1
|
Hwang IY, Kim JS, Harrison KA, Park C, Shi CS, Kehrl JH. Chemokine-mediated F-actin dynamics, polarity, and migration in B lymphocytes depend on WNK1 signaling. Sci Signal 2024; 17:eade1119. [PMID: 39190707 PMCID: PMC11542683 DOI: 10.1126/scisignal.ade1119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 05/01/2023] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
Ligand-engaged chemokine receptors trigger nucleotide exchange in heterotrimeric Gαi proteins, which stimulates cytoskeletal reorganization and cell polarity changes. To better understand the signaling events responsible for these cellular changes, we focused on early changes in F-actin dynamics after engagement of the chemokine receptor CXCR5 in murine splenic B cells. Within 10 seconds of exposure to the CXCR5 ligand CXCL13, three-dimensional lamellar-like pseudopods and F-actin-rich ridges appeared. The transient F-actin increase depended on Gαi2/3 signaling, the PI3K/AKT pathway, ERK activation, phospholipase C activity, and Rac1/2 activation mediated by Dock2 (dedicator of cytokinesis 2). Immunoblot analyses identified the kinase WNK1 (with no lysine kinase 1) as a potential early AKT effector. Treating B cells with specific WNK inhibitors disrupted F-actin dynamics and impaired B cell polarity, motility, and chemotaxis. These changes were mimicked in a murine B cell line by CRISPR-Cas9 gene editing of Wnk1, which also suggested that WNK1 contributed to B cell proliferation. Administration of a single dose of a WNK inhibitor transiently reduced B cell motility and polarity in the lymph nodes of live mice. These results indicate that WNK1 signaling maintains B cell responsiveness to CXCL13 and suggest that pharmacological inhibition of WNK1, which is involved in cancer progression and blood pressure regulation, may affect humoral immunity.
Collapse
Affiliation(s)
- Il-Young Hwang
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Ji Sung Kim
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Kathleen A. Harrison
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Chung Park
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Chong Shan Shi
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - John H. Kehrl
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
2
|
Yang G, Li H, Dong Z, Deng K, Lu Y. Nucleophosmin 1 associating with engulfment and cell motility protein 1 regulates hepatocellular carcinoma cell chemotaxis and metastasis. Open Med (Wars) 2023; 18:20230708. [PMID: 37251542 PMCID: PMC10224614 DOI: 10.1515/med-2023-0708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/24/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
The chemokine, C-X-C motif chemokine ligand 12 (CXCL12) and its G-protein-coupled receptor (GPCR) and C-X-C chemokine receptor type 4 (CXCR4), are closely associated with promoting hepatocellular carcinoma (HCC) chemotaxis and metastasis. The binding of CXCL12 and CXCR4 depends on the heterotrimeric Gi proteins to regulate actin polymerisation and mobility in HCC. Although the role of GPCR/Gi signalling in carcinogenesis migration has been intensively studied, the detailed mechanism remains largely unknown. In this study, a small interfering RNA technique was used to knock down the Nucleophosmin 1 (NPM1) gene expression. Through the chemotaxis and invasion assays, wound healing, proliferation, filamentous-actin, immunofluorescence, immunohistochemical assays, and co-immunoprecipitation assays, we investigated the specific biological role and underlying mechanisms of the NPM1 in HCC. Additionally, dimethyl fumarate (DMF), a fumaric acid ester, was used to inhibit the HCC cell chemokines and metastasis by regulating ELMO1 and NPM1. Therefore, this study reported that NPM1 gene expression was upregulated in the HCC tissues and cell lines. The NPM1 knockdown significantly inhibited the proliferation, migration, and chemotaxis of the HepG2 cells in vitro. Further mechanistic studies suggested that the NPM1 interacts with ELMO1 and the CXCL12/CXCR4 pathway activates NPM1-dependent regulation of the ELMO1 localisation. Furthermore, the DMF significantly inhibited tumour metastasis induced by the NPM1/ELMO1 signalling pathway, as observed in in vitro cell functional experiments. These data suggested that as a potentially novel therapeutic approach, the simultaneous targeting of NPM1 and ELMO1 could effectively be used to treat HCC.
Collapse
Affiliation(s)
- Gangqi Yang
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, China
- General Surgery Department and Neurology Department, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Beijing100053, China
- Comprehensive Liver Cancer Center, 5th Medical Center of the PLA General Hospital, Beijing100039, China
- Guangdong Key Laboratory of Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Hongyan Li
- General Surgery Department and Neurology Department, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Beijing100053, China
| | - Zheng Dong
- Comprehensive Liver Cancer Center, 5th Medical Center of the PLA General Hospital, Beijing100039, China
| | - Kai Deng
- The First Affiliated Hospital of Chongqing Medical College, Chongqing400016, China
| | - Yinying Lu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, China
- Comprehensive Liver Cancer Center, 5th Medical Center of the PLA General Hospital, Beijing100039, China
- Guangdong Key Laboratory of Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| |
Collapse
|
3
|
Yu S, Geng X, Liu H, Zhang Y, Cao X, Li B, Yan J. ELMO1 Deficiency Reduces Neutrophil Chemotaxis in Murine Peritonitis. Int J Mol Sci 2023; 24:ijms24098103. [PMID: 37175809 PMCID: PMC10179205 DOI: 10.3390/ijms24098103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Peritoneal inflammation remains a major cause of treatment failure in patients with kidney failure who receive peritoneal dialysis. Peritoneal inflammation is characterized by an increase in neutrophil infiltration. However, the molecular mechanisms that control neutrophil recruitment in peritonitis are not fully understood. ELMO and DOCK proteins form complexes which function as guanine nucleotide exchange factors to activate the small GTPase Rac to regulate F-actin dynamics during chemotaxis. In the current study, we found that deletion of the Elmo1 gene causes defects in chemotaxis and the adhesion of neutrophils. ELMO1 plays a role in the fMLP-induced activation of Rac1 in parallel with the PI3K and mTORC2 signaling pathways. Importantly, we also reveal that peritoneal inflammation is alleviated in Elmo1 knockout mice in the mouse model of thioglycollate-induced peritonitis. Our results suggest that ELMO1 functions as an evolutionarily conserved regulator for the activation of Rac to control the chemotaxis of neutrophils both in vitro and in vivo. Our results suggest that the targeted inhibition of ELMO1 may pave the way for the design of novel anti-inflammatory therapies for peritonitis.
Collapse
Affiliation(s)
- Shuxiang Yu
- School of Medicine, Shanghai University, Shanghai 200444, China
- School of Life Sciences, Shanghai University, Shanghai 200444, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoke Geng
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Huibing Liu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Yunyun Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xiumei Cao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianshe Yan
- School of Medicine, Shanghai University, Shanghai 200444, China
- School of Life Sciences, Shanghai University, Shanghai 200444, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
4
|
Tam C, Kukimoto-Niino M, Miyata-Yabuki Y, Tsuda K, Mishima-Tsumagari C, Ihara K, Inoue M, Yonemochi M, Hanada K, Matsumoto T, Shirouzu M, Zhang KYJ. Targeting Ras-binding domain of ELMO1 by computational nanobody design. Commun Biol 2023; 6:284. [PMID: 36932164 PMCID: PMC10023680 DOI: 10.1038/s42003-023-04657-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
The control of cell movement through manipulation of cytoskeletal structure has therapeutic prospects notably in the development of novel anti-metastatic drugs. In this study, we determine the structure of Ras-binding domain (RBD) of ELMO1, a protein involved in cytoskeletal regulation, both alone and in complex with the activator RhoG and verify its targetability through computational nanobody design. Using our dock-and-design approach optimized with native-like initial pose selection, we obtain Nb01, a detectable binder from scratch in the first-round design. An affinity maturation step guided by structure-activity relationship at the interface generates 23 Nb01 sequence variants and 17 of them show enhanced binding to ELMO1-RBD and are modeled to form major spatial overlaps with RhoG. The best binder, Nb29, inhibited ELMO1-RBD/RhoG interaction. Molecular dynamics simulation of the flexibility of CDR2 and CDR3 of Nb29 reveal the design of stabilizing mutations at the CDR-framework junctions potentially confers the affinity enhancement.
Collapse
Affiliation(s)
- Chunlai Tam
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Mutsuko Kukimoto-Niino
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| | - Yukako Miyata-Yabuki
- Drug Discovery Structural Biology Platform Unit, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kengo Tsuda
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Chiemi Mishima-Tsumagari
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kentaro Ihara
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Mio Inoue
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Mayumi Yonemochi
- Drug Discovery Structural Biology Platform Unit, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kazuharu Hanada
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Takehisa Matsumoto
- Drug Discovery Structural Biology Platform Unit, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Drug Discovery Structural Biology Platform Unit, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan.
| |
Collapse
|
5
|
Abstract
Cell migration, a crucial step in numerous biological processes, is tightly regulated in space and time. Cells employ Rho GTPases, primarily Rho, Rac, and Cdc42, to regulate their motility. Like other small G proteins, Rho GTPases function as biomolecular switches in regulating cell migration by operating between GDP bound 'OFF' and GTP bound 'ON' states. Guanine nucleotide exchange factors (GEFs) catalyse the shuttling of GTPases from OFF to ON state. G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors that are involved in many signalling phenomena including cell survival and cell migration events. In this review, we summarize signalling mechanisms, involving GPCRs, leading to the activation of RhoGEFs. GPCRs exhibit diverse GEF activation modes that include the interaction of heterotrimeric G protein subunits with different domains of GEFs, phosphorylation, protein-protein interaction, protein-lipid interaction, and/or a combination of these processes.
Collapse
Affiliation(s)
- Aishwarya Omble
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kiran Kulkarni
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,CONTACT Kiran Kulkarni Academy of Scientific and Innovative Research (Acsir), Ghaziabad 201002, India
| |
Collapse
|
6
|
Kirolos SA, Gomer RH. A chemorepellent inhibits local Ras activation to inhibit pseudopod formation to bias cell movement away from the chemorepellent. Mol Biol Cell 2021; 33:ar9. [PMID: 34788129 PMCID: PMC8886819 DOI: 10.1091/mbc.e20-10-0656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of cells to sense chemical gradients is essential during development, morphogenesis, and immune responses. Although much is known about chemoattraction, chemorepulsion remains poorly understood. Proliferating Dictyostelium cells secrete a chemorepellent protein called AprA. AprA prevents pseudopod formation at the region of the cell closest to the source of AprA, causing the random movement of cells to be biased away from the AprA. Activation of Ras proteins in a localized sector of a cell cortex helps to induce pseudopod formation, and Ras proteins are needed for AprA chemorepulsion. Here we show that AprA locally inhibits Ras cortical activation through the G protein–coupled receptor GrlH, the G protein subunits Gβ and Gα8, Ras protein RasG, protein kinase B, the p21-activated kinase PakD, and the extracellular signal–regulated kinase Erk1. Diffusion calculations and experiments indicate that in a colony of cells, high extracellular concentrations of AprA in the center can globally inhibit Ras activation, while a gradient of AprA that naturally forms at the edge of the colony allows cells to activate Ras at sectors of the cell other than the sector of the cell closest to the center of the colony, effectively inducing both repulsion from the colony and cell differentiation. Together, these results suggest that a pathway that inhibits local Ras activation can mediate chemorepulsion.
Collapse
Affiliation(s)
- Sara A Kirolos
- Department of Biology, Texas A&M University, 301 Old Main Drive, College Station, Texas, 77843-3474 USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, 301 Old Main Drive, College Station, Texas, 77843-3474 USA
| |
Collapse
|
7
|
Liang X, Hou Y, Han L, Yu S, Zhang Y, Cao X, Yan J. ELMO1 Regulates RANKL-Stimulated Differentiation and Bone Resorption of Osteoclasts. Front Cell Dev Biol 2021; 9:702916. [PMID: 34381782 PMCID: PMC8350380 DOI: 10.3389/fcell.2021.702916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/30/2021] [Indexed: 11/20/2022] Open
Abstract
Bone homeostasis is a metabolic balance between the new bone formation by osteoblasts and old bone resorption by osteoclasts. Excessive osteoclastic bone resorption results in low bone mass, which is the major cause of bone diseases such as rheumatoid arthritis. Small GTPases Rac1 is a key regulator of osteoclast differentiation, but its exact mechanism is not fully understood. ELMO and DOCK proteins form complexes that function as guanine nucleotide exchange factors for Rac activation. Here, we report that ELMO1 plays an important role in differentiation and bone resorption of osteoclasts. Osteoclast precursors derived from bone marrow monocytes (BMMs) of Elmo1–/– mice display defective adhesion and migration during differentiation. The cells also have a reduced activation of Rac1, p38, JNK, and AKT in response to RANKL stimulation. Importantly, we show that bone erosion is alleviated in Elmo1–/– mice in a rheumatoid arthritis mouse model. Taken together, our results suggest that ELMO1, as a regulator of Rac1, regulates osteoclast differentiation and bone resorption both in vitro and in vivo.
Collapse
Affiliation(s)
- Xinyue Liang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yafei Hou
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijuan Han
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Shuxiang Yu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yunyun Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiumei Cao
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianshe Yan
- School of Life Sciences, Shanghai University, Shanghai, China.,Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Bi J, Li Q, Yang Z, Cai L, Lv T, Yang X, Yan L, Liu X, Wang Q, Fu X, Xiao R. CXCL2 Impairs Functions of Bone Marrow Mesenchymal Stem Cells and Can Serve as a Serum Marker in High-Fat Diet-Fed Rats. Front Cell Dev Biol 2021; 9:687942. [PMID: 34327200 PMCID: PMC8315099 DOI: 10.3389/fcell.2021.687942] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 12/27/2022] Open
Abstract
In modern society excessive consumption of a high-fat diet (HFD) is a significant risk factor for many diseases such as diabetes, osteoarthritis and certain cancers. Resolving cellular and molecular mechanisms underlying HFD-associated disorders is of great importance to human health. Mesenchymal stem cells (MSCs) are key players in tissue homeostasis and adversely affected by prolonged HFD feeding. Low-grade systemic inflammation induced by HFD is characterized by increased levels of pro-inflammatory cytokines and alters homeostasis in many organs. However, whether, which and how HFD associated inflammatory cytokines impair MSCs remain unclear. Here we demonstrated that HFD induced serum cytokines disturbances, especially a continuous elevation of serum CXCL2 level in rats. Coincidentally, the differentially expressed genes (DEGs) of bone marrow MSCs (BMSCs) which functions were impaired in HFD rats were enriched in cytokine signaling. Further mechanism analysis revealed that CXCL2 treatment in vitro suppresses the adipogenic potential of BMSCs via Rac1 activation, and promoted BMSC migration and senescence by inducing over-production of ELMO1 and reactive oxygen species (ROS) respectively. Moreover, we found that although glycolipid metabolism indicators can be corrected, the CXCL2 elevation and BMSC dysfunctions cannot be fully rescued by diet correction and anti-inflammatory aspirin treatment, indicating the long-lasting deleterious effects of HFD on serum CXCL2 levels and BMSC functions. Altogether, our findings identify CXCL2 as an important regulator in BMSCs functions and may serve as a serum marker to indicate the BMSC dysfunctions induced by HFD. In addition, our findings underscore the intricate link among high-fat intake, chronic inflammation and BMSC dysfunction which may facilitate development of protective strategies for HFD associated diseases.
Collapse
Affiliation(s)
- Jianhai Bi
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiuchen Li
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhigang Yang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Cai
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Lv
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xun Yang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Yan
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xia Liu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Wang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Fu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Kukimoto-Niino M, Katsura K, Kaushik R, Ehara H, Yokoyama T, Uchikubo-Kamo T, Nakagawa R, Mishima-Tsumagari C, Yonemochi M, Ikeda M, Hanada K, Zhang KYJ, Shirouzu M. Cryo-EM structure of the human ELMO1-DOCK5-Rac1 complex. SCIENCE ADVANCES 2021; 7:7/30/eabg3147. [PMID: 34290093 PMCID: PMC8294757 DOI: 10.1126/sciadv.abg3147] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/03/2021] [Indexed: 05/28/2023]
Abstract
The dedicator of cytokinesis (DOCK) family of guanine nucleotide exchange factors (GEFs) promotes cell motility, phagocytosis, and cancer metastasis through activation of Rho guanosine triphosphatases. Engulfment and cell motility (ELMO) proteins are binding partners of DOCK and regulate Rac activation. Here, we report the cryo-electron microscopy structure of the active ELMO1-DOCK5 complex bound to Rac1 at 3.8-Å resolution. The C-terminal region of ELMO1, including the pleckstrin homology (PH) domain, aids in the binding of the catalytic DOCK homology region 2 (DHR-2) domain of DOCK5 to Rac1 in its nucleotide-free state. A complex α-helical scaffold between ELMO1 and DOCK5 stabilizes the binding of Rac1. Mutagenesis studies revealed that the PH domain of ELMO1 enhances the GEF activity of DOCK5 through specific interactions with Rac1. The structure provides insights into how ELMO modulates the biochemical activity of DOCK and how Rac selectivity is achieved by ELMO.
Collapse
Affiliation(s)
- Mutsuko Kukimoto-Niino
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kazushige Katsura
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Rahul Kaushik
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Haruhiko Ehara
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takeshi Yokoyama
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Tomomi Uchikubo-Kamo
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Reiko Nakagawa
- RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Chiemi Mishima-Tsumagari
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Mayumi Yonemochi
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Mariko Ikeda
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuharu Hanada
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kam Y J Zhang
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
10
|
Park YL, Choi JH, Park SY, Oh HH, Kim DH, Seo YJ, So JK, Song K, Cho MS, Chung MW, Hong JY, Kim KH, Myung E, Myung DS, Cho SB, Lee WS, Park D, Joo YE. Engulfment and cell motility 1 promotes tumor progression via the modulation of tumor cell survival in gastric cancer. Am J Transl Res 2020; 12:7797-7811. [PMID: 33437361 PMCID: PMC7791502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/25/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND/AIM Engulfment and cell motility 1 (ELMO1) protein has been implicated in phagocytosis of apoptotic cells, cell migration, neurite outgrowth, cancer cell invasion and metastasis, and poor prognosis in various cancers. We investigated the role of ELMO1 in mediating the oncogenic behavior of gastric cancer (GC) cells. We also investigated the correlation between expression of ELMO1 in GC tissues and various clinicopathological parameters. METHODS We studied the impact of ELMO1 on tumor cell behavior using the pcDNA-myc vector and small interfering RNA in AGS and SNU1750 GC cell lines. We performed western blotting and immunohistochemistry to investigate the expression of ELMO1 in GC cells and tissues. RESULTS ELMO1 overexpression inhibited apoptosis via the modulation of PARP, caspase-3 and caspase-7 in GC cells. ELMO1 overexpression led to significant increase in the number of migrating and invading GC cells. The expression of E-cadherin decreased and that of Snail increased in GC cells upon ELMO1 overexpression. Phosphorylation of PI3K/Akt and GSK-3β was increased and that of β-catenin was decreased upon ELMO1 overexpression in GC cells. These results were reversed after ELMO1 knockdown. ELMO1 expression was significantly associated with tumor size, cancer stage, lymph node metastasis and survival. ELMO1-positive tumors had significantly higher mean of Ki-67 labeling index than ELMO1-negative tumors. There was no significant relationship between ELMO1 expression and the mean value of the apoptotic index. CONCLUSIONS Our results indicate that ELMO1 promotes tumor progression by modulating tumor cell survival in human GC.
Collapse
Affiliation(s)
- Young-Lan Park
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Jung-Ho Choi
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Sun-Young Park
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Hyung-Hoon Oh
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Dong-Ho Kim
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Yoon-Jin Seo
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Jae-Kyoung So
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Kaeun Song
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Min-Seok Cho
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Min-Woo Chung
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Ji-Yun Hong
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Ki-Hyun Kim
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Eun Myung
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Dae-Seong Myung
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Sung-Bum Cho
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Wan-Sik Lee
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Daeho Park
- School of Life Sciences and Bio Imaging Research Center, Gwangju Institute of Science and TechnologyGwangju, Republic of Korea
| | - Young-Eun Joo
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| |
Collapse
|
11
|
Chan WWR, Li W, Chang RCC, Lau KF. ARF6-Rac1 signaling-mediated neurite outgrowth is potentiated by the neuronal adaptor FE65 through orchestrating ARF6 and ELMO1. FASEB J 2020; 34:16397-16413. [PMID: 33047393 DOI: 10.1096/fj.202001703r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/13/2020] [Accepted: 10/02/2020] [Indexed: 12/24/2022]
Abstract
Ras-related C3 botulinum toxin substrate 1 (Rac1) is a member of the Rho family of GTPases that functions as a molecular switch to regulate many important cellular events including actin cytoskeleton remodeling during neurite outgrowth. Engulfment and cell motility 1 (ELMO1)-dedicator of cytokinesis 1 (DOCK180) is a bipartite guanine nucleotide exchange factor (GEF) complex that has been reported to activate Rac1 on the plasma membrane (PM). Emerging evidence suggests that the small GTPase ADP ribosylation factor 6 (ARF6) activates Rac1 via the ELMO1/DOCK180 complex. However, the exact mechanism by which ARF6 triggers ELMO1/DOCK180-mediated Rac1 signaling remains unclear. Here, we report that the neuronal scaffold protein FE65 serves as a functional link between ARF6 and ELMO1, allowing the formation of a multimeric signaling complex. Interfering with formation of this complex by transfecting either FE65-binding-defective mutants or FE65 siRNA attenuates both ARF6-ELMO1-mediated Rac1 activation and neurite elongation. Notably, the PM trafficking of ELMO1 is markedly decreased in cells with suppressed expression of either FE65 or ARF6. Likewise, this process is attenuated in the FE65-binding-defective mutants transfected cells. Moreover, overexpression of FE65 increases the amount of ELMO1 in the recycling endosome, an organelle responsible for returning proteins to the PM, whereas knockout of FE65 shows opposite effect. Together, our data indicates that FE65 potentiates ARF6-Rac1 signaling by orchestrating ARF6 and ELMO1 to promote the PM trafficking of ELMO1 via the endosomal recycling pathway, and thus, promotes Rac1-mediated neurite outgrowth.
Collapse
Affiliation(s)
- Wai Wa Ray Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wen Li
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China.,Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Kwok-Fai Lau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
12
|
Smrcka AV, Fisher I. G-protein βγ subunits as multi-functional scaffolds and transducers in G-protein-coupled receptor signaling. Cell Mol Life Sci 2019; 76:4447-4459. [PMID: 31435698 PMCID: PMC6842434 DOI: 10.1007/s00018-019-03275-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 02/08/2023]
Abstract
G-protein βγ subunits are key participants in G-protein signaling. These subunits facilitate interactions between receptors and G proteins that are critical for the G protein activation cycle at the plasma membrane. In addition, they play roles in directly transducing signals to an ever expanding range of downstream targets, including integral membrane and cytosolic proteins. Emerging data indicate that Gβγ may play additional roles at intracellular compartments including endosomes, the Golgi apparatus, and the nucleus. Here, we discuss the molecular and structural basis for their ability to coordinate this wide range of cellular activities.
Collapse
Affiliation(s)
- Alan V Smrcka
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA.
| | - Isaac Fisher
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, NY, 14629, USA
| |
Collapse
|
13
|
Liu W, Huang J, Doycheva D, Gamdzyk M, Tang J, Zhang JH. RvD1binding with FPR2 attenuates inflammation via Rac1/NOX2 pathway after neonatal hypoxic-ischemic injury in rats. Exp Neurol 2019; 320:112982. [PMID: 31247196 DOI: 10.1016/j.expneurol.2019.112982] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/29/2019] [Accepted: 06/22/2019] [Indexed: 12/19/2022]
Abstract
Neuroinflammation plays a crucial role in the pathological development after neonatal hypoxia-ischemia (HI). Resolvin D1 (RvD1), an agonist of formyl peptide receptor 2 (FPR2), has been shown to exert anti-inflammatory effects in many diseases. The objective of this study was to explore the protective role of RvD1 through reducing inflammation after HI and to study the contribution of Ras-related C3 botulinum toxin substrate 1 (Rac1)/nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) pathways in RvD1-mediated protection. Rat pups (10-day old) were subjected to HI or sham surgery. RvD1 was administrated by intraperitoneal injection 1 h after HI. FPR2 small interfering ribonucleic acid (siRNA) and Rac1 activation CRISPR were administered prior to RvD1 treatment to elucidate the possible mechanisms. Time course expression of FPR2 by Western blot and RvD1 by ELISA were conducted at 6 h, 12 h, 24 h, 48 h and 72 h post HI. Infarction area, short-term neurological deficits, immunofluorescent staining and Western blot were conducted at 24 h post HI. Long-term neurological behaviors were evaluated at 4 weeks post HI. Endogenous expression levels of RvD1 decreased in time dependent manner while the expression of FPR2 increased after HI, peaking at 24 h post HI. Activation of FPR2, with RvD1, reduced percent infarction area, and alleviated short- and long-term neurological deficits. Administration of RvD1 attenuated inflammation after HI, while, either inhibition of FPR2 with siRNA or activation of Rac1 with CRISPR reversed those effects. Our results showed that RvD1 attenuated neuroinflammation through FPR2, which then interacted with Rac1/NOX2 signaling pathway, thereby reducing infarction area and alleviating neurological deficits after HI in neonatal rat pups. RvD1 may be a potential therapeutic approach to reduce inflammation after HI.
Collapse
Affiliation(s)
- Wei Liu
- Department of Physiology, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda, CA 92354, USA
| | - Juan Huang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda, CA 92354, USA; Institute of Neuroscience, Chongqing Medical University, Chongqing 40016, China
| | - Desislava Doycheva
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda, CA 92354, USA
| | - Marcin Gamdzyk
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda, CA 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda, CA 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
14
|
Rajarathnam K, Schnoor M, Richardson RM, Rajagopal S. How do chemokines navigate neutrophils to the target site: Dissecting the structural mechanisms and signaling pathways. Cell Signal 2019; 54:69-80. [PMID: 30465827 PMCID: PMC6664297 DOI: 10.1016/j.cellsig.2018.11.004] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022]
Abstract
Chemokines play crucial roles in combating microbial infection and initiating tissue repair by recruiting neutrophils in a timely and coordinated manner. In humans, no less than seven chemokines (CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8) and two receptors (CXCR1 and CXCR2) mediate neutrophil functions but in a context dependent manner. Neutrophil-activating chemokines reversibly exist as monomers and dimers, and their receptor binding triggers conformational changes that are coupled to G-protein and β-arrestin signaling pathways. G-protein signaling activates a variety of effectors including Ca2+ channels and phospholipase C. β-arrestin serves as a multifunctional adaptor and is coupled to several signaling hubs including MAP kinase and tyrosine kinase pathways. Both G-protein and β-arrestin signaling pathways play important non-overlapping roles in neutrophil trafficking and activation. Functional studies have established many similarities but distinct differences for a given chemokine and between chemokines at the level of monomer vs. dimer, CXCR1 vs. CXCR2 activation, and G-protein vs. β-arrestin pathways. We propose that two forms of the ligand binding two receptors and activating two signaling pathways enables fine-tuned neutrophil function compared to a single form, a single receptor, or a single pathway. We summarize the current knowledge on the molecular mechanisms by which chemokine monomers/dimers activate CXCR1/CXCR2 and how these interactions trigger G-protein/β-arrestin-coupled signaling pathways. We also discuss current challenges and knowledge gaps, and likely advances in the near future that will lead to a better understanding of the relationship between the chemokine-CXCR1/CXCR2-G-protein/β-arrestin axis and neutrophil function.
Collapse
Affiliation(s)
- Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, Department of Microbiology and Immunology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| | - Michael Schnoor
- Department for Molecular Biomedicine, Cinvestav-IPN, 07360 Mexico City, Mexico
| | - Ricardo M Richardson
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | | |
Collapse
|
15
|
Hamoud N, Tran V, Aimi T, Kakegawa W, Lahaie S, Thibault MP, Pelletier A, Wong GW, Kim IS, Kania A, Yuzaki M, Bouvier M, Côté JF. Spatiotemporal regulation of the GPCR activity of BAI3 by C1qL4 and Stabilin-2 controls myoblast fusion. Nat Commun 2018; 9:4470. [PMID: 30367035 PMCID: PMC6203814 DOI: 10.1038/s41467-018-06897-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 10/05/2018] [Indexed: 11/09/2022] Open
Abstract
Myoblast fusion is tightly regulated during development and regeneration of muscle fibers. BAI3 is a receptor that orchestrates myoblast fusion via Elmo/Dock1 signaling, but the mechanisms regulating its activity remain elusive. Here we report that mice lacking BAI3 display small muscle fibers and inefficient muscle regeneration after cardiotoxin-induced injury. We describe two proteins that repress or activate BAI3 in muscle progenitors. We find that the secreted C1q-like1-4 proteins repress fusion by specifically interacting with BAI3. Using a proteomic approach, we identify Stabilin-2 as a protein that interacts with BAI3 and stimulates its fusion promoting activity. We demonstrate that Stabilin-2 activates the GPCR activity of BAI3. The resulting activated heterotrimeric G-proteins contribute to the initial recruitment of Elmo proteins to the membrane, which are then stabilized on BAI3 through a direct interaction. Collectively, our results demonstrate that the activity of BAI3 is spatiotemporally regulated by C1qL4 and Stabilin-2 during myoblast fusion.
Collapse
Affiliation(s)
- Noumeira Hamoud
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada.,Département de Médecine (Programmes de Biologie Moléculaire), Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Viviane Tran
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada.,Département de Biochimie, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Takahiro Aimi
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JT), Tokyo, 102-0075, Japan
| | - Wataru Kakegawa
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JT), Tokyo, 102-0075, Japan
| | - Sylvie Lahaie
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, QC, H3A 2B4, Canada
| | - Marie-Pier Thibault
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
| | - Ariane Pelletier
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - In-San Kim
- Biomedical Research Institute, Korea Institute Science and Technology, Seoul, 136-791, Republic of Korea.,KU-KIST school, Korea University, Seoul, 136-701, Republic of Korea
| | - Artur Kania
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, QC, H3A 2B4, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JT), Tokyo, 102-0075, Japan
| | - Michel Bouvier
- Département de Biochimie, Université de Montréal, Montréal, QC, H3T 1J4, Canada.,Institut de Recherches en Immunologie et Cancérologie (IRIC), Université de Montréal, Montréal, QC, Canada, H3C 3J7
| | - Jean-François Côté
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada. .,Département de Médecine (Programmes de Biologie Moléculaire), Université de Montréal, Montréal, QC, H3T 1J4, Canada. .,Département de Biochimie, Université de Montréal, Montréal, QC, H3T 1J4, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 1A3, Canada.
| |
Collapse
|
16
|
Silencing ELMO3 Inhibits the Growth, Invasion, and Metastasis of Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3764032. [PMID: 30345300 PMCID: PMC6174816 DOI: 10.1155/2018/3764032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022]
Abstract
ELMO3 is a member of the engulfment and cell motility (ELMO) protein family, which plays a vital role in the process of chemotaxis and metastasis of tumor cells. However, remarkably little is known about the role of ELMO3 in cancer. The present study was conducted to investigate the function and role of ELMO3 in gastric cancer (GC) progression. The expression level of ELMO3 in gastric cancer tissues and cell lines was measured by means of real-time quantitative PCR (qPCR) and Western blot analysis. RNA interference was used to inhibit ELMO3 expression in gastric cancer cells. Then, wound-healing assays, Transwell assays, MTS assays, flow cytometry, and fluorescence microscopy were applied to detect cancer cell migration, cell invasion, cell proliferation, the cell cycle, and F-actin polymerization, respectively. The results revealed that ELMO3 expression in GC tumor tissues was significantly higher than in the paired adjacent tissues. Moreover, knockdown of ELMO3 by a specific siRNA significantly inhibited the processes of cell proliferation, invasion, metastasis, regulation of the cell cycle, and F-actin polymerization. Collectively, the results indicate that ELMO3 participates in the processes of cell growth, invasion, and migration, and ELMO3 is expected to be a potential diagnostic and prognostic marker for GC.
Collapse
|
17
|
Strassheim D, Karoor V, Stenmark K, Verin A, Gerasimovskaya E. A current view of G protein-coupled receptor - mediated signaling in pulmonary hypertension: finding opportunities for therapeutic intervention. ACTA ACUST UNITED AC 2018; 2. [PMID: 31380505 PMCID: PMC6677404 DOI: 10.20517/2574-1209.2018.44] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pathological vascular remodeling is observed in various cardiovascular diseases including pulmonary hypertension (PH), a disease of unknown etiology that has been characterized by pulmonary artery vasoconstriction, right ventricular hypertrophy, vascular inflammation, and abnormal angiogenesis in pulmonary circulation. G protein-coupled receptors (GPCRs) are the largest family in the genome and widely expressed in cardiovascular system. They regulate all aspects of PH pathophysiology and represent therapeutic targets. We overview GPCRs function in vasoconstriction, vasodilation, vascular inflammation-driven remodeling and describe signaling cross talk between GPCR, inflammatory cytokines, and growth factors. Overall, the goal of this review is to emphasize the importance of GPCRs as critical signal transducers and targets for drug development in PH.
Collapse
Affiliation(s)
- Derek Strassheim
- Departments of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Vijaya Karoor
- Departments of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.,Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kurt Stenmark
- Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Pediatrics, Pulmonary and Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Evgenia Gerasimovskaya
- Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Pediatrics, Pulmonary and Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
18
|
Xu X, Jin T. ELMO proteins transduce G protein-coupled receptor signal to control reorganization of actin cytoskeleton in chemotaxis of eukaryotic cells. Small GTPases 2017. [PMID: 28641070 PMCID: PMC6548286 DOI: 10.1080/21541248.2017.1318816] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chemotaxis, which is chemoattractant-guided directional cell migration, plays major roles in recruitment of neutrophils, the metastasis of cancer cells, and the development of the model organism Dictyostelium discoideum. These cells share remarkable similarities in the signaling pathways by which they control chemotaxis. They all use a G protein-coupled receptor (GPCR)-mediated signal transduction pathway to sense the chemotactic gradient to guide cell migration. Diverse chemokines activate Rac through conserved GPCR signaling pathways. ELMO proteins are an evolutionarily conserved, essential component of the ELMO/Dock complex, which functions as a guanine nucleotide exchange factor (GEF) for small G protein Rac activation. The linkages between the GPCR-initiated gradient sensing compass and the Rac-mediated migrating machinery have long been missing. Here, we summarize recent findings on ELMO proteins that directly interact with G protein and transduce GPCR signaling to control the reorganization of actin-based cytoskeleton through regulating Rac activation during chemotaxis, first in D. discoideum and then in mammalian cancer cells. This represents an evolutionarily conserved signaling shortcut from GPCR to the actin cytoskeleton.
Collapse
Affiliation(s)
- Xuehua Xu
- a Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Rockville , MD , USA
| | - Tian Jin
- a Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Rockville , MD , USA
| |
Collapse
|
19
|
Hernández-Vásquez MN, Adame-García SR, Hamoud N, Chidiac R, Reyes-Cruz G, Gratton JP, Côté JF, Vázquez-Prado J. Cell adhesion controlled by adhesion G protein-coupled receptor GPR124/ADGRA2 is mediated by a protein complex comprising intersectins and Elmo-Dock. J Biol Chem 2017; 292:12178-12191. [PMID: 28600358 DOI: 10.1074/jbc.m117.780304] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/30/2017] [Indexed: 11/06/2022] Open
Abstract
Developmental angiogenesis and the maintenance of the blood-brain barrier involve endothelial cell adhesion, which is linked to cytoskeletal dynamics. GPR124 (also known as TEM5/ADGRA2) is an adhesion G protein-coupled receptor family member that plays a pivotal role in brain angiogenesis and in ensuring a tight blood-brain barrier. However, the signaling properties of GPR124 remain poorly defined. Here, we show that ectopic expression of GPR124 promotes cell adhesion, additive to extracellular matrix-dependent effect, coupled with filopodia and lamellipodia formation and an enrichment of a pool of the G protein-coupled receptor at actin-rich cellular protrusions containing VASP, a filopodial marker. Accordingly, GPR124-expressing cells also displayed increased activation of both Rac and Cdc42 GTPases. Mechanistically, we uncover novel direct interactions between endogenous GPR124 and the Rho guanine nucleotide exchange factors Elmo/Dock and intersectin (ITSN). Small fragments of either Elmo or ITSN1 that bind GPR124 blocked GPR124-induced cell adhesion. In addition, Gβγ interacts with the C-terminal tail of GPR124 and promotes the formation of a GPR124-Elmo complex. Furthermore, GPR124 also promotes the activation of the Elmo-Dock complex, as measured by Elmo phosphorylation on a conserved C-terminal tyrosine residue. Interestingly, Elmo and ITSN1 also interact with each other independently of their GPR124-recognition regions. Moreover, endogenous phospho-Elmo and ITSN1 co-localize with GPR124 at lamellipodia of adhering endothelial cells, where GPR124 expression contributes to polarity acquisition during wound healing. Collectively, our results indicate that GPR124 promotes cell adhesion via Elmo-Dock and ITSN. This constitutes a previously unrecognized complex formed of atypical and conventional Rho guanine nucleotide exchange factors for Rac and Cdc42 that is putatively involved in GPR124-dependent angiogenic responses.
Collapse
Affiliation(s)
- Magda Nohemí Hernández-Vásquez
- Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City 14740, Mexico
| | - Sendi Rafael Adame-García
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City 14740, Mexico
| | - Noumeira Hamoud
- Institut de Recherches Cliniques de Montréal, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Rony Chidiac
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Guadalupe Reyes-Cruz
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City 14740, Mexico
| | - Jean Philippe Gratton
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Jean-François Côté
- Institut de Recherches Cliniques de Montréal, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - José Vázquez-Prado
- Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City 14740, Mexico.
| |
Collapse
|
20
|
Winge MCG, Marinkovich MP. Epidermal activation of the small GTPase Rac1 in psoriasis pathogenesis. Small GTPases 2017; 10:163-168. [PMID: 28055293 DOI: 10.1080/21541248.2016.1273861] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The small GTPase Ras-related C3 botulinum toxin substrate 1 (RAC1) plays a central role in skin homeostasis, including barrier function, wound healing and inflammatory responses. Psoriasis is a common skin disease characterized by deregulation of these functions, and affected skin exhibit keratinocyte hyperproliferation, inflammation and immune cell infiltration. Although psoriasis is often triggered by environmental stimulus, there is a strong genetic association with genes expressed in both immune cells and keratinocytes, of which several are linked to Rac1 signaling. Rac1 is highly active in human psoriatic lesional skin and keratinocytes, and keratinocyte-specific overexpression of an activated mutant of Rac1, Rac1V12, in a transgenic mouse model closely mimics the presentation of human psoriasis. Both Rac1 activation in keratinocytes and immune derived stimulus are required to drive psoriasiform signaling in transgenic mouse and human xenograft models of psoriasis. Therefore, understanding how increased Rac1 activation in psoriatic epidermis is regulated is central to understanding how the abnormal crosstalk between keratinocytes and immune cells is maintained.
Collapse
Affiliation(s)
- Mårten C G Winge
- a Program in Epithelial Biology , Stanford University School of Medicine , Stanford , CA , USA
| | - M Peter Marinkovich
- a Program in Epithelial Biology , Stanford University School of Medicine , Stanford , CA , USA.,b Dermatology Service , Veterans Affairs Medical Center , Palo Alto , CA , USA
| |
Collapse
|
21
|
Druey KM. Emerging Roles of Regulators of G Protein Signaling (RGS) Proteins in the Immune System. Adv Immunol 2017; 136:315-351. [PMID: 28950950 DOI: 10.1016/bs.ai.2017.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kirk M Druey
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, NIAID/NIH, Bethesda, MD, United States.
| |
Collapse
|
22
|
Knockdown of ELMO3 Suppresses Growth, Invasion and Metastasis of Colorectal Cancer. Int J Mol Sci 2016; 17:ijms17122119. [PMID: 27999268 PMCID: PMC5187919 DOI: 10.3390/ijms17122119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 01/08/2023] Open
Abstract
The engulfment and cell motility (ELMOs) family of proteins plays a crucial role in tumor cell migration and invasion. However, the function of ELMO3 is poorly defined. To elucidate its role in the development and progression of colorectal cancer (CRC), we examined the expression of ELMO3 in 45 cases of paired CRC tumor tissues and adjacent normal tissues. Furthermore, we assessed the effect of the knockdown of ELMO3 on cell proliferation, cell cycle, migration, invasion and F-actin polymerization in HCT116 cells. The result shows that the expression of ELMO3 in CRC tissues was significantly increased in comparison to the adjacent normal colorectal tissues. Moreover, this overexpression was associated with tumor size (p = 0.007), tumor differentiation (p = 0.001), depth of invasion (p = 0.009), lymph node metastasis (p = 0.003), distant metastasis (p = 0.013) and tumor, node, metastasis (TNM)-based classification (p = 0.000). In in vitro experiments, the silencing of ELMO3 inhibited cell proliferation, invasion, metastasis, and F-actin polymerization, and induced Gap 1 (G1) phase cell cycle arrest. Our study demonstrates that ELMO3 is involved in the processes of growth, invasion and metastasis of CRC, and could be used a potential molecular diagnostic tool or therapy target of CRC.
Collapse
|
23
|
Vázquez-Prado J, Bracho-Valdés I, Cervantes-Villagrana RD, Reyes-Cruz G. Gβγ Pathways in Cell Polarity and Migration Linked to Oncogenic GPCR Signaling: Potential Relevance in Tumor Microenvironment. Mol Pharmacol 2016; 90:573-586. [DOI: 10.1124/mol.116.105338] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/14/2016] [Indexed: 12/16/2022] Open
|