchez A, Herrera-Pariente C, Ocaña T, Carballal S, Elizalde I, Castellví-Bel S, Fernández-Esparrach G, Castells A, Balaguer F, Moreira L. Endoscopic surveillance for familial intestinal gastric cancer in low-incidence areas: An effective strategy. Int J Cancer 2024; 154:124-132. [PMID: 37676082 DOI: 10.1002/ijc.34714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
While clinical practice guidelines for hereditary diffuse gastric cancer are well established, there is no consensus on the approach for familial intestinal gastric cancer (FIGC). In low-incidence gastric cancer (GC) areas such as the United States or most European countries, there are no evidence-based recommendations on endoscopic assessment in FIGC families. We aim to describe the yield of GC surveillance in these families, and to identify epidemiological risk factors for the development of GC and its precursor lesions. This is a multicenter observational study involving nine tertiary Spanish hospitals, in which all individuals fulfilling FIGC criteria who underwent endoscopic surveillance were included between 1991 and 2020. Forty-one healthy individuals of 31 families were recruited. The median number of upper gastrointestinal endoscopies per individual was 3 (interquartile range, IQR, 1-4). The median interval time between tests was 2 years (IQR 1.5-2.5), and the median follow-up was 9 years (IQR 3-14.5). In 18 (43.9%) subjects, a precursor lesion of GC was found during follow-up, and in 2 (4.9%), an early GC was identified, in which curative treatment was offered. Helicobacter pylori (Hp) infection proved to be independently associated with an increased risk of developing precursor lesions or GC, adjusted by age, gender and follow-up, with an Odds Ratio of 6.443 (1.36-30.6, P value .019). We present the first outcomes that support endoscopic surveillance with biopsies and detection of Hp in FIGC families, although the periodicity has yet to be defined.
Collapse
Affiliation(s)
- Joan Llach
- Department of Gastroenterology, Hospital Clínic Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | | | - Ana Guerra
- Complejo Hospitalario de Navarra, Navarra, Spain
| | - Beatriz Peñas
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | | | - Joaquin Cubiella
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Grupo de Investigación en Oncología Digestiva-Ourense, Hospital Universitario de Ourense, Ourense, Spain
| | - Óscar Murcia
- Hospital General Universitario de Alicante, Valencia, Spain
| | | | - Jordi Gratacós-Ginès
- Department of Gastroenterology, Hospital Clínic Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | - Anna Pocurull
- Department of Gastroenterology, Hospital Clínic Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | - Maria Daca-Alvarez
- Department of Gastroenterology, Hospital Clínic Barcelona, Barcelona, Spain
- IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | - Irina Luzko
- Department of Gastroenterology, Hospital Clínic Barcelona, Barcelona, Spain
| | - Ariadna Sánchez
- Department of Gastroenterology, Hospital Clínic Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | - Cristina Herrera-Pariente
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | - Teresa Ocaña
- Department of Gastroenterology, Hospital Clínic Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | - Sabela Carballal
- Department of Gastroenterology, Hospital Clínic Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | - Ignasi Elizalde
- Department of Gastroenterology, Hospital Clínic Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | - Sergi Castellví-Bel
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | - Glòria Fernández-Esparrach
- Department of Gastroenterology, Hospital Clínic Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Antoni Castells
- Department of Gastroenterology, Hospital Clínic Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Balaguer
- Department of Gastroenterology, Hospital Clínic Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Leticia Moreira
- Department of Gastroenterology, Hospital Clínic Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Liu Y, Zhang B, Zhou Y, Xing Y, Wang Y, Jia Y, Liu D. Targeting Hippo pathway: A novel strategy for Helicobacter pylori-induced gastric cancer treatment. Biomed Pharmacother 2023; 161:114549. [PMID: 36958190 DOI: 10.1016/j.biopha.2023.114549] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023] Open
Abstract
The Hippo pathway plays an important role in cell proliferation, apoptosis, and differentiation; it is a crucial regulatory pathway in organ development and tumor growth. Infection with Helicobacter pylori (H. pylori) increases the risk of developing gastric cancer. In recent years, significant progress has been made in understanding the mechanisms by which H. pylori infection promotes the development and progression of gastric cancer via the Hippo pathway. Exploring the Hippo pathway molecules may yield new diagnostic and therapeutic targets for H. pylori-induced gastric cancer. The current article reviews the composition and regulatory mechanism of the Hippo pathway, as well as the research progress of the Hippo pathway in the occurrence and development of H. pylori-related gastric cancer, in order to provide a broader perspective for the study and prevention of gastric cancer.
Collapse
Affiliation(s)
- Yunyun Liu
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, People's Republic of China
| | - Bingkai Zhang
- Department of Anorectal Surgery, Qingzhou People's Hospital, Qingzhou, People's Republic of China
| | - Yimin Zhou
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, People's Republic of China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, People's Republic of China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, People's Republic of China.
| | - Duanrui Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China; Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.
| |
Collapse
|
9
|
El Filaly H, Outlioua A, Desterke C, Echarki Z, Badre W, Rabhi M, Riyad M, Arnoult D, Khalil A, Akarid K. IL-1 Polymorphism and Helicobacter pylori Infection Features: Highlighting VNTR's Potential in Predicting the Susceptibility to Infection-Associated Disease Development. Microorganisms 2023; 11:microorganisms11020353. [PMID: 36838318 PMCID: PMC9961292 DOI: 10.3390/microorganisms11020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Genetic polymorphisms at the IL-1 cluster are associated with increased Helicobacter pylori (H. pylori)-associated disease risk in an ethnically dependent manner. Due to the corroborated role of IL-1β in H. pylori infection progression, our aim is to depict the impact of IL1B rs1143627 and rs16944 as well as the IL1RN variable number of identical tandem repeats (VNTR) on the clinical and biological features of Moroccan H. pylori-infected patients. A total of 58 patients with epigastralgic pain were referred to the gastroenterology department for histopathological and clinical analysis. DNA extraction from antrum and fundus biopsies and PCR-RFLP were performed to detect polymorphisms. As a result, VNTR was significantly associated with IL-1β antrum levels (p-value = 0.029), where the *1/*4 genotype showed a positive association with upregulated cytokine levels in the antrum and was clustered with H. pylori-infected patients' features and higher levels of IL-1β in the antrum and fundus. Likewise, *1/*1 genotype carriers clustered with severe gastritis activity and H. pylori density scores along with low levels of IL-1β in the antrum and fundus, while the *1/*2 genotype was clustered with non-infected-patient features and normal IL-1β levels. In conclusion, VNTR might be an interesting predictor to identify patients at risk of developing H. pylori-associated pathologies.
Collapse
Affiliation(s)
- Hajar El Filaly
- Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca 20100, Morocco
- Correspondence:
| | - Ahmed Outlioua
- Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca 20100, Morocco
| | - Christophe Desterke
- INSERM UMRS-1311, Faculty of Medicine, University of Paris-Saclay, 94270 Villejuif, France
| | - Zerif Echarki
- Research Center on Aging, Faculty of Medicine and Health Sciences, Department of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Wafaa Badre
- Gastroenterology Department, CHU Ibn Rochd, Casablanca 20100, Morocco
| | - Moncef Rabhi
- Diagnostic Center, Hôpital Militaire d’Instruction Mohammed V, Mohammed V University, Rabat 10045, Morocco
| | - Myriam Riyad
- Research Team on Immunopathology of Infectious and Systemic Diseases, Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy, UH2C, Casablanca 20250, Morocco
| | - Damien Arnoult
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Université Paris-Saclay, 94270 Villejuif, France
| | - Abdelouahed Khalil
- Research Center on Aging, Faculty of Medicine and Health Sciences, Department of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Khadija Akarid
- Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca 20100, Morocco
| |
Collapse
|
10
|
Rani A, Toor D. Role of IL-1 in bacterial infections. MULTIFACETED ROLE OF IL-1 IN CANCER AND INFLAMMATION 2023:163-176. [DOI: 10.1016/b978-0-12-824273-5.00003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Ma X, Ou K, Liu X, Yang L. Application progress of liquid biopsy in gastric cancer. Front Oncol 2022; 12:969866. [PMID: 36185234 PMCID: PMC9521037 DOI: 10.3389/fonc.2022.969866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors globally. Guiding the individualized treatment of GC is the focus of research. Obtaining representative biological samples to study the biological characteristics of GC is the focus of diagnosis and treatment of GC. Liquid biopsy technology can use high-throughput sequencing technology to detect biological genetic information in blood. Compared with traditional tissue biopsy, liquid biopsy can determine the dynamic changes of tumor. As a noninvasive auxiliary diagnostic method, liquid biopsy can provide diagnostic and prognostic information concerning the progression of the disease. Liquid biopsy includes circulating tumor cells, circulating tumor DNA, circulating tumor RNA, tumor educated platelets, exosomes, and cytokines. This article describes the classification of liquid biopsy and its application value in the occurrence, development, and therapeutic efficacy of GC.
Collapse
|
12
|
Gao W, Wang X, Zhou Y, Wang X, Yu Y. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct Target Ther 2022; 7:196. [PMID: 35725836 PMCID: PMC9208265 DOI: 10.1038/s41392-022-01046-3] [Citation(s) in RCA: 387] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, immunotherapy represented by immune checkpoint inhibitors (ICIs) has led to unprecedented breakthroughs in cancer treatment. However, the fact that many tumors respond poorly or even not to ICIs, partly caused by the absence of tumor-infiltrating lymphocytes (TILs), significantly limits the application of ICIs. Converting these immune “cold” tumors into “hot” tumors that may respond to ICIs is an unsolved question in cancer immunotherapy. Since it is a general characteristic of cancers to resist apoptosis, induction of non-apoptotic regulated cell death (RCD) is emerging as a new cancer treatment strategy. Recently, several studies have revealed the interaction between non-apoptotic RCD and antitumor immunity. Specifically, autophagy, ferroptosis, pyroptosis, and necroptosis exhibit synergistic antitumor immune responses while possibly exerting inhibitory effects on antitumor immune responses. Thus, targeted therapies (inducers or inhibitors) against autophagy, ferroptosis, pyroptosis, and necroptosis in combination with immunotherapy may exert potent antitumor activity, even in tumors resistant to ICIs. This review summarizes the multilevel relationship between antitumor immunity and non-apoptotic RCD, including autophagy, ferroptosis, pyroptosis, and necroptosis, and the potential targeting application of non-apoptotic RCD to improve the efficacy of immunotherapy in malignancy.
Collapse
Affiliation(s)
- Weitong Gao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, changsha, 410008, China
| | - Yang Zhou
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xueqian Wang
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yan Yu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
13
|
Zhang P, Gu Y, Fang H, Cao Y, Wang J, Liu H, Zhang H, Li H, He H, Li R, Lin C, Xu J. Intratumoral IL-1R1 expression delineates a distinctive molecular subset with therapeutic resistance in patients with gastric cancer. J Immunother Cancer 2022; 10:jitc-2021-004047. [PMID: 35110359 PMCID: PMC8811600 DOI: 10.1136/jitc-2021-004047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 12/03/2022] Open
Abstract
Background With the essential role of interleukin-1 signaling in cancer-related inflammation, IL-1R1, the main receptor for both IL-1α and IL-1β, demonstrated therapeutic potential in several types of cancer, which has been put into clinical trials. However, the expression profile and critical role of IL-1R1 in gastric cancer (GC) remain obscure. This study aimed to investigate the prognostic significance of IL-1R1 expression and its predictive value for chemotherapy and immunotherapy in GC. Methods The study enrolled three cohorts, consisting of 409 tumor microarray specimens of GC patients from Zhongshan Hospital, 341 transcriptional data from The Cancer Genome Atlas, and 45 transcriptional data from patients treated with pembrolizumab. IL-1R1 mRNA expression was directly acquired from public datasets, and we also detected IL-1R1 protein expression on tumor microarray by immunohistochemistry. Finally, the associations of IL-1R1 expression with clinical outcomes, immune contexture, and genomic features were analyzed. Results High IL-1R1 expression predicted poor prognosis and inferior responsiveness to both 5-fluorouracil-based adjuvant chemotherapy (ACT) and immune checkpoint blockade (ICB). IL-1R1 fostered an immunosuppressive microenvironment characterized by upregulated M2 macrophages and exhausted CD8+ T cells infiltration. Moreover, the expression of IL-1R1 was intrinsically linked to genomic alterations associated with targeted therapies in GC. Conclusions IL-1R1 served as an independent prognosticator and predictive biomarker for ACT and ICB in GC. Furthermore, IL-1R1 antagonists could be a novel agent alone or combined with current therapeutic strategies in GC.
Collapse
Affiliation(s)
- Puran Zhang
- Department of Biochemistry and Molecular Biology, Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Yun Gu
- Department of Biochemistry and Molecular Biology, Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Hanji Fang
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yifan Cao
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Jieti Wang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hao Liu
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Heng Zhang
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - He Li
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Hongyong He
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Ruochen Li
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Chao Lin
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, Fudan University School of Basic Medical Sciences, Shanghai, China
| |
Collapse
|
14
|
A global and physical mechanism of gastric cancer formation and progression. J Theor Biol 2021; 520:110643. [PMID: 33636204 DOI: 10.1016/j.jtbi.2021.110643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/26/2020] [Accepted: 02/11/2021] [Indexed: 12/17/2022]
Abstract
Gastric cancer is regarded as a major health issue for human being nowadays. The Helicobacter pylori (H. pylori) infection has been found to accelerate the development of gastritis and gastric cancer. Significant efforts have been made towards the understanding of the biology of gastric cancer on both genetic and epigenetic levels. However the physical mechanism behind the gastric cancer formation is still elusive. In this study, we constructed a model for investigating gastric cancer formation by explored the gastric cancer landscape and the flow flux. We uncovered three stable state attractors on the landscape: normal, gastritis and gastric cancer. The definition of each attractor is based on the biological function and gene expression levels. The global stabilities and the switching processes were quantified through the barrier heights and dominant kinetic paths. To investigate the underlying mechanism of the process from normal through the gastritis to the gastric cancer caused by genetic or epigenetic factors, we simulate the oncogenesis of gastric cancer through changes of several gene regulation strengths and H. pylori infection. The simulated results can illustrate the developmental and metastasis process of gastric cancer. Different H. pylori infection degrees accelerating the process from gastritis to gastric cancer can be quantified. Then we applied global sensitivity analysis, one key gene and four key regulations were found. These results are consist with the experimental results and can be used to design the polygenic anti-cancer agents through multiple key genes or regulations. The landscape approach provides a physical and simple strategy for analyzing gastric cancer in a systematic and quantitative way. It also offers new insight into treatment strategy for gastric cancer by adjusting relevant polygenic genes and regulations.
Collapse
|
15
|
Amoxicillin and Clarithromycin Mucoadhesive Delivery System for Helicobacter pylori Infection in a Mouse Model: Characterization, Pharmacokinetics, and Efficacy. Pharmaceutics 2021; 13:pharmaceutics13020153. [PMID: 33498958 PMCID: PMC7911155 DOI: 10.3390/pharmaceutics13020153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/28/2022] Open
Abstract
Helicobacter pylori is the main pathogen responsible for gastric ulcers and a predisposing factor of stomach cancer. Although current treatment is usually successful, it requires high doses and frequent administration. An innovative mucoadhesive system (Mucolast®) loaded with amoxicillin and clarithromycin is proposed to improve the efficacy of treatment against H. pylori. The drug product was optimized based on its viscoelastic properties to obtain long-term stability of the vehicle. The drug release mechanisms were different for both antibiotics based on their solubilization status. A systemic and stomach pharmacokinetic profile was obtained after three different doses were administered to mice, obtaining similar systemic exposure levels but an increase in drug concentration in the stomach. The efficacy results in mice infected with H. pylori also demonstrated the superiority of the antibiotics when administered in Mucolast®, as shown by the bacterial count in stomach tissue and under histopathological and biochemical evaluation. The proposed treatment was efficacious and safe and is presented as a realistic alternative to current treatment options to improve patient compliance and to reduce bacterial resistance.
Collapse
|
16
|
A decade in unravelling the etiology of gastric carcinogenesis in Kashmir, India – A high risk region. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Muthusami S, Ramachandran IK, Babu KN, Krishnamoorthy S, Guruswamy A, Queimado L, Chaudhuri G, Ramachandran I. Role of Inflammation in the Development of Colorectal Cancer. Endocr Metab Immune Disord Drug Targets 2020; 21:77-90. [PMID: 32901590 DOI: 10.2174/1871530320666200909092908] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 11/22/2022]
Abstract
Chronic inflammation can lead to the development of many diseases, including cancer. Inflammatory bowel disease (IBD) that includes both ulcerative colitis (UC) and Crohnmp's disease (CD) are risk factors for the development of colorectal cancer (CRC). Many cytokines produced primarily by the gut immune cells either during or in response to localized inflammation in the colon and rectum are known to stimulate the complex interactions between the different cell types in the gut environment resulting in acute inflammation. Subsequently, chronic inflammation, together with genetic and epigenetic changes, have been shown to lead to the development and progression of CRC. Various cell types present in the colon, such as enterocytes, Paneth cells, goblet cells, and macrophages, express receptors for inflammatory cytokines and respond to tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), IL-6, and other cytokines. Among the several cytokines produced, TNF-α and IL-1β are the key pro-inflammatory molecules that play critical roles in the development of CRC. The current review is intended to consolidate the published findings to focus on the role of pro-inflammatory cytokines, namely TNF-α and IL-1β, on inflammation (and the altered immune response) in the gut, to better understand the development of CRC in IBD, using various experimental model systems, preclinical and clinical studies. Moreover, this review also highlights the current therapeutic strategies available (monotherapy and combination therapy) to alleviate the symptoms or treat inflammation-associated CRC by using monoclonal antibodies or aptamers to block pro-inflammatory molecules, inhibitors of tyrosine kinases in the inflammatory signaling cascade, competitive inhibitors of pro-inflammatory molecules, and the nucleic acid drugs like small activating RNAs (saRNAs) or microRNA (miRNA) mimics to activate tumor suppressor or repress oncogene/pro-inflammatory cytokine gene expression.
Collapse
Affiliation(s)
- Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | | | - Kokelavani Nampalli Babu
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Sneha Krishnamoorthy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Akash Guruswamy
- University of Missouri- Kansas City, College of Medicine, Kansas City, MO 64110, United States
| | - Lurdes Queimado
- Departments of Otorhinolaryngology - Head and Neck Surgery, Cell Biology, Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Gautam Chaudhuri
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Ilangovan Ramachandran
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
18
|
Kalsoom F, Sajjad-Ur-Rahman, Mahmood MS, Zahoor T. Association of Interleukin-1B gene Polymorphism with H. pylori infected Dyspeptic Gastric Diseases and Healthy Population. Pak J Med Sci 2020; 36:825-830. [PMID: 32494282 PMCID: PMC7260888 DOI: 10.12669/pjms.36.4.1883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Objective: The aim of study was to investigate the association of IL 1B gene polymorphism with involvement of H. pylori and other gastric diseases. Methods: Blood samples of dyspeptic patients were collected from endoscopy department of Allied Hospital Faisalabad from January 2017 to January 2019 and were qualitatively assayed for serological detection of CagA H. pylori antibodies. PCR followed by direct sequencing was performed for proinflammatory IL-1B gene polymorphism detection. Sequence analysis was performed in software SnapGene viewer for haplotypes. Results: Demographic characteristics of seropositive patients showed maximum 25% gastritis in age groups of 20-40 years and 41-60 years, predominantly (41.7%) in females. While in seronegative patient’s gastritis (33.3%) was found in age group of 20-40 years mainly in males (41.7%). Among studied groups, higher expression of IL-1B-511 genotype (33.3%) polymorphism was found in healthy individuals as compared to H. pylori seropositive (25%) and seronegative (8.3%). While IL-1B-31 genotype showed maximum 33.3% polymorphism rate in seropositive gastric diseased group. Moreover, haplotypes frequencies IL-1B-511CC and IL-1B-31TT were predominantly (20%) found in seropositive gastric diseased group. Conclusions: In H. pylori seropositive patients, gastric disease was commonly found, however, gastric disease was not only associated with H. pylori as seronegative patients were also carrying gastric complications. Interleukin IL-1B polymorphism was partially associated with H. pylori infection in studied dyspeptic population.
Collapse
Affiliation(s)
- Furkhanda Kalsoom
- Dr. Furkhanda Kalsoom, Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Sajjad-Ur-Rahman
- Prof. Dr. Sajjad-ur-Rahman, Post Doc, Director, Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Shahid Mahmood
- Dr. Muhammad Shahid Mahmood, Ph.D. Associate Professor, Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Tahir Zahoor
- Prof. Dr. Tahir Zahoor, Post Doc, Director, General National Institute of Food Sciences and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
19
|
Bakhti SZ, Latifi-Navid S, Safaralizadeh R. Helicobacter pylori-related risk predictors of gastric cancer: The latest models, challenges, and future prospects. Cancer Med 2020; 9:4808-4822. [PMID: 32363738 PMCID: PMC7333836 DOI: 10.1002/cam4.3068] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori is known as an important determinant of preneoplastic lesions or gastric cancer (GC) risk. The bacterial genotypes may determine the clinical outcomes. However, the evidence for these associations has varied between and within continents, and the actual effect of each gene and corresponding allelic variants are still debatable. In recent years, two new models have been proposed to predict the risk of GC; the phylogeographic origin of H. pylori strains and a disrupted co-evolution between H. pylori and its human host, which potentially explain the geographic differences in the risk of H. pylori-related cancer. However, these models and earlier ones based on putative virulence factors of the bacterium may not fully justify differences in the incidence of GC, reflecting that new theories should be developed and examined. Notably, the new findings also support the role of ancestry-specific germline alteration in contributing to the ethnic/population differences in cancer risk. Moreover the high and low incidence areas of GC have shown differences in transmission ecology, largely affecting the composition of H. pylori populations. As a new hypothesis, it is proposed that any high-risk population may have its own specific risk loci (or variants) as well as new H. pylori strains with national/maybe regional gene pools that should be considered. The latter is seen in the Americas where the rapid evolution of distinct H. pylori subpopulations has been occurred. It is therefore proposed that the deep sequencing of both H. pylori and its human host is simultaneously performed in GC patients and age-sex-matched controls from high-risk areas. The expression and functional activities of the identified new determinants of GC must then be assessed and matched with human and pathogen ancestry, because some of risk loci are ancestry-specific. In addition, potential study-level covariates and moderator variables (eg physical conditions, life styles, gastric microbiome, etc) linked to causal relationships, and their impact, should be recognized and controlled.
Collapse
Affiliation(s)
- Seyedeh Zahra Bakhti
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
20
|
Pachathundikandi SK, Blaser N, Bruns H, Backert S. Helicobacter pylori Avoids the Critical Activation of NLRP3 Inflammasome-Mediated Production of Oncogenic Mature IL-1β in Human Immune Cells. Cancers (Basel) 2020; 12:E803. [PMID: 32230726 PMCID: PMC7226495 DOI: 10.3390/cancers12040803] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/03/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori persistently colonizes the human stomach, and is associated with inflammation-induced gastric cancer. Bacterial crosstalk with the host immune system produces various inflammatory mediators and subsequent reactions in the host, but not bacterial clearance. Interleukin-1β (IL-1β) is implicated in gastric cancer development and certain gene polymorphisms play a role in this scenario. Mature IL-1β production depends on inflammasome activation, and the NLRP3 inflammasome is a major driver in H. pylori-infected mice, while recent studies demonstrated the down-regulation of NLRP3 expression in human immune cells, indicating a differential NLRP3 regulation in human vs. mice. In addition to the formation of mature IL-1β or IL-18, inflammasome activation induces pyroptotic death in cells. We demonstrate that H. pylori infection indeed upregulated the expression of pro-IL-1β in human immune cells, but secreted only very low amounts of mature IL-1β. However, application of exogenous control activators such as Nigericin or ATP to infected cells readily induced NLRP3 inflammasome formation and secretion of high amounts of mature IL-1β. This suggests that chronic H. pylori infection in humans manipulates inflammasome activation and pyroptosis for bacterial persistence. This inflammasome deregulation during H. pylori infection, however, is prone to external stimulation by microbial, environmental or host molecules of inflammasome activators for the production of high amounts of mature IL-1β and signaling-mediated gastric tumorigenesis in humans.
Collapse
Affiliation(s)
- Suneesh Kumar Pachathundikandi
- Department of Biology, Division of Microbiology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany;
| | - Nicole Blaser
- Department of Biology, Division of Microbiology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany;
| | - Heiko Bruns
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander University, D-91058 Erlangen, Germany;
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany;
| |
Collapse
|
21
|
Irani S, Barati I, Badiei M. Periodontitis and oral cancer - current concepts of the etiopathogenesis. Oncol Rev 2020; 14:465. [PMID: 32231765 PMCID: PMC7097927 DOI: 10.4081/oncol.2020.465] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
Gingival tissues are attacked by oral pathogens which can induce inflammatory reactions. The immune-inflammatory responses play essential roles in the patient susceptibility to periodontal diseases. There is a wealth of evidence indicating a link between chronic inflammation and risk of malignant transformation of the affected oral epithelium. Periodontitis is associated with an increased risk of developing chronic systemic conditions including autoimmune diseases and different types of cancers. Besides, some risk factors such as smoking, alcohol consumption and human papilloma virus have been found to be associated with both periodontitis and oral cancer. This review article aimed to study the current concepts in pathogenesis of chronic periodontitis and oral cancer by reviewing the related articles.
Collapse
Affiliation(s)
- Soussan Irani
- Dental Research Centre, Oral Pathology Department, Dental Faculty, Hamadan University of Medical Sciences
| | - Iman Barati
- Department of Periodontology, Dental Faculty, Hamadan University of Medical Sciences
| | - Mohammadreza Badiei
- Dental Student, Dental Faculty, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
22
|
Shahzad MN, Ijaz I, Naqvi SSZH, Yan C, Lin F, Li S, Huang C. Association between interleukin gene polymorphisms and multiple myeloma susceptibility. Mol Clin Oncol 2020; 12:212-224. [PMID: 32064097 PMCID: PMC7016519 DOI: 10.3892/mco.2020.1979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 06/10/2019] [Indexed: 12/16/2022] Open
Abstract
The present study performed a retrospective observational study in order to investigate the relationship between the interleukin family gene polymorphisms and risk of multiple myeloma (MM), based on sixteen case-control studies that contained 2,597 patients with MM and 3,851 controls. The results demonstrated that the genotypes IL-6 and IL-1 GG increased the risk of MM by approximately 40.8 and 80.2% compared with the genotypes AA and CC [odds ratio (OR)=1.14, 95% confidence interval (CI), 0.88-1.47, and OR=1.16, 95% CI, 0.61-2.19; respectively]. The results also revealed a significant association between T:C polymorphism of the IL-6 and IL-10 and the risk of MM (TC/CC: OR=1.37, 95% CI, 0.88-2.16 and TT/CC: OR=1.26, 95% CI, 0.77-2.06, respectively). Additionally, no significant association was identified between the C:A polymorphisms of the IL-6 (rs8192284) and IL-10 (rs1800872) receptors and the overall risk of MM (P>0.05). G:C polymorphisms of the IL-1β1464G>C and IL-6572G>C significantly increased the risk of MM (P<0.05). However, it has been determined that there is a significant association between the C:T polymorphism of the IL-1α-889C>T and IL-1β-3737C>T and the risk of MM (P<0.001). Subgroup analysis revealed that the detection of G:A polymorphisms in the IL-6 promoter (OR=1.05, 95% CI, 0.78-1.44) is more accurate in MM samples of the Asian population (OR=1.24, 95% CI, 0.92-1.74). In addition, no significant association was identified between the IL gene polymorphisms in MM samples categorized by ethnicity and the IL family type (P=0.27). These single nucleotide polymorphism loci may be the appropriate gene markers for gene screening and a promising therapeutic strategy in the prognostics of patients with MM.
Collapse
Affiliation(s)
- Muhamaad Naveed Shahzad
- Stem Cell Laboratory, Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Iqra Ijaz
- Sino-German Department for The Treatment of Ovarian Tumors, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Syed Shah Zaman Haider Naqvi
- Department of Diabetes and Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Cheng Yan
- Stem Cell Laboratory, Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Fanli Lin
- Stem Cell Laboratory, Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shutan Li
- Stem Cell Laboratory, Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chunlan Huang
- Stem Cell Laboratory, Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
23
|
Wu Y, Shen L, Liang X, Li S, Ma L, Zheng L, Li T, Yu H, Chan H, Chen C, Yu J, Jia J. Helicobacter pylori-induced YAP1 nuclear translocation promotes gastric carcinogenesis by enhancing IL-1β expression. Cancer Med 2019; 8:3965-3980. [PMID: 31145543 PMCID: PMC6639191 DOI: 10.1002/cam4.2318] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer (GC) is one of the most common and malignant pathologies, and a significant portion of GC incidences develops from Helicobacter pylori (Hp)-induced chronic gastritis. Although the exact mechanisms of GC are complex and poorly understood, gastric carcinogenesis is a good model to investigate how inflammation and infection collaboratively promote tumorigenesis. Yes-associated protein 1 (YAP1) is the key effector of the Hippo pathway, which is silenced in most human cancers. Herein, we verified the tumor-promoting effect of YAP1 in vitro, in vivo, and in human specimens. We revealed that YAP1 displays nuclear translocation and works with TEAD to activate transcription of the crucial inflammatory cytokine IL-1β in gastric cells infected with Hp. As IL-1ß accounts for inflammation-associated tumorigenesis, this process can lead to gastric carcinogenesis. Thus, in addition to activating proliferation genes, YAP1 also plays a major role in inflammation amplification by activating inflammatory cytokine genes. Excitingly, our research demonstrates that transfection of mutant plasmid YAP-5SA/S94A or addition of the drug verteporfin, both of which are thought to disrupt the YAP1-TEAD interaction, can arrest the carcinogenesis process. These findings can provide new approaches to GC treatment.
Collapse
Affiliation(s)
- Yujiao Wu
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of MedicineShandong UniversityJinanP. R. China
| | - Li Shen
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of MedicineShandong UniversityJinanP. R. China
| | - Xiuming Liang
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of MedicineShandong UniversityJinanP. R. China
| | - Shuyan Li
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of MedicineShandong UniversityJinanP. R. China
| | - Lin Ma
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of MedicineShandong UniversityJinanP. R. China
| | - Lixin Zheng
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of MedicineShandong UniversityJinanP. R. China
| | - Tongyu Li
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of MedicineShandong UniversityJinanP. R. China
| | - Han Yu
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of MedicineShandong UniversityJinanP. R. China
| | - Hillary Chan
- The Faculty of MedicineThe University of TorontoTorontoCanada
| | - Chunyan Chen
- Department of HematologyQilu Hospital, Shandong UniversityJinanShandongP. R. China
| | - Jingya Yu
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of MedicineShandong UniversityJinanP. R. China
| | - Jihui Jia
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of MedicineShandong UniversityJinanP. R. China
| |
Collapse
|
24
|
Sultana Z, Bankura B, Pattanayak AK, Sengupta D, Sengupta M, Saha ML, Panda CK, Das M. Association of Interleukin-1 beta and tumor necrosis factor-alpha genetic polymorphisms with gastric cancer in India. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:653-667. [PMID: 30094865 DOI: 10.1002/em.22208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/18/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Interleukin 1 beta (IL-1β) and Tumor necrosis factor alpha (TNF-α) are key inflammatory cytokines whose polymorphisms have been correlated with increased susceptibility to gastric cancer (GC). Since geographical and racial differences exist in cancer rates, our study was aimed to evaluate the first possible association of polymorphisms in these genes with GC risk in West Bengal, India. Polymorphisms in IL-1β and TNF-α genes were genotyped in 120 GC patients and 135 healthy individuals. Combined effect of the SNPs in both genes with GC risk was determined through allele dosage analysis (ADA) and the survival data were analyzed by Log Rank Test. The study results revealed that IL-1β rs1143627: T > C, rs16944: C > T (p = 0.001;OR = 1.85; 95% CI 1.30-2.63) and rs1143633: G > A (p < 0.0001; OR = 2.53; 95% CI 1.67-3.83) and TNF-α rs1800630: C > A, rs1799964: T > C (p < 0.0001; OR = 2.31; 95% CI 1.54-3.46) polymorphisms significantly contributed toward GC risk. Moreover, ADA showed that carriage of 7 "effective" risk alleles conferred a risk of almost 10-fold in comparison to individuals carrying less than 3 "effective" risk alleles. Our survival analysis also indicated a significant association between IL-1β rs1143627: T > C and rs16944: C > T and patient survivability. The presence of H. pylori enhanced the risk in individuals with IL-1β rs1143627:CC and rs16944:TT genotypes. Further, meta-analysis revealed significant association of IL-1β rs1143627: T > C (p = 0.026; OR = 4.165; 95% CI 1.18-14.65) and rs16944: C > T (p = 0.01; OR = 5.49; 95% CI 1.48-20.37) in presence of H. pylori with gastric cancer in Asian population though no significant difference (p > 0.05) was found when compared to absence of H. pylori Environ. Mol. Mutagen. 59:653-667, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zareen Sultana
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Biswabandhu Bankura
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, 700019, India
| | | | - Debmalya Sengupta
- Department of Genetics, University of Calcutta, West Bengal, 700019, India, Kolkata
| | - Mainak Sengupta
- Department of Genetics, University of Calcutta, West Bengal, 700019, India, Kolkata
| | - Makhan Lal Saha
- Department of Surgery, Institute of Post Graduate Medical Education &Research, Kolkata, West Bengal, 700020, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation and Viral Associated Human Cancer, Chittaranjan Cancer Research Institute, Kolkata, West Bengal, 700026, India
| | - Madhusudan Das
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, 700019, India
| |
Collapse
|
25
|
Interleukin-1 Beta-A Friend or Foe in Malignancies? Int J Mol Sci 2018; 19:ijms19082155. [PMID: 30042333 PMCID: PMC6121377 DOI: 10.3390/ijms19082155] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/14/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022] Open
Abstract
Interleukin-1 beta (IL-1β) is induced by inflammatory signals in a broad number of immune cell types. IL-1β (and IL-18) are the only cytokines which are processed by caspase-1 after inflammasome-mediated activation. This review aims to summarize current knowledge about parameters of regulation of IL-1β expression and its multi-facetted role in pathophysiological conditions. IL-1 signaling activates innate immune cells including antigen presenting cells, and drives polarization of CD4+ T cells towards T helper type (Th) 1 and Th17 cells. Therefore, IL-1β has been attributed a largely beneficial role in resolving acute inflammations, and by initiating adaptive anti-tumor responses. However, IL-1β generated in the course of chronic inflammation supports tumor development. Furthermore, IL-1β generated within the tumor microenvironment predominantly by tumor-infiltrating macrophages promotes tumor growth and metastasis via different mechanisms. These include the expression of IL-1 targets which promote neoangiogenesis and of soluble mediators in cancer-associated fibroblasts that evoke antiapoptotic signaling in tumor cells. Moreover, IL-1 promotes the propagation of myeloid-derived suppressor cells. Using genetic mouse models as well as agents for pharmacological inhibition of IL-1 signaling therapeutically applied for treatment of IL-1 associated autoimmune diseases indicate that IL-1β is a driver of tumor induction and development.
Collapse
|
26
|
Pucułek M, Machlowska J, Wierzbicki R, Baj J, Maciejewski R, Sitarz R. Helicobacter pylori associated factors in the development of gastric cancer with special reference to the early-onset subtype. Oncotarget 2018; 9:31146-31162. [PMID: 30123433 PMCID: PMC6089554 DOI: 10.18632/oncotarget.25757] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023] Open
Abstract
Nowadays, gastric cancer is one of the most common neoplasms and the fourth cause of cancer-related death on the world. Regarding the age at the diagnosis it is divided into early-onset gastric carcinoma (45 years or younger) and conventional gastric cancer (older than 45). Gastric carcinomas are rarely observed in young population and rely mostly on genetic factors, therefore provide the unique model to study genetic and environmental alternations. The latest research on early-onset gastric cancer are trying to explain molecular and genetic basis, because young patients are less exposed to environmental factors predisposing to cancer. In the general population, Helicobacter pylori, has been particularly associated with intestinal subtype of gastric cancers. The significant association of Helicobacter pylori infection in young patients with gastric cancers suggests that the bacterium has an etiologic role in both diffuse and intestinal subtypes of early-onset gastric cancers. In this paper we would like to ascertain the possible role of Helicobacter pylori infection in the development of gastric carcinoma in young patients. The review summarizes recent literature on early-onset gastric cancers with special reference to Helicobacter pylori infection.
Collapse
Affiliation(s)
| | | | - Ryszard Wierzbicki
- 2 Department of Surgery with Trauma, Orthopaedic and Urological Subunit, Independent Public Health Care Center of the Ministry of Interior and Administration in Lublin, Poland
- 3 Department of Surgical Oncology, Medical University of Lublin, Poland
| | - Jacek Baj
- 1 Department of Human Anatomy, Medical University of Lublin, Poland
| | | | - Robert Sitarz
- 1 Department of Human Anatomy, Medical University of Lublin, Poland
- 2 Department of Surgery with Trauma, Orthopaedic and Urological Subunit, Independent Public Health Care Center of the Ministry of Interior and Administration in Lublin, Poland
- 4 Department of Surgery, St. John's Cancer Center, Lublin, Poland
| |
Collapse
|
27
|
He Q, Fu Y, Tian D, Yan W. The contrasting roles of inflammasomes in cancer. Am J Cancer Res 2018; 8:566-583. [PMID: 29736304 PMCID: PMC5934549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023] Open
Abstract
Chronic inflammation plays a decisive role at different stages of cancer development. Inflammasomes are oligomeric protein complexes activated in response to pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). PAMPs and DAMPs are released from infected cells, tumors and damaged tissues. Inflammasomes activate and release inflammatory cytokines such as IL-1β and IL-18. The various inflammasomes and inflammatory cytokines and chemokines play contrasting roles in cancer development and progression. In this review, we describe the roles of different inflammasomes in lung, breast, gastric, liver, colon, and prostate cancers and in glioblastomas.
Collapse
Affiliation(s)
- Qin He
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong Univsersity of Science and TechnologyWuhan, China
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong Univsersity of Science and TechnologyWuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong Univsersity of Science and TechnologyWuhan, China
| |
Collapse
|
28
|
NF-kappaB: Two Sides of the Same Coin. Genes (Basel) 2018; 9:genes9010024. [PMID: 29315242 PMCID: PMC5793177 DOI: 10.3390/genes9010024] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 01/05/2023] Open
Abstract
Nuclear Factor-kappa B (NF-κB) is a transcription factor family that regulates a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. More recently, constitutive expression of NF-κB has been associated with several types of cancer. In addition, microorganisms, such as viruses and bacteria, cooperate in the activation of NF-κB in tumors, confirming the multifactorial role of this transcription factor as a cancer driver. Recent reports have shown that the NF-κB signaling pathway should receive attention for the development of therapies. In addition to the direct effects of NF-κB in cancer cells, it might also impact immune cells that can both promote or prevent tumor development. Currently, with the rise of cancer immunotherapy, the link among immune cells, inflammation, and cancer is a major focus, and NF-κB could be an important regulator for the success of these therapies. This review discusses the contrasting roles of NF-κB as a regulator of pro- and antitumor processes and its potential as a therapeutic target.
Collapse
|
29
|
Polymorphisms and haplotypes of the interleukin 2 gene are associated with an increased risk of gastric cancer. The possible involvement of Helicobacter pylori. Cytokine 2017; 96:203-207. [PMID: 28458166 DOI: 10.1016/j.cyto.2017.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 12/11/2022]
Abstract
Interleukin 2 (IL-2) is a pro-inflammatory cytokine that is mainly synthesized by immunoregulatory T helper cells and which plays an important role in antitumor immunity. Helicobacter pylori (H. pylori) is a gram-negative bacterium that colonizes the gastric mucosa and induces the production of IL-2. This process increases the magnitude of inflammation and may influence the development of gastric pathologies. In light of the possible involvement of IL-2 and the presence of H. pylori in gastric diseases, this study investigated possible associations between the IL-2 polymorphisms +114 T>G (rs2069763) and -330 T>G (rs2069762) and the development of gastric cancer; these associations were then correlated with the presence of H. pylori. Gastric biopsies were obtained from 294 dyspeptic patients (173♀/123♂). Of these samples, 181 were chronic gastritis samples (102♀/79), 62 were samples of intact gastric mucosa (47♀/15♂), and 51 were samples of gastric cancer (22♀/29♂). PCR-RFLP was used to characterize the +114 T>G and -330 T>G polymorphisms. Considering the genetic characteristics of the study population and based on the codominant model, a high risk of gastric cancer among patients with normal gastric tissue and patients with gastric cancer was found in subjects with the IL-2-330 GG genotype (OR=6.43, 95% CI: 1.47-28.10, p=0.044). The data was adjusted for the presence of H. pylori. Among patients with gastritis and patients with gastric cancer, a high risk was found among subjects with the IL-2-330 GG genotype (OR=4.47, 95% CI: 1.84-10.84, p=0.0022). When the IL-2 +114 polymorphism was analyzed, similar results were found. Among the patients with normal gastric tissue and the patients with gastric cancer, subjects carrying the +114 TT genotype were found to be at a high risk of gastric cancer (OR=5.97, 95% CI: 1.60-22.27, p=0.013). This data was also adjusted for the presence of H. pylori. Among patients with gastritis and patients with gastric cancer, a high risk was found in subjects carrying the +114 TT genotype (OR=6.36, 95% CI: 2.66-15.21, p<0.0001). The haplotype was also analyzed. The -330G/+114T haplotype was found to be significantly associated with gastric cancer. Therefore, our results show that, among patients with H. pylori infection, the -330 GG and +114 TT genotypes are significantly associated with a high risk of developing gastric cancer, as is the -330G/+114T haplotype.
Collapse
|
30
|
Xu Q, Chen TJ, He CY, Sun LP, Liu JW, Yuan Y. MiR-27a rs895819 is involved in increased atrophic gastritis risk, improved gastric cancer prognosis and negative interaction with Helicobacter pylori. Sci Rep 2017; 7:41307. [PMID: 28150722 PMCID: PMC5288699 DOI: 10.1038/srep41307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/19/2016] [Indexed: 12/15/2022] Open
Abstract
MiR-27a rs895819 is a loop-stem structure single nucleotide polymorphism affecting mature miR-27a function. In this study, we performed a comprehensive analysis about the association of rs895819 with gastric cancer risk and prognosis, atrophic gastritis risk, as well as the interactions with environmental factors. A total of 939 gastric cancer patients, 1,067 atrophic gastritis patients and 1,166 healthy controls were screened by direct sequencing and MALDI-TOF-MS. The association of rs895819 with clinical pathological parameters and prognostic survival in 357 gastric cancer patients was also been analyzed. The rs895819 variant genotype increased the risk for atrophic gastritis (1.58-fold) and gastric cancer (1.24-fold). While in stratified analysis, the risk effect was demonstrated more significantly in the female, age >60y, Helicobacter pylori (H. pylori) negative and non-drinker subgroups. Rs895819 and H. pylori showed an interaction effect for atrophic gastritis risk. In the survival analysis, the rs895819 AG heterozygosis was associated with better survival than the AA wild-type in the TNM stage I–II subgroup. In vitro study by overexpressing miR-27a, cells carrying polymorphic-type G allele expressed lower miR-27a than wild-type A allele. In conclusion, miR-27a rs895819 is implicated as a biomarker for gastric cancer and atrophic gastritis risk, and interacts with H. pylori in gastric carcinogenesis.
Collapse
Affiliation(s)
- Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Tie-Jun Chen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Cai-Yun He
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Li-Ping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Jing-Wei Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| |
Collapse
|
31
|
Sui X, Liang X, Chen L, Guo C, Han W, Pan H, Li X. Bacterial xenophagy and its possible role in cancer: A potential antimicrobial strategy for cancer prevention and treatment. Autophagy 2016; 13:237-247. [PMID: 27924676 DOI: 10.1080/15548627.2016.1252890] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Macroautophagy/autophagy is a conserved catabolic process through which cellular excessive or dysfunctional proteins and organelles are transported to the lysosome for terminal degradation and recycling. Over the past few years increasing evidence has suggested that autophagy is not only a simple metabolite recycling mechanism, but also plays a critical role in the removal of intracellular pathogens such as bacteria and viruses. When autophagy engulfs intracellular pathogens, the pathway is called 'xenophagy' because it leads to the elimination of foreign microbes. Recent studies support the idea that xenophagy can be modulated by bacterial infection. Meanwhile, convincing evidence indicates that xenophagy may be involved in malignant transformation and cancer therapy. Xenophagy can suppress tumorigenesis, particularly during the early stages of tumor initiation. However, in established tumors, xenophagy may also function as a prosurvival pathway in response to microenvironment stresses including bacterial infection. Therefore, bacterial infection-related xenophagy may have an effect on tumor initiation and cancer treatment. However, the role and machinery of bacterial infection-related xenophagy in cancer remain elusive. Here we will discuss recent developments in our understanding of xenophagic mechanisms targeting bacteria, and how they contribute to tumor initiation and anticancer therapy. A better understanding of the role of xenophagy in bacterial infection and cancer will hopefully provide insight into the design of novel and effective therapies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Xinbing Sui
- a Department of Medical Oncology , Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University , Hangzhou , Zhejiang , China.,b Departments of Urology and Pathology , Boston Children's Hospital , Boston , MA , USA.,c Department of Surgery , Harvard Medical School , Boston , MA , USA.,d Zhejiang Chinese Medical University , Hangzhou , Zhejiang , China
| | - Xiao Liang
- e Department of General Surgery , Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University , Hangzhou , Zhejiang , China
| | - Liuxi Chen
- a Department of Medical Oncology , Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University , Hangzhou , Zhejiang , China
| | - Chunming Guo
- b Departments of Urology and Pathology , Boston Children's Hospital , Boston , MA , USA.,c Department of Surgery , Harvard Medical School , Boston , MA , USA
| | - Weidong Han
- a Department of Medical Oncology , Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University , Hangzhou , Zhejiang , China
| | - Hongming Pan
- a Department of Medical Oncology , Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University , Hangzhou , Zhejiang , China
| | - Xue Li
- b Departments of Urology and Pathology , Boston Children's Hospital , Boston , MA , USA.,c Department of Surgery , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
32
|
Huang F, Wang BR, Wu YQ, Wang FC, Zhang J, Wang YG. Oncolytic viruses against cancer stem cells: A promising approach for gastrointestinal cancer. World J Gastroenterol 2016; 22:7999-8009. [PMID: 27672294 PMCID: PMC5028813 DOI: 10.3748/wjg.v22.i35.7999] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/12/2016] [Accepted: 08/10/2016] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal cancer has been one of the five most commonly diagnosed and leading causes of cancer mortality over the past few decades. Great progress in traditional therapies has been made, which prolonged survival in patients with early cancer, yet tumor relapse and drug resistance still occurred, which is explained by the cancer stem cell (CSC) theory. Oncolytic virotherapy has attracted increasing interest in cancer because of its ability to infect and lyse CSCs. This paper reviews the basic knowledge, CSC markers and therapeutics of gastrointestinal cancer (liver, gastric, colon and pancreatic cancer), as well as research advances and possible molecular mechanisms of various oncolytic viruses against gastrointestinal CSCs. This paper also summarizes the existing obstacles to oncolytic virotherapy and proposes several alternative suggestions to overcome the therapeutic limitations.
Collapse
|