1
|
Aden D, Sureka N, Zaheer S, Chaurasia JK, Zaheer S. Metabolic Reprogramming in Cancer: Implications for Immunosuppressive Microenvironment. Immunology 2025; 174:30-72. [PMID: 39462179 DOI: 10.1111/imm.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
Cancer is a complex and heterogeneous disease characterised by uncontrolled cell growth and proliferation. One hallmark of cancer cells is their ability to undergo metabolic reprogramming, which allows them to sustain their rapid growth and survival. This metabolic reprogramming creates an immunosuppressive microenvironment that facilitates tumour progression and evasion of the immune system. In this article, we review the mechanisms underlying metabolic reprogramming in cancer cells and discuss how these metabolic alterations contribute to the establishment of an immunosuppressive microenvironment. We also explore potential therapeutic strategies targeting metabolic vulnerabilities in cancer cells to enhance immune-mediated anti-tumour responses. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02044861, NCT03163667, NCT04265534, NCT02071927, NCT02903914, NCT03314935, NCT03361228, NCT03048500, NCT03311308, NCT03800602, NCT04414540, NCT02771626, NCT03994744, NCT03229278, NCT04899921.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical Science and Research, New Delhi, India
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
2
|
Zuo Q, Kang Y. Metabolic Reprogramming and Adaption in Breast Cancer Progression and Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:347-370. [PMID: 39821033 DOI: 10.1007/978-3-031-70875-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Recent evidence has revealed that cancer is not solely driven by genetic abnormalities but also by significant metabolic dysregulation. Cancer cells exhibit altered metabolic demands and rewiring of cellular metabolism to sustain their malignant characteristics. Metabolic reprogramming has emerged as a hallmark of cancer, playing a complex role in breast cancer initiation, progression, and metastasis. The different molecular subtypes of breast cancer exhibit distinct metabolic genotypes and phenotypes, offering opportunities for subtype-specific therapeutic approaches. Cancer-associated metabolic phenotypes encompass dysregulated nutrient uptake, opportunistic nutrient acquisition strategies, altered utilization of glycolysis and TCA cycle intermediates, increased nitrogen demand, metabolite-driven gene regulation, and metabolic interactions with the microenvironment. The tumor microenvironment, consisting of stromal cells, immune cells, blood vessels, and extracellular matrix components, influences metabolic adaptations through modulating nutrient availability, oxygen levels, and signaling pathways. Metastasis, the process of cancer spread, involves intricate steps that present unique metabolic challenges at each stage. Successful metastasis requires cancer cells to navigate varying nutrient and oxygen availability, endure oxidative stress, and adapt their metabolic processes accordingly. The metabolic reprogramming observed in breast cancer is regulated by oncogenes, tumor suppressor genes, and signaling pathways that integrate cellular signaling with metabolic processes. Understanding the metabolic adaptations associated with metastasis holds promise for identifying therapeutic targets to disrupt the metastatic process and improve patient outcomes. This chapter explores the metabolic alterations linked to breast cancer metastasis and highlights the potential for targeted interventions in this context.
Collapse
Affiliation(s)
- Qianying Zuo
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, USA.
| |
Collapse
|
3
|
Zakic T, Pekovic-Vaughan V, Cvoro A, Korac A, Jankovic A, Korac B. Redox and metabolic reprogramming in breast cancer and cancer-associated adipose tissue. FEBS Lett 2024; 598:2106-2134. [PMID: 38140817 DOI: 10.1002/1873-3468.14794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Redox and metabolic processes are tightly coupled in both physiological and pathological conditions. In cancer, their integration occurs at multiple levels and is characterized by synchronized reprogramming both in the tumor tissue and its specific but heterogeneous microenvironment. In breast cancer, the principal microenvironment is the cancer-associated adipose tissue (CAAT). Understanding how the redox-metabolic reprogramming becomes coordinated in human breast cancer is imperative both for cancer prevention and for the establishment of new therapeutic approaches. This review aims to provide an overview of the current knowledge of the redox profiles and regulation of intermediary metabolism in breast cancer while considering the tumor and CAAT of breast cancer as a unique Warburg's pseudo-organ. As cancer is now recognized as a systemic metabolic disease, we have paid particular attention to the cell-specific redox-metabolic reprogramming and the roles of estrogen receptors and circadian rhythms, as well as their crosstalk in the development, growth, progression, and prognosis of breast cancer.
Collapse
Affiliation(s)
- Tamara Zakic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Vanja Pekovic-Vaughan
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, William Henry Duncan Building, University of Liverpool, UK
| | | | | | - Aleksandra Jankovic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Bato Korac
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Serbia
| |
Collapse
|
4
|
Dong H, Jia W, Meng W, Zhang R, Qi Z, Chen Z, Xie S, Min J, Liu L, Shen J. DAB2IP inhibits glucose uptake by modulating HIF-1α ubiquitination under hypoxia in breast cancer. Oncogenesis 2024; 13:20. [PMID: 38862467 PMCID: PMC11166643 DOI: 10.1038/s41389-024-00523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Metabolic reprogramming has become increasingly important in tumor biology research. The glucose metabolic pathway is a major energy source and is often dysregulated in breast cancer. DAB2IP is widely reported to be a tumor suppressor that acts as a scaffold protein to suppress tumor malignancy in breast cancer. Interestingly, DAB2IP has also been found to be a potential regulator of glucose uptake; however, the exact mechanism remains unclear. In this study, we found that DAB2IP inhibited glucose uptake under hypoxia conditions in breast cancer cells by suppressing HIF-1α signals. Mechanically, DAB2IP interacted with the E3 ubiquitin ligase STUB1 via its PER domain, thus triggering STUB1 mediated HIF-1α ubiquitylation and degradation, and inhibit glucose metabolism and tumor progression. Deleting the PER domain abrogated the DAB2IP-related inhibitory effects on glucose uptake, intracellular ATP production, and lactic acid production in breast cancer cells. These findings elucidate the biological roles of DAB2IP in cancer-related glucose metabolism as well as a novel mechanism by which STUB1-driven HIF-1α ubiquitylated degradation is regulated in breast cancer.
Collapse
Affiliation(s)
- Hongliang Dong
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiyi Jia
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Science & Education, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Weijian Meng
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rui Zhang
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhihong Qi
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhuo Chen
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sophia Xie
- Wuhan Britain-China School, Wuhan, 430030, China
| | - Jiang Min
- Gastrointestinal Surgery Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40000, China
| | - Liang Liu
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jie Shen
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Littleflower AB, Parambil ST, Antony GR, Subhadradevi L. The determinants of metabolic discrepancies in aerobic glycolysis: Providing potential targets for breast cancer treatment. Biochimie 2024; 220:107-121. [PMID: 38184121 DOI: 10.1016/j.biochi.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Altered aerobic glycolysis is the robust mechanism to support cancer cell survival and proliferation beyond the maintenance of cellular energy metabolism. Several investigators portrayed the important role of deregulated glycolysis in different cancers, including breast cancer. Breast cancer is the most ubiquitous form of cancer and the primary cause of cancer death in women worldwide. Breast cancer with increased glycolytic flux is hampered to eradicate with current therapies and can result in tumor recurrence. In spite of the low order efficiency of ATP production, cancer cells are highly addicted to glycolysis. The glycolytic dependency of cancer cells provides potential therapeutic strategies to preferentially kill cancer cells by inhibiting glycolysis using antiglycolytic agents. The present review emphasizes the most recent research on the implication of glycolytic enzymes, including glucose transporters (GLUTs), hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), lactate dehydrogenase-A (LDHA), associated signalling pathways and transcription factors, as well as the antiglycolytic agents that target key glycolytic enzymes in breast cancer. The potential activity of glycolytic inhibitors impinges cancer prevalence and cellular resistance to conventional drugs even under worse physiological conditions such as hypoxia. As a single agent or in combination with other chemotherapeutic drugs, it provides the feasibility of new therapeutic modalities against a wide spectrum of human cancers.
Collapse
Affiliation(s)
- Ajeesh Babu Littleflower
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India
| | - Sulfath Thottungal Parambil
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India
| | - Gisha Rose Antony
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India
| | - Lakshmi Subhadradevi
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India.
| |
Collapse
|
6
|
Mazurakova A, Koklesova L, Csizmár SH, Samec M, Brockmueller A, Šudomová M, Biringer K, Kudela E, Pec M, Samuel SM, Kassayova M, Hassan STS, Smejkal K, Shakibaei M, Büsselberg D, Saso L, Kubatka P, Golubnitschaja O. Significance of flavonoids targeting PI3K/Akt/HIF-1α signaling pathway in therapy-resistant cancer cells - A potential contribution to the predictive, preventive, and personalized medicine. J Adv Res 2024; 55:103-118. [PMID: 36871616 PMCID: PMC10770105 DOI: 10.1016/j.jare.2023.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Cancer management faces multiple obstacles, including resistance to current therapeutic approaches. In the face of challenging microenvironments, cancer cells adapt metabolically to maintain their supply of energy and precursor molecules for biosynthesis and thus sustain rapid proliferation and tumor growth. Among the various metabolic adaptations observed in cancer cells, the altered glucose metabolism is the most widely studied. The aberrant glycolytic modification in cancer cells has been associated with rapid cell division, tumor growth, cancer progression, and drug resistance. The higher rates of glycolysis in cancer cells, as a hallmark of cancer progression, is modulated by the transcription factor hypoxia inducible factor 1 alpha (HIF-1α), a downstream target of the PI3K/Akt signaling, the most deregulated pathway in cancer. AIM OF REVIEW We provide a detailed overview of current, primarily experimental, evidence on the potential effectiveness of flavonoids to combat aberrant glycolysis-induced resistance of cancer cells to conventional and targeted therapies. The manuscript focuses primarily on flavonoids reducing cancer resistance via affecting PI3K/Akt, HIF-1α (as the transcription factor critical for glucose metabolism of cancer cells that is regulated by PI3K/Akt pathway), and key glycolytic mediators downstream of PI3K/Akt/HIF-1α signaling (glucose transporters and key glycolytic enzymes). KEY SCIENTIFIC CONCEPTS OF REVIEW The working hypothesis of the manuscript proposes HIF-1α - the transcription factor critical for glucose metabolism of cancer cells regulated by PI3K/Akt pathway as an attractive target for application of flavonoids to mitigate cancer resistance. Phytochemicals represent a source of promising substances for cancer management applicable to primary, secondary, and tertiary care. However, accurate patient stratification and individualized patient profiling represent crucial steps in the paradigm shift from reactive to predictive, preventive, and personalized medicine (PPPM / 3PM). The article is focused on targeting molecular patterns by natural substances and provides evidence-based recommendations for the 3PM relevant implementation.
Collapse
Affiliation(s)
- Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia.
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia
| | - Sandra Hurta Csizmár
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia
| | - Marek Samec
- Department of Pathological Physiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany
| | - Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 66461 Rajhrad, Czech Republic
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia
| | - Erik Kudela
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Monika Kassayova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Safarik University, 04001 Kosice, Slovakia
| | - Sherif T S Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, 61242 Brno, Czech Republic
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia.
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany.
| |
Collapse
|
7
|
Huang PC, Chang CW, Lin YC, Chen CY, Chen TY, Chuang LT, Liu CJ, Huang CL, Li WC. Pyruvate Kinase Differentially Alters Metabolic Signatures during Head and Neck Carcinogenesis. Int J Mol Sci 2023; 24:16639. [PMID: 38068962 PMCID: PMC10706023 DOI: 10.3390/ijms242316639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
During glycolysis, the muscle isoform of pyruvate kinase PKM2 produces ATP in exchange for dephosphorylation of phosphoenolpyruvate (PEP) into pyruvate. PKM2 has been considered as a tumor-promoting factor in most cancers, whereas the regulatory role of PKM2 during head and neck carcinogenesis remained to be delineated. PKM2 mRNA and protein expression was examined in head and neck tumorous specimens. The role of PKM2 in controlling cellular malignancy was determined in shRNA-mediated PKM2-deficient head and neck squamous cell carcinoma (HNSC) cells. In agreement with the results in other cancers, PKM2 expression is enriched in both mouse and human HNSC tissues. Nevertheless, PKM2 mRNA expression reversely correlated with tumor stage, and greater recurrence-free survival rates are evident in the PKM2high HNSC population, arguing that PKM2 may be tumor-suppressive. Multifaceted analyses showed a greater in vivo xenografic tumor growth and an enhanced cisplatin resistance in response to PKM2 loss, whereas PKM2 silencing led to reduced cell motility. At the molecular level, metabolic shifts towards mitochondrial metabolism and activation of oncogenic Protein kinase B (PKB/Akt) and extracellular signal-regulated kinase (ERK) signals were detected in PKM2-silencing HNSC cells. In sum, our findings demonstrated that PKM2 differentially modulated head and neck tumorigenicity via metabolic reprogramming.
Collapse
Affiliation(s)
- Pei-Chun Huang
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-C.H.); (C.-Y.C.); (T.-Y.C.)
| | - Ching-Wen Chang
- Graduate Institute of Metabolism and Obesity Sciences (GIMOS), College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan;
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Cheng Lin
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (Y.-C.L.); (C.-J.L.)
- Oral Medicine Innovation Center (OMIC), National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chang-Yi Chen
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-C.H.); (C.-Y.C.); (T.-Y.C.)
| | - Tsai-Ying Chen
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-C.H.); (C.-Y.C.); (T.-Y.C.)
| | - Lu-Te Chuang
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan;
| | - Chung-Ji Liu
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (Y.-C.L.); (C.-J.L.)
- Department of Oral and Maxillofacial Surgery, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Chien-Ling Huang
- Department of Health Technology and Informatics (HTI), The Hong Kong Polytechnic University (PolyU), Hung Hom, Kowloon, Hong Kong SAR, China;
| | - Wan-Chun Li
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-C.H.); (C.-Y.C.); (T.-Y.C.)
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (Y.-C.L.); (C.-J.L.)
- Oral Medicine Innovation Center (OMIC), National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| |
Collapse
|
8
|
Lei P, Wang W, Sheldon M, Sun Y, Yao F, Ma L. Role of Glucose Metabolic Reprogramming in Breast Cancer Progression and Drug Resistance. Cancers (Basel) 2023; 15:3390. [PMID: 37444501 PMCID: PMC10341343 DOI: 10.3390/cancers15133390] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The involvement of glucose metabolic reprogramming in breast cancer progression, metastasis, and therapy resistance has been increasingly appreciated. Studies in recent years have revealed molecular mechanisms by which glucose metabolic reprogramming regulates breast cancer. To date, despite a few metabolism-based drugs being tested in or en route to clinical trials, no drugs targeting glucose metabolism pathways have yet been approved to treat breast cancer. Here, we review the roles and mechanisms of action of glucose metabolic reprogramming in breast cancer progression and drug resistance. In addition, we summarize the currently available metabolic inhibitors targeting glucose metabolism and discuss the challenges and opportunities in targeting this pathway for breast cancer treatment.
Collapse
Affiliation(s)
- Pan Lei
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (W.W.)
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Wenzhou Wang
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (W.W.)
| | - Marisela Sheldon
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (W.W.)
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston TX 77030, USA
| |
Collapse
|
9
|
Lin J, Fang W, Xiang Z, Wang Q, Cheng H, Chen S, Fang J, Liu J, Wang Q, Lu Z, Ma L. Glycolytic enzyme HK2 promotes PD-L1 expression and breast cancer cell immune evasion. Front Immunol 2023; 14:1189953. [PMID: 37377974 PMCID: PMC10291184 DOI: 10.3389/fimmu.2023.1189953] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Immune therapies targeting the PD-1/PD-L1 pathway have been employed in the treatment of breast cancer, which requires aerobic glycolysis to sustain breast cancer cells growth. However, whether PD-L1 expression is regulated by glycolysis in breast cancer cells remains to be further elucidated. Here, we demonstrate that glycolytic enzyme hexokinase 2 (HK2) plays a crucial role in upregulating PD-L1 expression. Under high glucose conditions, HK2 acts as a protein kinase and phosphorylates IκBα at T291 in breast cancer cells, leading to the rapid degradation of IκBα and activation of NF-κB, which enters the nucleus and promotes PD-L1 expression. Immunohistochemistry staining of human breast cancer specimens and bioinformatics analyses reveals a positive correlation between HK2 and PD-L1 expression levels, which are inversely correlated with immune cell infiltration and survival time of breast cancer patients. These findings uncover the intrinsic and instrumental connection between aerobic glycolysis and PD-L1 expression-mediated tumor cell immune evasion and underscore the potential to target the protein kinase activity of HK2 for breast cancer treatment.
Collapse
Affiliation(s)
- Jichun Lin
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wenshuo Fang
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhuo Xiang
- Oncology Department, Shandong Second Provincial General Hospital, Jinan, China
| | - Qingqing Wang
- Oncology Department, Shandong Second Provincial General Hospital, Jinan, China
| | - Huapeng Cheng
- Oncology Department, Shandong Second Provincial General Hospital, Jinan, China
| | - Shimin Chen
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jing Fang
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jia Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Qiang Wang
- Oncology Department, Shandong Second Provincial General Hospital, Jinan, China
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Leina Ma
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| |
Collapse
|
10
|
Pouliquen DL, Trošelj KG, Anto RJ. Curcuminoids as Anticancer Drugs: Pleiotropic Effects, Potential for Metabolic Reprogramming and Prospects for the Future. Pharmaceutics 2023; 15:1612. [PMID: 37376060 DOI: 10.3390/pharmaceutics15061612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The number of published studies on curcuminoids in cancer research, including its lead molecule curcumin and synthetic analogs, has been increasing substantially during the past two decades. Insights on the diversity of inhibitory effects they have produced on a multitude of pathways involved in carcinogenesis and tumor progression have been provided. As this wealth of data was obtained in settings of various experimental and clinical data, this review first aimed at presenting a chronology of discoveries and an update on their complex in vivo effects. Secondly, there are many interesting questions linked to their pleiotropic effects. One of them, a growing research topic, relates to their ability to modulate metabolic reprogramming. This review will also cover the use of curcuminoids as chemosensitizing molecules that can be combined with several anticancer drugs to reverse the phenomenon of multidrug resistance. Finally, current investigations in these three complementary research fields raise several important questions that will be put among the prospects for the future research related to the importance of these molecules in cancer research.
Collapse
Affiliation(s)
- Daniel L Pouliquen
- Université d'Angers, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| | - Koraljka Gall Trošelj
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ruby John Anto
- Molecular Bioassay Laboratory, Institute of Advanced Virology, Thiruvananthapuram 695317, India
| |
Collapse
|
11
|
Chelakkot C, Chelakkot VS, Shin Y, Song K. Modulating Glycolysis to Improve Cancer Therapy. Int J Mol Sci 2023; 24:2606. [PMID: 36768924 PMCID: PMC9916680 DOI: 10.3390/ijms24032606] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Cancer cells undergo metabolic reprogramming and switch to a 'glycolysis-dominant' metabolic profile to promote their survival and meet their requirements for energy and macromolecules. This phenomenon, also known as the 'Warburg effect,' provides a survival advantage to the cancer cells and make the tumor environment more pro-cancerous. Additionally, the increased glycolytic dependence also promotes chemo/radio resistance. A similar switch to a glycolytic metabolic profile is also shown by the immune cells in the tumor microenvironment, inducing a competition between the cancer cells and the tumor-infiltrating cells over nutrients. Several recent studies have shown that targeting the enhanced glycolysis in cancer cells is a promising strategy to make them more susceptible to treatment with other conventional treatment modalities, including chemotherapy, radiotherapy, hormonal therapy, immunotherapy, and photodynamic therapy. Although several targeting strategies have been developed and several of them are in different stages of pre-clinical and clinical evaluation, there is still a lack of effective strategies to specifically target cancer cell glycolysis to improve treatment efficacy. Herein, we have reviewed our current understanding of the role of metabolic reprogramming in cancer cells and how targeting this phenomenon could be a potential strategy to improve the efficacy of conventional cancer therapy.
Collapse
Affiliation(s)
| | - Vipin Shankar Chelakkot
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Youngkee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Science, Department of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung Song
- College of Pharmacy, Duksung Women’s University, Seoul 01366, Republic of Korea
| |
Collapse
|
12
|
Li W, Chen W, Wang J, Zhao G, Chen L, Wan Y, Luo Q, Li W, Huang H, Li W, Li W, Yang Y, Chen D, Su Q. A PDX model combined with CD-DST assay to evaluate the antitumor properties of KRpep-2d and oxaliplatin in KRAS (G12D) mutant colorectal cancer. Heliyon 2022; 8:e12518. [PMID: 36590511 PMCID: PMC9800201 DOI: 10.1016/j.heliyon.2022.e12518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/20/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Patient-derived xenograft (PDX) models are more faithful in maintaining the characteristics of human tumors than cell lines and are widely used in drug development, although they have some disadvantages, including their relative low success rate, long turn-around time, and high costs. The collagen gel droplet embedded culture drug sensitivity test (CD-DST) has been used as an in-vitro drug sensitivity test for patients with cancer because of its high success rate of primary cell culture, high sensitivity, and good clinical relevance, but it is based on an in-vitro cell culture and may not simulate the tumor microenvironment accurately. This study aims to combine a PDX model with CD-DST to evaluate the efficiency of antitumor agents. KRpep-2d, a small peptide targeting KRAS (G12D), and oxaliplatin were used to verify the feasibility of this approach. Whole-exome sequencing and Sanger sequencing were first applied to test and validate the KRAS mutation status of a panel of colorectal cancer PDX tissues. One PDX model was verified to carry KRAS (G12D) mutation and was used for in-vivo and the CD-DST drug tests. We then established the PDX mouse model from the patient with the KRAS (G12D) mutation and obtained viable cancer cells derived from the same PDX model. Next, the antitumor abilities of KRpep-2d and oxaliplatin were estimated in the PDX model and the CD-DST. We found that KRpep-2d showed no significant antitumor effect on the xenograft model or on cancer cells derived from the same PDX model. In contrast, oxaliplatin showed significant inhibitory effects in both tests. In conclusion, the PDX model in combination with the CD-DST assay is a comprehensive and feasible method of evaluating the antitumor properties of compounds and could be applied for new drug discovery.
Collapse
Affiliation(s)
- Wuguo Li
- Animal Experiment Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Wei Chen
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, PR China
| | - Jialin Wang
- General Surgical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Guangyin Zhao
- Animal Experiment Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Lianzhou Chen
- General Surgical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Yong Wan
- Guangzhou Darui Biotechnology Co., Ltd., Guangzhou, Guangdong, PR China
| | - Qianxin Luo
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Wenwen Li
- Animal Experiment Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Haoji Huang
- Animal Experiment Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Wenying Li
- Animal Experiment Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Wu Li
- Animal Experiment Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Yutong Yang
- Animal Experiment Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Daici Chen
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China,Corresponding author.
| | - Qiao Su
- Animal Experiment Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China,Corresponding author.
| |
Collapse
|
13
|
Single-Cell FISH Analysis Reveals Distinct Shifts in PKM Isoform Populations during Drug Resistance Acquisition. Biomolecules 2022; 12:biom12081082. [PMID: 36008976 PMCID: PMC9405743 DOI: 10.3390/biom12081082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
The Warburg effect, i.e., the utilization of glycolysis under aerobic conditions, is recognized as a survival advantage of cancer cells. However, how the glycolytic activity is affected during drug resistance acquisition has not been explored at single-cell resolution. Because the relative ratio of the splicing isoform of pyruvate kinase M (PKM), PKM2/PKM1, can be used to estimate glycolytic activity, we utilized a single-molecule fluorescence in situ hybridization (SM-FISH) method to simultaneously quantify the mRNA levels of PKM1 and PKM2. Treatment of HCT116 cells with gefitinib (GE) resulted in two distinct populations of cells. However, as cells developed GE resistance, the GE-sensitive population with reduced PKM2 expression disappeared, and GE-resistant cells (Res) demonstrated enhanced PKM1 expression and a tightly regulated PKM2/PKM1 ratio. Our data suggest that maintaining an appropriate PKM2 level is important for cell survival upon GE treatment, whereas increased PKM1 expression becomes crucial in GE Res. This approach demonstrates the importance of single-cell-based analysis for our understanding of cancer cell metabolic responses to drugs, which could aid in the design of treatment strategies for drug-resistant cancers.
Collapse
|
14
|
Tőkés AM, Vári-Kakas S, Kulka J, Törőcsik B. Tumor Glucose and Fatty Acid Metabolism in the Context of Anthracycline and Taxane-Based (Neo)Adjuvant Chemotherapy in Breast Carcinomas. Front Oncol 2022; 12:850401. [PMID: 35433453 PMCID: PMC9008716 DOI: 10.3389/fonc.2022.850401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is characterized by considerable metabolic diversity. A relatively high percentage of patients diagnosed with breast carcinoma do not respond to standard-of-care treatment, and alteration in metabolic pathways nowadays is considered one of the major mechanisms responsible for therapeutic resistance. Consequently, there is an emerging need to understand how metabolism shapes therapy response, therapy resistance and not ultimately to analyze the metabolic changes occurring after different treatment regimens. The most commonly applied neoadjuvant chemotherapy regimens in breast cancer contain an anthracycline (doxorubicin or epirubicin) in combination or sequentially administered with taxanes (paclitaxel or docetaxel). Despite several efforts, drug resistance is still frequent in many types of breast cancer, decreasing patients’ survival. Understanding how tumor cells rapidly rewire their signaling pathways to persist after neoadjuvant cancer treatment have to be analyzed in detail and in a more complex system to enable scientists to design novel treatment strategies that target different aspects of tumor cells and tumor resistance. Tumor heterogeneity, the rapidly changing environmental context, differences in nutrient use among different cell types, the cooperative or competitive relationships between cells pose additional challenges in profound analyzes of metabolic changes in different breast carcinoma subtypes and treatment protocols. Delineating the contribution of metabolic pathways to tumor differentiation, progression, and resistance to different drugs is also the focus of research. The present review discusses the changes in glucose and fatty acid pathways associated with the most frequently applied chemotherapeutic drugs in breast cancer, as well the underlying molecular mechanisms and corresponding novel therapeutic strategies.
Collapse
Affiliation(s)
- Anna Mária Tőkés
- 2nd Department of Pathology, Semmelweis University Budapest, Budapest, Hungary
- *Correspondence: Anna Mária Tőkés,
| | - Stefan Vári-Kakas
- Department of Computers and Information Technology, Faculty of Electrical Engineering and Information Technology, University of Oradea, Oradea, Romania
| | - Janina Kulka
- 2nd Department of Pathology, Semmelweis University Budapest, Budapest, Hungary
| | - Beáta Törőcsik
- Department of Biochemistry, Semmelweis University Budapest, Budapest, Hungary
| |
Collapse
|
15
|
Sad K, Parashar P, Tripathi P, Hungyo H, Sistla R, Soni R, Tandon V. Prochlorperazine enhances radiosensitivity of non-small cell lung carcinoma by stabilizing GDP-bound mutant KRAS conformation. Free Radic Biol Med 2021; 177:299-312. [PMID: 34742922 DOI: 10.1016/j.freeradbiomed.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/21/2021] [Accepted: 11/01/2021] [Indexed: 12/25/2022]
Abstract
Lung cancer is considered as leading cancer with the highest mortality. The KRAS-oncogenic mutations are dominant in lung carcinoma leading to poor prognosis and radioresistance, which is a major impediment to radiotherapy. Thus, KRAS mutant inhibitors that synergistically sensitize tumours to radiation are urgently needed. In pursuance of the search for a novel radiosensitizer, high-throughput screening of FDA-approved drugs was performed at active site of K-Ras. Prochlorperazine (PCZ), an antipsychotic drug, showed good binding affinity with KRAS-mutant proteins. PCZ binds to the GTP-binding pocket of KRAS-mutant protein and inhibits its constitutive activation by stabilizing the GDP-bound conformation of K-Ras mutants by 9 kcal/mol compared to WT. PCZ alongwith radiation decreased the clonogenic survival of KRAS-mutant NSCLC but not KRAS-WT cells. The combination treatment activates p-ATM, p53, and p21 proteins, leading to cell cycle arrest. PCZ with increasing radiation caused a linear increase in γH2AX foci, suggesting enhanced DSBs-associated apoptosis in radioresistant A549 cells. Pharmacokinetics study showed Cmax = 526 ng/ml at 30min, 4.6h half-life in plasma, and highest accumulation in tumours. PCZ and 10Gy irradiation synergistically radiosensitize mice xenografts via downregulation of Ras/Raf/MEK/ERK pathway. Our efforts have led to the discovery of PCZ as a lead compound. In preclinical analyses, treatment with PCZ alone and in combination with radiation led to regression of KRAS-G12S tumours.
Collapse
Affiliation(s)
- Kirti Sad
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Palak Parashar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pragya Tripathi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Hungharla Hungyo
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ramesh Sistla
- Think Molecular Technologies Pvt. Ltd., Bengaluru, Karnataka, 560102, India
| | - Ravi Soni
- Institute of Nuclear Medicine & Allied Sciences, New Delhi, 110054, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
16
|
Liu C, Jin Y, Fan Z. The Mechanism of Warburg Effect-Induced Chemoresistance in Cancer. Front Oncol 2021; 11:698023. [PMID: 34540667 PMCID: PMC8446599 DOI: 10.3389/fonc.2021.698023] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022] Open
Abstract
Although chemotherapy can improve the overall survival and prognosis of cancer patients, chemoresistance remains an obstacle due to the diversity, heterogeneity, and adaptability to environmental alters in clinic. To determine more possibilities for cancer therapy, recent studies have begun to explore changes in the metabolism, especially glycolysis. The Warburg effect is a hallmark of cancer that refers to the preference of cancer cells to metabolize glucose anaerobically rather than aerobically, even under normoxia, which contributes to chemoresistance. However, the association between glycolysis and chemoresistance and molecular mechanisms of glycolysis-induced chemoresistance remains unclear. This review describes the mechanism of glycolysis-induced chemoresistance from the aspects of glycolysis process, signaling pathways, tumor microenvironment, and their interactions. The understanding of how glycolysis induces chemoresistance may provide new molecular targets and concepts for cancer therapy.
Collapse
Affiliation(s)
- Chang Liu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ying Jin
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Shin E, Koo JS. Glucose Metabolism and Glucose Transporters in Breast Cancer. Front Cell Dev Biol 2021; 9:728759. [PMID: 34552932 PMCID: PMC8450384 DOI: 10.3389/fcell.2021.728759] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common malignancy in women worldwide and is associated with high mortality rates despite the continuously advancing treatment strategies. Glucose is essential for cancer cell metabolism owing to the Warburg effect. During the process of glucose metabolism, various glycolytic metabolites, such as serine and glycine metabolites, are produced and other metabolic pathways, such as the pentose phosphate pathway (PPP), are associated with the process. Glucose is transported into the cell by glucose transporters, such as GLUT. Breast cancer shows high expressions of glucose metabolism-related enzymes and GLUT, which are also related to breast cancer prognosis. Triple negative breast cancer (TNBC), which is a high-grade breast cancer, is especially dependent on glucose metabolism. Breast cancer also harbors various stromal cells such as cancer-associated fibroblasts and immune cells as tumor microenvironment, and there exists a metabolic interaction between these stromal cells and breast cancer cells as explained by the reverse Warburg effect. Breast cancer is heterogeneous, and, consequently, its metabolic status is also diverse, which is especially affected by the molecular subtype, progression stage, and metastatic site. In this review, we will focus on glucose metabolism and glucose transporters in breast cancer, and we will additionally discuss their potential applications as cancer imaging tracers and treatment targets.
Collapse
Affiliation(s)
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
18
|
Li H, Yan M, Wu X, Wang Y, Huang L. Expression and clinical significance of pyruvate kinase M2 in breast cancer: A protocol for meta-analysis and bioinformatics validation analysis. Medicine (Baltimore) 2021; 100:e25545. [PMID: 33950928 PMCID: PMC8104244 DOI: 10.1097/md.0000000000025545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Breast cancer is a common malignant tumor in women. In recent years, its incidence is increasing year by year, and its morbidity and mortality rank the first place among female malignant tumors. Some key enzymes and intermediates in glycolysis are closely related to tumor development. Pyruvate kinase M2 (PKM2) is an important rate-limiting enzyme in glycolysis pathway. Meanwhile, it is highly expressed in proliferative cells, especially in tumor cells, and plays an important role in the formation of Warburg effect and tumorigenesis. Previous studies have explored the effects of PKM2 expression on the prognosis and clinical significance of breast cancer patients, while the results are contradictory and uncertain. This study uses controversial data for meta-analysis to accurately evaluate the problem. We collected relevant Oncomine and The Cancer Genome Atlas (TCGA) data to further verify the results. Through bioinformatics analysis, the mechanism and related pathways of PKM2 in breast cancer are explored. METHODS We searched Wanfang, Chinese Biomedical Literature Database, Chinese National Knowledge Infrastructure, the Chongqing VIP Chinese Science and Technology Periodical Database, PubMed, Embase, and Web of Science databases from inception to March 2021. The language restrictions are Chinese and English. The published literatures on PKM2 expression and prognosis or clinicopathological characteristics of breast cancer patients were statistically analyzed. Combined hazard ratios (HRs), odds ratios (ORs), and 95% confidence intervals (95% CIs) were used to evaluate the effects of PKM2 on the prognosis and clinicopathological features of breast cancer. Stata 14.0 software was applied for meta-analysis. Oncomine and TCGA databases were used to meta-analyze the differences of PKM2 mRNA expression between breast cancer and normal breast tissues. The expression of PKM2 protein was verified by Human Protein Atlas (HPA) database. The relationship between the gene and the survival of breast cancer patients was analyzed by Gene Expression Profiling Interactive Analysis (GEPIA). The relationship between PKM2 gene and clinicopathological characteristics was analyzed by using LinkedOmics, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analysis was performed by using Metascape. Protein-protein interaction (PPI) network was constructed by String website. RESULTS The results of this meta-analysis will be submitted to a peer-reviewed journal for publication. CONCLUSION This study provides high-quality medical evidence for the correlation between the expression of PKM2 and the prognosis and clinicopathological features of breast cancer. Through bioinformatics analysis, this study further deepens the understanding of the mechanism and related pathways of PKM2 in breast cancer. ETHICS AND DISSEMINATION The private information from individuals will not be published. This systematic review also should not damage participants' rights. Ethical approval is not available. The results may be published in a peer-reviewed journal or disseminated in relevant conferences. OSF REGISTRATION NUMBER DOI 10.17605/OSF.IO/W52HB.
Collapse
|
19
|
Arundhathi JRD, Mathur SR, Gogia A, Deo SVS, Mohapatra P, Prasad CP. Metabolic changes in triple negative breast cancer-focus on aerobic glycolysis. Mol Biol Rep 2021; 48:4733-4745. [PMID: 34047880 DOI: 10.1007/s11033-021-06414-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023]
Abstract
Among breast cancer subtypes, the triple negative breast cancer (TNBC) has the worst prognosis. In absence of any permitted targeted therapy, standard chemotherapy is the mainstay for TNBC treatment. Hence, there is a crucial need to identify potential druggable targets in TNBCs for its effective treatment. In recent times, metabolic reprogramming has emerged as cancer cells hallmark, wherein cancer cells display discrete metabolic phenotypes to fuel cell progression and metastasis. Altered glycolysis is one such phenotype, in which even in oxygen abundance majority of cancer cells harvest considerable amount of energy through elevated glycolytic-flux. In the present review, we attempt to summarize the role of key glycolytic enzymes i.e. HK, Hexokinase; PFK, Phosphofructokinase; PKM2, Pyruvate kinase isozyme type 2; and LDH, Lactate dehydrogenase in TNBCs, and possible therapeutic options presently available.
Collapse
Affiliation(s)
- J R Dev Arundhathi
- Department of Medical Oncology, Dr BRA IRCH, AIIMS, New Delhi, 110029, India
| | - Sandeep R Mathur
- Department of Pathology, Dr BRA IRCH, AIIMS, New Delhi, 110029, India
| | - Ajay Gogia
- Department of Medical Oncology, Dr BRA IRCH, AIIMS, New Delhi, 110029, India
| | - S V S Deo
- Department of Surgical Oncology, Dr BRA IRCH, AIIMS, New Delhi, 110029, India
| | | | | |
Collapse
|
20
|
Yin C, Lu W, Ma M, Yang Q, He W, Hu Y, Xia L. Efficacy and mechanism of combination of oxaliplatin with PKM2 knockdown in colorectal cancer. Oncol Lett 2020; 20:312. [PMID: 33093921 PMCID: PMC7573921 DOI: 10.3892/ol.2020.12175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 10/23/2019] [Indexed: 12/18/2022] Open
Abstract
M2 isomer of pyruvate kinase (PKM2), a key enzyme in aerobic glycolysis, is closely related to cancer development and progression. Suppression of PKM2 exhibits synergistic effects with docetaxel in lung cancer, but the therapeutic potential in colorectal cancer (CRC) is unclear. The aim of the present study was to explore the synergic effects and mechanism of knocking down PKM2 combined with oxaliplatin (a chemosensitizer) treatment in two CRC cell lines (HCT116 and DLD1). The PKM2 gene was initially knocked down using small interfering (si)RNAs (si155 and si156). Subsequently, the effects of PKM2-siRNAs and oxaliplatin, on CRC cells were determined using MTS, cell cycle analysis and apoptosis assays. The mechanism of targeting PKM2 was explored by detecting glucose uptake, lactate secretion fluxes, and the levels of glucose-6-phosphate dehydrogenase (G6PD) mRNA, glutathione (GSH) and reactive oxygen species (ROS). Cell viability in the experimental groups (PKM2-siRNAs, oxaliplatin, PKM2-siRNAs + oxaliplatin) was significantly reduced compared with the control group, and combination treatments (PKM2-siRNAs + oxaliplatin) were more effective than single treatments (PKM2-siRNAs and oxaliplatin only groups). Similar results were observed with the apoptosis assay. The combination groups showed synergistic effects compared with both single treatment groups. Furthermore, glucose uptake and lactate secretion and mRNA levels of G6PD and PKM2 were decreased after PKM2 knockdown in the PKM2-siRNAs and PKM2-siRNAs + oxaliplatin groups. The GSH levels in the PKM2-siRNAs group was significantly lower compared with the negative control group. The ROS levels in the PKM2-siRNAs groups were also significantly increased. The combination of PKM2-siRNAs and oxaliplatin had synergistic effects on CRC cells (HCT116 and DLD1). PKM2 silencing may alter energy metabolism in cancer cells and initiate ROS-induced apoptosis after downregulation of the pentose phosphate pathway by PKM2-siRNAs.
Collapse
Affiliation(s)
- Chenxi Yin
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China.,Intensive Care Unit, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Wenhua Lu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Mingzhe Ma
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Qiong Yang
- Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Wenzhuo He
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China.,VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Yumin Hu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Liangping Xia
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China.,VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
21
|
Zhang D, Xu X, Ye Q. Metabolism and immunity in breast cancer. Front Med 2020; 15:178-207. [PMID: 33074528 DOI: 10.1007/s11684-020-0793-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer is one of the most common malignancies that seriously threaten women's health. In the process of the malignant transformation of breast cancer, metabolic reprogramming and immune evasion represent the two main fascinating characteristics of cancer and facilitate cancer cell proliferation. Breast cancer cells generate energy through increased glucose metabolism. Lipid metabolism contributes to biological signal pathways and forms cell membranes except energy generation. Amino acids act as basic protein units and metabolic regulators in supporting cell growth. For tumor-associated immunity, poor immunogenicity and heightened immunosuppression cause breast cancer cells to evade the host's immune system. For the past few years, the complex mechanisms of metabolic reprogramming and immune evasion are deeply investigated, and the genes involved in these processes are used as clinical therapeutic targets for breast cancer. Here, we review the recent findings related to abnormal metabolism and immune characteristics, regulatory mechanisms, their links, and relevant therapeutic strategies.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| |
Collapse
|
22
|
Varghese E, Samuel SM, Líšková A, Samec M, Kubatka P, Büsselberg D. Targeting Glucose Metabolism to Overcome Resistance to Anticancer Chemotherapy in Breast Cancer. Cancers (Basel) 2020; 12:E2252. [PMID: 32806533 PMCID: PMC7464784 DOI: 10.3390/cancers12082252] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 01/10/2023] Open
Abstract
Breast cancer (BC) is the most prevalent cancer in women. BC is heterogeneous, with distinct phenotypical and morphological characteristics. These are based on their gene expression profiles, which divide BC into different subtypes, among which the triple-negative breast cancer (TNBC) subtype is the most aggressive one. The growing interest in tumor metabolism emphasizes the role of altered glucose metabolism in driving cancer progression, response to cancer treatment, and its distinct role in therapy resistance. Alterations in glucose metabolism are characterized by increased uptake of glucose, hyperactivated glycolysis, decreased oxidative phosphorylation (OXPHOS) component, and the accumulation of lactate. These deviations are attributed to the upregulation of key glycolytic enzymes and transporters of the glucose metabolic pathway. Key glycolytic enzymes such as hexokinase, lactate dehydrogenase, and enolase are upregulated, thereby conferring resistance towards drugs such as cisplatin, paclitaxel, tamoxifen, and doxorubicin. Besides, drug efflux and detoxification are two energy-dependent mechanisms contributing to resistance. The emergence of resistance to chemotherapy can occur at an early or later stage of the treatment, thus limiting the success and outcome of the therapy. Therefore, understanding the aberrant glucose metabolism in tumors and its link in conferring therapy resistance is essential. Using combinatory treatment with metabolic inhibitors, for example, 2-deoxy-D-glucose (2-DG) and metformin, showed promising results in countering therapy resistance. Newer drug designs such as drugs conjugated to sugars or peptides that utilize the enhanced expression of tumor cell glucose transporters offer selective and efficient drug delivery to cancer cells with less toxicity to healthy cells. Last but not least, naturally occurring compounds of plants defined as phytochemicals manifest a promising approach for the eradication of cancer cells via suppression of essential enzymes or other compartments associated with glycolysis. Their benefits for human health open new opportunities in therapeutic intervention, either alone or in combination with chemotherapeutic drugs. Importantly, phytochemicals as efficacious instruments of anticancer therapy can suppress events leading to chemoresistance of cancer cells. Here, we review the current knowledge of altered glucose metabolism in contributing to resistance to classical anticancer drugs in BC treatment and various ways to target the aberrant metabolism that will serve as a promising strategy for chemosensitizing tumors and overcoming resistance in BC.
Collapse
Affiliation(s)
- Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (E.V.); (S.M.S.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (E.V.); (S.M.S.)
| | - Alena Líšková
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.)
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (E.V.); (S.M.S.)
| |
Collapse
|
23
|
Zahra K, Dey T, Ashish, Mishra SP, Pandey U. Pyruvate Kinase M2 and Cancer: The Role of PKM2 in Promoting Tumorigenesis. Front Oncol 2020; 10:159. [PMID: 32195169 PMCID: PMC7061896 DOI: 10.3389/fonc.2020.00159] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
Pyruvate kinase plays a pivotal role in regulating cell metabolism. The final and rate-limiting step of glycolysis is the conversion of Phosphoenolpyruvate (PEP) to Pyruvate, which is catalyzed by Pyruvate Kinase. There are four isomeric, tissue-specific forms of Pyruvate Kinase found in mammals: PKL, PKR, PKM1, and PKM2. PKM1 and PKM2 are formed bya single mRNA transcript of the PKM gene by alternative splicing. The oligomers of PKM2 exist in high activity tetramer and low activity dimer forms. The dimer PKM2 regulates the rate-limiting step of glycolysis that shifts the glucose metabolism from the normal respiratory chain to lactate production in tumor cells. Besides its role as a metabolic regulator, it also acts as protein kinase, which contributes to tumorigenesis. This review is focused on the metabolic role of pyruvate kinase M2 in normal cells vs. cancerous cells and its regulation at the transcriptional level. The review also highlights the role of PKM2 as a potential diagnostic marker and as a therapeutic target in cancer treatment.
Collapse
Affiliation(s)
- Kulsoom Zahra
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Tulika Dey
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ashish
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Surendra Pratap Mishra
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Uma Pandey
- Department of Obstetrics and Gynecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
24
|
Links between cancer metabolism and cisplatin resistance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:107-164. [PMID: 32475471 DOI: 10.1016/bs.ircmb.2020.01.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cisplatin is one of the most potent and widely used chemotherapeutic agent in the treatment of several solid tumors, despite the high toxicity and the frequent relapse of patients due to the onset of drug resistance. Resistance to chemotherapeutic agents, either intrinsic or acquired, is currently one of the major problems in oncology. Thus, understanding the biology of chemoresistance is fundamental in order to overcome this challenge and to improve the survival rate of patients. Studies over the last 30 decades have underlined how resistance is a multifactorial phenomenon not yet completely understood. Recently, tumor metabolism has gained a lot of interest in the context of chemoresistance; accumulating evidence suggests that the rearrangements of the principal metabolic pathways within cells, contributes to the sensitivity of tumor to the drug treatment. In this review, the principal metabolic alterations associated with cisplatin resistance are highlighted. Improving the knowledge of the influence of metabolism on cisplatin response is fundamental to identify new possible metabolic targets useful for combinatory treatments, in order to overcome cisplatin resistance.
Collapse
|
25
|
Su Q, Luo S, Tan Q, Deng J, Zhou S, Peng M, Tao T, Yang X. The role of pyruvate kinase M2 in anticancer therapeutic treatments. Oncol Lett 2019; 18:5663-5672. [PMID: 31788038 PMCID: PMC6865080 DOI: 10.3892/ol.2019.10948] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer cells are characterized by a high glycolytic rate, which leads to energy regeneration and anabolic metabolism; a consequence of this is the abnormal expression of pyruvate kinase isoenzyme M2 (PKM2). Multiple studies have demonstrated that the expression levels of PKM2 are upregulated in numerous cancer types. Consequently, the mechanism of action of certain anticancer drugs is to downregulate PKM2 expression, indicating the significance of PKM2 in a chemotherapeutic setting. Furthermore, it has previously been highlighted that the downregulation of PKM2 expression, using either inhibitors or short interfering RNA, enhances the anticancer effect exerted by THP treatment on bladder cancer cells, both in vitro and in vivo. The present review summarizes the detailed mechanisms and therapeutic relevance of anticancer drugs that inhibit PKM2 expression. In addition, the relationship between PKM2 expression levels and drug resistance were explored. Finally, future directions, such as the targeting of PKM2 as a strategy to explore novel anticancer agents, were suggested. The current review explored and highlighted the important role of PKM2 in anticancer treatments.
Collapse
Affiliation(s)
- Qiongli Su
- Department of Pharmacy, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Shengping Luo
- Department of Pharmacy, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Qiuhong Tan
- Department of Pharmacy, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Jun Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Sichun Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Mei Peng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ting Tao
- Department of Pharmacy, Yueyang Maternal-Child Medicine Health Hospital, Yueyang, Hunan 414000, P.R. China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
26
|
Wu Z, Wu J, Zhao Q, Fu S, Jin J. Emerging roles of aerobic glycolysis in breast cancer. Clin Transl Oncol 2019; 22:631-646. [PMID: 31359335 DOI: 10.1007/s12094-019-02187-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/05/2019] [Indexed: 12/25/2022]
Abstract
Altered aerobic glycolysis is a well-recognized characteristic of cancer cell energy metabolism, known as the Warburg effect. Even in the presence of abundant oxygen, a majority of tumor cells produce substantial amounts of energy through a high glycolytic metabolism, and breast cancer (BC) is no exception. Breast cancer continues to be the second leading cause of cancer-associated mortality in women worldwide. However, the precise role of aerobic glycolysis in the development of BC remains elusive. Therefore, the present review attempts to address the implication of key enzymes of the aerobic glycolytic pathway including hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK), glucose transporters (GLUTs), together with related signaling pathways including protein kinase B(PI3K/AKT), mammalian target of rapamycin (mTOR) and adenosine monophosphate-activated protein kinase (AMPK) and transcription factors (c-myc, p53 and HIF-1) in the research of BC. Thus, the review of aerobic glycolysis in BC may evoke novel ideas for the BC treatment.
Collapse
Affiliation(s)
- Z Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - J Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Q Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, People's Republic of China
| | - S Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
| | - J Jin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
27
|
Sudhakaran M, Sardesai S, Doseff AI. Flavonoids: New Frontier for Immuno-Regulation and Breast Cancer Control. Antioxidants (Basel) 2019; 8:E103. [PMID: 30995775 PMCID: PMC6523469 DOI: 10.3390/antiox8040103] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/01/2019] [Accepted: 04/05/2019] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) remains the second most common cause of cancer-related deaths in women in the US, despite advances in detection and treatment. In addition, breast cancer survivors often struggle with long-term treatment related comorbidities. Identifying novel therapies that are effective while minimizing toxicity is critical in curtailing this disease. Flavonoids, a subclass of plant polyphenols, are emerging as promising treatment options for the prevention and treatment of breast cancer. Recent evidence suggests that in addition to anti-oxidant properties, flavonoids can directly interact with proteins, making them ideal small molecules for the modulation of enzymes, transcription factors and cell surface receptors. Of particular interest is the ability of flavonoids to modulate the tumor associated macrophage function. However, clinical applications of flavonoids in cancer trials are limited. Epidemiological and smaller clinical studies have been largely hypothesis generating. Future research should aim at addressing known challenges with a broader use of preclinical models and investigating enhanced dose-delivery systems that can overcome limited bioavailability of dietary flavonoids. In this review, we discuss the structure-functional impact of flavonoids and their action on breast tumor cells and the tumor microenvironment, with an emphasis on their clinical role in the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Meenakshi Sudhakaran
- Department Physiology, Michigan State University, East Lansing, MI 48824, USA.
- Physiology Graduate Program, Michigan State University, East Lansing, MI 48824, USA.
| | - Sagar Sardesai
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Andrea I Doseff
- Department Physiology, Michigan State University, East Lansing, MI 48824, USA.
- Department Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
28
|
Amin S, Yang P, Li Z. Pyruvate kinase M2: A multifarious enzyme in non-canonical localization to promote cancer progression. Biochim Biophys Acta Rev Cancer 2019; 1871:331-341. [PMID: 30826427 DOI: 10.1016/j.bbcan.2019.02.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/21/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Abstract
Rewiring glucose metabolism, termed as Warburg effect or aerobic glycolysis, is a common signature of cancer cells to meet their high energetic and biosynthetic demands of rapid growth and proliferation. Pyruvate kinase M2 isoform (PKM2) is a key player in such metabolic reshuffle, which functions as a rate-limiting glycolytic enzyme in the cytosol of highly-proliferative cancer cells. During the recent decades, PKM2 has been extensively studied in non-canonical localizations such as nucleus, mitochondria, and extracellular secretion, and pertained to novel biological functions in tumor progression. Such functions of PKM2 open a new avenue for cancer researchers. This review summarizes up-to-date functions of PKM2 at various subcellular localizations of cancer cells and draws attention to the translocation of PKM2 from cytosol into the nucleus induced by posttranslational modifications. Moreover, PKM2 in tumor cells could have an important role in resistance acquisition processes against various chemotherapeutic drugs, which have raised a concern on PKM2 as a potential therapeutic target. Finally, we summarize the current status and future perspectives to improve the potential of PKM2 as a therapeutic target for the development of anticancer therapeutic strategies.
Collapse
Affiliation(s)
- Sajid Amin
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China; Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Peng Yang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China; Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China; School of Life Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
29
|
Liu BW, Wang TJ, Li LL, Zhang L, Liu YX, Feng JY, Wu Y, Xu FF, Zhang QS, Bao MZ, Zhang WY, Ye LH. Oncoprotein HBXIP induces PKM2 via transcription factor E2F1 to promote cell proliferation in ER-positive breast cancer. Acta Pharmacol Sin 2019; 40:530-538. [PMID: 29925919 PMCID: PMC6462016 DOI: 10.1038/s41401-018-0015-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 02/02/2023] Open
Abstract
We have reported that hepatitis B X-interacting protein (HBXIP, also termed LAMTOR5) can act as an oncogenic transcriptional co-activator to modulate gene expression, promoting breast cancer development. Pyruvate kinase muscle isozyme M2 (PKM2), encoded by PKM gene, has emerged as a key oncoprotein in breast cancer. Yet, the regulatory mechanism of PKM2 is still unexplored. Here, we report that HBXIP can upregulate PKM2 to accelerate proliferation of estrogen receptor positive (ER+) breast cancer. Immunohistochemistry analysis using breast cancer tissue microarray uncovered a positive association between the expression of HBXIP and PKM2. We also discovered that PKM2 expression was positively related with HBXIP expression in clinical breast cancer patients by real-time PCR assay. Interestingly, in ER+ breast cancer cells, HBXIP was capable of upregulating PKM2 expression at mRNA and protein levels in a dose-dependent manner, as well as increasing the activity of PKM promoter. Mechanistically, HBXIP could stimulate PKM promoter through binding to the -779/-579 promoter region involving co-activation of E2F transcription factor 1 (E2F1). In function, cell viability, EdU, colony formation, and xenograft tumor growth assays showed that HBXIP contributed to accelerating cell proliferation through PKM2 in ER+ breast cancer. Collectively, we conclude that HBXIP induces PKM2 through transcription factor E2F1 to facilitate ER+ breast cancer cell proliferation. We provide new evidence for the mechanism of transcription regulation of PKM2 in promotion of breast cancer progression.
Collapse
Affiliation(s)
- Bo-Wen Liu
- Department of Biochemistry, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Tian-Jiao Wang
- Department of Biochemistry, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lei-Lei Li
- Department of Biochemistry, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lu Zhang
- Department of Biochemistry, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yun-Xia Liu
- Department of Cancer Research, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jin-Yan Feng
- Department of Cancer Research, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yue Wu
- Department of Biochemistry, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Fei-Fei Xu
- Department of Biochemistry, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Quan-Sheng Zhang
- Department of Organ Transplantation, Key Laboratory of Organ Transplantation of Tianjin, Tianjin First Central Hospital, Tianjin, 300071, China
| | - Ming-Zhu Bao
- Department of Organ Transplantation, Key Laboratory of Organ Transplantation of Tianjin, Tianjin First Central Hospital, Tianjin, 300071, China
| | - Wei-Ying Zhang
- Department of Biochemistry, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Li-Hong Ye
- Department of Biochemistry, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
30
|
Colombo M, Platonova N, Giannandrea D, Palano MT, Basile A, Chiaramonte R. Re-establishing Apoptosis Competence in Bone Associated Cancers via Communicative Reprogramming Induced Through Notch Signaling Inhibition. Front Pharmacol 2019; 10:145. [PMID: 30873026 PMCID: PMC6400837 DOI: 10.3389/fphar.2019.00145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/06/2019] [Indexed: 12/12/2022] Open
Abstract
Notch and its ligands on adjacent cells are key mediators of cellular communication during developmental choice in embryonic and adult tissues. This communication is frequently altered in the pathological interaction between cancer cells and healthy cells of the microenvironment due to the aberrant expression of tumor derived Notch receptors or ligands, that results in homotypic or heterotypic Notch signaling activation in tumor cells or surrounding stromal cells. A deadly consequence of this pathological communication is pharmacological resistance that results in patient's relapse. We will provide a survey of the role of Notch signaling in the bone marrow (BM), a microenvironment with a very high capacity to support several types of cancer, including primary cancers such as osteosarcoma or multiple myeloma and bone metastases from carcinomas. Moreover, in the BM niche several hematological malignancies maintain a reservoir of cancer stem cells, characterized by higher intrinsic drug resistance. Cell-cell communication in BM-tumor interaction triggers signaling pathways by direct contact and paracrine communication through soluble growth factors or extracellular vesicles, which can deliver specific molecules such as mRNAs, miRNAs, proteins, metabolites, etc. enabling tumor cells to reprogram the healthy cells of the microenvironment inducing them to support tumor growth. In this review we will explore how the dysregulated Notch activity contributes to tumor-mediated reprogramming of the BM niche and drug resistance, strengthening the rationale of a Notch-directed therapy to re-establish apoptosis competence in cancer.
Collapse
Affiliation(s)
- Michela Colombo
- Department of Health Sciences, University of Milan, Milan, Italy
| | | | | | | | - Andrea Basile
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | |
Collapse
|
31
|
Enhancing 5-fluorouracil efficacy through suppression of PKM2 in colorectal cancer cells. Cancer Chemother Pharmacol 2018; 82:1081-1086. [PMID: 30155759 DOI: 10.1007/s00280-018-3676-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/24/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE Cancer cells alter regular metabolic pathways in order to sustain rapid proliferation. One example of metabolic remodeling in cancerous tissue is the upregulation of pyruvate kinase isoenzyme M2 (PKM2), which is involved in aerobic glycolysis. Indeed, PKM2 has previously been identified as a tumor biomarker and as a potential target for cancer therapy. Here, the role of PKM2 in the anticancer efficacy of 5-fluorouracil (5-FU) was evaluated in colorectal cancer (CRC). METHODS HCT116, SW480 and HT-29 cells were used by transfection with lentiviral vectors expressing short hairpin RNA (shRNA) against PKM2. In response to 5-FU treatment, cellular proliferation was examined, the levels of ATP/ADP ratio were monitored, the intracellular accumulation of 5-FU was measured, and intracellular levels of phosphoenolpyruvate (PEP), pyruvate and lactate were evaluated by using liquid chromatography-mass spectrometry (LC-MS). A CRC subcutaneous tumor model was performed to investigate the effect of PKM2 inhibition on 5-FU efficacy in vivo. RESULTS Suppression of PKM2 resulted in changes in glucose metabolism, leading to decreased synthesis of adenosine triphosphate (ATP). Reduced levels of ATP/ADP ratio resulted in the intracellular accumulation of 5-FU, consequently enhancing the therapeutic efficacy of this drug in several CRC cell lines. Furthermore, the enhanced efficacy of 5-FU by simultaneous inhibition of PKM2 was demonstrated in an in vivo HCT116 CRC model. CONCLUSION We show that the combination treatment showed superior anticancer efficacy as compared to 5-FU alone. These findings suggest that targeting PKM2 can increase the efficacy of chemotherapy, potentially providing a new approach for improving the outcome of chemotherapy in patients with CRC.
Collapse
|
32
|
van Niekerk G, Engelbrecht AM. Role of PKM2 in directing the metabolic fate of glucose in cancer: a potential therapeutic target. Cell Oncol (Dordr) 2018; 41:343-351. [PMID: 29797241 DOI: 10.1007/s13402-018-0383-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Many of the hallmarks of cancer are not inherently unique to cancer, but rather represent a re-enactment of normal host responses and activities. A vivid example is aerobic glycolysis ('Warburg effect'), which is used not only by cancer cells but also by normal cells that undergo rapid proliferation. A common feature of this metabolic adaptation is a shift in the expression of pyruvate kinase (PK) isoform M1 to isoform M2. Here, we highlight the key role of PKM2 in shifting cancer metabolism between ATP production and biosynthetic processes. Since anabolic processes are highly energy dependent, the fate of glucose in energy production versus the contribution of carbon in biosynthetic processes needs to be finely synchronised. PKM2 acts to integrate cellular signalling and allosteric regulation of metabolites in order to align metabolic activities with the changing needs of the cell. CONCLUSIONS The central role of PKM2 in directing the flow of carbon between catabolic (ATP-producing) and anabolic processes provides unique opportunities for extending the therapeutic window of currently available and/or novel anti-neoplastic agents.
Collapse
Affiliation(s)
- Gustav van Niekerk
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa.
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
33
|
Beta-hydroxybutyrate (3-OHB) can influence the energetic phenotype of breast cancer cells, but does not impact their proliferation and the response to chemotherapy or radiation. Cancer Metab 2018; 6:8. [PMID: 29942509 PMCID: PMC5996481 DOI: 10.1186/s40170-018-0180-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 05/17/2018] [Indexed: 12/30/2022] Open
Abstract
Background Ketogenic diets (KDs) or short-term fasting are popular trends amongst supportive approaches for cancer patients. Beta-hydroxybutyrate (3-OHB) is the main physiological ketone body, whose concentration can reach plasma levels of 2–6 mM during KDs or fasting. The impact of 3-OHB on the biology of tumor cells described so far is contradictory. Therefore, we investigated the effect of a physiological concentration of 3 mM 3-OHB on metabolism, proliferation, and viability of breast cancer (BC) cells in vitro. Methods Seven different human BC cell lines (BT20, BT474, HBL100, MCF-7, MDA-MB 231, MDA-MB 468, and T47D) were cultured in medium with 5 mM glucose in the presence of 3 mM 3-OHB at mild hypoxia (5% oxygen) or normoxia (21% oxygen). Metabolic profiling was performed by quantification of the turnover of glucose, lactate, and 3-OHB and by Seahorse metabolic flux analysis. Expression of key enzymes of ketolysis as well as the main monocarboxylic acid transporter MCT2 and the glucose-transporter GLUT1 was analyzed by RT-qPCR and Western blotting. The effect of 3-OHB on short- and long-term cell proliferation as well as chemo- and radiosensitivity were also analyzed. Results 3-OHB significantly changed the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in BT20 cells resulting in a more oxidative energetic phenotype. MCF-7 and MDA-MB 468 cells had increased ECAR only in response to 3-OHB, while the other three cell types remained uninfluenced. All cells expressed MCT2 and GLUT1, thus being able to uptake the metabolites. The consumption of 3-OHB was not strongly linked to mRNA overexpression of key enzymes of ketolysis and did not correlate with lactate production and glucose consumption. Neither 3-OHB nor acetoacetate did interfere with proliferation. Further, 3-OHB incubation did not modify the response of the tested BC cell lines to chemotherapy or radiation. Conclusions We found that a physiological level of 3-OHB can change the energetic profile of some BC cell lines. However, 3-OHB failed to influence different biologic processes in these cells, e.g., cell proliferation and the response to common breast cancer chemotherapy and radiotherapy. Thus, we have no evidence that 3-OHB generally influences the biology of breast cancer cells in vitro. Electronic supplementary material The online version of this article (10.1186/s40170-018-0180-9) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Song K, Zhao W, Wang W, Zhang N, Wang K, Chang Z. Individualized predictive signatures for 5-fluorouracil-based chemotherapy in right- and left-sided colon cancer. Cancer Sci 2018; 109:1939-1948. [PMID: 29700901 PMCID: PMC5989868 DOI: 10.1111/cas.13622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/07/2018] [Accepted: 04/15/2018] [Indexed: 12/15/2022] Open
Abstract
5‐Fluorouracil (5‐FU)‐based adjuvant chemotherapy (ACT) is widely used for the treatment of colon cancer. Colon cancers with different primary tumor locations are clinically and molecularly distinct, implied through their response to 5‐FU‐based ACT. In this work, using 69 and 133 samples of patients with stage II‐III right‐sided and left‐sided colon cancer (RCC and LCC) treated with post‐surgery 5‐FU‐based ACT, we preselected gene pairs whose relative expression orderings were significantly correlated with the disease‐free survival of patients by univariate Cox proportional hazards model. Then, from the identified prognostic‐related gene pairs, a forward‐stepwise selection algorithm was formulated to search for an optimal subset of gene pairs that resulted in the highest concordance index, referred to as the gene pair signature (GPS). We identified prognostic signatures, 3‐GPS and 5‐GPS, for predicting response to 5‐FU‐based ACT of patients with RCC and LCC, respectively, which were validated in independent datasets of GSE14333 and GSE72970. With the aid of the signatures, the transcriptional and genomic characteristics between the predicted responders and non‐responders were explored. Notably, both in RCC and LCC, the predicted responders to 5‐FU‐based ACT were characterized by hypermutation, whereas the predicted non‐responders were characterized by frequent copy number alternations. Finally, in comparison with the established relative expression ordering‐based signature, which was developed without considering the differences between RCC and LCC, the newly proposed signatures had a better predictive performance. In conclusion, 3‐GPS or 5‐GPS can robustly predict response to 5‐FU‐based ACT for patients with RCC or LCC, respectively, in an individual level.
Collapse
Affiliation(s)
- Kai Song
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wenyuan Zhao
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wen Wang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Na Zhang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Kai Wang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhiqiang Chang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
35
|
Su Q, Tao T, Tang L, Deng J, Darko KO, Zhou S, Peng M, He S, Zeng Q, Chen AF, Yang X. Down-regulation of PKM2 enhances anticancer efficiency of THP on bladder cancer. J Cell Mol Med 2018. [PMID: 29512924 PMCID: PMC5908113 DOI: 10.1111/jcmm.13571] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Pyruvate kinase M2 (PKM2) regulates the final step of glycolysis levels that are correlated with the sensitivity of anticancer chemotherapeutic drugs. THP is one of the major drugs used in non‐muscle‐invasive bladder cancer instillation chemotherapy. However, low response ratio of THP (19.7%) treatment to human genitourinary tumours using collagen gel matrix has been observed. This study aims to investigate the effect of down‐regulation of PKM2 on THP efficiency. Via inhibitor or siRNA, the effects of reduced PKM2 on the efficiency of THP were determined in 2 human and 1 murine bladder cancer cell lines, using MTT, cologenic and fluorescence approaches. Molecular mechanisms of PKM2 on THP sensitization were explored by probing p‐AMPK and p‐STAT3 levels via WB. Syngeneic orthotopic bladder tumour model was applied to evaluate this efficiency in vivo, analysed by Kaplan‐Meier survival curves, body and bladder weights plus immunohistochemistric tumour biomarkers. PKM2 was overexpressed in bladder cancer cells and tissues, and down‐regulation of PKM2 enhanced the sensitivity of THP in vitro. Activation of AMPK is essential for THP to exert anti‐bladder cancer activities. On the other hand, down‐regulating PKM2 activates AMPK and inhibits STAT3, correlated with THP sensitivity. Compared with THP alone (400 μmol L−1, 50 μL), the combination with metformin (60 mmol L−1, 50 μL) stopped growth of bladder cancer completely in vivo (combination group VS normal group P = .078). Down‐regulating the expression of PKM2 enhances the anticancer efficiency of THP. This study provides a new insight for improving the chemotherapeutic effect of THP.
Collapse
Affiliation(s)
- Qiongli Su
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan, China
| | - Ting Tao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan, China
| | - Lei Tang
- Department of Urology Surgery, 3rd Affiliated Hospital, Changsha, Hunan, China.,School of Pharmacy, Central South University, Changsha, Hunan, China
| | - Jun Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan, China
| | - Kwame Oteng Darko
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan, China
| | - Sichun Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan, China
| | - Mei Peng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan, China.,Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shanping He
- Animal Nutrition and Human Health Laboratory, Hunan Normal University, Changsha, Hunan, China
| | - Qing Zeng
- Department of Urology Surgery, 3rd Affiliated Hospital, Changsha, Hunan, China.,School of Pharmacy, Central South University, Changsha, Hunan, China
| | - Alex F Chen
- Department of Urology Surgery, 3rd Affiliated Hospital, Changsha, Hunan, China.,School of Pharmacy, Central South University, Changsha, Hunan, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan, China.,Animal Nutrition and Human Health Laboratory, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
36
|
Zhu H, Luo H, Zhu X, Hu X, Zheng L, Zhu X. Pyruvate kinase M2 (PKM2) expression correlates with prognosis in solid cancers: a meta-analysis. Oncotarget 2018; 8:1628-1640. [PMID: 27911861 PMCID: PMC5352083 DOI: 10.18632/oncotarget.13703] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/26/2016] [Indexed: 12/31/2022] Open
Abstract
Pyruvate kinase M2 (PKM2) is the key enzyme in the Warburg effect and plays a central role in cancer cell metabolic reprogramming. Recently, quite a few studies have investigated the correlation between PKM2 expression and prognosis in multiple cancer patients, but results were inconsistent. We therefore performed a meta-analysis to explore the prognostic value of PKM2 expression in patients with solid cancer. Here twenty-seven individual studies from 25 publications with a total of 4796 cases were included to explore the association between PKM2 and overall survival (OS) or disease-free survival (DFS)/ progression-free survival (PFS)/ recurrent-free survival (RFS) in subjects with solid cancer. Pooled analysis showed that high levels of PKM2 was significantly associated with a poorer overall survival (HR = 1.73; 95%CI = 1.48-2.03) and DFS/ PFS/ RFS (HR = 1.90; 95%CI = 1.39-2.59) irrespective of cancer types. Different analysis models (univariate or multivariate models), sample-sizes (≤100 or >100), and methods for data collection (direct extraction or indirect extraction) had no impact on the negative prognostic effect of PKM2 over-expression. Nevertheless, stratified by cancer type, high-expression of PKM2 was associated with an unfavorable OS in breast cancer, esophageal squamous carcinoma, hepatocellular carcinoma and gallbladder cancer; whereas was not correlated with a worse OS in pancreatic cancer and gastric cancer. In conclusion, over-expression of PKM2 is associated with poor prognosis in most solid cancers and it might be a potentially useful biomarker for predicting cancer prognosis in future clinical applications.
Collapse
Affiliation(s)
- Haiyan Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Hui Luo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xuejie Zhu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoli Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Lihong Zheng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
37
|
Hou J, Hong Z, Feng F, Chai Y, Zhang Y, Jiang Q, Hu Y, Wu S, Wu Y, Gao X, Chen Q, Wan Y, Bi J, Zhang Z. A novel chemotherapeutic sensitivity-testing system based on collagen gel droplet embedded 3D-culture methods for hepatocellular carcinoma. BMC Cancer 2017; 17:729. [PMID: 29117859 PMCID: PMC5679429 DOI: 10.1186/s12885-017-3706-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 10/26/2017] [Indexed: 01/27/2023] Open
Abstract
Background Patients suffering from advanced stage hepatocellular carcinoma (HCC) often exhibit a poor prognosis or dismal clinical outcomes due to ineffective chemotherapy or a multi-drug resistance (MDR) process. Thus, it is urgent to develop a new chemotherapeutic sensitivity testing system for HCC treatment. The presence study investigated the potential application of a novel chemotherapeutic sensitivity-testing system based on a collagen gel droplet embedded 3D–culture system (CD-DST). Methods Primary cells were separating from surgical resection specimens and then tested by CD-DST. To identify whether HCC cell lines or cells separating from clinical specimens contain MDR features, the cells were treated with an IC50 (half maximal inhibitory concentration) or ICmax (maximal inhibitory concentration) concentration of antitumor agents, e.g., 5-furuolouracil (5-FU), paclitaxel (PAC), cisplatin (CDDP), epirubicin (EPI), or oxaliplatin (L-OHP), and the inhibitory rates (IRs) were calculated. Results HepG2 cells were sensitive to 5-FU, PAC, CDDP, EPI, or L-OHP; the IC50 value is 0.83 ± 0.45 μg/ml, 0.03 ± 0.02 μg/ml, 1.15 ± 0.75 μg/ml, 0.09 ± 0.03 μg/ml, or 1.76 ± 0.44 μg/ml, respectively. Only eight (8/26), nine (9/26), or five (5/26) patients were sensitive to the ICmax concentration of CDDP, EPI, or L-OHP; whereas only three (3/26), four (4/26), or two (2/26) patients were sensitive to the IC50 concentration of CDDP, EPI, or L-OHP. No patients were sensitive to 5-FU or PAC. Conclusions The in vitro drug sensitivity exanimation revealed the MDR features of HCC and examined the sensitivity of HCC cells from clinical specimens to anti-tumor agents. CD-DST may be a useful method to predict the potential clinical benefits of anticancer agents for HCC patients.
Collapse
Affiliation(s)
- Jun Hou
- Research Center for Clinical and Translational Medicine, the 302nd Hospital of Chinese PLA, Beijing, 100039, People's Republic of China
| | - Zhixian Hong
- Department of Hepatobiliary Surgery, the 302nd Hospital of Chinese PLA, Beijing, 100039, People's Republic of China
| | - Fan Feng
- Research Center for Clinical and Translational Medicine, the 302nd Hospital of Chinese PLA, Beijing, 100039, People's Republic of China
| | - Yantao Chai
- Research Center for Clinical and Translational Medicine, the 302nd Hospital of Chinese PLA, Beijing, 100039, People's Republic of China
| | - Yunkai Zhang
- Research Center for Clinical and Translational Medicine, the 302nd Hospital of Chinese PLA, Beijing, 100039, People's Republic of China
| | - Qiyu Jiang
- Research Center for Clinical and Translational Medicine, the 302nd Hospital of Chinese PLA, Beijing, 100039, People's Republic of China
| | - Yan Hu
- Research Center for Clinical and Translational Medicine, the 302nd Hospital of Chinese PLA, Beijing, 100039, People's Republic of China
| | - Shunquan Wu
- Research Center for Clinical and Translational Medicine, the 302nd Hospital of Chinese PLA, Beijing, 100039, People's Republic of China
| | - Yingsong Wu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xunian Gao
- Research Institute, Guangzhou Darui Biotechnology Co Ltd, Guangzhou, 510515, People's Republic of China
| | - Qiong Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yong Wan
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jingfeng Bi
- Research Center for Clinical and Translational Medicine, the 302nd Hospital of Chinese PLA, Beijing, 100039, People's Republic of China.
| | - Zheng Zhang
- Research Center for Clinical and Translational Medicine, the 302nd Hospital of Chinese PLA, Beijing, 100039, People's Republic of China.
| |
Collapse
|
38
|
Yang Y, Wu K, Liu Y, Shi L, Tao K, Wang G. Prognostic significance of metabolic enzyme pyruvate kinase M2 in breast cancer: A meta-analysis. Medicine (Baltimore) 2017; 96:e8690. [PMID: 29145305 PMCID: PMC5704850 DOI: 10.1097/md.0000000000008690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUNDS Numerous studies have reported that aberrant pyruvate kinase M2 isoform (PKM2) expressed in cancer, indicating that PKM2 plays a critical role in tumor initiation and progression. Nevertheless, its prognostic value in breast cancer tumor is yet contentious. Therefore, we performed this meta-analysis to evaluate the prognostic significance of PKM2 in breast cancer. METHODS Eligible relevant literatures were retrieved by searching PubMed, the Cochrane Library, Embase through December 2016. Articles that comparing different PKM2 expression levels in human breast cancer tissues and prognostic significance were included. Software RevMan 5.3 and STATA (Review Manager (RevMan): [Computer program]. Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014. STATA StataCorp. 2011. Stata Statistical Software: Release 12. College Station, TX: StataCorp LP) were applied to analyze the outcomes. Pooled results were presented in hazardous ratios (HRs) of 5-year overall survival (OS), progression-free survival (PFS), and odds ratios (ORs) of clinicopathological features with 95% confidence intervals. RESULTS Data from 6 involved studies with 895 patients were summarized. Breast cancer patients with high PKM2 had a worse OS (pooled HR = 1.65, 95% CI = 1.31-2.08, P < .001) and PFS (pooled HR = 2.49, 95% CI = 1.84-3.36, P < .00001). High PKM2 expression is related to lymph node metastasis (N1+N2+N3 vs N0, OR = 1.97, 95%CI = 1.39-2.80, P = .0001). The outcome stability was verified via sensitivity analysis. But elevated PKM2 expression was not correlated to tumor stage (T2+T3 vs T1, pooled OR = 0.80, 95% CI = 0.36-1.77, P = .58) and differential grade (G2+G3 vs G1, OR = 2.74, 95%CI = 0.76-9.84, P = .12). No publication bias was found in the included studies for OS (Begg test, P = .260; Egger test, P = .747). CONCLUSIONS High PKM2 expression denotes worse OS and PFS in breast cancer patients, and correlate with the lymph node metastasis. However, there is no evidence for the impact of PKM2 expression on T stage and tumor differentiation.
Collapse
Affiliation(s)
| | - Ke Wu
- Department of Gastrointestinal Surgery
| | - Yulin Liu
- Department of Gastrointestinal Surgery
| | - Liang Shi
- Laboratory of Laparoscopic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | |
Collapse
|
39
|
Abstract
There are few treatment options for patients with unresectable or refractory hepatoblastoma which has failed to respond to the standard treatment. The rarity of the disease and lack of experimental materials have hampered the development of new treatments. In this study, the collagen gel droplet-embedded culture drug sensitivity test was used to evaluate the effectiveness of the multikinase inhibitors sorafenib and sunitinib, and other drugs, in relapsed hepatoblastoma tumor tissues. Tumor samples from 6 patients with relapsed hepatoblastoma were tested for drug sensitivity by the collagen gel droplet-embedded culture drug sensitivity test; evaluable results were obtained from 5 of them. All samples were judged to be sensitive to sorafenib with a 50% growth inhibitory concentration (IC50) of 0.5 to 3.1 μg/mL. Sunitinib did not achieve IC50 in 2 of 3 samples within the tested concentration range based on clinically observed serum concentrations. In the drug combination assay using a hepatoblastoma cell line, sorafenib showed synergistic effects with SN-38, an active metabolite of irinotecan. Our results provide the basic science background warranting future clinical trials of a combination of sorafenib and irinotecan for relapsed or refractory hepatoblastoma.
Collapse
|
40
|
Roy A, Ahir M, Bhattacharya S, Parida PK, Adhikary A, Jana K, Ray M. Induction of mitochondrial apoptotic pathway in triple negative breast carcinoma cells by methylglyoxal via generation of reactive oxygen species. Mol Carcinog 2017; 56:2086-2103. [PMID: 28418078 DOI: 10.1002/mc.22665] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/14/2017] [Accepted: 04/13/2017] [Indexed: 12/21/2022]
Abstract
Triple negative breast cancer (TNBC) tends to form aggressive tumors associated with high mortality and morbidity which urge the need for development of new therapeutic strategies. Recently, the normal metabolite Methylglyoxal (MG) has been documented for its anti-proliferative activity against human breast cancer. However, the mode of action of MG against TNBC remains open to question. In our study, we investigated the anticancer activity of MG in MDA MB 231 and 4T1 TNBC cell lines and elucidated the underlying mechanisms. MG dose-dependently caused cell death, induced apoptosis, and generated ROS in both the TNBC cell lines. Furthermore, such effects were attenuated in presence of ROS scavenger N-Acetyl cysteine. MG triggered mitochondrial cytochrome c release in the cytosol and up-regulated Bax while down-regulated anti-apoptotic protein Bcl-2. Additionally, MG treatment down-regulated phospho-akt and inhibited the nuclear translocation of the p65 subunit of NF-κB. MG exhibited a tumor suppressive effect in BALB/c mouse 4T1 breast tumor model as well. The cytotoxic effect was studied using MTT assay. Apoptosis, ROS generation, and mitochondrial dysfunction was evaluated by flow cytometry as well as fluorescence microscopy. Western blot assay was performed to analyze proteins responsible for apoptosis. This study demonstrated MG as a potent anticancer agent against TNBC both in vitro and in vivo. The findings will furnish fresh insights into the treatment of this subgroup of breast cancer.
Collapse
Affiliation(s)
- Anirban Roy
- Department of Biophysics, Bose Institute, Kolkata, West Bengal, India
| | - Manisha Ahir
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, West Bengal, India
| | - Saurav Bhattacharya
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, West Bengal, India
| | | | - Arghya Adhikary
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, West Bengal, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Manju Ray
- Department of Biophysics, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
41
|
Wang G, Wang JJ, Guan R, Du L, Gao J, Fu XL. Strategies to Target Glucose Metabolism in Tumor Microenvironment on Cancer by Flavonoids. Nutr Cancer 2017; 69:534-554. [PMID: 28323500 DOI: 10.1080/01635581.2017.1295090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The imbalance between glucose metabolism and cancer cell growth in tumor microenvironment (TME), which are closely related with the occurrence and progression of cancer. Accumulating evidence has demonstrated that flavonoids exert many biological properties, including antioxidant and anticarcinogenic activities. Recently, the roles and applications of flavonoids, particularly in relation to glucose metabolism in cancers, have been highlighted. Thus, the identification of flavonoids targeting alternative glucose metabolism pathways in TME may represent an attractive approach to the more effective therapeutic strategies for cancer. In this review, we will focus on the roles of flavonoids in regulating glucose metabolism and cancer cell growth in TME, such as proliferation advantage, cell mobility, and chemoresistance to cancer, as well as modifiers of thermal sensitivity. Not only have such large-scale endeavors been useful in providing fundamental insights into natural and synthesized flavonoids that can prevent and treat cancer, but also have led to the discovery of potential targets for cancer therapy.
Collapse
Affiliation(s)
- Gang Wang
- a Department of Pharmaceutics , Jiangsu University , Shanghai , China
- b Hubei University of Medicine , Shiyan , China
| | - Jun-Jie Wang
- a Department of Pharmaceutics , Jiangsu University , Shanghai , China
- b Hubei University of Medicine , Shiyan , China
| | - Rui Guan
- b Hubei University of Medicine , Shiyan , China
| | - Li Du
- a Department of Pharmaceutics , Jiangsu University , Shanghai , China
| | - Jing Gao
- c Jiangsu University Health Science Center , Jiangsu , China
| | - Xing-Li Fu
- c Jiangsu University Health Science Center , Jiangsu , China
| |
Collapse
|
42
|
Zhu H, Wu J, Zhang W, Luo H, Shen Z, Cheng H, Zhu X. PKM2 enhances chemosensitivity to cisplatin through interaction with the mTOR pathway in cervical cancer. Sci Rep 2016; 6:30788. [PMID: 27492148 PMCID: PMC4974606 DOI: 10.1038/srep30788] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/11/2016] [Indexed: 12/22/2022] Open
Abstract
Pyruvate kinase M2 (PKM2) is a key driver of aerobic glycolysis in cancer cells and has been shown to be up-regulated by mTOR in vitro. Our previous proteomic profiling studies showed that PKM2 was significantly upregulated in cervical cancer tissues after treatment with neoadjuvant chemotherapy (NACT). Whether PKM2 expression predicts cisplatin-based NACT sensitivity and is mTOR dependent in cervical cancer patients remains unclear. Using paired tumor samples (pre- and post-chemotherapy) from 36 cervical cancer patients, we examined mTOR, HIF-1α, c-Myc, and PKM2 expression in cervical cancer samples and investigated the response to cisplatin-based NACT. In addition, we established PKM2 suppressed cervical cancer cell lines and evaluated their sensitivity to cisplatin in vitro. We found that the mTOR/HIF-1α/c-Myc/PKM2 signaling pathway was significantly downregulated in post-chemotherapy cervical cancer tissues. High levels of mTOR, HIF-1α, c-Myc, and PKM2 were associated with a positive chemotherapy response in cervical cancer patients treated with cisplatin-based NACT. In vitro, PKM2 knockdown desensitized cervical cancer cells to cisplatin. Moreover, PKM2 had complex interactions with mTOR pathways. mTOR, HIF1α, c-Myc, and PKM2 expression in cervical cancer may serve as predictive biomarkers to cisplatin-based chemotherapy. PKM2 enhances chemosensitivity to cisplatin through interaction with the mTOR pathway in cervical cancer.
Collapse
Affiliation(s)
- Haiyan Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jun Wu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Wenwen Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Hui Luo
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhaojun Shen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Huihui Cheng
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|