1
|
Ranapour S, Motamed N. Effect of Silibinin on the Expression of Mir-20b, Bcl2L11, and Erbb2 in Breast Cancer Cell Lines. Mol Biotechnol 2023; 65:1979-1990. [PMID: 36905464 DOI: 10.1007/s12033-023-00702-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/14/2023] [Indexed: 03/12/2023]
Abstract
This study aimed to evaluate the comparative effect of silibinin (SB) on the expression of MiR‑20b and BCL2L11 in T47D and MCF-7 cell lines. Molecular simulation studies were carried out to analyze Erbb2, as a potential target of SB, to direct the breast cancer cells toward apoptosis. At first, cell viability, apoptosis, and cell cycle arrest-inducing capacity of SB were examined using MTT and flow cytometry analysis, respectively. Real-time PCR (RT-PCR) was employed to assess the effect of SB on BCL2L11, Phosphatase and tensin homolog (PTEN), and Caspase 9 mRNarrest-indu. Moreover, alterations in Caspase 9 protein expression were determined using Western blot analysis. Finally, AutoDockVina software was used to dock the SB/ MiR‑20b and SB/ erb-b2 receptor tyrosine kinase 2 (Erbb2) interaction. The obtained data revealed the potent cytotoxicity of SB in both T47D and MCF-7 cells through apoptosis induction and cell cycle arrest. SB-treated cells also showed downregulation of MiR‑20b and high expression of BCL2L11, PTEN, and Caspase 9 mRNA compared to non-treated cancer cells. Computational docking showed a strong interaction between SB/ MiR‑20b and SB/Erbb2. It can be concluded that SB had a strong anti-tumorigenic activity through BCL2L11upregulation and MiR‑20b down expression, maybe through targeting the PTEN and interacting with Erbb2, which resulted in apoptotic induction and cell cycle arrest.
Collapse
Affiliation(s)
- Sanaz Ranapour
- Department of Cellular and Molecular Biology, Kish International Campus, University of Tehran, Kish, Iran
| | - Nasrin Motamed
- Department of Cellular and Molecular Biology, Kish International Campus, University of Tehran, Kish, Iran.
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, 14155-6455, Iran.
| |
Collapse
|
2
|
Kumar V, Sharma H, Saini L, Tyagi A, Jain P, Singh Y, Balyan P, Kumar S, Jan S, Mir RR, Djalovic I, Singh KP, Kumar U, Malik V. Phylogenomic analysis of 20S proteasome gene family reveals stress-responsive patterns in rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1037206. [PMID: 36388569 PMCID: PMC9659873 DOI: 10.3389/fpls.2022.1037206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The core particle represents the catalytic portions of the 26S proteasomal complex. The genes encoding α- and β-subunits play a crucial role in protecting plants against various environmental stresses by controlling the quality of newly produced proteins. The 20S proteasome gene family has already been reported in model plants such as Arabidopsis and rice; however, they have not been studied in oilseed crops such as rapeseed (Brassica napus L.). In the present study, we identified 20S proteasome genes for α- (PA) and β-subunits (PB) in B. napus through systematically performed gene structure analysis, chromosomal location, conserved motif, phylogenetic relationship, and expression patterns. A total of 82 genes, comprising 35 BnPA and 47 BnPB of the 20S proteasome, were revealed in the B. napus genome. These genes were distributed on all 20 chromosomes of B. napus and most of these genes were duplicated on homoeologous chromosomes. The BnPA (α1-7) and BnPB (β1-7) genes were phylogenetically placed into seven clades. The pattern of expression of all the BnPA and BnPB genes was also studied using RNA-seq datasets under biotic and abiotic stress conditions. Out of 82 BnPA/PB genes, three exhibited high expression under abiotic stresses, whereas two genes were overexpressed in response to biotic stresses at both the seedling and flowering stages. Moreover, an additional eighteen genes were expressed under normal conditions. Overall, the current findings developed our understanding of the organization of the 20S proteasome genes in B. napus, and provided specific BnPA/PB genes for further functional research in response to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Botany, Chaudhary Charan Singh University, Meerut, UP, India
| | - Hemant Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP, India
| | - Lalita Saini
- Department of Botany, Chaudhary Charan Singh University, Meerut, UP, India
| | - Archasvi Tyagi
- Department of Botany, Chaudhary Charan Singh University, Meerut, UP, India
| | - Pooja Jain
- Department of Botany, Chaudhary Charan Singh University, Meerut, UP, India
| | - Yogita Singh
- Department of Molecular Biology & Biotechnology, College of Biotechnology, Chaudhary Charan Singh (CCS) Haryana Agricultural University, Hisar, India
| | - Priyanka Balyan
- Department of Botany, Deva Nagri Post Graduate (PG) College, Chaudhary Charan Singh (CCS) University, Meerut, India
| | - Sachin Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP, India
| | - Sofora Jan
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology (SKUAST)-Kashmir, Wadura, India
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology (SKUAST)-Kashmir, Wadura, India
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki, Novi Sad, Serbia
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences & Humanities, Govind Ballabh (GB) Pant University of Agriculture & Technology, Pantnagar, India
- Vice-Chancellor’s Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, India
| | - Upendra Kumar
- Department of Molecular Biology & Biotechnology, College of Biotechnology, Chaudhary Charan Singh (CCS) Haryana Agricultural University, Hisar, India
| | - Vijai Malik
- Department of Botany, Chaudhary Charan Singh University, Meerut, UP, India
| |
Collapse
|
3
|
Long non-coding RNAs and cancer mechanisms: Immune cells and inflammatory cytokines in the tumor microenvironment. Med Oncol 2022; 39:108. [PMID: 35578054 DOI: 10.1007/s12032-022-01680-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/05/2022] [Indexed: 02/06/2023]
Abstract
Chronic inflammation and immune response are two central hallmarks of the tumor microenvironment (TME), teeming with immune cells and inflammatory cytokines that promote tumor progression. Intriguingly, there is mutual regulation between immune cells and cytokines. Indeed, the differentiation and function of immune cells depend on cytokines secreted from tumor cells, whereas immune activation affects the dynamics of cytokines, reshaping the TME together. Long non-coding RNAs (lncRNAs) as a blooming molecule are virtually involved in physiology and pathology events, especially TME. Notably, the regulatory loop between lncRNAs and cytokines or immune activation plays a vital role in tumor growth. Thus, this review concentrates on the interaction between lncRNAs and immune cells. It puts special attention to the intertwist between lncRNAs and cytokines or immune cells, providing a theoretical basis for lncRNAs as a potential biomarker and therapeutic tumor target.
Collapse
|
4
|
LINC00922 acts as a novel oncogene in gastric cancer. World J Surg Oncol 2022; 20:121. [PMID: 35428261 PMCID: PMC9013058 DOI: 10.1186/s12957-022-02569-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have been discovered to participate in various cancer developments. However, the biological function of lncRNAs associated with gastric cancer (GC) has not been fully elucidated. Methods Quantitative RT-PCR (qRT-PCR) assay was performed to measure lncRNAs, microRNAs (miRNAs) and message RNA (mRNA) expression. Cell Counter Kit-8 (CCK-8), clone formation, wound healing, and transwell assays were performed to investigate cell proliferation, migration, invasion, and apoptosis. Fluorescence in situ hybridization (FISH) assay was used to analyze LINC00922 in either the cytoplasm or nucleus. The potential binding among lncRNA, miRNA, and mRNA was evidenced by bioinformatics, luciferase reporter assay. Mouse-xenograft experiments were used to explore the tumorigenesis in vivo. Results LINC00922 was upregulated in GC, and high LINC00922 expression was associated with poor prognosis. Inhibition of LINC00922 suppressed GC cell proliferation, migration, invasion, and activated cell apoptosis in vitro and inhibited tumorigenesis in vivo. Besides, LINC00922 was markedly located in the cytoplasm. The mechanistic analysis demonstrated that LINC00922 acted as a sponge of miR-204-5p, thereby inhibiting the expression of the target gene-High Mobility Group AT-hook 2 (HMGA2). Conclusion LINC00922 accelerated the progression of GC by miR-204-5p/HMGA2 axis. These findings support LINC00922 may be a promising option for the diagnosis and therapy of GC. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-022-02569-3.
Collapse
|
5
|
miR-135a Targets SMAD2 to Promote Osteosarcoma Proliferation and Migration. JOURNAL OF ONCOLOGY 2022; 2022:3037348. [PMID: 35466322 PMCID: PMC9020941 DOI: 10.1155/2022/3037348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/22/2022] [Accepted: 02/02/2022] [Indexed: 02/05/2023]
Abstract
Osteosarcoma (OS) is an aggressive malignant neoplasm that commonly occurs in adults and adolescents. The objectives of this work were to verify the role of microRNA- (miR-) 135a in OS and determine whether it can regulate the growth and cellular migration of OS by targeting mothers against decapentaplegic homolog 2 (SMAD2). miR-135a and SMAD2 mRNA expression levels were measured using reverse transcription-quantitative PCR (RT-qPCR). Proliferation and migration of cells were studied using the Cell Counting Kit-8, EdU staining, and transwell invasion experiment. Additionally, a dual-luciferase reporter experiment was used to investigate the possible relationship between miR-135a and SMAD2's 3'-UTR. Immunohistochemistry was utilized to examine the expressions of SMAD2 and Ki67 in mouse tumor tissues to determine the influence of miR-135a on cancer progression in vivo. miR-135a was shown to be elevated in OS tissue samples as well as five cell lines. High expression levels of miR-135a were correlated with poor prognosis of OS patients. Cellular proliferation and migration were promoted by the upregulation of miR-135a with miR mimics; however, this effect was inhibited by SMAD2 overexpression. miR-135a was also shown to directly target the 3'-UTR of SMAD2. Animal experiments also demonstrated that miR-135a downregulation had an inhibitory effect on tumor growth in vivo. High expression levels of miR-135a promoted transplanted tumor development in vivo and the proliferation and migration of OS cells by targeting SMAD2. In summary, miR-135a may be a prospective therapeutic target for OS in the future.
Collapse
|
6
|
Bashir S, Uzair M, Abualait T, Arshad M, Khallaf RA, Niaz A, Thani Z, Yoo WK, Túnez I, Demirtas-Tatlidede A, Meo SA. Effects of transcranial magnetic stimulation on neurobiological changes in Alzheimer's disease (Review). Mol Med Rep 2022; 25:109. [PMID: 35119081 PMCID: PMC8845030 DOI: 10.3892/mmr.2022.12625] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/15/2021] [Indexed: 11/05/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and brain neuronal loss. A pioneering field of research in AD is brain stimulation via electromagnetic fields (EMFs), which may produce clinical benefits. Noninvasive brain stimulation techniques, such as transcranial magnetic stimulation (TMS), have been developed to treat neurological and psychiatric disorders. The purpose of the present review is to identify neurobiological changes, including inflammatory, neurodegenerative, apoptotic, neuroprotective and genetic changes, which are associated with repetitive TMS (rTMS) treatment in patients with AD. Furthermore, it aims to evaluate the effect of TMS treatment in patients with AD and to identify the associated mechanisms. The present review highlights the changes in inflammatory and apoptotic mechanisms, mitochondrial enzymatic activities, and modulation of gene expression (microRNA expression profiles) associated with rTMS or sham procedures. At the molecular level, it has been suggested that EMFs generated by TMS may affect the cell redox status and amyloidogenic processes. TMS may also modulate gene expression by acting on both transcriptional and post‑transcriptional regulatory mechanisms. TMS may increase brain cortical excitability, induce specific potentiation phenomena, and promote synaptic plasticity and recovery of impaired functions; thus, it may re‑establish cognitive performance in patients with AD.
Collapse
Affiliation(s)
- Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Eastern Province 32253, Saudi Arabia
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University Islamabad, Islamabad 44000, Pakistan
| | - Turki Abualait
- College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province 34212, Saudi Arabia
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University Islamabad, Islamabad 44000, Pakistan
| | - Roaa A. Khallaf
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Eastern Province 32253, Saudi Arabia
| | - Asim Niaz
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Eastern Province 32253, Saudi Arabia
| | - Ziyad Thani
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Eastern Province 32253, Saudi Arabia
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University College of Medicine, Anyang, Gyeonggi-do 24252, Republic of Korea
| | - Isaac Túnez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing/ Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Cordoba, Cordoba 14071, Spain
- Cooperative Research Thematic Excellent Network on Brain Stimulation (REDESTIM), Ministry for Economy, Industry and Competitiveness, 28046 Madrid, Spain
| | | | - Sultan Ayoub Meo
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Wang Z, Zhang X, Zhang X, Jiang X. Long noncoding RNA LINC01703 exacerbates the malignant properties of non-small-cell lung cancer by upregulating MACC1 in a microRNA-605-3p-mediated manner. Oncol Res 2021; 28:913-927. [PMID: 34493358 PMCID: PMC8790138 DOI: 10.3727/096504021x16310057751016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Long intergenic nonprotein coding RNA 1703 (LINC01703) has diagnostic significancein lung adenocarcinoma. However, its specific roles in non-small-cell lung cancer(NSCLC) and downstream mechanisms have not been investigated. In the current study,we characterized the role of LINC01703 in NSCLC malignancy and elucidated itsdetailed mechanism of action. LINC01703 expression was measured by qRT-PCR. Theregulatory effects of LINC01703 on the malignancy of NSCLC cells were assessed bymultiple functional experiments. The targeted interaction was confirmed by RNAimmunoprecipitation and luciferase reporter assays. Herein, overexpression ofLINC01703 in NSCLC was indicated in the TCGA database and further proven in ourcohort. Functional studies revealed that knocking down LINC01703 repressed cellproliferation, colony formation, migration and invasion in vitro, which wasaccompanied by the induction of apoptosis. The tumor growth of LINC01703-silencedcells was also inhibited in vivo. Mechanistic analyses revealed that LINC01703functioned as a competing endogenous RNA for microRNA-605-3p (miR-605-3p) inNSCLC cells, which thereby upregulated the miR-605-3p target metastasis associatedwith colon cancer 1 (MACC1). Rescue experiments highlighted that the regulatoryactions of LINC01703 ablation on NSCLC cells were abolished in response to miR-605-3p downregulation or MACC1 overexpression. In conclusion, LINC01703enhanced the aggressiveness of NSCLC cells by altering miR-605-3p/MACC1. Ourwork suggests the therapeutic potential of LINC01703/miR-605-3p/MACC1 in NSCLC.
Collapse
|
8
|
Revealing transcriptional and post-transcriptional regulatory mechanisms of γ-glutamyl transferase and keratin isoforms as novel cooperative biomarkers in low-grade glioma and glioblastoma multiforme. Genomics 2021; 113:2623-2633. [PMID: 34118380 DOI: 10.1016/j.ygeno.2021.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/08/2021] [Accepted: 06/07/2021] [Indexed: 01/22/2023]
Abstract
Gamma-glutamyltransferase (GGT) and keratins (KRT) are key factors in regulating tumor progression rely on emerging evidence. However, the prognostic values of GGT and KRT isoforms and their regulation patterns at transcriptional and post-transcriptional levels have been rarely studied. In this study, we aimed to identify cooperative prognostic biomarker signature conducted by GGT and KRT genes for overall survival prediction and discrimination in patients with low-grade glioma (LGG) and glioblastoma multiforme (GBM). To this end, we employed a differential expression network analysis on LGG-NORMAL, GBM-NORMAL, and LGG-GBM datasets. Then, all the differentially expressed genes related to a GO term "GGT activity" were excluded. After that, for obtained potential biomarkers genes, differentially expressed lncRNAs were used to detect cis-regulatory elements (CREs) and trans-regulatory elements (TREs). To scrutinize the regulation on the cytoplasm, potential interactions between these biomarker genes and DElncRNAs were predicted. Our analysis, for the first time, revealed that GGT6, KRT33B, and KRT75 in LGG, GGT2, and KRT75 in GBM and KRT75 for LGG to GBM transformation tumors can be novel cooperative prognostic biomarkers that may be applicable for early detection of LGG, GBM, and LGG to GBM transformation tumors. Consequently, KRT75 was the most important gene being regulated at both transcriptional and post-transcriptional levels significantly. Furthermore, CREs and their relative genes were coordinative up-regulated or down-regulated suggesting CREs as regulation points of these genes. In the end, up-regulation of most DElncRNAs that had physical interaction with target genes pints out that the transcripted genes may have obstacles for translation process.
Collapse
|
9
|
Yin G, Peng Y, Lin Y, Wang P, Li Z, Wang R, Lin H. Long Non-coding RNA MSTRG.24008.1 Regulates the Regeneration of the Sciatic Nerve via the miR-331-3p-NLRP3/MAL Axis. Front Cell Dev Biol 2021; 9:641603. [PMID: 34150749 PMCID: PMC8213216 DOI: 10.3389/fcell.2021.641603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
Peripheral nerve injury (PNI) is a common clinical problem, which can cause severe disability and dramatically affect a patient’s quality of life. Neural regeneration after PNI is a complex biological process that involves a variety of signaling pathways and genes. Emerging studies demonstrated that long non-coding RNAs (lncRNAs) were abnormally expressed after PNI and played pivotal roles in peripheral nerve regeneration. Based on the rat sciatic nerve injury model, we found that the expression levels of several lncRNAs were increased significantly in the sciatic nerve after injury. Software prediction prompted us to focus on one up-regulated lncRNA, MSTRG.24008.1. Dual-luciferase reporter assay, RNA pull-down assay and RNA interference approach verified that MSTRG.24008.1 regulated neuroregeneration via the miR-331-3p/nucleotide-binding oligomerization domain-like pyrin domain containing 3 (NLRP3)/myelin and lymphocyte protein (MAL) axis in vitro. Subsequently, we performed gastrocnemius muscle gravity and sciatic functional index experiments to evaluate the recovery of injured sciatic nerves after MSTRG.24008.1 siRNA interference in vivo. In conclusion, knockdown of MSTRG.24008.1 promotes the regeneration of the sciatic nerve via the miR-331-3p/NLRP3/MAL axis, which may provide a new strategy to evaluate and repair injured peripheral nerves clinically.
Collapse
Affiliation(s)
- Gang Yin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Peng
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaofa Lin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peilin Wang
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuoxuan Li
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renyuan Wang
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haodong Lin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
LncRNA: A Potential Research Direction in Intestinal Barrier Function. Dig Dis Sci 2021; 66:1400-1408. [PMID: 32591966 DOI: 10.1007/s10620-020-06417-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/14/2020] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides and play important roles in a variety of diseases. LncRNAs are involved in many biologic processes including cell differentiation, development, and apoptosis. The intestinal barrier is considered one of the most important protective barriers in humans. Severe damage or dysfunction of the intestinal barrier may be associated with the occurrence and development of many diseases, such as inflammatory bowel disease and ulcerative colitis. LncRNAs have been found to be associated with intestinal barrier function in some studies, which are at an early stage. In this review, we introduce the roles of LncRNAs in the intestinal barrier and investigate the possibility of lncRNAs as a research field in the intestinal barrier.
Collapse
|
11
|
Ma J, Sun S, Song C, Li N, Li N, Xu L, Yang T, Lan Y, Li M. Screening potential microRNAs associated with pancreatic cancer: Data mining based on RNA sequencing and microarrays. Exp Ther Med 2020; 20:2705-2715. [PMID: 32765765 PMCID: PMC7401655 DOI: 10.3892/etm.2020.8991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/17/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is a malignant tumor of the digestive tract, rendering it difficult to make an accurate diagnosis. The 5 year survival rate for pancreatic cancer is <1%, and surgical resection rarely proves to be effective. Therefore, the identification of more effective methods for the early detection of pancreatic cancer is an urgent requirement. The present study aimed to explore key genes and microRNAs (miRNAs) associated with the pathogenesis of pancreatic cancer. Public databases were searched, and the data were integrated from The Cancer Genome Atlas and Gene Expression Omnibus databases, leading to the identification of 23 differentially expressed miRNAs (DE-miRNAs). A total of four of the DE-miRNAs were upregulated (hsa-miR-892b, hsa-miR-194-2, hsa-miR-200a and hsa-miR-194-1), whereas 19 downregulated DE-miRNAs (hsa-miR-424, hsa-miR-191, hsa-miR-484, hsa-miR-142, hsa-miR-15b, hsa-miR-450a-1, hsa-miR-423, hsa-miR-126, hsa-miR-505, hsa-miR-16-1, hsa-miR-342, hsa-miR-130a, hsa-miR-3613, hsa-miR-450a-2, hsa-miR-26b, hsa-miR-451, hsa-miR-19b-2, hsa-miR-106a and hsa-miR-503) were identified using the cut-off criteria of P<0.05 and |log 2FC|>1.0. Hsa-miR-3613-5p was identified as a prognostic DE-miRNA. The functional enrichment analyses demonstrated that the target genes of hsa-miR-3613-5p may be associated with the p53 signaling pathway. Survival analysis performed for genes in the p53 signaling pathway revealed that cyclin-dependent kinase 6 and ribonucleoside-diphosphate reductase subunit M2 may be the most likely to be associated with prognostic value. The integrated analysis performed in the current study demonstrated that hsa-miR-3613-5p may be used as a potential prognostic marker for pancreatic cancer.
Collapse
Affiliation(s)
- Jing Ma
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Siwen Sun
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Chen Song
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Ning Li
- Department of Foreign Languages, Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Na Li
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Lingzhi Xu
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Ting Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Yulong Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Man Li
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| |
Collapse
|
12
|
LINC00266-1/miR-548c-3p/SMAD2 feedback loop stimulates the development of osteosarcoma. Cell Death Dis 2020; 11:576. [PMID: 32709857 PMCID: PMC7381647 DOI: 10.1038/s41419-020-02764-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 11/09/2022]
Abstract
Osteosarcoma (OS) is one of the most common primary bone malignancies and accounts for 3.4% of pediatric tumors. Its 5-year survival is as low as about 20%. Differentially expressed lncRNAs in OS profiling were searched in the downloaded profile of GSE12865. As a result, LINC00266-1 was detected to be upregulated in both GSE12865 and OS tissues we collected. SMAD2 was the downstream target binding to promoter sites of LINC00266-1, displaying a positive regulatory interaction. Knockdown of LINC00266-1 suppressed the proliferative and metastatic abilities, and promoted the apoptosis in OS cells. Besides, knockdown of LINC00266-1 significantly alleviated the growth of OS in vivo. MiR-548c-3p was the sponge miRNA of LINC00266-1, which was able to reverse the regulatory effects of LINC00266-1 on OS cell phenotypes. Moreover, miR-548c-3p bound to the 3'-UTR of SMAD2 and thus downregulated SMAD2. Overexpression of SMAD2 partially reversed the regulatory effects of LINC00266-1 on OS cell phenotypes. Finally, we have identified that LINC00266-1/miR-548c-3p/SMAD2 feedback loop was responsible for stimulating the development of OS.
Collapse
|
13
|
Liu Z, Han L, Yu H, Gao N, Xin H. LINC01619 promotes non-small cell lung cancer development via regulating PAX6 by suppressing microRNA-129-5p. Am J Transl Res 2020; 12:2538-2553. [PMID: 32655789 PMCID: PMC7344070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
This article explored LINC01619 impact on non-small cell lung cancer (NSCLS) development. LINC01619 expression in tumor tissues/normal tissues of NSCLS patients was detected by qRT-PCR and in situ hybridization. PAX6 expression in clinical tissues was researched by immunohistochemistry. After transfection, SPCA1 and A549 cells were subjected to CCK-8 assay and cell colony formation experiment. Xenograft tumor experiment was conducted. ALDH+ cells from SPCA1 and A549 cells were separated and transfected. ALDH+ cells percentage, sphere number and cancer stem cell markers expression was determined by flow cytometry, sphere culture and Western blot respectively. Luciferase reporter gene assay and RNA binding protein immunoprecipitation assay was conducted. The colocalization of LINC01619 and miR-129-5p in cells was determined by RNA fluorescence in situ hybridization experiment. Gene expression in tissues and cells were assessed by qRT-PCR and Western blot. As a result, aberrantly up-regulated LINC01619 and PAX6 in NSCLC patients predicted poor prognosis. LINC01619 overexpression in SPCA1 cells enhanced cell viability, cloning ability, and xenograft tumors volume and weigh, whereas LINC01619 silencing in A549 cells weakened the above indicators. LINC01619 overexpression promoted cancer stem cells characteristics including increasing percentage of ALDH+ cells, sphere number and cancer stem cell markers expression. LINC01619 directly inhibited miR-129-5p and the two genes were mainly colocalized in the cytoplasm. PAX6 was up-regulated in NSCLC and directly suppressed by miR-129-5p. LINC01619 promoted cells viability, cloning ability and cancer stem cells characteristics in NSCLC via the miR-129-5p/PAX6 axis. Thus, LINC01619 promotes NSCLC development via regulating PAX6 by suppressing miR-129-5p.
Collapse
Affiliation(s)
- Zhengjia Liu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University Changchun 130033, Jilin Province, P. R. China
| | - Leng Han
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University Changchun 130033, Jilin Province, P. R. China
| | - Haixiang Yu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University Changchun 130033, Jilin Province, P. R. China
| | - Nan Gao
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University Changchun 130033, Jilin Province, P. R. China
| | - Hua Xin
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University Changchun 130033, Jilin Province, P. R. China
| |
Collapse
|
14
|
Zhou N, Zhu X, Man L. LINC00963 Functions as an Oncogene in Bladder Cancer by Regulating the miR-766-3p/MTA1 Axis. Cancer Manag Res 2020; 12:3353-3361. [PMID: 32494199 PMCID: PMC7229805 DOI: 10.2147/cmar.s249979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/19/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Long non-coding RNAs have been found to be involved in bladder cancer development. This article studied LINC00963 effects on bladder cancer progression to provide a novel treatment target. Patients and Methods Totally 56 bladder cancer patients participated in this research. Bladder cancer cells were transfected. Cell counting kit 8 assay and clone formation experiment were used for cell viability and colony formation detection. Cell migration and invasion were determined by Transwell experiment. LINC00963 distribution was explored by cytoplasmic and nuclear extract isolation and quantitative real-time polymerase chain reaction. Luciferase reporter experiment and RNA pulldown experiment were performed to detect the relationship between these two genes. The cancer genome atlas analysis was used for the detection of metastasis-associated protein 1 (MTA1) expression in bladder cancer. Results LINC00963 was seriously up-regulated in bladder cancer patients. High LINC00963 expression indicated high histological grade and low survival. LINC00963 was obviously up-regulated in bladder cancer cells. Knockdown of LINC00963 significantly reduced bladder cancer cells viability, colony formation, migration and invasion. Luciferase reporter experiment and RNA pulldown experiment revealed that LINC00963 promoted MTA1 expression via directly inhibiting miR-766-3p. MTA1 was up-regulated in bladder cancer patients. MTA1 up-regulation reversed the inhibitory effect of LINC00963 knockdown on bladder cancer cell viability, migration and invasion. Conclusion LINC00963 functions as an oncogene in bladder cancer by regulating the miR-766-3p/MTA1 axis.
Collapse
Affiliation(s)
- Ning Zhou
- Department of Urology, Beijing Jishuitan Hospital, Beijing 100035, People's Republic of China
| | - Xiaofei Zhu
- Department of Urology, Beijing Jishuitan Hospital, Beijing 100035, People's Republic of China
| | - Libo Man
- Department of Urology, Beijing Jishuitan Hospital, Beijing 100035, People's Republic of China
| |
Collapse
|
15
|
Wang Z, Li Z, Fu Y, Han L, Tian Y. MiRNA-130a-3p inhibits cell proliferation, migration, and TMZ resistance in glioblastoma by targeting Sp1. Am J Transl Res 2019; 11:7272-7285. [PMID: 31934277 PMCID: PMC6943444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
Specificity protein 1 (Sp1) is aberrantly expressed and involved in the development and metastasis of glioblastoma. In this study, we observed that the expression of Sp1 was upregulated while that of microRNA (miR)-130a-3p was downregulated in glioblastoma cell lines. Sp1 was validated as a target of miR-130a-3p; increased levels of miR-130a-3p inhibited the proliferation, migration, and temozolomide (TMZ) resistance of the glioblastoma cells. However, Sp1 overexpression compromised the inhibitory effects of miR-130a-3p. Our study elucidates the functional interaction between miR-130a-3p and Sp1 in the development and progression of glioblastoma, suggesting a potential therapeutic target for the disease.
Collapse
Affiliation(s)
- Zhijun Wang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin UniversityChangchun 130033, P. R. China
- Department of Pediatric Surgery, The First Hospital of Jilin UniversityChangchun 130000, P. R. China
| | - Zhaohui Li
- Department of Neurosurgery, China-Japan Union Hospital of Jilin UniversityChangchun 130033, P. R. China
| | - Yao Fu
- Department of Neurosurgery, China-Japan Union Hospital of Jilin UniversityChangchun 130033, P. R. China
| | - Liang Han
- Department of Pathology, China-Japan Union Hospital of Jilin UniversityChangchun 130033, P. R. China
| | - Yu Tian
- Department of Neurosurgery, China-Japan Union Hospital of Jilin UniversityChangchun 130033, P. R. China
| |
Collapse
|
16
|
Wang Q, Zhu Y, Zuo G, Chen X, Cheng J, Zhang S. LINC00858 promotes retinoblastoma cell proliferation, migration and invasion by inhibiting miR-3182. Exp Ther Med 2019; 19:999-1005. [PMID: 32010262 PMCID: PMC6966175 DOI: 10.3892/etm.2019.8294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 10/02/2019] [Indexed: 01/13/2023] Open
Abstract
The aim of the present study was to determine the role of long intergenic non-protein coding RNA 858 (LINC00858) in retinoblastoma (RB) and investigate the underlying molecular mechanisms. RB tissues and paracancerous tissues of 27 RB cases were obtained. RB cell lines (SO-RB50, Y79, HXO-RB44 and WERI-Rb1) and a normal retinal epithelial cell line (ARPE-19) were cultured for in vitro experiments. Batches of SO-RB50 and Y79 cells were assigned to groups transfected with small interfering RNA targeting LINC00858 (si-LINC00858 group), microRNA (miR)-3182 mimics or inhibitor, or the respective controls. A Cell Counting Kit-8 and Transwell assays were performed to assess the effect of the transfections on the proliferation, migration and invasion of SO-RB50 and Y79 cells. A luciferase reporter assay was performed using SO-RB50 cells to demonstrate the direct binding of LINC00858 and miR-3182. Reverse transcription-quantitative PCR was employed to detect LINC00858 and miR-3182 expression. Pearson correlation analysis was used to assess the correlation between the expression of LINC00858 and miR-3182. The results indicated that RB tissues and cells exhibited aberrantly elevated LINC00858 expression (P<0.05). Compared with those in the control-transfected group, SO-RB50 and Y79 cells of the si-LINC00858 group had a lower cell proliferation, as well as a lower number of migrated and invaded cells (all P<0.05). miR-3182 was proven to be a target gene of LINC00858, to be abnormally downregulated in RB tissues and cells (P<0.05) and to be negatively correlated with LINC00858 expression. Compared with those in the si-LINC00858 + inhibitor-negative control group, SO-RB50 and Y79 cells of the si-LINC00858 + miR-3182 inhibitor group exhibited a significantly higher relative proliferation, migration and invasion (all P<0.05). In conclusion, LINC00858 promoted RB cell proliferation, migration and invasion, at least partially by inhibiting miR-3182.
Collapse
Affiliation(s)
- Qi Wang
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Yanni Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Guojin Zuo
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Xiaoming Chen
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jinkui Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Shu Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
17
|
Shi Y, Yan C, Li Y, Zhang Y, Zhang G, Li M, Li B, Zhao X. Expression signature of miRNAs and the potential role of miR-195-5p in high-glucose-treated rat cardiomyocytes. J Biochem Mol Toxicol 2019; 34:e22423. [PMID: 31729781 DOI: 10.1002/jbt.22423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
MicroRNAs are endogenous small noncoding RNAs that posttranscriptionally regulate the expression of target genes and play crucial roles in diverse physiopathologic processes. In the current study, we examined the microRNA (miRNA) expression profile of high-glucose-treated neonatal rat cardiomyocytes and the potential mechanisms. Differentially expressed miRNAs were analyzed by a miRNA microarray and validated by a quantitative real-time polymerase chain reaction in high-glucose-treated rat cardiomyocytes. Based on the results of our previous study and the bioinformatics prediction, we identified miR-195-5p/SGK1/Nedd4-2/hERG as the top-ranked signal pathway in diabetes cell model in vitro. In summary, our present study provides novel insights into the regulatory mechanism of miR-195-5p/SGK1/Nedd4-2/hERG in rat cardiomyocytes under high-glucose stress, which may provide a novel idea for the development of diagnostic and therapeutic strategies for diabetic cardiomyopathy in the future.
Collapse
Affiliation(s)
- Yuanqi Shi
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Caichuan Yan
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.,Department of Cancer Molecular and Biology, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Yang Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuhao Zhang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Guocui Zhang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Mingzhu Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Baoxin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xin Zhao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
18
|
Zhang L, Luo B, Dang YW, He RQ, Peng ZG, Chen G, Feng ZB. Clinical Significance of microRNA-196b-5p in Hepatocellular Carcinoma and its Potential Molecular Mechanism. J Cancer 2019; 10:5355-5370. [PMID: 31632480 PMCID: PMC6775707 DOI: 10.7150/jca.29293] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/06/2019] [Indexed: 12/18/2022] Open
Abstract
Objective: To enquire into the clinical significance and potential molecular mechanism of microRNA (miRNA)-196b-5p in hepatocellular carcinoma (HCC). Methods: Quantitative reverse transcription and polymerase chain reaction (qRT-PCR) were utilized to examine miR-196b-5p expression level in 67 HCC paraffin embedded tissues and corresponding adjacent tissues. Correlations of miR-196b-5p expression level with clinicopathological characteristics were analyzed in our study. The expression level and clinical significance of miR-196b-5p in HCC were also evaluated in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. We made predictions of the target genes of miR-196b-5p by twelve online software and then selected genes predicted by at least 5 software. Subsequently, in order to obtain the potential target genes of miR-196b-5p, we overlapped the predicted target genes and down-regulated mRNAs in HCC based on TCGA database. Then, we performed the Gene Ontology (GO) and the Disease Ontology (DO) functional annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and Protein-Protein Interaction (PPI) network construction of those miR-196b-5p potential target genes. Results: Higher expression level of miR-196b-5p was seen in HCC tissues than in the corresponding adjacent tissues based on qRT-PCR (P = 0.0007). The expression level of miR-196b-5p was linked with tumor size (P = 0.03), tumor node (P = 0.024), vascular invasion (P = 0.029) and capsular invasion (P = 0.026) in HCC patients. Comprehensive meta-analysis of miR-196b-5p expression based on TCGA, GEO and qRT-PCR verified that higher expression level of miR-196b-5p was observed in HCC tissues than in normal control liver tissues (SMD = 0.56, 95%CI: 0.39-0.72, Pheterogeneity = 0.275, I2 = 18.3%). GO annotation revealed that the top terms in biological process, cellular component and molecular function were single-organism catabolic process, neuronal cell body and transmembrane receptor protein kinase activity, respectively. The most relevant disease in DO annotation was arteriosclerosis. The tryptophan metabolism pathway ranked first in KEGG pathway enrichment analysis. The PPI network showed that IGF1, FOXO1, AR and FOS were mostly likely to become the core genes of miR-196b-5p potential target genes, which however required further experiments for validation. Conclusion: The miR-196b-5p was observed to show higher expression in HCC tissues than in normal control liver tissues. Moreover, the miR-196b-5p expression level had correlations with the clinicopathological parameters such as vascular invasion of HCC, but the molecular mechanisms of miR-196b-5p in HCC still need further elucidation and verification.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Bin Luo
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Zhi-Gang Peng
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| |
Collapse
|
19
|
Zhang H, Xue B, Wang S, Li X, Fan T. Long non‑coding RNA TP73 antisense RNA 1 facilitates the proliferation and migration of cervical cancer cells via regulating microRNA‑607/cyclin D2. Mol Med Rep 2019; 20:3371-3378. [PMID: 31432138 DOI: 10.3892/mmr.2019.10572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/11/2019] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to explore the effect of the long non‑coding RNA TP73 antisense RNA 1 (TP73‑AS1) on cervical cancer progression. Cervical cancer and adjacent tissues were collected from 56 patients and assessed. In addition, HeLa and CaSki cells were transfected with various plasmids, inhibitors and corresponding controls, and then Cell Counting Kit‑8 and Transwell assays were used to detect the cell proliferation, migration and invasion abilities. Luciferase reporter gene assay was also performed in HeLa cells. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) was used to investigate TP73‑AS1, microRNA‑607 (miR‑607) and cyclin D2 (CCND2) gene expression, while CCND2 protein expression was determined by western blot analysis. The results revealed that the TP73‑AS1 level was upregulated in cervical cancer tissues (P<0.05) and predicted a poor 5‑year overall survival (P<0.05). HeLa and CaSki cells transfected with siTP73‑AS1 exhibited reduced proliferation, migration and invasion abilities when compared with those in the siNC group (P<0.05). Furthermore, miR‑607 was found to be negatively regulated by TP73‑AS1, while CCND2 was negatively regulated by miR‑607. HeLa and CaSki cells transfected with siTP73‑AS1 exhibited lower CCND2 mRNA and protein expression levels compared with the siNC and siTP73‑AS1 + miR‑inhibitor groups (P<0.05). Compared with the siNC and siTP73‑AS1 + CCND2 overexpression groups, siTP73‑AS1‑transfected HeLa and CaSki cells had decreased proliferation, migration and invasion abilities (P<0.05). In conclusion, the findings suggested that upregulation of TP73‑AS1 promoted cervical cancer progression by promoting CCND2 via the suppression of miR‑607 expression.
Collapse
Affiliation(s)
- Hongmei Zhang
- Department of Pathology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Bing Xue
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Shuyuan Wang
- Department of Gynecology, Tai'an Tumour Prevention and Treatment Hospital, Tai'an, Shandong 271000, P.R. China
| | - Xiaoxia Li
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Tingting Fan
- Department of Gynecology, People's Hospital of Chongqing Hechuan, Chongqing 401519, P.R. China
| |
Collapse
|
20
|
Mohamed WA, Schaalan MF, Ramadan B. The expression profiling of circulating miR-204, miR-182, and lncRNA H19 as novel potential biomarkers for the progression of peptic ulcer to gastric cancer. J Cell Biochem 2019; 120:13464-13477. [PMID: 30945348 DOI: 10.1002/jcb.28620] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/17/2019] [Accepted: 02/28/2019] [Indexed: 12/17/2022]
Abstract
Deregulation of noncoding RNAs, microRNAs (miRNAs) and long noncoding RNA (lncRNA), are implicated in the initiation and progression of gastric cancer (GC). This study is a pilot case-control study carried out on 75 subjects, 40 of them were Helicobacter pylori-gastric ulcer patients and 35 were GC patients recruited from the Gastrointestinal Endoscopy Unit in Al-Kasr Al-Aini Hospital, Cairo University in Egypt. Real-time PCR was performed to evaluate the expression level of serum miR-204, miR-182, and lncRNA H19 in patients with peptic ulcer-progressed GC vs nonprogressed peptic ulcer patients. Fibroblast growth factor 18 (FGF-18)/FGF receptor 2 (FGFR2) expression and their downstream immunological and inflammatory signaling markers were assessed and their association with the addressed noncoding RNAs investigated. As regards miR-204 and miR-182, they were significantly increased (12.5 and 2.6 folds, respectively) in GU samples, compared with those of healthy control levels. The elevated levels of these miRNAs were significantly de-escalated in GC samples compared with GU and the fold decrease valued 2.2 fold for miR-204 and 1.8 folds for miR-182. On the other hand, the significant escalation in the level of lnRNA H19 in GU recorded a 16.6 fold increase and further elevation in its levels was evident in GC samples. The herein assessed miRNAs are correlated with disease duration and FGFR2 with miR-182 being significantly correlated with all inflammatory markers, TAC, INF-γ, matrix metallopeptidase 9, and FGF-18. In terms of diagnostic accuracy of assessed miRNAs (stages III to IV), the receiver operating characteristic analysis indicated that serum lncRNA H19 showed the highest diagnostic accuracy (95.5%), specificity (100%), and sensitivity (90.9%), compared with miR-204 and miR-182, which showed the same specificity (60%), sensitivity (72.7%), and diagnostic accuracy (68.8%). Our findings conclude that lnRNA H19, miR-204, and miR-182 may function as novel prospective plasma biomarkers to detect GC and its progression from H. pylori-peptic ulcer, which would be helpful to improve the theranostics of GC.
Collapse
Affiliation(s)
- Waleed A Mohamed
- Department of Chemistry, Kasr El Aini Teaching Hospital, Cairo University, Cairo, Egypt
| | - Mona F Schaalan
- Department of Clinical Pharmacy and Pharmacy Practice, Clinical and Translational Research Unit, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Basma Ramadan
- Department of Physiology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
21
|
Xie Y, Li F, Li Z, Shi Z. miR-135a suppresses migration of gastric cancer cells by targeting TRAF5-mediated NF-κB activation. Onco Targets Ther 2019; 12:975-984. [PMID: 30774383 PMCID: PMC6362934 DOI: 10.2147/ott.s189976] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background As crucial regulators and possible biomarkers for cancer development, miRNAs have attracted intensive attention during the last two decades. Among the known miRNAs, miR-135a has been indicated as a tumor suppressor in several cancer types, whereas its roles and mechanisms in gastric cancer (GC) remain largely unclear. Materials and methods Quantitative PCR (qPCR) was conducted to detect the expression of miR-135a in paired GC tissues as well as cell lines. The prognostic value was evaluated by Kaplan–Meier survival analysis. Wound healing and transwell assays were performed to determine the roles of miR-135a in GC cell migration. Dual-luciferase reporter assay, qPCR, and Western blot analysis were used to validate the targeting of TRAF5 and subsequent NF-κB pathway by miR-135a. Rescue experiments were done to explain the involvement of TRAF5 in mediating the anti-migration effect of miR-135a in GC cells. Finally, the expression of TRAF5 was examined in paired GC tissues. Results miR-135a was confirmed to be decreased in GC tissues and cell lines, and its lower expression predicted worse overall survival. Cellular experiments proved that miR-135a suppressed migration in GC cells. Through directly targeting TRAF5 and subsequently inhibiting NF-κB pathway, miR-135a might efficiently inhibit GC cell metastasis. Furthermore, we found that TRAF5 overexpression was negatively correlated with miR-135a expression in GC tissues. Conclusion Our study indicated that miR-135a serves a suppressing role in GC cell migration by targeting TRAF5 and the downstream NF-κB pathway.
Collapse
Affiliation(s)
- Yongzheng Xie
- Department of General Surgery, Henan University Huaihe Hospital, Kaifeng 475000, China
| | - Fangjun Li
- Department of Emergency, Henan University Huaihe Hospital, Kaifeng 475000, China,
| | - Zheng Li
- Department of General Surgery, Henan University Huaihe Hospital, Kaifeng 475000, China
| | - Zhaohui Shi
- Department of General Surgery, Henan University Huaihe Hospital, Kaifeng 475000, China
| |
Collapse
|
22
|
Hu G, Lv Q, Yan J, Chen L, Du J, Zhao K, Xu W. MicroRNA-17 as a promising diagnostic biomarker of gastric cancer: An investigation combining TCGA, GEO, meta-analysis, and bioinformatics. FEBS Open Bio 2018; 8:1508-1523. [PMID: 30186751 PMCID: PMC6120248 DOI: 10.1002/2211-5463.12496] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 12/19/2022] Open
Abstract
Integrated studies of accumulated data can be performed to obtain more reliable information and more feasible measures for investigating potential diagnostic biomarkers of gastric cancer (GC) and to explore related molecular mechanisms. This study aimed to identify microRNAs involved in GC by integrating data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus. Through our analysis, we identified hsa‐miR‐17 (miR‐17) as a suitable candidate. We performed a meta‐analysis of published studies and analyzed clinical data from TCGA to evaluate the clinical significance and diagnostic value of miR‐17 in GC. miR‐17 was found to be upregulated in GC tissues and exhibited a favorable value in diagnosing GC. In addition, we predicted that 288 target genes of miR‐17 participate in GC‐related pathways. Enrichment of Kyoto Encyclopedia of Genes and Genomes pathway, Gene Ontology analysis, and protein–protein interaction analysis of the 288 target genes of miR‐17 were also performed. Through this study, we identified possible core pathways and genes that may play an important role in GC. The possible core pathways include the cAMP, phosphoinositide‐3‐kinase–Akt, Rap1, and mitogen‐activated protein kinase signaling pathways. miR‐17 may be involved in several biological processes, including DNA template transcription, the regulation of transcription from RNA polymerase II promoters, and cell adhesion. In addition, cellular components (such as cytoplasm and plasma membrane) and molecular functions (such as protein binding and metal ion binding) also seemed to be regulated by miR‐17.
Collapse
Affiliation(s)
- GaoFeng Hu
- Department of Clinical Laboratory The First Hospital of Jilin University Changchun China
| | - QianWen Lv
- Department of Clinical Laboratory The First Hospital of Jilin University Changchun China
| | - JiaXiu Yan
- Department of Neonatology The First Hospital of Jilin University Changchun China
| | - LiJun Chen
- Department of Clinical Laboratory The First Hospital of Jilin University Changchun China
| | - Juan Du
- Institute of Virology and AIDS Research The First Hospital of Jilin University Changchun China
| | - Ke Zhao
- Institute of Virology and AIDS Research The First Hospital of Jilin University Changchun China
| | - Wei Xu
- Department of Clinical Laboratory The First Hospital of Jilin University Changchun China
| |
Collapse
|
23
|
Hui W, Ma X, Zan Y, Song L, Zhang S, Dong L. MicroRNA-1292-5p inhibits cell growth, migration and invasion of gastric carcinoma by targeting DEK. Am J Cancer Res 2018; 8:1228-1238. [PMID: 30094096 PMCID: PMC6079159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/11/2018] [Indexed: 06/08/2023] Open
Abstract
Gastric cancer ranks as the third most lethal cancer worldwide. Although many efforts have been made to identify novel markers for early diagnosis and effective drugs for the treatment of gastric cancer, the outcome is still poor due to delayed diagnosis and lack of therapeutic options. MicroRNAs (miRNAs) play crucial roles during tumorigenesis, and several miRNAs were found to be critical for gastric cancer development, offering promise as therapeutic targets. The results of this study indicate that a novel miRNA, miR-1292-5p, is downregulated both in gastric carcinoma in vivo and in gastric cancer cell lines in vitro. In addition, we showed that attenuation of miR-1292-5p inhibited the growth, migration and invasion of the AGS and SGC-7901 gastric cancer cell lines. Importantly, our results demonstrate that the proto-oncogenic protein DEK is a direct target of miR-1292-5p in gastric carcinoma. Our results therefore demonstrate a tumor suppressor role of miR-1292-5p in gastric carcinoma and hint at the diagnostic and therapeutic potential of the miR-1292-5p/DEK pathway in gastric cancer.
Collapse
Affiliation(s)
- Wentao Hui
- Department of Medical Oncology, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Xiaobin Ma
- Department of Medical Oncology, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Ying Zan
- Department of Medical Oncology, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Lingqin Song
- Department of Medical Oncology, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Shuqun Zhang
- Department of Medical Oncology, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Lei Dong
- Department of Gastroenterology, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| |
Collapse
|
24
|
Significance of prohibitin domain family in tumorigenesis and its implication in cancer diagnosis and treatment. Cell Death Dis 2018; 9:580. [PMID: 29784973 PMCID: PMC5962566 DOI: 10.1038/s41419-018-0661-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022]
Abstract
Prohibitin (PHB) was originally isolated and characterized as an anti-proliferative gene in rat liver. The evolutionarily conserved PHB gene encodes two human protein isoforms with molecular weights of ~33 kDa, PHB1 and PHB2. PHB1 and PHB2 belong to the prohibitin domain family, and both are widely distributed in different cellular compartments such as the mitochondria, nucleus, and cell membrane. Most studies have confirmed differential expression of PHB1 and PHB2 in cancers compared to corresponding normal tissues. Furthermore, studies verified that PHB1 and PHB2 are involved in the biological processes of tumorigenesis, including cancer cell proliferation, apoptosis, and metastasis. Two small molecule inhibitors, Rocaglamide (RocA) and fluorizoline, derived from medicinal plants, were demonstrated to interact directly with PHB1 and thus inhibit the interaction of PHB with Raf-1, impeding Raf-1/ERK signaling cascades and significantly suppressing cancer cell metastasis. In addition, a short peptide ERAP and a natural product xanthohumol were shown to target PHB2 directly and prohibit cancer progression in estrogen-dependent cancers. As more efficient biomarkers and targets are urgently needed for cancer diagnosis and treatment, here we summarize the functional role of prohibitin domain family proteins, focusing on PHB1 and PHB2 in tumorigenesis and cancer development, with the expectation that targeting the prohibitin domain family will offer more clues for cancer therapy.
Collapse
|