1
|
Kebriaei A, Besharati R, Namdar Ahmad Abad H, Havakhah S, Khosrojerdi M, Azimian A. The relationship between microRNAs and COVID-19 complications. Noncoding RNA Res 2025; 10:16-24. [PMID: 39296641 PMCID: PMC11406673 DOI: 10.1016/j.ncrna.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Over the past three years, since the onset of COVID-19, several scientific studies have concentrated on understanding susceptibility to the virus, the progression of the illness, and possible long-term complexity. COVID-19 is broadly recognized with effects on multiple systems in the body, and various factors related to society, medicine, and genetics/epigenetics may contribute to the intensity and results of the disease. Additionally, a SARS-CoV-2 infection can activate pathological activities and expedite the emergence of existing health issues into clinical problems. Forming easily accessible, distinctive, and permeable biomarkers is essential for categorizing patients, preventing the disease, predicting its course, and tailoring treatments for COVID-19 individually. One promising candidate for such biomarkers is microRNAs, which could serve various purposes in understanding diverse forms of COVID-19, including susceptibility, intensity, disease progression, outcomes, and potential therapeutic options. This review provides an overview of the most significant findings related to the involvement of microRNAs in COVID-19 pathogenesis. Furthermore, it explores the function of microRNAs in a broad span of effects that may arise from accompanying or underlying health status. It underscores the value of comprehending how diverse conditions, such as neurological disorders, diabetes, cardiovascular diseases, and obesity, interact with COVID-19.
Collapse
Affiliation(s)
- Abdollah Kebriaei
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Besharati
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hasan Namdar Ahmad Abad
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Shahrzad Havakhah
- Department of Physiology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mahsa Khosrojerdi
- Department of Immunology and Allergy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Azimian
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
2
|
Zárate-Segura PB, Martínez-Castillo M, Garduño-Gutiérrez AP, Hernández-Hernández JM, Cano-Martínez LJ, García-Mena J, Coral-Vázquez RM, Bastida-González F. Changes in miRNA Pattern Expression Associated With COVID-19 Severity. In Vivo 2025; 39:482-490. [PMID: 39740904 PMCID: PMC11705121 DOI: 10.21873/invivo.13852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND/AIM Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2 infection, manifests a wide range of clinical symptoms ranging from mild to moderate and severe. Host-related factors influence the course of SARS-CoV-2 infection; for instance, the expression of host microRNAs (miRNAs) could influence the progression and complications of COVID-19. This study aimed to determine the expression pattern of endogenous miRNAs in 80 severe COVID-19 patients compared to a group of healthy individuals. MATERIALS AND METHODS The miRNA screening expression analysis was performed using TaqMan Low-Density Array, and the expression changes of miR-490-3p, miR-195-5p, miR-454-3p, and miR-431-5p were validated using RT-qPCR. In silico analysis was used to identify new targets and predict the pathways, biological processes, and interactions of the selected miRNAs. RESULTS The miR-490-3p, miR-195-5p, miR-454-3p, and miR-431-5p, were over-expressed in the total population of severe COVID-19 patients compared to the control group. miR-490-3p was found to be over-expressed in both female and male COVID-19 patients. CONCLUSION Specific miRNAs might be a potential biomarker for predicting the clinical course of COVID-19.
Collapse
Affiliation(s)
- Paola B Zárate-Segura
- Laboratorio de Medicina Traslacional, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico;
| | - Macario Martínez-Castillo
- Laboratorio de Medicina Traslacional, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | | | - Luis Javier Cano-Martínez
- Laboratorio de Medicina Traslacional, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Cinvestav, Mexico City, Mexico
| | - Ramón M Coral-Vázquez
- Laboratorio de Medicina Traslacional, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico
| | - Fernando Bastida-González
- Laboratorio de Biología Molecular, Laboratorio Estatal de Salud Pública del Estado de México, Toluca de Lerdo, Mexico
| |
Collapse
|
3
|
Smail SW, Hirmiz SM, Ahmed AA, Albarzinji N, Awla HK, Amin K, Janson C. Decoding the intricacies: a comprehensive analysis of microRNAs in the pathogenesis, diagnosis, prognosis and therapeutic strategies for COVID-19. Front Med (Lausanne) 2024; 11:1430974. [PMID: 39434774 PMCID: PMC11492531 DOI: 10.3389/fmed.2024.1430974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
The pandemic of coronavirus disease-19 (COVID-19), provoked by the appearance of a novel coronavirus named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), required a worldwide healthcare emergency. This has elicited an immediate need for accelerated research into its mechanisms of disease, criteria for diagnosis, methods for forecasting outcomes, and treatment approaches. microRNAs (miRNAs), are diminutive RNA molecules, that are non-coding and participate in gene expression regulation post-transcriptionally, having an important participation in regulating immune processes. miRNAs have granted substantial interest in their impact on viral replication, cell proliferation, and modulation of how the host's immune system responds. This narrative review delves into host miRNAs' multifaceted roles within the COVID-19 context, highlighting their involvement in disease progression, diagnostics, and prognostics aspects, given their stability in biological fluids and varied expression profiles when responding to an infection. Additionally, we discuss complicated interactions between SARS-CoV-2 and host cellular machinery facilitated by host miRNAs revealing how dysregulation of host miRNA expression profiles advances viral replication, immune evasion, and inflammatory responses. Furthermore, it investigates the potential of host miRNAs as therapeutic agents, whether synthetic or naturally occurring, which could be harnessed to either mitigate harmful inflammation or enhance antiviral responses. However, searching more deeply is needed to clarify how host's miRNAs are involved in pathogenesis of COVID-19, its diagnosis processes, prognostic assessments, and treatment approaches for patients.
Collapse
Affiliation(s)
- Shukur Wasman Smail
- College of Pharmacy, Cihan University-Erbil, Kurdistan Region, Erbil, Iraq
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Sarah Mousa Hirmiz
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Akhter Ahmed Ahmed
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Niaz Albarzinji
- Department of Medicine, Hawler Medical University, Erbil, Iraq
| | - Harem Khdir Awla
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Kawa Amin
- College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Al Saihati HA, Dessouky AA, Salim RF, Elgohary I, El-Sherbiny M, Ali FEM, Moustafa MMA, Shaheen D, Forsyth NR, Badr OA, Ebrahim N. MSC-extracellular vesicle microRNAs target host cell-entry receptors in COVID-19: in silico modeling for in vivo validation. Stem Cell Res Ther 2024; 15:316. [PMID: 39304926 PMCID: PMC11416018 DOI: 10.1186/s13287-024-03889-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has created a global pandemic with significant morbidity and mortality. SARS-CoV-2 primarily infects the lungs and is associated with various organ complications. Therapeutic approaches to combat COVID-19, including convalescent plasma and vaccination, have been developed. However, the high mutation rate of SARS-CoV-2 and its ability to inhibit host T-cell activity pose challenges for effective treatment. Mesenchymal stem cells (MSCs) and their extracellular vesicles (MSCs-EVs) have shown promise in COVID-19 therapy because of their immunomodulatory and regenerative properties. MicroRNAs (miRNAs) play crucial regulatory roles in various biological processes and can be manipulated for therapeutic purposes. OBJECTIVE We aimed to investigate the role of lyophilized MSC-EVs and their microRNAs in targeting the receptors involved in SARS-CoV-2 entry into host cells as a strategy to limit infection. In silico microRNA prediction, structural predictions of the microRNA-mRNA duplex, and molecular docking with the Argonaut protein were performed. METHODS Male Syrian hamsters infected with SARS-CoV-2 were treated with human Wharton's jelly-derived Mesenchymal Stem cell-derived lyophilized exosomes (Bioluga Company)via intraperitoneal injection, and viral shedding was assessed. The potential therapeutic effects of MSCs-EVs were measured via histopathology of lung tissues and PCR for microRNAs. RESULTS The results revealed strong binding potential between miRNA‒mRNA duplexes and the AGO protein via molecular docking. MSCs-EVs reduced inflammation markers and normalized blood indices via the suppression of viral entry by regulating ACE2 and TMPRSS2 expression. MSCs-EVs alleviated histopathological aberrations. They improved lung histology and reduced collagen fiber deposition in infected lungs. CONCLUSION We demonstrated that MSCs-EVs are a potential therapeutic option for treating COVID-19 by preventing viral entry into host cells.
Collapse
Affiliation(s)
- Hajer A Al Saihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Albatin, Hafar Al-Batin, Saudi Arabia.
| | - Arigue A Dessouky
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rabab F Salim
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Islam Elgohary
- Researcher of Pathology, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, 11597, Riyadh, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Mahmoud M A Moustafa
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Dalia Shaheen
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nicholas Robert Forsyth
- PhD Molecular Genetics, Vice Principals' Office, Kings College, University of Aberdeen, Aberdeen, AB24 3FX, UK
- Cell and Tissue Engineering, School of pharmacy and bioengineering, Keele University, Keele, UK
| | - Omnia A Badr
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Benha, Egypt.
| | - Nesrine Ebrahim
- Department of Medical Histology and Cell Biology Faculty of Medicine, Benha University, Benha, Egypt.
- Stem Cell Unit, Faculty of Medicine, Benha University, Benha, Egypt.
- Faculty of Medicine, Benha National University, Al Obour City, Egypt.
- Cell and Tissue Engineering, School of pharmacy and bioengineering, Keele University, Keele, UK.
| |
Collapse
|
5
|
Ordaya EE, Razonable RR. Emerging anti-spike monoclonal antibodies against SARS-CoV-2. Expert Opin Biol Ther 2024:1-11. [PMID: 38432691 DOI: 10.1080/14712598.2024.2326647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
INTRODUCTION Anti-spike monoclonal antibodies (mAbs) were previously authorized for the prevention and treatment of COVID-19 in immunocompromised patients. However, they are no longer authorized in the U.S. due to their lack of neutralizing activity against current circulating SARS-CoV-2 Omicron variants. AREAS COVERED We summarized the available data on emergent mAbs in the early stages of clinical development. Consistent with data on prior mAbs, these novel agents have been well tolerated and demonstrated a good safety profile in early clinical trials. Additionally, many of them have been engineered to ensure prolonged half-life and combined with other mAbs to overcome the potential for emerging resistant mutants. Interestingly, one of these agents has been evaluated using an inhaled route of administration, and another agent is being evaluated for treatment of long COVID. EXPERT OPINION Although the available data of novel mAbs holds promise, we anticipate that these agents will face similar challenges encountered by prior authorized agents, including the continued evolution of SARS-CoV-2 and emergence of new escape mutations. Strategies to potentially mitigate this are discussed. Based on prior successful experience, immunocompromised patients will certainly benefit from the utilization of mAbs for the prevention and treatment of COVID-19; thus, we need to design potential interventions to ensure the sustained activity of these agents.
Collapse
Affiliation(s)
- Eloy E Ordaya
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, MN, USA
| | - Raymund R Razonable
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
6
|
Kumar M, Sahoo GC, Das VNR, Singh K, Pandey K. A Review of miRNA Regulation in Japanese Encephalitis (JEV) Virus Infection. Curr Pharm Biotechnol 2024; 25:521-533. [PMID: 37888811 DOI: 10.2174/0113892010241606231003102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 10/28/2023]
Abstract
Japanese encephalitis (JE) is a mosquito-borne disease that causes neuronal damage and inflammation of microglia, and in severe cases, it can be fatal. JE infection can resist cellular immune responses and survive in host cells. Japanese encephalitis virus (JEV) infects macrophages and peripheral blood lymphocytes. In addition to regulating biological signaling pathways, microRNAs in cells also influence virus-host interactions. Under certain circumstances, viruses can change microRNA production. These changes affect the replication and spread of the virus. Host miRNAs can contain viral pathogenicity by downregulating the antiviral immune response pathways. Simultaneous profiling of miRNA and messenger RNA (mRNA) could help us detect pathogenic factors, and dual RNA detection is possible. This work highlights important miRNAs involved in human JE infection. In this study, we have shown the important miRNAs that play significant roles in JEV infection. We found that during JEV infection, miRNA-155, miRNA-29b, miRNA-15b, miRNA-146a, miRNA-125b-5p, miRNA-30la, miRNA-19b-3p, and miRNA-124, cause upregulation of human genes whereas miRNA-432, miRNA-370, miRNA- 33a-5p, and miRNA-466d-3p are responsible for downregulation of human genes respectively. Further, these miRNAs are also responsible for the inflammatory effects. Although several other miRNAs critical to the JEV life cycle are yet unknown, there is currently no evidence for the role of miRNAs in persistence.
Collapse
Affiliation(s)
- Maneesh Kumar
- Department of Virology, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, Bihar, India
| | - Ganesh Chandra Sahoo
- Department of Virology, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, Bihar, India
| | - Vidya Nand Rabi Das
- Department of Clinical Medicine, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, Bihar, India
| | - Kamal Singh
- Department of Virology, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, Bihar, India
| | - Krishna Pandey
- Department of Clinical Medicine, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, Bihar, India
| |
Collapse
|
7
|
Mishra S, Kalra N, Botlagunta M, Rajasekaran S. MicroRNA-195-5p mediates arsenic-induced cytotoxicity in human lung epithelial cells: Beneficial role of plant-derived tannic acid. Toxicol Appl Pharmacol 2024; 482:116775. [PMID: 38042305 DOI: 10.1016/j.taap.2023.116775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Arsenic (As), a highly toxic metalloid, which causes environmental lung diseases and affects millions of people worldwide. Respiratory epithelial cells are essential for maintaining lung homeostasis, aberrant epithelial damage and death due to exposure to a wide range of environmental pollutants, which are considered to be the initial trigger for many pulmonary diseases. Accumulating evidence has shown that microRNAs (miRNAs) appear to be important players in various normal physiological and pathological processes. Therefore, the present study was carried out to examine the cytotoxic effects of a trivalent form of As (As3+) in normal human bronchial (BEAS-2B) and adenocarcinoma alveolar basal (A549) epithelial cells and the role of miR-195-5p. Further, we also explored the protective effects of a natural dietary polyphenol tannic acid (TA). As3+ (1 μM) treatment in BEAS-2B cells for 24 h induced cytotoxicity by decreasing the cell viability, mitochondrial membrane potential (ΔΨm) and inducing reactive oxygen species (ROS) generation, lipid peroxidation (LPO), cell cycle arrest, and apoptosis, which was associated with a significantly higher level of miR-195-5p expression compared with vehicle control. Forced expression of miR-195-5p alone suppressed cell survival, ΔΨm, regulated cell cycle distribution and induced ROS generation in BEAS-2B cells. As expected, miR-195-5p inhibition effectively rescued BEAS-2B cells from As3+-mediated toxicity, confirming the involvement of miR-195-5p in the cytotoxic effects of As3+. Further, TA pre-treatment expressively alleviated As3+-induced toxicity by suppressing ROS production, miR-195-5p expression, and increasing ΔΨm. These in vitro results indicate that miR-195-5p may be useful as a therapeutic target for treating As3+ toxicity.
Collapse
Affiliation(s)
- Sehal Mishra
- Division of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India; School of Bioengineering, VIT Bhopal University, Kothrikalan, Sehore, Madhya Pradesh, India
| | - Neetu Kalra
- School of Bioengineering, VIT Bhopal University, Kothrikalan, Sehore, Madhya Pradesh, India
| | - Mahendran Botlagunta
- School of Bioengineering, VIT Bhopal University, Kothrikalan, Sehore, Madhya Pradesh, India
| | - Subbiah Rajasekaran
- Division of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
8
|
Chen WC, Hu SY, Shen CF, Cheng MH, Hong JJ, Shen CJ, Cheng CM. COVID-19 Vaccination in Pregnancy: Pilot Study for Maternal and Neonatal MicroRNA Profiles. Vaccines (Basel) 2023; 11:1814. [PMID: 38140218 PMCID: PMC10747030 DOI: 10.3390/vaccines11121814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
This pilot study explores alterations in miRNA profiles among pregnant women and their neonates upon receiving different doses of COVID-19 vaccines. Blood samples, including maternal blood (MB) and neonatal cord blood (CB), collected from five pregnant women were scrutinized using the miRNA PanelChip Analysis System, identifying nine distinct miRNAs, including miR-451a and miR-1972, which exhibited significant downregulation with two vaccine doses in both MB and CB. When compared with women vaccinated with four doses, miR-486-5p, miR-451a, and miR-1972 in the two-dose group also showed notable downregulation. Evaluating recipients of three and four doses, miR-423-5p and miR-1972 expression were significantly reduced in both MB and CB. Further comparative analysis highlighted a decline in miR-223-3p expression with increasing vaccine doses, while miR15a-5p, miR-16-5p, and miR-423-5p showed an upward trend. Notably, miR-451a, miR-1972, and miR-423-5p levels varied across doses and were associated with pathways such as "PI3K-Akt", "neurotrophin signaling", and "cortisol synthesis", suggesting the profound influence of vaccination on diverse molecular mechanisms. Our research has uncovered that escalating vaccine dosages impact miRNA profiles, which may be associated with the immunological response mechanisms in both the mother and fetus, thus indicating a substantial impact of vaccination on various molecular processes.
Collapse
Affiliation(s)
- Wei-Chun Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan; (W.-C.C.); (S.-Y.H.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Obstetrics and Gynecology, New Taipei City Municipal Tucheng Hospital, New Taipei City 236, Taiwan
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu 300, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Shu-Yu Hu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan; (W.-C.C.); (S.-Y.H.)
| | - Ching-Fen Shen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Mei-Hsiu Cheng
- Taiwan Business Development Department, Inti Taiwan, Inc., Hsinchu 302, Taiwan; (M.-H.C.); (J.-J.H.)
| | - Jun-Jie Hong
- Taiwan Business Development Department, Inti Taiwan, Inc., Hsinchu 302, Taiwan; (M.-H.C.); (J.-J.H.)
| | - Ching-Ju Shen
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan; (W.-C.C.); (S.-Y.H.)
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
9
|
Ahmad W, Gull B, Baby J, Panicker NG, Khader TA, Akhlaq S, Rizvi TA, Mustafa F. Differentially-regulated miRNAs in COVID-19: A systematic review. Rev Med Virol 2023:e2449. [PMID: 37145095 DOI: 10.1002/rmv.2449] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 05/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for coronavirus disease of 2019 (COVID-19) that infected more than 760 million people worldwide with over 6.8 million deaths to date. COVID-19 is one of the most challenging diseases of our times due to the nature of its spread, its effect on multiple organs, and an inability to predict disease prognosis, ranging from being completely asymptomatic to death. Upon infection, SARS-CoV-2 alters the host immune response by changing host-transcriptional machinery. MicroRNAs (miRNAs) are regarded as post-transcriptional regulators of gene expression that can be perturbed by invading viruses. Several in vitro and in vivo studies have reported such dysregulation of host miRNA expression upon SARS-CoV-2 infection. Some of this could occur as an anti-viral response of the host to the viral infection. Viruses themselves can counteract that response by mounting their own pro-viral response that facilitates virus infection, an aspect which may cause pathogenesis. Thus, miRNAs could serve as possible disease biomarkers in infected people. In the current review, we have summarised and analysed the existing data about miRNA dysregulation in patients infected with SARS-CoV-2 to determine their concordance between studies, and identified those that could serve as potential biomarkers during infection, disease progression, and death, even in people with other co-morbidities. Having such biomarkers can be vital in not only predicting COVID-19 prognosis, but also the development of novel miRNA-based anti-virals and therapeutics which can become invaluable in case of the emergence of new viral variants with pandemic potential in the future.
Collapse
Affiliation(s)
- Waqar Ahmad
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bushra Gull
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jasmin Baby
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Neena G Panicker
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Thanumol A Khader
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shaima Akhlaq
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Tahir A Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences (ZCHS), College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, United Arab Emirates
| | - Farah Mustafa
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences (ZCHS), College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
10
|
Guiot J, Henket M, Remacle C, Cambier M, Struman I, Winandy M, Moermans C, Louis E, Malaise M, Ribbens C, Louis R, Njock MS. Systematic review of overlapping microRNA patterns in COVID-19 and idiopathic pulmonary fibrosis. Respir Res 2023; 24:112. [PMID: 37061683 PMCID: PMC10105547 DOI: 10.1186/s12931-023-02413-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/03/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Pulmonary fibrosis is an emerging complication of SARS-CoV-2 infection. In this study, we speculate that patients with COVID-19 and idiopathic pulmonary fibrosis (IPF) may share aberrant expressed microRNAs (miRNAs) associated to the progression of lung fibrosis. OBJECTIVE To identify miRNAs presenting similar alteration in COVID-19 and IPF, and describe their impact on fibrogenesis. METHODS A systematic review of the literature published between 2010 and January 2022 (PROSPERO, CRD42022341016) was conducted using the key words (COVID-19 OR SARS-CoV-2) AND (microRNA OR miRNA) or (idiopathic pulmonary fibrosis OR IPF) AND (microRNA OR miRNA) in Title/Abstract. RESULTS Of the 1988 references considered, 70 original articles were appropriate for data extraction: 27 studies focused on miRNAs in COVID-19, and 43 on miRNAs in IPF. 34 miRNAs were overlapping in COVID-19 and IPF, 7 miRNAs presenting an upregulation (miR-19a-3p, miR-200c-3p, miR-21-5p, miR-145-5p, miR-199a-5p, miR-23b and miR-424) and 9 miRNAs a downregulation (miR-17-5p, miR-20a-5p, miR-92a-3p, miR-141-3p, miR-16-5p, miR-142-5p, miR-486-5p, miR-708-3p and miR-150-5p). CONCLUSION Several studies reported elevated levels of profibrotic miRNAs in COVID-19 context. In addition, the balance of antifibrotic miRNAs responsible of the modulation of fibrotic processes is impaired in COVID-19. This evidence suggests that the deregulation of fibrotic-related miRNAs participates in the development of fibrotic lesions in the lung of post-COVID-19 patients.
Collapse
Affiliation(s)
- Julien Guiot
- Laboratory of Pneumology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
- Fibropole Research Group, University Hospital of Liège, Liège, Belgium
| | - Monique Henket
- Laboratory of Pneumology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
| | - Claire Remacle
- Laboratory of Pneumology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
- Laboratory of Molecular Angiogenesis, GIGA Research Center, University of Liège, Liège, Belgium
| | - Maureen Cambier
- Laboratory of Pneumology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
- Laboratory of Molecular Angiogenesis, GIGA Research Center, University of Liège, Liège, Belgium
| | - Ingrid Struman
- Laboratory of Molecular Angiogenesis, GIGA Research Center, University of Liège, Liège, Belgium
| | - Marie Winandy
- Laboratory of Pneumology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
| | - Catherine Moermans
- Laboratory of Pneumology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
| | - Edouard Louis
- Laboratory of Gastroenterology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
- Fibropole Research Group, University Hospital of Liège, Liège, Belgium
| | - Michel Malaise
- Laboratory of Rheumatology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
- Fibropole Research Group, University Hospital of Liège, Liège, Belgium
| | - Clio Ribbens
- Laboratory of Rheumatology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
- Fibropole Research Group, University Hospital of Liège, Liège, Belgium
| | - Renaud Louis
- Laboratory of Pneumology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
- Fibropole Research Group, University Hospital of Liège, Liège, Belgium
| | - Makon-Sébastien Njock
- Laboratory of Pneumology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
- Fibropole Research Group, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
11
|
Dutra MDCP, Martins da Silva AB, de Souza Ferreira E, Carvalho AJDBA, Lima MDS, Telles Biasoto AC. Bioaccessibility of phenolic compounds from Brazilian grape juices using a digestion model with intestinal barrier passage. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
12
|
Jankovic M, Nikolic D, Novakovic I, Petrovic B, Lackovic M, Santric-Milicevic M. miRNAs as a Potential Biomarker in the COVID-19 Infection and Complications Course, Severity, and Outcome. Diagnostics (Basel) 2023; 13:1091. [PMID: 36980399 PMCID: PMC10047241 DOI: 10.3390/diagnostics13061091] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/15/2023] Open
Abstract
During the last three years, since the emergence of the COVID-19 pandemic, a significant number of scientific publications have focused on resolving susceptibility to the infection, as well as the course of the disease and potential long-term complications. COVID-19 is widely considered as a multisystem disease and a variety of socioeconomic, medical, and genetic/epigenetic factors may contribute to the disease severity and outcome. Furthermore, the SARS-COV-2 infection may trigger pathological processes and accelerate underlying conditions to clinical entities. The development of specific and sensitive biomarkers that are easy to obtain will allow for patient stratification, prevention, prognosis, and more individualized treatments for COVID-19. miRNAs are proposed as promising biomarkers for different aspects of COVID-19 disease (susceptibility, severity, complication course, outcome, and therapeutic possibilities). This review summarizes the most relevant findings concerning miRNA involvement in COVID-19 pathology. Additionally, the role of miRNAs in wide range of complications due to accompanied and/or underlying health conditions is discussed. The importance of understanding the functional relationships between different conditions, such as pregnancy, obesity, or neurological diseases, with COVID-19 is also highlighted.
Collapse
Affiliation(s)
- Milena Jankovic
- Neurology Clinic, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dejan Nikolic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Department of Physical Medicine and Rehabilitation, University Children's Hospital, 11000 Belgrade, Serbia
| | - Ivana Novakovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Bojana Petrovic
- Clinic of Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Milan Lackovic
- Department of Obstetrics and Gynecology, University Hospital "Dragisa Misovic", 11000 Belgrade, Serbia
| | - Milena Santric-Milicevic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Institute of Social Medicine, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, School of Public Health and Health Management, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
13
|
Wong YP, Tan GC, Khong TY. SARS-CoV-2 Transplacental Transmission: A Rare Occurrence? An Overview of the Protective Role of the Placenta. Int J Mol Sci 2023; 24:ijms24054550. [PMID: 36901979 PMCID: PMC10002996 DOI: 10.3390/ijms24054550] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
The outbreak of the coronavirus disease 2019 (COVID-19) pandemic, caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a global public health crisis, causing substantial concern especially to the pregnant population. Pregnant women infected with SARS-CoV-2 are at greater risk of devastating pregnancy complications such as premature delivery and stillbirth. Irrespective of the emerging reported cases of neonatal COVID-19, reassuringly, confirmatory evidence of vertical transmission is still lacking. The protective role of the placenta in limiting in utero spread of virus to the developing fetus is intriguing. The short- and long-term impact of maternal COVID-19 infection in the newborn remains an unresolved question. In this review, we explore the recent evidence of SARS-CoV-2 vertical transmission, cell-entry pathways, placental responses towards SARS-CoV-2 infection, and its potential effects on the offspring. We further discuss how the placenta serves as a defensive front against SARS-CoV-2 by exerting various cellular and molecular defense pathways. A better understanding of the placental barrier, immune defense, and modulation strategies involved in restricting transplacental transmission may provide valuable insights for future development of antiviral and immunomodulatory therapies to improve pregnancy outcomes.
Collapse
Affiliation(s)
- Yin Ping Wong
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Department of Pathology, SA Pathology, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
- Correspondence: (Y.P.W.); (G.C.T.)
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Correspondence: (Y.P.W.); (G.C.T.)
| | - T. Yee Khong
- Department of Pathology, SA Pathology, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
- Department of Pathology, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
14
|
Periwal N, Bhardwaj U, Sarma S, Arora P, Sood V. In silico analysis of SARS-CoV-2 genomes: Insights from SARS encoded non-coding RNAs. Front Cell Infect Microbiol 2022; 12:966870. [PMID: 36519126 PMCID: PMC9742375 DOI: 10.3389/fcimb.2022.966870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022] Open
Abstract
The recent pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 has resulted in enormous deaths around the world. Clues from genomic sequences of parent and their mutants can be obtained to understand the evolving pathogenesis of this virus. Apart from the viral proteins, virus-encoded microRNAs (miRNAs) have been shown to play a vital role in regulating viral pathogenesis. Thus we sought to investigate the miRNAs encoded by SARS-CoV-2, its mutants, and the host. Here, we present the results obtained using a dual approach i.e (i) identifying host-encoded miRNAs that might regulate viral pathogenesis and (ii) identifying viral-encoded miRNAs that might regulate host cell signaling pathways and aid in viral pathogenesis. Analysis utilizing the first approach resulted in the identification of ten host-encoded miRNAs that could target the SARS, SARS-CoV-2, and its mutants. Interestingly our analysis revealed that there is a significantly higher number of host miRNAs that could target the SARS-CoV-2 genome as compared to the SARS reference genome. Results from the second approach resulted in the identification of a set of virus-encoded miRNAs which might regulate host signaling pathways. Our analysis further identified a similar "GA" rich motif in the SARS-CoV-2 and its mutant genomes that was shown to play a vital role in lung pathogenesis during severe SARS infections. In summary, we have identified human and virus-encoded miRNAs that might regulate the pathogenesis of SARS coronaviruses and describe similar non-coding RNA sequences in SARS-CoV-2 that were shown to regulate SARS-induced lung pathology in mice.
Collapse
Affiliation(s)
- Neha Periwal
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | | | - Sankritya Sarma
- Department of Zoology, Hansraj College, University of Delhi, Delhi, India
| | - Pooja Arora
- Department of Zoology, Hansraj College, University of Delhi, Delhi, India
| | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, New Delhi, India,*Correspondence: Vikas Sood,
| |
Collapse
|
15
|
Shestakova M, Kononenko I, Kalmykovа Z, Markova T, Kaplun E, Lysenko M, Mokrysheva N. Glycated hemoglobin level dynamics in COVID-19 survivors: 12 months follow-up study after discharge from hospital. PLoS One 2022; 17:e0275381. [PMID: 36350895 PMCID: PMC9645657 DOI: 10.1371/journal.pone.0275381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/15/2022] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION One of the stages of reproduction of SARS-CoV-2 is the S-protein glycosylation to facilitate penetration into target cells. It has been suggested that SARS-CoV-2 is able to enter erythrocytes, interact with heme and porphyrin, which could influence HbA1c levels. Assessment of HbA1c levels in individuals with acute COVID-19 and after recovery may show clinical relevance of this hypothesis. AIM To assess HbA1c levels in patients with COVID-19 in the acute phase and in early (6-8 weeks) and late (52±2 weeks) periods after recovery. MATERIALS AND METHODS We conducted a multicenter prospective study, which included patients hospitalized in Endocrinology Research Centre and the City Clinical Hospital № 52" diagnosed with COVID-19, virus identified/ not identified. Patients were divided into three groups according to baseline HbA1c level and the presence or absence of previous history of diabetes previous history of diabetes mellitus (DM): HbA1c ≤ 6.0%, HbA1c > 6.0% and patients with DM. Patients were examined during the acute COVID-19 phase and in early (6-8 weeks) and late (52±2 weeks) periods after recovery. Oral glucose tolerance test was performed in the group with initial HbA1c > 6.0% to clarify the diagnosis. RESULTS We included 194 patients in the study. During the follow-up, 52 patients were examined in 6-8 week period: 7 with HbA1c ≤ 6.0%, 34 with HbA1c > 6.0%, 11-with previously diagnosed DM. Carbohydrate metabolism assessment in the later stages (52±2 weeks) after recovery was performed in 78 patients: 33 patients with HbA1c ≤ 6.0%, 36 patients with HbA1c > 6.0% and 9 patients with previously established diabetes. HbA1c median in patients with HbA1c ≤ 6.0% was 5.7% [5.3;5.8], with HbA1c>6.0% -6.4% [6.2; 6.6], with previously diagnosed DM-7.7% [7.2; 8.9]. Statistically significant decrease in HbA1c over time 6-8 weeks after extracts were obtained in both groups of individuals without a history of DM (Wilcoxon test, p<0.05). After 52±2 weeks we observed HbA1c decrease in all three groups (Fridman test, p<0.05): in patients with HbA1c ≤ 6.0% median HbA1c was 5.5[5.3;5.7], with HbA1c>6.0% - 6.1[6.15;6.54], with previously diagnosed DM-7.8 [5.83; 8.08]. Development of DM after 52±2 weeks was recorded in 7.24% of all examined patients without a history of DM, which is 16.6% of the total number of patients examined in dynamics with HbA1c > 6.0%. CONCLUSION HbA1c elevation during the acute phase of COVID-19 may be false due to the effect of SARS-CoV-2 on hemoglobin kinetics and/or detection on the surface of the SARS-CoV-2 virion highly glycosylated S-proteins by high performance liquid chromatography determinations. Upon detection HbA1c > 6.0% in patients with COVID-19 in the active phase of the disease without concomitant hyperglycemia re-determine the level of HbA1c after recovery is recommended.
Collapse
Affiliation(s)
| | | | | | | | | | - Mar’yana Lysenko
- City Clinical Hospital № 52, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | | |
Collapse
|
16
|
Lukiw WJ, Jaber VR, Pogue AI, Zhao Y. SARS-CoV-2 Invasion and Pathological Links to Prion Disease. Biomolecules 2022; 12:1253. [PMID: 36139092 PMCID: PMC9496025 DOI: 10.3390/biom12091253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID-19 disease, is a highly infectious and transmissible viral pathogen that continues to impact human health globally. Nearly ~600 million people have been infected with SARS-CoV-2, and about half exhibit some degree of continuing health complication, generically referred to as long COVID. Lingering and often serious neurological problems for patients in the post-COVID-19 recovery period include brain fog, behavioral changes, confusion, delirium, deficits in intellect, cognition and memory issues, loss of balance and coordination, problems with vision, visual processing and hallucinations, encephalopathy, encephalitis, neurovascular or cerebrovascular insufficiency, and/or impaired consciousness. Depending upon the patient’s age at the onset of COVID-19 and other factors, up to ~35% of all elderly COVID-19 patients develop a mild-to-severe encephalopathy due to complications arising from a SARS-CoV-2-induced cytokine storm and a surge in cytokine-mediated pro-inflammatory and immune signaling. In fact, this cytokine storm syndrome: (i) appears to predispose aged COVID-19 patients to the development of other neurological complications, especially those who have experienced a more serious grade of COVID-19 infection; (ii) lies along highly interactive and pathological pathways involving SARS-CoV-2 infection that promotes the parallel development and/or intensification of progressive and often lethal neurological conditions, and (iii) is strongly associated with the symptomology, onset, and development of human prion disease (PrD) and other insidious and incurable neurological syndromes. This commentary paper will evaluate some recent peer-reviewed studies in this intriguing area of human SARS-CoV-2-associated neuropathology and will assess how chronic, viral-mediated changes to the brain and CNS contribute to cognitive decline in PrD and other progressive, age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
- Alchem Biotek Research, Toronto, ON M5S 1A8, Canada
- Department of Ophthalmology, LSU Health Science Center, New Orleans, LA 70112, USA
- Department Neurology, LSU Health Science Center, New Orleans, LA 70112, USA
| | - Vivian R. Jaber
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | | | - Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
- Department of Cell Biology & Anatomy, LSU Health Science Center, New Orleans, LA 70112, USA
| |
Collapse
|