1
|
Jiang X, Tao L, Cao S, Xu Z, Zheng S, Zhang H, Xu X, Qu X, Liu X, Yu J, Chen X, Wu J, Liang X. Porous Silicon Particle-Assisted Mass Spectrometry Technology Unlocks Serum Metabolic Fingerprints in the Progression From Chronic Hepatitis B to Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5893-5908. [PMID: 39812132 DOI: 10.1021/acsami.4c17563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy and generally develops from liver cirrhosis (LC), which is primarily caused by the chronic hepatitis B (CHB) virus. Reliable liquid biopsy methods for HCC screening in high-risk populations are urgently needed. Here, we establish a porous silicon-assisted laser desorption ionization mass spectrometry (PSALDI-MS) technology to profile metabolite information hidden in human serum in a high throughput manner. Serum metabolites can be captured in the pore channel of APTES-modified porous silicon (pSi) particles and well-preserved during storage or transportation. Furthermore, serum metabolites captured in the APTES-pSi particles can be directly detected on the LDI-MS without the addition of an organic matrix, thus greatly accelerating the acquisition of metabolic fingerprints of serum samples. The PSALDI-MS displays the capability of high throughput (5 min per 96 samples), high reproducibility (coefficient of variation <15%), high sensitivity (LOD ∼ 1 pmol), and high tolerance to background salt and proteins. In a multicenter cohort study, 1433 subjects including healthy controls (HC), CHB, LC, and HCC volunteers were enrolled and nontargeted serum metabolomic analysis was performed on the PSALDI-MS platform. After the selection of feature metabolites, a stepwise diagnostic model for the classification of different liver disease stages was constructed by the machine learning algorithm. In external testing, the accuracy of 91.2% for HC, 71.4% for CHB, 70.0% for LC, and 95.3% for HCC was achieved by chemometrics. Preliminary studies indicated that the diagnostic model constructed from serum metabolic fingerprint also displays good predictive performance in a prospective observation. We believe that the combination of PSALDI-MS technology and machine learning may serve as an efficient tool in clinical practice.
Collapse
Affiliation(s)
- Xinrong Jiang
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Liye Tao
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Shuo Cao
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhengao Xu
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Shuang Zheng
- Taizhou First People's Hospital, Taizhou, Zhejiang 318020, China
| | - Huafang Zhang
- Wuyi First People's Hospital, Jinhua, Zhejiang 321200, China
| | - Xinran Xu
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xuetong Qu
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xingyue Liu
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiekai Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Xiaoming Chen
- Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Well-healthcare Technologies Co., Hangzhou, Zhejiang 310051, China
| | - Jianmin Wu
- Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Xiao Liang
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- School of medicine, Shaoxing University, Shaoxing, Zhejiang 312000, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
2
|
Wang Y, Moh-Moh-Aung A, Wang T, Fujisawa M, Ohara T, Yamamoto KI, Sakaguchi M, Yoshimura T, Matsukawa A. Exosomal delivery of miR-200b-3p suppresses the growth of hepatocellular carcinoma cells by targeting ERG- and VEGF-mediated angiogenesis. Gene 2024; 931:148874. [PMID: 39159792 DOI: 10.1016/j.gene.2024.148874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Hepatocellular carcinoma (HCC) remains a lethal malignancy with limited treatment options. Recent discoveries have highlighted the pivotal role of miRNAs in HCC progression. We previously reported that the expression of miR-200b-3p was decreased in HCC cells and exosomal miR-200b-3p from hepatocytes inhibited angiogenesis by suppressing the expression of the endothelial transcription factor ERG (erythroblast transformation-specific (ETS)-related gene), leading to the hypothesis that the delivery of this miRNA may inhibit angiogenesis and suppress HCC growth in vivo. Here, we tested this hypothesis by using human HCC inoculation models. First, we transfected the human HepG2 HCC cells and established a stable cell line that overexpressed a high level of miR-200b-3p. When miR-200b-3p-overexpressing cells were injected into severe combined immunedeficiency (SCID)-beige mice, tumor growth was significantly reduced compared to tumors of control cells, with a reduction in the expression of ERG and vascular endothelial growth factor (VEGF) and subsequent angiogenesis. Intra-tumoral injection of exosomes containing high levels of miR-200b-3p also reduced the growth of parental HepG2 tumors with reduced ERG and VEGF expression and angiogenesis. These results validate the inhibitory role of miR-200b-3p in tumor angiogenesis, thereby suppressing HCC tumor growth, and provide a novel insight into its potential therapeutic application.
Collapse
Affiliation(s)
- Yuze Wang
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama 700-8558, Japan
| | - Aye Moh-Moh-Aung
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama 700-8558, Japan
| | - Tianyi Wang
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama 700-8558, Japan
| | - Masayoshi Fujisawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama 700-8558, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama 700-8558, Japan
| | - Ken-Ichi Yamamoto
- Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama 700-8558, Japan
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama 700-8558, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
3
|
Guo J, Zhong L, Momeni MR. MicroRNA-155 and its exosomal form: Small pieces in the gastrointestinal cancers puzzle. Cell Biol Toxicol 2024; 40:77. [PMID: 39283408 PMCID: PMC11405467 DOI: 10.1007/s10565-024-09920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
Gastrointestinal (GI) cancers are common cancers that are responsible for a large portion of global cancer fatalities. Due to this, there is a pressing need for innovative strategies to identify and treat GI cancers. MicroRNAs (miRNAs) are short ncRNAs that can be considered either cancer-causing or tumor-inhibiting molecules. MicroRNA-155, also known as miR-155, is a vital regulator in various cancer types. This miRNA has a carcinogenic role in a variety of gastrointestinal cancers, including pancreatic, colon, and gastric cancers. Since the abnormal production of miR-155 has been detected in various malignancies and has a correlation with increased mortality, it is a promising target for future therapeutic approaches. Moreover, exosomal miR-155 associated with tumors have significant functions in communicating between cells and establishing the microenvironment for cancer in GI cancers. Various types of genetic material, such as specifically miR-155 as well as proteins found in cancer-related exosomes, have the ability to be transmitted to other cells and have a function in the advancement of tumor. Therefore, it is critical to conduct a review that outlines the diverse functions of miR-155 in gastrointestinal malignancies. As a result, we present a current overview of the role of miR-155 in gastrointestinal cancers. Our research highlighted the role of miR-155 in GI cancers and covered critical issues in GI cancer such as pharmacologic inhibitors of miRNA-155, miRNA-155-assosiated circular RNAs, immune-related cells contain miRNA-155. Importantly, we discussed miRNA-155 in GI cancer resistance to chemotherapy, diagnosis and clinical trials. Furthermore, the function of miR-155 enclosed in exosomes that are released by cancer cells or tumor-associated macrophages is also covered.
Collapse
Affiliation(s)
- Jinbao Guo
- Department of Thoracic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Li Zhong
- Department of Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | | |
Collapse
|
4
|
Yu X, Zhang Y, Luo F, Zhou Q, Zhu L. The role of microRNAs in the gastric cancer tumor microenvironment. Mol Cancer 2024; 23:170. [PMID: 39164671 PMCID: PMC11334576 DOI: 10.1186/s12943-024-02084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the deadliest malignant tumors with unknown pathogenesis. Due to its treatment resistance, high recurrence rate, and lack of reliable early detection techniques, a majority of patients have a poor prognosis. Therefore, identifying new tumor biomarkers and therapeutic targets is essential. This review aims to provide fresh insights into enhancing the prognosis of patients with GC by summarizing the processes through which microRNAs (miRNAs) regulate the tumor microenvironment (TME) and highlighting their critical role in the TME. MAIN TEXT A comprehensive literature review was conducted by focusing on the interactions among tumor cells, extracellular matrix, blood vessels, cancer-associated fibroblasts, and immune cells within the GC TME. The role of noncoding RNAs, known as miRNAs, in modulating the TME through various signaling pathways, cytokines, growth factors, and exosomes was specifically examined. Tumor formation, metastasis, and therapy in GC are significantly influenced by interactions within the TME. miRNAs regulate tumor progression by modulating these interactions through multiple signaling pathways, cytokines, growth factors, and exosomes. Dysregulation of miRNAs affects critical cellular processes such as cell proliferation, differentiation, angiogenesis, metastasis, and treatment resistance, contributing to the pathogenesis of GC. CONCLUSIONS miRNAs play a crucial role in the regulation of the GC TME, influencing tumor progression and patient prognosis. By understanding the mechanisms through which miRNAs control the TME, potential biomarkers and therapeutic targets can be identified to improve the prognosis of patients with GC.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Sichuan Province, No. 10 Qinyun Nan Street, Chengdu, 610041, People's Republic of China
| | - Yin Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qinghua Zhou
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| | - Lingling Zhu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
5
|
Kotulkar M, Paine-Cabrera D, Apte U. Role of Hepatocyte Nuclear Factor 4 Alpha in Liver Cancer. Semin Liver Dis 2024; 44:383-393. [PMID: 38901435 DOI: 10.1055/a-2349-7236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Liver cancer is the sixth most common cancer and the fourth leading cause of cancer-related deaths worldwide. Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and the incidence of HCC is on the rise. Liver cancers in general and HCC in particular do not respond to chemotherapy. Radiological ablation, surgical resection, and liver transplantation are the only medical therapies currently available. Hepatocyte nuclear factor 4 α (HNF4α) is an orphan nuclear receptor expressed only in hepatocytes in the liver. HNF4α is considered the master regulator of hepatic differentiation because it regulates a significant number of genes involved in various liver-specific functions. In addition to maintaining hepatic differentiation, HNF4α also acts as a tumor suppressor by inhibiting hepatocyte proliferation by suppressing the expression of promitogenic genes and inhibiting epithelial to mesenchymal transition in hepatocytes. Loss of HNF4α expression and function is associated with rapid progression of chronic liver diseases that ultimately lead to liver cirrhosis and HCC, including metabolism-associated steatohepatitis, alcohol-associated liver disease, and hepatitis virus infection. This review summarizes the role of HNF4α in liver cancer pathogenesis and highlights its potential as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Manasi Kotulkar
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Diego Paine-Cabrera
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
6
|
Ramakrishnan K, Vishwakarma R, Dev RR, Raju R, Rehman N. Etiologically Significant microRNAs in Hepatitis B Virus-Induced Hepatocellular Carcinoma. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:280-290. [PMID: 38818956 DOI: 10.1089/omi.2024.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Hepatitis B virus (HBV) infection has been causally linked to hepatocellular carcinoma (HCC) in more than 50% cases. MicroRNAs (miRNAs) play cross-cutting mechanistic roles in the complex interplay between viral pathogenesis, host survival, and clinical outcomes. The present study set out to identify etiologically significant human miRNAs associated with HBV infection in liver-related pathologies leading to HCC. In diverse tissue types, we assembled 573 miRNAs differentially expressed in HBV-associated liver pathologies, HBV infection, fibrosis, cirrhosis, acute on chronic liver failure, and HCC. Importantly, 43 human differentially expressed miRNAs (hDEmiRs) were regulated in serum/plasma and liver tissue of patients with HBV-positive conditions. However, only two hDEmiRs, hsa-miR-21-5p and hsa-miR-143-3p, were regulated across all disease conditions. To shortlist the functional miRNAs in HBV-induced HCC pathogenesis, a reverse bioinformatics analysis was performed using eight GEO datasets and the TCGA database containing the list of differentially regulated mRNAs in HCC. A comparative study using these data with the identified targets of hDEmiRs, a set of unidirectionally regulated hDEmiRs with the potential to modulate mRNAs in HCC, were found. Moreover, our study identified five miRNAs; hsa-miR-98-5p, hsa-miR-193b-3p, hsa-miR-142-5p, hsa-miR-522-5p, and hsa-miR-370-3p targeting PIGC, KNTC1, CSTF2, SLC41A2, and RAB17, respectively, in HCC. These hDEmiRs and their targets could be pivotal in HBV infection and subsequent liver pathologies modulating HCC clinical progression. HBV infection is the largest contributor to HCC, and the present study comprises the first of its kind compendium of hDEmiRs related to HBV-related pathologies.
Collapse
Affiliation(s)
| | - Riya Vishwakarma
- Centre for Integrative Omics Data Science, Yenepoya, Mangalore, India
| | - Radul R Dev
- Centre for Integrative Omics Data Science, Yenepoya, Mangalore, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya, Mangalore, India
| | - Niyas Rehman
- Centre for Integrative Omics Data Science, Yenepoya, Mangalore, India
| |
Collapse
|
7
|
Alemayehu E, Fasil A, Ebrahim H, Mulatie Z, Bambo GM, Gedefie A, Teshome M, Worede A, Belete MA. Circulating microRNAs as promising diagnostic biomarkers for hepatocellular carcinoma: a systematic review and meta-analysis. Front Mol Biosci 2024; 11:1353547. [PMID: 38808007 PMCID: PMC11130514 DOI: 10.3389/fmolb.2024.1353547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction: Hepatocellular carcinoma (HCC), the most common type of liver cancer, is a major global health problem, ranking as the third leading cause of cancer-related death worldwide. Early identification and diagnosis of HCC requires the discovery of reliable biomarkers. Therefore, the study aimed to assess the diagnostic accuracy of miRNAs for HCC. The protocol was registered on PROSPERO website with the registration number CRD42023417494. Method: A literature search was conducted in PubMed, Scopus, Embase, Wiley Online Library, and Science Direct databases to identify pertinent articles published between 2018 and 30 July 2023. Stata 17.0 software was employed to determine the pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic ratio (DOR), and area under the curve (AUC) for evaluating the accuracy of miRNAs in diagnosing HCC. The assessment of heterogeneity among studies involved the use of the Cochran-Q test and I2 statistic tests. Due to the observed significant heterogeneity, the random-effect model was chosen. Subgroup analysis and meta-regression analysis were also undertaken to explore potential sources contributing to heterogeneity. Deeks' funnel plot was used to assess publication bias. In addition, Fagan's nomogram and likelihood ratio scattergram were utilized to assess the clinical validity of miRNAs for HCC. Result: Twenty-four articles were included, involving 1,668 individuals diagnosed with HCC and 1,236 healthy individuals. The findings revealed pooled sensitivity of 0.84 (95% CI: 0.80-0.88), specificity of 0.81 (95% CI: 0.77-0.84), PLR of 4.36 (95% CI: 3.59-5.30), NLR of 0.19 (95% CI: 0.15-0.25), DOR of 22.47 (95% CI: 14.47-32.64), and an AUC of 0.89 (95% CI: 0.86-0.91) for the diagnosis of HCC using miRNAs. Furthermore, results from the subgroup analysis demonstrated that superior diagnostic performance was observed when utilizing plasma miRNAs, a large sample size (≥100), and miRNA panels. Conclusion: Hence, circulating miRNAs demonstrate substantial diagnostic utility for HCC and can serve as effective non-invasive biomarkers for the condition. Additionally, miRNA panels, miRNAs derived from plasma, and miRNAs evaluated in larger sample sizes (≥100) demonstrate enhanced diagnostic efficacy for HCC diagnosis. Nevertheless, a large pool of prospective studies and multi-center research will be required to confirm our findings in the near future.
Collapse
Affiliation(s)
- Ermiyas Alemayehu
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Alebachew Fasil
- Department of Clinical Chemistry, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Hussen Ebrahim
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Zewudu Mulatie
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Getachew Mesfin Bambo
- Department of Medical Laboratory Science, College of Health Sciences, Mizan-Tepi University, Mizan Aman, Ethiopia
| | - Alemu Gedefie
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Mulugeta Teshome
- Department of Medical Laboratory Science, Dessie Health Science College, Dessie, Ethiopia
| | - Abebaw Worede
- Department of Clinical Chemistry, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Melaku Ashagrie Belete
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| |
Collapse
|
8
|
Tian Y, Zhang M, Liu LX, Wang ZC, Liu B, Huang Y, Wang X, Ling YZ, Wang F, Feng X, Tu Y. Exploring non-coding RNA mechanisms in hepatocellular carcinoma: implications for therapy and prognosis. Front Immunol 2024; 15:1400744. [PMID: 38799446 PMCID: PMC11116607 DOI: 10.3389/fimmu.2024.1400744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 05/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant contributor to cancer-related deaths in the world. The development and progression of HCC are closely correlated with the abnormal regulation of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Important biological pathways in cancer biology, such as cell proliferation, death, and metastasis, are impacted by these ncRNAs, which modulate gene expression. The abnormal expression of non-coding RNAs in HCC raises the possibility that they could be applied as new biomarkers for diagnosis, prognosis, and treatment targets. Furthermore, by controlling the expression of cancer-related genes, miRNAs can function as either tumor suppressors or oncogenes. On the other hand, lncRNAs play a role in the advancement of cancer by interacting with other molecules within the cell, which, in turn, affects processes such as chromatin remodeling, transcription, and post-transcriptional processes. The importance of ncRNA-driven regulatory systems in HCC is being highlighted by current research, which sheds light on tumor behavior and therapy response. This research highlights the great potential of ncRNAs to improve patient outcomes in this difficult disease landscape by augmenting the present methods of HCC care through the use of precision medicine approaches.
Collapse
Affiliation(s)
- Yu Tian
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
- School of Public Health, Benedictine University, Lisle, IL, United States
| | - Meng Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Li-xia Liu
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Zi-chao Wang
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Bin Liu
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Youcai Huang
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Xiaoling Wang
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Yun-zhi Ling
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Furong Wang
- Department of Pathology, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People’s Hospital, Gaozhou, Guangdong, China
| | - Yanyang Tu
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| |
Collapse
|
9
|
Kumari S, Manoj A, Rungta S, Kumar M, Prasad G, Kumar D, Mahdi AA, Ahmad MK. Discovery and Validation of Novel microRNA Panel for Non-Invasive Prediction of Prostate Cancer. Cureus 2024; 16:e58207. [PMID: 38741808 PMCID: PMC11090259 DOI: 10.7759/cureus.58207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Early diagnosis remains a challenge for prostate cancer (PCa) due to molecular heterogeneity. The purpose of our study was to explore the diagnostic potential of microRNA (miRNA) in both tissue and serum that may aid in the precise and early clinical diagnosis of PCa. MATERIALS AND METHODS The miRNA expression pattern analysis was carried out in 250 subjects (discovery and validation cohort). The Discovery Cohort included the control (n = 30) and PCa (n = 35) subjects, while the Validation Cohort included the healthy control (n = 60), benign prostate hyperplasia (BPH) (n = 55), PCa (n = 50), and castration-resistant PCa (CRPC) (n = 20) patients. The expression analysis of tissue (Discovery Cohort) and serum (Validation Cohort) was carried out by quantitative polymerase chain reaction (qPCR). The diagnostic biomarker potential was evaluated using receiver operating characteristics (ROC). Bioinformatic tools were used to explore and analyze miRNA target genes. RESULTS MiRNA 4510 and miRNA 183 were significantly (p<0.001) upregulated and miRNA 329 was significantly (p<0.0001) downregulated in both PCa tissue and serum. ROC curve analysis showed excellent non-invasive biomarker potential of miRNA 4510 in both PCa (area under the curve (AUC) 0.984; p<0.001) and CRPC (AUC 0.944; p<0.001). The panel of serum miRNAs (miRNA 183 and miRNA 4510) designed for PCa had significant and greater AUC with both 100% sensitivity and specificity. Computational analysis shows that the maximum number of target genes are transcription factors that regulate oncogenes and tumor suppressors. CONCLUSION Based on ROC curve analysis, miRNAs 4510, 329, and 711 were identified as potential non-invasive diagnostic biomarkers in the early detection of PCa. Our findings imply that a panel of miRNAs 183 and 4510 has high specificity for distinguishing PCa from healthy controls and providing therapeutic targets for better and earlier PCa therapy.
Collapse
Affiliation(s)
- Shweta Kumari
- Biochemistry, King George's Medical University, Lucknow, IND
| | - Anveshika Manoj
- Biochemistry, King George's Medical University, Lucknow, IND
| | - Sumit Rungta
- Gastroenterology, King George's Medical University, Lucknow, IND
| | - Manoj Kumar
- Urology, King George's Medical University, Lucknow, IND
| | - Gautam Prasad
- Biochemistry, King George's Medical University, Lucknow, IND
| | - Durgesh Kumar
- Biochemistry, King George's Medical University, Lucknow, IND
| | - Abbas A Mahdi
- Biochemistry, King George's Medical University, Lucknow, IND
| | | |
Collapse
|
10
|
Chen J, He F, Peng H, Guo J. The underlying mechanism and targeted therapy strategy of miRNAs cross-regulating EMT process through multiple signaling pathways in hepatocellular carcinoma. Front Mol Biosci 2024; 11:1378386. [PMID: 38584703 PMCID: PMC10995332 DOI: 10.3389/fmolb.2024.1378386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
The consistent notion holds that hepatocellular carcinoma (HCC) initiation, progression, and clinical treatment failure treatment failure are affected by the accumulation of various genetic and epigenetic alterations. MicroRNAs (miRNAs) play an irreplaceable role in a variety of physiological and pathological states. meanwhile, epithelial-mesenchymal transition (EMT) is a crucial biological process that controls the development of HCC. miRNAs regulate the intermediation state of EMTor mesenchymal-epithelial transition (MTE)thereby regulating HCC progression. Notably, miRNAs regulate key HCC-related molecular pathways, including the Wnt/β-catenin pathway, PTEN/PI3K/AKT pathway, TGF-β pathway, and RAS/MAPK pathway. Therefore, we comprehensively reviewed how miRNAs produce EMT effects by multiple signaling pathways and their potential significance in the pathogenesis and treatment response of HCC. emphasizing their molecular pathways and progression in HCC initiation. Additionally, we also pay attention to regulatory mechanisms that are partially independent of signaling pathways. Finally, we summarize and propose miRNA-targeted therapy and diagnosis and defense strategies forHCC. The identification of the mechanism leading to the activation of EMT programs during HCC disease processes also provides a new protocol for the plasticity of distinct cellular phenotypes and possible therapeutic interventions. Consequently, we summarize the latest progress in this direction, with a promising path for further insight into this fast-moving field.
Collapse
Affiliation(s)
- Juan Chen
- Department of Pathology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Fuguo He
- Department of Pathology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Peng
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Jinjun Guo
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Andre M, Caobi A, Miles JS, Vashist A, Ruiz MA, Raymond AD. Diagnostic potential of exosomal extracellular vesicles in oncology. BMC Cancer 2024; 24:322. [PMID: 38454346 PMCID: PMC10921614 DOI: 10.1186/s12885-024-11819-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024] Open
Abstract
Liquid biopsy can detect circulating cancer cells or tumor cell-derived DNA at various stages of cancer. The fluid from these biopsies contains extracellular vesicles (EVs), such as apoptotic bodies, microvesicles, exomeres, and exosomes. Exosomes contain proteins and nucleic acids (DNA/RNA) that can modify the microenvironment and promote cancer progression, playing significant roles in cancer pathology. Clinically, the proteins and nucleic acids within the exosomes from liquid biopsies can be biomarkers for the detection and prognosis of cancer. We review EVs protein and miRNA biomarkers identified for select cancers, specifically melanoma, glioma, breast, pancreatic, hepatic, cervical, prostate colon, and some hematological malignancies. Overall, this review demonstrates that EV biomolecules have great potential to expand the diagnostic and prognostic biomarkers used in Oncology; ultimately, EVs could lead to earlier detection and novel therapeutic targets. Clinical implicationsEVs represent a new paradigm in cancer diagnostics and therapeutics. The potential use of exosomal contents as biomarkers for diagnostic and prognostic indicators may facilitate cancer management. Non-invasive liquid biopsy is helpful, especially when the tumor is difficult to reach, such as in pancreatic adenocarcinoma. Moreover, another advantage of using minimally invasive liquid biopsy is that monitoring becomes more manageable. Identifying tumor-derived exosomal proteins and microRNAs would allow a more personalized approach to detecting cancer and improving treatment.
Collapse
Affiliation(s)
- Mickensone Andre
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Allen Caobi
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Jana S Miles
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Arti Vashist
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Marco A Ruiz
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
- Medical Oncology, Baptist Health Miami Cancer Institute, Miami, 33176, FL, USA
| | - Andrea D Raymond
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA.
| |
Collapse
|
12
|
Mallela VR, Rajtmajerová M, Trailin A, Liška V, Hemminki K, Ambrozkiewicz F. miRNA and lncRNA as potential tissue biomarkers in hepatocellular carcinoma. Noncoding RNA Res 2024; 9:24-32. [PMID: 38075204 PMCID: PMC10700120 DOI: 10.1016/j.ncrna.2023.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 10/21/2023] [Indexed: 12/21/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is primary liver cancer, frequently diagnosed at advanced stages with limited therapeutic options. MicroRNAs (miRNAs) regulate target gene expression and through inhibitory competitive binding of miRNA influence cellular processes including carcinogenesis. Extensive evidence proved that certain miRNA's are specifically expressed in neoplastic tissues of HCC patients and are confirmed as important factors that can participate in the regulation of key signalling pathways in cancer cells. As such, miRNAs have a great potential in the clinical diagnosis and treatment of HCC and can improve the limitations of standard diagnosis and treatment. Long non-coding RNAs (lncRNAs) have a critical role in the development and progression of HCC. HCC-related lncRNAs have been demonstrated to exhibit abnormal expression and contribute to transformation process (such as proliferation, apoptosis, accelerated vascular formation, and gain of invasive potential) through their interaction with DNA, RNA, or proteins. LncRNAs can bind mRNAs to release their target mRNA and enable its translation. These lncRNA-miRNA networks regulate cancer cell expression and so its proliferation, apoptosis, invasion, metastasis, angiogenesis, epithelial-mesenchymal transition (EMT), drug resistance, and autophagy. In this narrative review, we focus on miRNA and lncRNA in HCC tumor tissue and their interaction as current tools, and biomarkers and therapeutic targets unravelled in recent years.
Collapse
Affiliation(s)
- Venkata Ramana Mallela
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| | - Marie Rajtmajerová
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| | - Andriy Trailin
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| | - Václav Liška
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
- Department of Surgery, University Hospital in Pilsen and Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 323 00, Pilsen, Czech Republic
| | - Kari Hemminki
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
- Department of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| |
Collapse
|
13
|
Ghosh C, Hu J. Importance of targeting various cell signaling pathways in solid cancers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:101-155. [PMID: 38663958 DOI: 10.1016/bs.ircmb.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Most adult human cancers are solid tumors prevailing in vital organs and lead to mortality all over the globe. Genetic and epigenetic alterations in cancer genes or genes of associated signaling pathways impart the most common characteristic of malignancy, that is, uncontrolled proliferation. Unless the mechanism of action of these cells signaling pathways (involved in cell proliferation, apoptosis, metastasis, and the maintenance of the stemness of cancer stem cells and cancer microenvironment) and their physiologic alteration are extensively studied, it is challenging to understand tumorigenesis as well as develop new treatments and precision medicines. Targeted therapy is one of the most promising strategies for treating various cancers. However, cancer is an evolving disease, and most patients develop resistance to these drugs by acquired mutations or mediation of microenvironmental factors or due to tumor heterogeneity. Researchers are striving to develop novel therapeutic options like combinatorial approaches targeting multiple responsible pathways effectively. Thus, in-depth knowledge of cell signaling and its components remains a critical topic of cancer research. This chapter summarized various extensively studied pathways in solid cancer and how they are targeted for therapeutic strategies.
Collapse
Affiliation(s)
- Chandrayee Ghosh
- Department of Surgery, Stanford University, Stanford, CA, Unites States.
| | - Jiangnan Hu
- Department of Surgery, Stanford University, Stanford, CA, Unites States
| |
Collapse
|
14
|
Liao Z, Zhang Q, Yang L, Li H, Mo W, Song Z, Huang X, Wen S, Cheng X, He M. Increased hsa-miR-100-5p Expression Improves Hepatocellular Carcinoma Prognosis in the Asian Population with PLK1 Variant rs27770A>G. Cancers (Basel) 2023; 16:129. [PMID: 38201556 PMCID: PMC10778516 DOI: 10.3390/cancers16010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has the highest incidence and mortality in the Asian population, and race is an independent risk factor affecting survival time in liver cancer. Micro RNAs (miRNAs) are remarkably dysregulated in HCC and closely associated with HCC prognosis. Recent studies show that genetic variability between ethnic groups may result in differences in the specificity of HCC miRNA biomarkers. Here, we reveal a high expression level of hsa-miR-100-5p, an HCC prognosis-related miRNA, which improves HCC prognosis in the Asian Population with Polo-like kinase 1 (PLK1) variant rs27770A>G. In this study, we discovered that hsa-miR-100-5p was downregulated in various HCC cell lines. While mimics transient transfection and mouse liver cancer model confirmed the interaction between hsa-miR-100-5p and PLK1, a stratified analysis based on the Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) data suggest both low hsa-miR-100-5p expression level and high PLK1 expression level associated with poor HCC prognosis, especially in the Asian population. According to the 1000 Genomes Project database, the SNP rs27770 located in 3'UTR of PLK1 had a significantly higher G allele frequency in the East Asian population. Bioinformatics analysis suggested that rs27770 A>G affects PLK1 mRNA secondary structure and alters the hsa-miR-100-5p/PLK1 interaction by forming an additional seedless binding site. This racial variation caused PLK1 to be more vulnerable to hsa-miR-100-5p inhibition, resulting in hsa-miR-100-5p being more favorable for HCC prognosis in the Asian population.
Collapse
Affiliation(s)
- Zhouxiang Liao
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
| | - Qi Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (L.Y.); (X.H.)
| | - Lichao Yang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (L.Y.); (X.H.)
| | - Hui Li
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
| | - Wanling Mo
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
| | - Zhenyu Song
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
| | - Xuejing Huang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (L.Y.); (X.H.)
| | - Sha Wen
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (L.Y.); (X.H.)
| | - Xiaojing Cheng
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Min He
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (L.Y.); (X.H.)
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning 530021, China
| |
Collapse
|
15
|
Hajizadeh M, Hajizadeh F, Ghaffarei S, Amin Doustvandi M, Hajizadeh K, Yaghoubi SM, Mohammadnejad F, Khiabani NA, Mousavi P, Baradaran B. MicroRNAs and their vital role in apoptosis in hepatocellular carcinoma: miRNA-based diagnostic and treatment methods. Gene 2023; 888:147803. [PMID: 37716587 DOI: 10.1016/j.gene.2023.147803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/03/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies with high invasive and metastatic capability. Although significant advances have been made in the treatment of HCC, the overall survival rate of patients is still low. It is essential to explore accurate biomarkers for early diagnosis and prognosis along with therapeutic procedures to increase the survival rate of these patients. Anticancer therapies can contribute to induce apoptosis for the elimination of cancerous cells. However, dysregulated apoptosis and proliferation signaling pathways lead to treatment resistance, a significant challenge in improving efficient therapies. MiRNAs, short non-coding RNAs, play crucial roles in the progression of HCC, which regulate gene expression through post-transcriptional inhibition and targeting mRNA degradation in cancers. Dysregulated expression of multiple miRNAs is associated with numerous biological processes, including cell proliferation, apoptosis, invasion and metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, and drug resistance in HCC. This review summarizes the role and potential efficacy of miRNAs in promoting and inhibiting cell proliferation and apoptosis in HCC, as well as the role of miRNAs in therapy resistance in HCC.
Collapse
Affiliation(s)
- Masoumeh Hajizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnaz Hajizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevil Ghaffarei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Khadijeh Hajizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Mohammad Yaghoubi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | | | - Pegah Mousavi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Jouve M, Carpentier R, Kraiem S, Legrand N, Sobolewski C. MiRNAs in Alcohol-Related Liver Diseases and Hepatocellular Carcinoma: A Step toward New Therapeutic Approaches? Cancers (Basel) 2023; 15:5557. [PMID: 38067261 PMCID: PMC10705678 DOI: 10.3390/cancers15235557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 06/29/2024] Open
Abstract
Alcohol-related Liver Disease (ALD) is the primary cause of chronic liver disorders and hepatocellular carcinoma (HCC) development in developed countries and thus represents a major public health concern. Unfortunately, few therapeutic options are available for ALD and HCC, except liver transplantation or tumor resection for HCC. Deciphering the molecular mechanisms underlying the development of these diseases is therefore of major importance to identify early biomarkers and to design efficient therapeutic options. Increasing evidence indicate that epigenetic alterations play a central role in the development of ALD and HCC. Among them, microRNA importantly contribute to the development of this disease by controlling the expression of several genes involved in hepatic metabolism, inflammation, fibrosis, and carcinogenesis at the post-transcriptional level. In this review, we discuss the current knowledge about miRNAs' functions in the different stages of ALD and their role in the progression toward carcinogenesis. We highlight that each stage of ALD is associated with deregulated miRNAs involved in hepatic carcinogenesis, and thus represent HCC-priming miRNAs. By using in silico approaches, we have uncovered new miRNAs potentially involved in HCC. Finally, we discuss the therapeutic potential of targeting miRNAs for the treatment of these diseases.
Collapse
Affiliation(s)
- Mickaël Jouve
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Rodolphe Carpentier
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Sarra Kraiem
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Noémie Legrand
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Cyril Sobolewski
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| |
Collapse
|
17
|
Wang Y, Deng B. Hepatocellular carcinoma: molecular mechanism, targeted therapy, and biomarkers. Cancer Metastasis Rev 2023; 42:629-652. [PMID: 36729264 DOI: 10.1007/s10555-023-10084-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy and one of the leading causes of cancer-related death. The biological process of HCC is complex, with multiple factors leading to the broken of the balance of inactivation and activation of tumor suppressor genes and oncogenes, the abnormal activation of molecular signaling pathways, the differentiation of HCC cells, and the regulation of angiogenesis. Due to the insidious onset of HCC, at the time of first diagnosis, less than 30% of HCC patients are candidates for radical treatment. Systematic antitumor therapy is the hope for the treatment of patients with middle-advanced HCC. Despite the emergence of new systemic therapies, survival rates for advanced HCC patients remain low. The complex pathogenesis of HCC has inspired researchers to explore a variety of biomolecular targeted therapeutics targeting specific targets. Correct understanding of the molecular mechanism of HCC occurrence is key to seeking effective targeted therapy. Research on biomarkers for HCC treatment is also advancing. Here, we explore the molecular mechanism that are associated with HCC development, summarize targeted therapies for HCC, and discuss potential biomarkers that may drive therapies.
Collapse
Affiliation(s)
- Yu Wang
- Department of Infectious Diseases, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China
| | - Baocheng Deng
- Department of Infectious Diseases, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
18
|
Toro AU, Shukla SK, Bansal P. Emerging role of MicroRNA-Based theranostics in Hepatocellular Carcinoma. Mol Biol Rep 2023; 50:7681-7691. [PMID: 37418086 DOI: 10.1007/s11033-023-08586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
Hepatocellular carcinoma (HCC), with its high mortality and short survival rate, continues to be one of the deadliest malignancies despite relentless efforts and several technological advances. The poor prognosis of HCC and the few available treatments are to blame for the low survival rate, which emphasizes the importance of creating new, effective diagnostic markers and innovative therapy strategies. In-depth research is being done on the potent biomarker miRNAs, a special class of non-coding RNA and has shown encouraging results in the early identification and treatment of HCC in order to find more viable and successful therapeutics for the disease. It is beyond dispute that miRNAs control cell differentiation, proliferation, and survival and, depending on the genes they target, can either promote tumorigenesis or suppress it. Given the vital role miRNAs play in the biological system and their potential to serve as ground-breaking treatments for HCC, more study is required to fully examine their theranostic potential.
Collapse
Affiliation(s)
- Abdulhakim Umar Toro
- Department of Biomedical Engineering, Shobhit institute of Engineering and Technology (Deemed to-be-University), Modipuram, Meerut, 250110, India
| | - Sudheesh K Shukla
- Department of Biomedical Engineering, Shobhit institute of Engineering and Technology (Deemed to-be-University), Modipuram, Meerut, 250110, India.
| | - Parveen Bansal
- University Centre of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, 151203, India.
| |
Collapse
|
19
|
Lai Y, Liu J, Hu X, Zeng X, Gao P. Modifications of The Human Liver Cancer Cells through microRNA-145-Mediated Targeting of CDCA3. CELL JOURNAL 2023; 25:546-553. [PMID: 37641416 PMCID: PMC10542210 DOI: 10.22074/cellj.2023.1995666.1251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/24/2023] [Accepted: 05/07/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVE Owing to the lethality of liver cancer, it is considered as one of the devastating types of cancers across the globe. Consistently, the study was designed to elucidate the role and to explore the therapeutic implications of miR-145 in human liver cancer. MATERIALS & METHODS In the current experimental study, gene expression was determined by RT-PCR analysis. Transfection of cancer cells was carried out using Lipofectamine 2000. The cell proliferation of liver cancer cells was estimated by MTT assay. Clonogenic assay was performed for analysis of colony forming potential of cancer cells. Flow cytometry was done to analyze the cell cycle phase distribution of cancer cells. Transwell chamber assay was performed to assess the motility of cancer cells. Western blotting was done to estimate the expression levels of proteins. Dual luciferase assay was performed for interaction analysis of miR-145 with CDCA3. RESULT The miR-145 expression was found to be downregulated in liver cancer cells. The transfection mediated overexpression of miR-145 inhibited the cancer cell proliferation and when miR-145 inhibitor was transfected, cancer cells showed higher proliferation rates. Enrichment of miR-145 levels led to cell cycle arrest at G2/M phase by inhibiting cyclin B1. miR-145 also restricted the migration and invasion of cancer cells. CDCA3 was shown to be the intracellular target of miR-145 and it was found that the inhibitory effects of miR-145 were modulated through CDCA3, intracellularly. CONCLUSION The current study clearly revealed that there is a need to investigate the regulatory role of different molecular entities like microRNAs in cancer development to better understand mechanics behind this pathogenesis and design more effective combating strategies against cancer.
Collapse
Affiliation(s)
- Yongqiang Lai
- The Second Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Junhao Liu
- The Second Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Xiao Hu
- The Second Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Xiancheng Zeng
- The Second Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Peng Gao
- The Second Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China.
| |
Collapse
|
20
|
Wu YH, Yu B, Zhou JM, Shen XH, Chen WX, Ai X, Leng C, Liang BY, Shao YJ. MicroRNA-188-5p inhibits hepatocellular carcinoma proliferation and migration by targeting forkhead box N2. BMC Cancer 2023; 23:511. [PMID: 37277714 DOI: 10.1186/s12885-023-10901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/28/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND This study aimed to identify the biological functions, expression modes, and possible mechanisms underlying the relationship between metastatic human hepatocellular carcinoma (HCC) and MicroRNA-188-5p (miR-188) dysregulation using cell lines. METHODS A decrease in miR-188 was detected in low and high metastatic HCC cells compared to that in normal hepatic cells and non-invasive cell lines. Gain- and loss-of-function experiments were performed in vitro to investigate the role of miR-188 in cancer cell (Hep3B, HepG2, HLF, and LM3) proliferation and migration. RESULTS miR-188 mimic transfection inhibited the proliferation of metastatic HLF and LM3 cells but not non-invasive HepG2 and Hep3B cells; nonetheless, miR-188 suppression promoted the growth of HLF and LM3 cells. miR-188 upregulation inhibited the migratory rate and invasive capacity of HLF and LM3, rather than HepG2 and Hep3B cells, whereas transfection of a miR-188 inhibitor in HLF and LM3 cells had the opposite effects. Dual-luciferase reporter assays and bioinformatics prediction confirmed that miR-188 could directly target forkhead box N2 (FOXN2) in HLF and LM3 cells. Transfection of miR-188 mimics reduced FOXN2 levels, whereas miR-188 inhibition resulted in the opposite result, in HLF and LM3 cells. Overexpression of FOXN2 in HLF and LM3 cells abrogated miR-188 mimic-induced downregulation of proliferation, migration, and invasion. In addition, we found that miR-188 upregulation impaired tumor growth in vivo. CONCLUSIONS In summary, this study showed thatmiR-188 inhibits the proliferation and migration of metastatic HCC cells by targeting FOXN2.
Collapse
Affiliation(s)
- Yan-Hui Wu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Bin Yu
- Department of General Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jiang-Min Zhou
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Xue-Han Shen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Wei-Xun Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Xi Ai
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Chao Leng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| | - Bin-Yong Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| | - Ya-Jie Shao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| |
Collapse
|
21
|
Xu R, He H, Wang Y, Peng Q, Mei K, Liu Y, Yang Q. LncRNA AK001796 promotes cell proliferation via acting as a ceRNA of miR-150 in hepatocellular carcinoma. Genet Mol Biol 2023; 46:e20220277. [PMID: 37272834 DOI: 10.1590/1678-4685-gmb-2022-0277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/27/2023] [Indexed: 06/06/2023] Open
Abstract
Long non-coding RNA AK001796 was initially identified altered in lung cancer. Recent research showed it could participate in the prognosis of hepatocellular carcinoma (HCC). However, the general biological role of AK001796 and its underlying mechanisms in HCC remain unclear. Here we demonstrated that the expression level of AK001796 in HCC tissues and cell lines was up-regulated. Silencing AK001796 suppressed the proliferation ability of HCC cells. Through dual luciferase reporter assays and loss/gain of functions studies, we identified that AK001796 could bind to miR-150, a star microRNA, promoting HCC proliferation. Furthermore, it was reported that growth factor receptor binding protein 2-associated binder 1 (GAB1) is a target gene of miR-150. Owing to AK001796 being a decoy for miR-150 and binding the same putative sites of miR-150 as GAB1, we presented that inhibition of miR-150 in AK001796 silencing cells reversed the reduction in GAB1. Subsequently, our findings demonstrated that silencing AK001796 can impair phospho-ERK1/2 and phospho-AKT. In conclusion, our investigation revealed that AK001796 promoted proliferation by enhancing phospho-ERK1/2 and phospho-AKT through AK001796/miR-150/GAB1 axis in HCC. These results provided further evidence for the critical roles of AK001796 accumulating HCC and suggested that AK001796 might act as an HCC biomarker in clinical treatment.
Collapse
Affiliation(s)
- Rui Xu
- Jilin University, College of Basic Medical Sciences, Department of Pathogenobiology, Changchun, Jilin Province, China
| | - Haitao He
- Jilin University, College of Basic Medical Sciences, Department of Cell Biology, Changchun, Jilin Province, China
| | - Yue Wang
- Jilin University, College of Basic Medical Sciences, Department of Pathogenobiology, Changchun, Jilin Province, China
| | - Qi Peng
- Jilin University, College of Basic Medical Sciences, Department of Pathogenobiology, Changchun, Jilin Province, China
| | - Ke Mei
- Jilin University, College of Basic Medical Sciences, Department of Pathogenobiology, Changchun, Jilin Province, China
| | - Yan Liu
- Jilin University, College of Basic Medical Sciences, Department of Pathogenobiology, Changchun, Jilin Province, China
| | - Qing Yang
- Jilin University, College of Basic Medical Sciences, Department of Pathogenobiology, Changchun, Jilin Province, China
| |
Collapse
|
22
|
Turrini E, Maffei F, Fimognari C. Ten Years of Research on Fucoidan and Cancer: Focus on Its Antiangiogenic and Antimetastatic Effects. Mar Drugs 2023; 21:md21050307. [PMID: 37233501 DOI: 10.3390/md21050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Angiogenesis and metastasis represent two challenging targets to combat cancer development in the later stages of its progression. Numerous studies have indicated the important role of natural products in blocking tumor angiogenesis signaling pathways in several advanced tumors. In recent years, the marine polysaccharides fucoidans emerged as promising anticancer compounds showing potent antitumor activity in both in vitro and in vivo models of different types of cancers. The objective of this review is to focus on the antiangiogenic and antimetastatic activities of fucoidans with special emphasis on preclinical studies. Independently from their source, fucoidans inhibit several angiogenic regulators, primarily vascular endothelial growth factor (VEGF). A glance towards fucoidans' ongoing clinical trials and pharmacokinetic profile is provided to present the main challenges that still need to be addressed for their bench-to-bedside translation.
Collapse
Affiliation(s)
- Eleonora Turrini
- Department for Life Quality Studies, University of Bologna-C.so d'Augusto, 237, 47921 Rimini, Italy
| | - Francesca Maffei
- Department for Life Quality Studies, University of Bologna-C.so d'Augusto, 237, 47921 Rimini, Italy
| | - Carmela Fimognari
- Department for Life Quality Studies, University of Bologna-C.so d'Augusto, 237, 47921 Rimini, Italy
| |
Collapse
|
23
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Pathogenesis of Hepatocellular Carcinoma: The Interplay of Apoptosis and Autophagy. Biomedicines 2023; 11:1166. [PMID: 37189787 PMCID: PMC10135776 DOI: 10.3390/biomedicines11041166] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is a multifactorial process that has not yet been fully investigated. Autophagy and apoptosis are two important cellular pathways that are critical for cell survival or death. The balance between apoptosis and autophagy regulates liver cell turnover and maintains intracellular homeostasis. However, the balance is often dysregulated in many cancers, including HCC. Autophagy and apoptosis pathways may be either independent or parallel or one may influence the other. Autophagy may either inhibit or promote apoptosis, thus regulating the fate of the liver cancer cells. In this review, a concise overview of the pathogenesis of HCC is presented, with emphasis on new developments, including the role of endoplasmic reticulum stress, the implication of microRNAs and the role of gut microbiota. The characteristics of HCC associated with a specific liver disease are also described and a brief description of autophagy and apoptosis is provided. The role of autophagy and apoptosis in the initiation, progress and metastatic potential is reviewed and the experimental evidence indicating an interplay between the two is extensively analyzed. The role of ferroptosis, a recently described specific pathway of regulated cell death, is presented. Finally, the potential therapeutic implications of autophagy and apoptosis in drug resistance are examined.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, PAGNI University Hospital, University of Crete School of Medicine, 71500 Heraklion, Crete, Greece
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| |
Collapse
|
24
|
Koustas E, Trifylli EM, Sarantis P, Papadopoulos N, Papanikolopoulos K, Aloizos G, Damaskos C, Garmpis N, Garmpi A, Matthaios D, Karamouzis MV. An Insight into the Arising Role of MicroRNAs in Hepatocellular Carcinoma: Future Diagnostic and Therapeutic Approaches. Int J Mol Sci 2023; 24:ijms24087168. [PMID: 37108330 PMCID: PMC10138911 DOI: 10.3390/ijms24087168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) constitutes a frequent highly malignant form of primary liver cancer and is the third cause of death attributable to malignancy. Despite the improvement in the therapeutic strategies with the exploration of novel pharmacological agents, the survival rate for HCC is still low. Shedding light on the multiplex genetic and epigenetic background of HCC, such as on the emerging role of microRNAs, is considered quite promising for the diagnosis and the prediction of this malignancy, as well as for combatting drug resistance. MicroRNAs (miRNAs) constitute small noncoding RNA sequences, which play a key role in the regulation of several signaling and metabolic pathways, as well as of pivotal cellular functions such as autophagy, apoptosis, and cell proliferation. It is also demonstrated that miRNAs are significantly implicated in carcinogenesis, either acting as tumor suppressors or oncomiRs, while aberrations in their expression levels are closely associated with tumor growth and progression, as well as with local invasion and metastatic dissemination. The arising role of miRNAs in HCC is in the spotlight of the current scientific research, aiming at the development of novel therapeutic perspectives. In this review, we will shed light on the emerging role of miRNAs in HCC.
Collapse
Affiliation(s)
- Evangelos Koustas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527 Athens, Greece
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | - Eleni-Myrto Trifylli
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527 Athens, Greece
| | - Nikolaos Papadopoulos
- Second Department of Internal Medicine, 401 General Army Hospital of Athens, 11525 Athens, Greece
| | | | - Georgios Aloizos
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | - Christos Damaskos
- 'N.S. Christeas' Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Renal Transplantation Unit, 'Laiko' General Hospital, 11527 Athens, Greece
| | - Nikolaos Garmpis
- Second Department of Propaedeutic Surgery, 'Laiko' General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Anna Garmpi
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527 Athens, Greece
| |
Collapse
|
25
|
Doghish AS, Elballal MS, Elazazy O, Elesawy AE, Elrebehy MA, Shahin RK, Midan HM, Sallam AAM. The role of miRNAs in liver diseases: Potential therapeutic and clinical applications. Pathol Res Pract 2023; 243:154375. [PMID: 36801506 DOI: 10.1016/j.prp.2023.154375] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
MicroRNAs (miRNAs) are a class of short, non-coding RNAs that function post-transcriptionally to regulate gene expression by binding to particular mRNA targets and causing destruction of the mRNA or translational inhibition of the mRNA. The miRNAs control the range of liver activities, from the healthy to the unhealthy. Considering that miRNA dysregulation is linked to liver damage, fibrosis, and tumorigenesis, miRNAs are a promising therapeutic strategy for the evaluation and treatment of liver illnesses. Recent findings on the regulation and function of miRNAs in liver diseases are discussed, with an emphasis on miRNAs that are highly expressed or enriched in hepatocytes. Alcohol-related liver illness, acute liver toxicity, viral hepatitis, hepatocellular carcinoma, liver fibrosis, liver cirrhosis, and exosomes in chronic liver disease all emphasize the roles and target genes of these miRNAs. We briefly discuss the function of miRNAs in the etiology of liver diseases, namely in the transfer of information between hepatocytes and other cell types via extracellular vesicles. Here we offer some background on the use of miRNAs as biomarkers for the early prognosis, diagnosis, and assessment of liver diseases. The identification of biomarkers and therapeutic targets for liver disorders will be made possible by future research into miRNAs in the liver, which will also help us better understand the pathogeneses of liver diseases.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| |
Collapse
|
26
|
Yang Y, Zhang W, Wang X, Yang J, Cui Y, Song H, Li W, Li W, Wu L, Du Y, He Z, Shi J, Zhang J. A passage-dependent network for estimating the in vitro senescence of mesenchymal stromal/stem cells using microarray, bulk and single cell RNA sequencing. Front Cell Dev Biol 2023; 11:998666. [PMID: 36824368 PMCID: PMC9941187 DOI: 10.3389/fcell.2023.998666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Long-term in vitro culture of human mesenchymal stem cells (MSCs) leads to cell lifespan shortening and growth stagnation due to cell senescence. Here, using sequencing data generated in the public domain, we have established a specific regulatory network of "transcription factor (TF)-microRNA (miRNA)-Target" to provide key molecules for evaluating the passage-dependent replicative senescence of mesenchymal stem cells for the quality control and status evaluation of mesenchymal stem cells prepared by different procedures. Short time-series expression miner (STEM) analysis was performed on the RNA-seq and miRNA-seq databases of mesenchymal stem cells from various passages to reveal the dynamic passage-related changes of miRNAs and mRNAs. Potential miRNA targets were predicted using seven miRNA target prediction databases, including TargetScan, miRTarBase, miRDB, miRWalk, RNA22, RNAinter, and TargetMiner. Then use the TransmiR v2.0 database to obtain experimental-supported transcription factor for regulating the selected miRNA. More than ten sequencing data related to mesenchymal stem cells or mesenchymal stem cells reprogramming were used to validate key miRNAs and mRNAs. And gene set variation analysis (GSVA) was performed to calculate the passage-dependent signature. The results showed that during the passage of mesenchymal stem cells, a total of 29 miRNAs were gradually downregulated and 210 mRNA were gradually upregulated. Enrichment analysis showed that the 29 miRNAs acted as multipotent regulatory factors of stem cells and participated in a variety of signaling pathways, including TGF-beta, HIPPO and oxygen related pathways. 210 mRNAs were involved in cell senescence. According to the target prediction results, the targets of these key miRNAs and mRNAs intersect to form a regulatory network of "TF-miRNA-Target" related to replicative senescence of cultured mesenchymal stem cells, across 35 transcription factor, 7 miRNAs (has-mir-454-3p, has-mir-196b-5p, has-mir-130b-5p, has-mir-1271-5p, has-let-7i-5p, has-let-7a-5p, and has-let-7b-5p) and 7 predicted targets (PRUNE2, DIO2, CPA4, PRKAA2, DMD, DDAH1, and GATA6). This network was further validated by analyzing datasets from a variety of mesenchymal stem cells subculture and lineage reprogramming studies, as well as qPCR analysis of early passages mesenchymal stem cells versus mesenchymal stem cells with senescence morphologies (SA-β-Gal+). The "TF-miRNA-Target" regulatory network constructed in this study reveals the functional mechanism of miRNAs in promoting the senescence of MSCs during in vitro expansion and provides indicators for monitoring the quality of functional mesenchymal stem cells during the preparation and clinical application.
Collapse
Affiliation(s)
- Yong Yang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wencheng Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Xicheng Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Jingxian Yang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yangyang Cui
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China,Postgraduate Training Base of Shanghai East Hospital, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Haimeng Song
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Weiping Li
- Department of Gastrointestinal Surgery, The First People’s Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Taicang, Jiangsu, China
| | - Wei Li
- Department of General Surgery, Fuzhou Dongxiang District People’s Hospital, Fuzhou, Jiangxi, China
| | - Le Wu
- Department of General Surgery, Fuzhou Dongxiang District People’s Hospital, Fuzhou, Jiangxi, China
| | - Yao Du
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhiying He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China,*Correspondence: Zhiying He, ; Jun Shi, ; Jiangnan Zhang,
| | - Jun Shi
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,*Correspondence: Zhiying He, ; Jun Shi, ; Jiangnan Zhang,
| | - Jiangnan Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,*Correspondence: Zhiying He, ; Jun Shi, ; Jiangnan Zhang,
| |
Collapse
|
27
|
Abu-Shahba N, Hegazy E, Khan FM, Elhefnawi M. In Silico Analysis of MicroRNA Expression Data in Liver Cancer. Cancer Inform 2023; 22:11769351231171743. [PMID: 37200943 PMCID: PMC10185868 DOI: 10.1177/11769351231171743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/04/2023] [Indexed: 05/20/2023] Open
Abstract
Abnormal miRNA expression has been evidenced to be directly linked to HCC initiation and progression. This study was designed to detect possible prognostic, diagnostic, and/or therapeutic miRNAs for HCC using computational analysis of miRNAs expression. Methods: miRNA expression datasets meta-analysis was performed using the YM500v2 server to compare miRNA expression in normal and cancerous liver tissues. The most significant differentially regulated miRNAs in our study undergone target gene analysis using the mirWalk tool to obtain their validated and predicted targets. The combinatorial target prediction tool; miRror Suite was used to obtain the commonly regulated target genes. Functional enrichment analysis was performed on the resulting targets using the DAVID tool. A network was constructed based on interactions among microRNAs, their targets, and transcription factors. Hub nodes and gatekeepers were identified using network topological analysis. Further, we performed patient data survival analysis based on low and high expression of identified hubs and gatekeeper nodes, patients were stratified into low and high survival probability groups. Results: Using the meta-analysis option in the YM500v2 server, 34 miRNAs were found to be significantly differentially regulated (P-value ⩽ .05); 5 miRNAs were down-regulated while 29 were up-regulated. The validated and predicted target genes for each miRNA, as well as the combinatorially predicted targets, were obtained. DAVID enrichment analysis resulted in several important cellular functions that are directly related to the main cancer hallmarks. Among these functions are focal adhesion, cell cycle, PI3K-Akt signaling, insulin signaling, Ras and MAPK signaling pathways. Several hub genes and gatekeepers were found that could serve as potential drug targets for hepatocellular carcinoma. POU2F1 and PPARA showed a significant difference between low and high survival probabilities (P-value ⩽ .05) in HCC patients. Our study sheds light on important biomarker miRNAs for hepatocellular carcinoma along with their target genes and their regulated functions.
Collapse
Affiliation(s)
- Nourhan Abu-Shahba
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
- Stem Cell Research Group, Medical Research Center of Excellence, National Research Centre, Cairo, Egypt
| | - Elsayed Hegazy
- School of Information Technology and Computer Science, Nile University, Giza, Egypt
| | - Faiz M. Khan
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Mahmoud Elhefnawi
- Biomedical Informatics and Chemoinformatics Group, Informatics and Systems Department, National Research Centre, Cairo, Egypt
- Mahmoud Elhefnawi, Biomedical Informatics and Chemoinformatics Group, Informatics and Systems Department, National Research Centre, 33, elbohouth street, Cairo 11211, Egypt.
| |
Collapse
|
28
|
Jafari A, Karimabadi K, Rahimi A, Rostaminasab G, Khazaei M, Rezakhani L, Ahmadi jouybari T. The Emerging Role of Exosomal miRNAs as Biomarkers for Early Cancer Detection: A Comprehensive Literature Review. Technol Cancer Res Treat 2023; 22:15330338231205999. [PMID: 37817634 PMCID: PMC10566290 DOI: 10.1177/15330338231205999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
A significant number of cancer-related deaths are recorded globally each year, despite attempts to cure this illness. Medical science is working to develop new medication therapies as well as to find ways to identify this illness as early as possible, even using noninvasive techniques. Early detection of cancer can greatly aid its treatment. Studies into cancer diagnosis and therapy have recently shifted their focus to exosome (EXO) biomarkers, which comprise numerous RNA and proteins. EXOs are minuscule goblet vesicles that have a width of 30 to 140 nm and are released by a variety of cells, including immune, stem, and tumor cells, as well as bodily fluids. According to a growing body of research, EXOs, and cancer appear to be related. EXOs from tumors play a role in the genetic information transfer between tumor and basal cells, which controls angiogenesis and fosters tumor development and spread. To identify malignant activities early on, microRNAs (miRNAs) from cancers can be extracted from circulatory system EXOs. Specific markers can be used to identify cancer-derived EXOs containing miRNAs, which may be more reliable and precise for early detection. Conventional solid biopsy has become increasingly limited as precision and personalized medicine has advanced, while liquid biopsy offers a viable platform for noninvasive diagnosis and prognosis. Therefore, the use of body fluids such as serum, plasma, urine, and salivary secretions can help find cancer biomarkers using technologies related to EXOs.
Collapse
Affiliation(s)
- Ali Jafari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyvan Karimabadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aso Rahimi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Touraj Ahmadi jouybari
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
29
|
Abdelaziz HE, El-Guendy N, Radwan EM, Sharawi SK, El Houseini ME, Abdel-Wahab AHA. Possible Use of miR-223-3p as a Prognostic Marker in Transarterial Chemoembolization Treatment of Hepatocellular Carcinoma Patients. Asian Pac J Cancer Prev 2022; 23:4125-4135. [PMID: 36579994 PMCID: PMC9971467 DOI: 10.31557/apjcp.2022.23.12.4125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION AND OBJECTIVES Transcatheter chemoembolization (TACE) is the recommended therapy for intermediate stage hepatocellular carcinoma patients. Unfortunately, one of the main reasons for its failure is the emergence of multidrug resistance (MDR). Therefore, this study explored the possibility of using MDR-related miRNA as a response biomarker in HCC patients treated with doxorubicin drug-eluting bead TACE (DEB-TACE). PATIENTS AND METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to evaluate the expression level of 14 MDR-related miRNAs in doxorubicin-resistant HepG2 cells (HepG2/Dox) developed by single-dose of doxorubicin mimicking the situation of liver cells surviving TACE. The sera level of miR-223-3p, which was the most significantly downregulated in the HepG2 cells, was determined in 60 primary HCC patients undergoing TACE. Restoring miR-223-3p in HepG2/Dox cell line was achieved by its mimic transfection. Cell sensitivity was measured by SRB assay. Cell apoptosis and doxorubicin uptake were assessed by flow cytometry. The expression of miR-223-3p target protein, P-glycoprotein, was evaluated using qRT-PCR and western blotting. RESULTS We detected a significant downregulation of circulating miR-223-3p in patients non-responders to TACE treatment compared with responders. The expression of miR-223-3p was markedly decreased in resistant HepG2/Dox cells compared to the parental control. In addition, the expression of miR-223-3p was found to be inversely correlated with P-glycoprotein expression thus confirming the role of miR-223-3p in MDR. Furthermore, overexpression of miR-223-3p suppressed P-glycoprotein which promoted cellular uptake of doxorubicin and increased apoptosis. CONCLUSIONS Our data suggest a potential role for miR-233-3p as a prognostic as well as a therapeutic target for HCC.
Collapse
Affiliation(s)
- Heba E. Abdelaziz
- Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Nadia El-Guendy
- Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Enas M Radwan
- Department of Clinical Pathology, National Cancer Institute, Cairo University, 1 Kasr El Eini Street Fom ElKhalig, 11796 Cairo, Egypt.
| | - Sabry K Sharawi
- Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Motawa E El Houseini
- Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Abdel-Hady A Abdel-Wahab
- Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt. ,For Correspondence:
| |
Collapse
|
30
|
Rusu I, Pirlog R, Chiroi P, Nutu A, Puia VR, Fetti AC, Rusu DR, Berindan-Neagoe I, Al Hajjar N. The Implications of Noncoding RNAs in the Evolution and Progression of Nonalcoholic Fatty Liver Disease (NAFLD)-Related HCC. Int J Mol Sci 2022; 23:12370. [PMID: 36293225 PMCID: PMC9603983 DOI: 10.3390/ijms232012370] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver pathology worldwide. Meanwhile, liver cancer represents the sixth most common malignancy, with hepatocellular carcinoma (HCC) as the primary, most prevalent subtype. Due to the rising incidence of metabolic disorders, NAFLD has become one of the main contributing factors to HCC development. However, although NAFLD might account for about a fourth of HCC cases, there is currently a significant gap in HCC surveillance protocols regarding noncirrhotic NAFLD patients, so the majority of NAFLD-related HCC cases were diagnosed in late stages when survival chances are minimal. However, in the past decade, the focus in cancer genomics has shifted towards the noncoding part of the genome, especially on the microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), which have proved to be involved in the regulation of several malignant processes. This review aims to summarize the current knowledge regarding some of the main dysregulated, noncoding RNAs (ncRNAs) and their implications for NAFLD and HCC development. A central focus of the review is on miRNA and lncRNAs that can influence the progression of NAFLD towards HCC and how they can be used as potential screening tools and future therapeutic targets.
Collapse
Affiliation(s)
- Ioana Rusu
- Department of Pathology, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
- 3rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Paul Chiroi
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Vlad Radu Puia
- 3rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Alin Cornel Fetti
- 3rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Daniel Radu Rusu
- Department of Pathology, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Nadim Al Hajjar
- 3rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| |
Collapse
|
31
|
Yang J, Dong W, Zhang H, Zhao H, Zeng Z, Zhang F, Li Q, Duan X, Hu Y, Xiao W. Exosomal microRNA panel as a diagnostic biomarker in patients with hepatocellular carcinoma. Front Cell Dev Biol 2022; 10:927251. [PMID: 36211468 PMCID: PMC9537616 DOI: 10.3389/fcell.2022.927251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Diagnostic tools for hepatocellular carcinoma (HCC) are critical for patient treatment and prognosis. Thus, this study explored the diagnostic value of the exosomal microRNA panel for HCC.Methods: Expression profiles of microRNAs in exosomes and plasma of HCC and control groups were assessed using microRNA microarray analysis. Reverse transcription-quantitative PCR was applied to evaluate the expression of candidate microRNAs in blood samples from 50 HCC patients, 50 hepatic cirrhosis patients, and 50 healthy subjects. The area calculated the diagnostic accuracy of the microRNAs and microRNA panel under the receiver operating characteristic curve (AUC).Results: MicroRNA microarray analysis revealed that there were more differentially expressed microRNAs in the exosome HCC group than plasma HCC group. Among the 43 differentially expressed microRNAs contained in both exosomes and plasma, we finally decided to testify the expression and diagnostic significance of microRNA-26a, microRNA-29c, and microRNA-199a. The results indicated that expression of the microRNA-26a, microRNA-29c, and microRNA-199a in both exosomes and plasma was significantly lower in HCC patients compared with hepatic cirrhosis and healthy group. Interestingly, exosomal microRNAs were substantially more accurate in diagnosing HCC than microRNAs and alpha-fetoprotein in plasma. Moreover, the exosomal microRNA panel containing microRNA-26a, microRNA-29c, and microRNA-199a showed high accuracy in discriminating HCC from healthy (AUC = 0.994; sensitivity 100%; specificity 96%) and hepatic cirrhosis group (AUC = 0.965; sensitivity 92%; specificity 90%).Conclusion: This study revealed that the exosomal microRNA panel has high accuracy in diagnosing HCC and has important clinical significance.
Collapse
Affiliation(s)
- Jingwen Yang
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Weiwei Dong
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - He Zhang
- Department of Oncology, 4th Medical Center of PLA General Hospital, Beijing, China
| | - Huixia Zhao
- Department of Oncology, 4th Medical Center of PLA General Hospital, Beijing, China
| | - Zhiyan Zeng
- Department of Oncology, 4th Medical Center of PLA General Hospital, Beijing, China
| | - Fengyun Zhang
- Department of Oncology, 4th Medical Center of PLA General Hospital, Beijing, China
| | - Qiuwen Li
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaohong Duan
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China
- *Correspondence: Xiaohong Duan, ; Yanyan Hu, ; Wenhua Xiao,
| | - Yanyan Hu
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Xiaohong Duan, ; Yanyan Hu, ; Wenhua Xiao,
| | - Wenhua Xiao
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Xiaohong Duan, ; Yanyan Hu, ; Wenhua Xiao,
| |
Collapse
|
32
|
The Clinical Value of Long Noncoding RNA DDX11-AS1 as a Biomarker for the Diagnosis and Prognosis of Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:5735462. [PMID: 36072974 PMCID: PMC9444391 DOI: 10.1155/2022/5735462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is a high-mortality malignant tumor with genetic and phenotypic heterogeneity, making predicting clinical outcomes challenging. The purpose of this investigation was to examine the potential usefulness of lncRNA DDX11 antisense RNA 1 (DDX11-AS1) as a biomarker for diagnosis and prognosis in hepatocellular carcinoma (HCC). The TCGA-LIHC datasets were searched for patients’ clinical information and RNA-seq data, which were then collected. Relative expression levels of DDX11-AS1 in HCC tissues were determined by qRT-PCR. In order to test the sensitivity and specificity of the DDX11-AS1 receiver, receiver operating characteristic curves were utilized. The association of DDX11-AS1 expression with clinicopathological factors or prognosis was statistically analyzed. We found that the levels of DDX11-AS1 were higher in HCC specimens than in normal specimens. ROC analysis showed that DDX11-AS1 was a useful marker for discriminating HCC tissues from normal nontumor specimens. According to the results of clinical tests, a high level of DDX11-AS1 expressions was significantly related to the pathologic stage (
) and the histologic grade (
). Survival studies indicated that patients with higher DDX11-AS1 expression had a significantly poorer overall survival (
) and progression-free interval (
) than those with lower DDX11-AS1 expression. Multivariate survival analysis verified that DDX11-AS1 expression level was an independent predictor for HCC patients. Overall, DDX11-AS1 may serve as a tumor promotor during HCC progression, and its high level may be a potential marker for HCC patients.
Collapse
|
33
|
Wu Q, Wang L, Tsui SKW. Mutational signatures representative transcriptomic perturbations in hepatocellular carcinoma. Front Genet 2022; 13:970907. [PMID: 36081995 PMCID: PMC9445436 DOI: 10.3389/fgene.2022.970907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary malignancy with increasing incidence and poor prognosis. Heterogeneity originating from genomic instability is one of the critical reasons of poor outcomes. However, the studies of underlying mechanisms and pathways affected by mutations are still not intelligible. Currently, integrative molecular-level studies using multiomics approaches enable comprehensive analysis for cancers, which is pivotal for personalized therapy and mortality reduction. In this study, genomic and transcriptomic data of HCC are obtained from The Cancer Genome Atlas (TCGA) to investigate the affected coding and non-coding RNAs, as well as their regulatory network due to certain mutational signatures of HCC. Different types of RNAs have their specific enriched biological functions in mutational signature-specific HCCs, upregulated coding RNAs are predominantly associated with lipid metabolism-related pathways, and downregulated coding RNAs are enriched in axonogenesis for tumor microenvironment generation. Additionally, differentially expressed miRNAs are inclined to concentrate in cancer-related signaling pathways. Some of these RNAs also serve as prognostic factors that help predict the survival outcome of HCCs with certain mutational signatures. Furthermore, deregulation of competing endogenous RNA (ceRNA) regulatory network is identified, which suggests a potential therapy via interference of miRNA activity for mutational signature-specific HCC. This study proposes a projection approach to reduce therapeutic complexity from genomic mutations to transcriptomic alterations. Through this method, we identify genes and pathways critical for mutational signature-specific HCC and further discover a series of prognostic markers indicating patient survival outcome.
Collapse
|
34
|
Zelli V, Compagnoni C, Capelli R, Corrente A, Di Vito Nolfi M, Zazzeroni F, Alesse E, Tessitore A. Role of exosomal microRNAs in cancer therapy and drug resistance mechanisms: focus on hepatocellular carcinoma. Front Oncol 2022; 12:940056. [PMID: 35912267 PMCID: PMC9334682 DOI: 10.3389/fonc.2022.940056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), defined as intercellular messengers that carry their cargos between cells, are involved in several physiological and pathological processes. These small membranous vesicles are released by most cells and contain biological molecules, including nucleic acids, proteins and lipids, which can modulate signaling pathways of nearby or distant recipient cells. Exosomes, one the most characterized classes of EVs, include, among others, microRNAs (miRNAs), small non-coding RNAs able to regulate the expression of several genes at post-transcriptional level. In cancer, exosomal miRNAs have been shown to influence tumor behavior and reshape tumor microenvironment. Furthermore, their possible involvement in drug resistance mechanisms has become evident in recent years. Hepatocellular carcinoma (HCC) is the major type of liver cancer, accounting for 75-85% of all liver tumors. Although the improvement in HCC treatment approaches, low therapeutic efficacy in patients with intermediate-advanced HCC is mainly related to the development of tumor metastases, high risk of recurrence and drug resistance. Exosomes have been shown to be involved in pathogenesis and progression of HCC, as well as in drug resistance, by regulating processes such as cell proliferation, epithelial-mesenchymal transition and immune response. Herein, we summarize the current knowledge about the involvement of exosomal miRNAs in HCC therapy, highlighting their role as modulators of therapeutic response, particularly chemotherapy and immunotherapy, as well as possible therapeutic tools.
Collapse
Affiliation(s)
- Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, L’Aquila, Italy
| | - Chiara Compagnoni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Roberta Capelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Alessandra Corrente
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, L’Aquila, Italy
- *Correspondence: Alessandra Tessitore,
| |
Collapse
|
35
|
Zhang D, Liao X. Pan-TRK Immunohistochemistry and NTRK Gene Fusions in Primary Carcinomas of the Liver. Appl Immunohistochem Mol Morphol 2022; 30:435-440. [PMID: 35587529 DOI: 10.1097/pai.0000000000001032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/08/2022] [Indexed: 11/25/2022]
Abstract
Gene fusions involving NTRK are not common in solid tumors. The aim of this study was to investigate the TRK protein expression and molecular characteristics of gene fusions in primary liver carcinomas. A total of 110 hepatocellular carcinomas (HCC) and 69 intrahepatic cholangiocarcinomas were retrieved for tissue microarray (TMA) construction and clinicopathologic characterization. Immunohistochemistry (IHC) for pan-TRK was initially performed on TMA slides and evaluated for staining intensity. Twelve (10.9%) of 110 HCC showed weak cytoplasmic TRK expression by IHC on TMA, while all others, including 69 intrahepatic cholangiocarcinomas, were negative for TRK. The TRK expression did not correlate with patient's age, sex, tumor differentiation, or tumor stage. The 12 cases were then validated by IHC on whole sections but all turned out to be negative. Further, RNA sequencing analysis did not detect any NTRK fusions in all 12 HCC cases; however, it did identify many fusions frequently involving genes that encode mitochondrial and ribosomal proteins, microRNAs, and some transcription factors. A few fusions were recurrent, including MT-ATP6/MT-ATP8 fusion (n=9, 75%), Ig κ light chain gene IGKV/IGKJ fusion (n=5, 41.7%), and histocompatibility complex gene HLA-C/HLA-B fusion (n=4, 33.3%). In summary, NTRK fusion is very rare in primary liver carcinomas. IHC on TMA for TRK expression yields high false positive results, which should be validated on whole sections and confirmed by molecular genetic studies such as RNA sequencing. Many fusions involving genes other than NTRK are detected in HCC, the significance of which warrants further studies.
Collapse
Affiliation(s)
- Dongwei Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | | |
Collapse
|
36
|
Chandra VM, Wilkins LR, Brautigan DL. Animal Models of Hepatocellular Carcinoma for Local-Regional Intraarterial Therapies. Radiol Imaging Cancer 2022; 4:e210098. [PMID: 35838531 PMCID: PMC9358488 DOI: 10.1148/rycan.210098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Animal models play a crucial role in developing and testing new therapies for hepatocellular carcinoma (HCC), providing preclinical evidence prior to exploring human safety and efficacy outcomes. The interventional radiologist must weigh the advantages and disadvantages of various animal models available when testing a new local-regional therapy. This review highlights the currently available animal models for testing local-regional therapies for HCC and details the importance of considering animal genetics, tumor biology, and molecular mechanisms when ultimately choosing an animal model. Keywords: Animal Studies, Interventional-Vascular, Molecular Imaging-Clinical Translation, Molecular Imaging-Cancer, Chemoembolization, Liver © RSNA, 2022.
Collapse
|
37
|
Badami E, Busà R, Douradinha B, Russelli G, Miceli V, Gallo A, Zito G, Conaldi PG, Iannolo G. Hepatocellular carcinoma, hepatitis C virus infection and miRNA involvement: Perspectives for new therapeutic approaches. World J Gastroenterol 2022; 28:2417-2428. [PMID: 35979260 PMCID: PMC9258280 DOI: 10.3748/wjg.v28.i22.2417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection is the principal etiology of cirrhosis and, ultimately, hepatocellular carcinoma (HCC). At present, approximately 71 million people are chronically infected with HCV, and 10%–20% of these are expected to develop severe liver complications throughout their lifetime. Scientific evidence has clearly shown the causal association between miRNAs, HCV infection and HCC. Although it is not completely clear whether miRNA dysregulation in HCC is the cause or the consequence of its development, variations in miRNA patterns have been described in different liver diseases, including HCC. Many studies have analyzed the importance of circulating miRNAs and their effect on cell proliferation and apoptosis. In this Review, we aim to summarize current knowledge on the association between miRNA, HCV and HCC from a diagnostic point of view, and also the potential implications for therapeutic approaches.
Collapse
Affiliation(s)
- Ester Badami
- Regenerative Medicine and Immunotherapy Area, Fondazione Ri.MED, Palermo 90127, Italy
| | - Rosalia Busà
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Palermo 90127, Italy
| | - Bruno Douradinha
- Regenerative Medicine and Immunotherapy Area, Fondazione Ri.MED, Palermo 90127, Italy
| | - Giovanna Russelli
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Palermo 90127, Italy
| | - Vitale Miceli
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Palermo 90127, Italy
| | - Alessia Gallo
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Palermo 90127, Italy
| | - Giovanni Zito
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Palermo 90127, Italy
| | - Pier Giulio Conaldi
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Palermo 90127, Italy
| | - Gioacchin Iannolo
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Palermo 90127, Italy
| |
Collapse
|
38
|
Khare S, Khare T, Ramanathan R, Ibdah JA. Hepatocellular Carcinoma: The Role of MicroRNAs. Biomolecules 2022; 12:biom12050645. [PMID: 35625573 PMCID: PMC9138333 DOI: 10.3390/biom12050645] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide. HCC is diagnosed in its advanced stage when limited treatment options are available. Substantial morphologic, genetic and epigenetic heterogeneity has been reported in HCC, which poses a challenge for the development of a targeted therapy. In this review, we discuss the role and involvement of several microRNAs (miRs) in the heterogeneity and metastasis of hepatocellular carcinoma with a special emphasis on their possible role as a diagnostic and prognostic tool in the risk prediction, early detection, and treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sharad Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA; (S.K.); (T.K.); (R.R.)
- Harry S. Truman Veterans Hospital, Columbia, MO 65201, USA
| | - Tripti Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA; (S.K.); (T.K.); (R.R.)
| | - Raghu Ramanathan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA; (S.K.); (T.K.); (R.R.)
- Harry S. Truman Veterans Hospital, Columbia, MO 65201, USA
| | - Jamal A. Ibdah
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA; (S.K.); (T.K.); (R.R.)
- Harry S. Truman Veterans Hospital, Columbia, MO 65201, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
- Correspondence: ; Tel.: 1-573-882-7349; Fax: 1-573-884-4595
| |
Collapse
|
39
|
El-Mahdy HA, Sallam AAM, Ismail A, Elkhawaga SY, Elrebehy MA, Doghish AS. miRNAs inspirations in hepatocellular carcinoma: Detrimental and favorable aspects of key performers. Pathol Res Pract 2022; 233:153886. [PMID: 35405621 DOI: 10.1016/j.prp.2022.153886] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths worldwide. HCC initiation, progression, and therapy failure are all influenced by various variables, including microRNAs (miRNAs). miRNAs are short non-coding RNA sequences that modulate target mRNA expression by deteriorating or repressing translation. miRNAs play an imperative role in HCC pathogenesis by triggering the induction of cancer stem cells (CSCs) and their proliferation, while also delaying apoptosis, sustaining the cell cycle, and inspiring angiogenesis, invasion, and metastasis. Additionally, miRNAs modulate crucial HCC-related molecular pathways such as the p53 pathway, the Wnt/β-catenin pathway, VEGFR2, and PTEN/PI3K/AKT pathway. Consequently, the goal of this review was to give an up-to-date overview of oncogenic and tumor suppressor (TS) miRNAs, as well as their potential significance in HCC pathogenesis and treatment responses, highlighting their underpinning molecular pathways in HCC initiation and progression. Similarly, the biological importance and clinical application of miRNAs in HCC are summarized.
Collapse
Affiliation(s)
- Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
40
|
Suresh A, Dhanasekaran R. Implications of genetic heterogeneity in hepatocellular cancer. Adv Cancer Res 2022; 156:103-135. [PMID: 35961697 PMCID: PMC10321863 DOI: 10.1016/bs.acr.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hepatocellular carcinoma (HCC) exhibits a remarkable degree of heterogeneity, not only at an inter-patient level but also between and within tumors in the same patient. The advent of next-generation sequencing (NGS)-based technologies has allowed the creation of high-resolution atlases of HCC. This review outlines recent findings from genomic, epigenomic, transcriptomic, and proteomic sequencing that have yielded valuable insights into the spatial and temporal heterogeneity of HCC. The high heterogeneity of HCC has both clinical and therapeutic implications. The challenges in prospectively validating molecular classifications for HCC either for prognostication or for prediction of therapeutic response are partly due to the immense heterogeneity in HCC. Moreover, the heterogeneity of HCC tumors combined with the lack of commonly mutated, druggable targets severely limits treatment options for HCC. Recently, immune checkpoint inhibitors and combination therapies have shown promise for advanced HCC, while T cell therapies and vaccines are currently being investigated. Yet, immunotherapies show benefit only in a limited subset of patients, making it imperative to decipher tumor heterogeneity in HCC in order to enable optimal patient selection. This review summarizes the cutting-edge research on heterogeneity in HCC and explores the implications of heterogeneity on stratifying patients and developing biomarkers and therapies for HCC.
Collapse
Affiliation(s)
- Akanksha Suresh
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, United States
| | - Renumathy Dhanasekaran
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, United States.
| |
Collapse
|
41
|
Jang JW, Kim JM, Kim HS, Kim JS, Han JW, Lee SK, Nam H, Sung PS, Bae SH, Choi JY, Yoon SK. Diagnostic performance of serum exosomal miRNA-720 in hepatocellular carcinoma. JOURNAL OF LIVER CANCER 2022; 22:30-39. [PMID: 37383532 PMCID: PMC10035706 DOI: 10.17998/jlc.2022.02.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/13/2022] [Accepted: 02/24/2022] [Indexed: 06/30/2023]
Abstract
Background/Aim Hepatocellular carcinoma (HCC) is associated with poor prognosis, largely due to late detection. Highly accurate biomarkers are urgently needed to detect early-stage HCC. Our study aims to explore the diagnostic performance of serum exosomal microRNA (miR)-720 in HCC. Methods Exosomal miRNA was measured via quantitative real-time PCR. A correlation analysis of exosomal miR-720 and tumor or clinico-demographic data of patients with HCC was performed. The receiver operating characteristic (ROC) curve was used to assess the diagnostic capacity of serum exosomal miR-720 for HCC, in comparison with α-fetoprotein (AFP) and prothrombin induced by vitamin K absence or antagonist-II (PIVKA-II). Results MiR-720 was chosen as a potential HCC marker via miR microarray based on significant differential expression between tumor and non-tumor samples. Serum exosomal miR-720 was significantly upregulated in patients with HCC (n=114) versus other liver diseases (control, n=30), with a higher area under the ROC curve (AUC, 0.931) than the other markers. Particularly, serum exosomal miR-720 showed superior performance in diagnosing small HCC (<5 cm; AUC, 0.930) compared with AFP (AUC, 0.802) or PIVKA-II (AUC, 0.718). Exosomal miR-720 levels showed marginal correlation with tumor size. The proportion of elevated miR-720 also increased with intrahepatic tumor stage progression. Unlike AFP or PIVKA-II showing a significant correlation with aminotransferase levels, the exosomal miR-720 level was not affected by aminotransferase levels. Conclusions Serum exosomal miR-720 is an excellent biomarker for the diagnosis of HCC, with better performance than AFP or PIVKA-II. Its diagnostic utility is maintained even in small HCC and is unaffected by aminotransferase levels.
Collapse
Affiliation(s)
- Jeong Won Jang
- Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
- The Catholic University Liver Research Center, The Catholic University of Korea, Seoul, Korea
| | - Ji Min Kim
- The Catholic University Liver Research Center, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hye Seon Kim
- The Catholic University Liver Research Center, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin Seoub Kim
- The Catholic University Liver Research Center, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Won Han
- Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
- The Catholic University Liver Research Center, The Catholic University of Korea, Seoul, Korea
| | - Soon Kyu Lee
- Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
- The Catholic University Liver Research Center, The Catholic University of Korea, Seoul, Korea
| | - Heechul Nam
- Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
- The Catholic University Liver Research Center, The Catholic University of Korea, Seoul, Korea
| | - Pil Soo Sung
- Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
- The Catholic University Liver Research Center, The Catholic University of Korea, Seoul, Korea
| | - Si Hyun Bae
- Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
- The Catholic University Liver Research Center, The Catholic University of Korea, Seoul, Korea
| | - Jong Young Choi
- Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
- The Catholic University Liver Research Center, The Catholic University of Korea, Seoul, Korea
| | - Seung Kew Yoon
- Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
- The Catholic University Liver Research Center, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
42
|
Lei Y, Chen L, Liu J, Zhong Y, Deng L. The MicroRNA-Based Strategies to Combat Cancer Chemoresistance via Regulating Autophagy. Front Oncol 2022; 12:841625. [PMID: 35211417 PMCID: PMC8861360 DOI: 10.3389/fonc.2022.841625] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Chemoresistance frequently occurs in cancer treatment, which results in chemotherapy failure and is one of the most leading causes of cancer-related death worldwide. Understanding the mechanism of chemoresistance and exploring strategies to overcome chemoresistance have become an urgent need. Autophagy is a highly conserved self-degraded process in cells. The dual roles of autophagy (pro-death or pro-survival) have been implicated in cancers and chemotherapy. MicroRNA (miRNA) is a class of small non-coding molecules that regulate autophagy at the post-transcriptional level in cancer cells. The association between miRNAs and autophagy in cancer chemoresistance has been emphasized. In this review, we focus on the dual roles of miRNA-mediated autophagy in facilitating or combating chemoresistance, aiming to shed lights on the potential role of miRNAs as targets to overcome chemoresistance.
Collapse
Affiliation(s)
- Yuhe Lei
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lei Chen
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Junshan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yinqin Zhong
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijuan Deng
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
43
|
Xie Z, Zhong C, Duan S. miR-1269a and miR-1269b: Emerging Carcinogenic Genes of the miR-1269 Family. Front Cell Dev Biol 2022; 10:809132. [PMID: 35252180 PMCID: PMC8894702 DOI: 10.3389/fcell.2022.809132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/20/2022] [Indexed: 01/15/2023] Open
Abstract
miRNAs play an important role in the occurrence and development of human cancer. Among them, hsa-mir-1269a and hsa-mir-1269b are located on human chromosomes 4 and 17, respectively, and their mature miRNAs (miR-1269a and miR-1269b) have the same sequence. miR-1269a is overexpressed in 9 cancers. The high expression of miR-1269a not only has diagnostic significance in hepatocellular carcinoma and non-small cell lung cancer but also is related to the poor prognosis of cancer patients such as esophageal cancer, hepatocellular carcinoma, and glioma. miR-1269a can target 8 downstream genes (CXCL9, SOX6, FOXO1, ATRX, RASSF9, SMAD7, HOXD10, and VASH1). The expression of miR-1269a is regulated by three non-coding RNAs (RP11-1094M14.8, LINC00261, and circASS1). miR-1269a participates in the regulation of the TGF-β signaling pathway, PI3K/AKT signaling pathway, p53 signaling pathway, and caspase-9-mediated apoptotic pathway, thereby affecting the occurrence and development of cancer. There are fewer studies on miR-1269b compared to miR-1269a. miR-1269b is highly expressed in hepatocellular carcinoma, non-small cell lung cancer, oral squamous cell carcinoma, and pharyngeal squamous cell carcinoma, but miR-1269b is low expressed in gastric cancer. miR-1269b can target downstream genes (METTL3, CDC40, SVEP1, and PTEN) and regulate the PI3K/AKT signaling pathway. In addition, sequence mutations on miR-1269a and miR-1269b can affect their regulation of cancer. The current studies have shown that miR-1269a and miR-1269b have the potential to be diagnostic and prognostic markers for cancer. Future research on miR-1269a and miR-1269b can focus on elucidating more of their upstream and downstream genes and exploring the clinical application value of miR-1269a and miR-1269b.At present, there is no systematic summary of the research on miR-1269a and miR-1269b. This paper aims to comprehensively analyze the abnormal expression, diagnostic and prognostic value, and molecular regulatory pathways of miR-1269a and miR-1269b in multiple cancers. The overview in our work can provide useful clues and directions for future related research.
Collapse
Affiliation(s)
- Zijun Xie
- School of Medicine, Zhejiang University City College, Hangzhou, China
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Chenming Zhong
- School of Medicine, Zhejiang University City College, Hangzhou, China
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Shiwei Duan
- School of Medicine, Zhejiang University City College, Hangzhou, China
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
- *Correspondence: Shiwei Duan,
| |
Collapse
|
44
|
MicroRNAs Related to TACE Treatment Response: A Review of the Literature from a Radiological Point of View. Diagnostics (Basel) 2022; 12:diagnostics12020374. [PMID: 35204465 PMCID: PMC8871153 DOI: 10.3390/diagnostics12020374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 01/08/2023] Open
Abstract
Hepatocellular Carcinoma (HCC) is the sixth most common cancer in the world. Patients with intermediate stage (Barcelona Clinic Liver Cancer, B stage) hepatocellular carcinoma (HCC) have been able to benefit from TACE (transarterial chemoembolization) as a treatment option. MicroRNAs (miRNAs), i.e., a subclass of non-coding RNAs (ncRNAs), participate in post-transcriptional gene regulation processes and miRNA dysfunction has been associated with apoptosis resistance, cellular proliferation, tumor genesis, and progression. Only a few studies have investigated the role of miRNAs as biomarkers predicting TACE treatment response in HCC. Here, we review the studies’ characteristics from a radiological point of view, also correlating data with radiological images chosen from the cases of our institution.
Collapse
|
45
|
Si L, Yang Z, Ding L, Zhang D. Regulatory effects of lncRNAs and miRNAs on the crosstalk between autophagy and EMT in cancer: a new era for cancer treatment. J Cancer Res Clin Oncol 2022; 148:547-564. [PMID: 35083552 DOI: 10.1007/s00432-021-03892-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Autophagy and EMT (epithelial-mesenchymal transition) are the two principal biological processes and ideal therapeutic targets during cancer development. Autophagy, a highly conserved process for degrading dysfunctional cellular components, plays a dual role in tumors depending on the tumor stage and tissue types. The EMT process is the transition differentiation from an epithelial cell to a mesenchymal-like cell and acquiring metastatic potential. There is evidence that the crosstalk between autophagy and EMT is complex in cancer. In recent years, more studies have shown that long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are involved in autophagy, EMT, and their crosstalk. Therefore, accurate understanding of the regulatory mechanisms of lncRNAs and miRNAs in autophagy, EMT and their interactions is crucial for the clinical management of cancers. METHODS An extensive literature search was conducted on the Google Scholar and PubMed databases. The keywords used for the search included: autophagy, EMT, crosstalk, lncRNAs, miRNAs, cancers, diagnostic biomarkers, and therapeutic targets. This search provided relevant articles published in peer-reviewed journals until 2021. Data from these various studies were extracted and used in this review. RESULTS The results showed that lncRNAs/miRNAs as tumor inhibitors or tumor inducers could regulate autophagy, EMT, and their interaction by regulating several molecular signaling pathways. The lncRNAs/miRNAs involved in autophagy and EMT processes could have potential uses in cancer diagnosis, prognosis, and therapy. CONCLUSION Such information could help find and develop lncRNAs/miRNAs based new tools for diagnosing, prognosis, and creating anti-cancer therapies.
Collapse
Affiliation(s)
- Lihui Si
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Zecheng Yang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000, China.
| | - Lu Ding
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Duoduo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| |
Collapse
|
46
|
De Simone S, Giacani E, Bosco MA, Vittorio S, Ferrara M, Bertozzi G, Cipolloni L, La Russa R. The Role of miRNAs as New Molecular Biomarkers for Dating the Age of Wound Production: A Systematic Review. Front Med (Lausanne) 2022; 8:803067. [PMID: 35096893 PMCID: PMC8795691 DOI: 10.3389/fmed.2021.803067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/22/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The timing of wounds production is a significant issue in forensic pathology. Although various methods have been evaluated, obtaining an accurate dating of lesions is still a challenge. The pathologist uses many parameters to value wound age, such as histological and immunohistochemical. In recent years, there have been many studies regarding the use of miRNAs in wound-age estimation; indeed, miRNAs have multiple potential uses in forensic pathology. SCOPE This review aims to verify the efficacy and feasibility of miRNAs as a tool for determining the timing of lesions. MATERIALS AND METHODS The authors conducted the systematic review according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. PubMed was used as a search engine to find articles published between January, 1st 2016 and October, 1st 2021, to evaluate the current state of the art regarding wound-age estimation. RESULTS A total of 256 articles were collected; after screening according to PRISMA guidelines, the systematic review included 8 articles. The studies included in this review were all Original articles evaluating the use of biomarkers for wound-age determination. DISCUSSION AND CONCLUSION The literature review showed that analysis of miRNA is an innovative field of study with significant potentiality in forensic pathology. There are few studies, and almost all of them are at an early stage. The challenge is to understand how to standardize the samples' selection to obtain reliable experimental data. This observation represents a necessary prerequisite to planning further clinical trials.
Collapse
Affiliation(s)
- Stefania De Simone
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Elena Giacani
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Maria Antonella Bosco
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Simona Vittorio
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Michela Ferrara
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Bertozzi
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Luigi Cipolloni
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Raffaele La Russa
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
47
|
Zheng T, Zhang X, Wang Y, Wang A. SPOCD1 regulated by miR-133a-3p promotes hepatocellular carcinoma invasion and metastasis. J Int Med Res 2022. [PMCID: PMC8733378 DOI: 10.1177/03000605211053717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective To investigate the tumorigenic role of spen paralogue and orthologue C-terminal domain-containing 1 (SPOCD1) in hepatocellular carcinoma (HCC) and identify the upstream regulatory mechanism. Methods We analyzed SPOCD1 and miR-133-3p expression in normal and HCC tissues from the Cancer Genome Atlas and UALCAN databases, and in normal hepatocytes and HCC cell lines by real-time quantitative polymerase chain reaction and western blot. We identified the miR-133a-3p-binding site on the SPOCD1 3ʹ-untranslated region using TargetScan. Hierarchical regulation was confirmed by luciferase assay and miR-133a-3p overexpression/silencing. Cell proliferation, migration, invasion, and colony formation were assessed by MTT, scratch, transwell, and clonogenic assays, respectively. Results SPOCD1 was highly expressed in HCC tissues and cell lines, while miR-133a-3p expression was significantly downregulated. Kaplan–Meier analysis indicated that high SPOCD1 expression was significantly associated with poor survival. TargetScan and luciferase reporter assay revealed that SPOCD1 was the downstream target of miR-133a-3p. Overexpression of miR-133a-3p significantly inhibited the expression of SPOCD1, while miR-133a-3p knockdown significantly increased SPOCD1 expression. Conclusion SPOCD1, regulated by miR-133a-3p, promotes HCC cell proliferation, migration, invasion, and colony formation. This study provides the first evidence for the role of the miR-133a-3p/SPOCD1 axis in HCC tumorigenesis.
Collapse
Affiliation(s)
- Tianying Zheng
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Zhang
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yonggang Wang
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Aijun Wang
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
48
|
Khashkhashi Moghadam S, Bakhshinejad B, Khalafizadeh A, Mahmud Hussen B, Babashah S. Non-coding RNA-associated competitive endogenous RNA regulatory networks: Novel diagnostic and therapeutic opportunities for hepatocellular carcinoma. J Cell Mol Med 2021; 26:287-305. [PMID: 34907642 PMCID: PMC8743668 DOI: 10.1111/jcmm.17126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/09/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC), as the most prevalent liver malignancy, is annually diagnosed in more than half a million people worldwide. HCC is strongly associated with hepatitis B and C viral infections as well as alcohol abuse. Obesity and nonalcoholic fatty liver disease (NAFLD) also significantly enhance the risk of liver cancer. Despite recent improvements in therapeutic approaches, patients diagnosed in advanced stages show poor prognosis. Accumulating evidence provides support for the regulatory role of non-coding RNAs (ncRNAs) in cancer. There are a variety of reports indicating the regulatory role of microRNAs (miRNAs) in different stages of HCC. Long non-coding RNAs (LncRNAs) exert their effects by sponging miRNAs and controlling the expression of miRNA-targeted genes. Circular RNAs (circRNAs) perform their biological functions by acting as transcriptional regulators, miRNA sponges and protein templates. Diverse studies have illustrated that dysregulation of competing endogenous RNA networks (ceRNETs) is remarkably correlated with HCC-causing diseases such as chronic viral infections, nonalcoholic steatohepatitis and liver fibrosis/cirrhosis. The aim of the current article was to provide an overview of the role and molecular mechanisms underlying the function of ceRNETs that modulate the characteristics of HCC such as uncontrolled cell proliferation, resistance to cell death, metabolic reprogramming, immune escape, angiogenesis and metastasis. The current knowledge highlights the potential of these regulatory RNA molecules as novel diagnostic biomarkers and therapeutic targets in HCC.
Collapse
Affiliation(s)
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Khalafizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Sadegh Babashah
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.,Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
49
|
Abstract
Liver cancer is the fourth leading cause of cancer-related deaths worldwide, with hepatocellular carcinoma (HCC) accounting for approximately 80% of all liver cancers. The serum concentration of alpha-fetoprotein (AFP) is the only validated biomarker for HCC diagnosis. MicroRNAs (miRNAs) are small non-coding RNAs of 21–30 nucleotides playing a critical role in human carcinogenesis, with types of miRNAs with oncogenic (oncomiRs) or tumor suppressor features. The altered expression of miRNAs in HCC is associated with many pathological processes, such as cancer initiation, tumor growth, apoptosis escape, promotion of migration and invasion. Moreover, circulating miRNAs have been increasingly investigated as non-invasive biomarkers for HCC diagnosis. MiRNAs’ expression patterns are altered in HCC and several single miRNAs or miRNAs panels have been found significantly up or downregulated in HCC with respect to healthy controls or non-oncological patients (cirrhotic or with viral hepatitis). However, any of the investigated miRNAs or miRNAs panels has entered clinical practice so far. This has mostly to do with lack of protocols standardization, small sample size and discrepancies in the measurement techniques. This review summarizes the major findings regarding the diagnostic role of miRNAs in HCC and their possible use together with standard biomarkers in order to obtain an early diagnosis and easier differential diagnosis from non-cancerous liver disease.
Collapse
|
50
|
Nguyen VT, Le TTK, Than K, Tran DH. Predicting miRNA-disease associations using improved random walk with restart and integrating multiple similarities. Sci Rep 2021; 11:21071. [PMID: 34702958 PMCID: PMC8548500 DOI: 10.1038/s41598-021-00677-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/15/2021] [Indexed: 12/20/2022] Open
Abstract
Predicting beneficial and valuable miRNA-disease associations (MDAs) by doing biological laboratory experiments is costly and time-consuming. Proposing a forceful and meaningful computational method for predicting MDAs is essential and captivated many computer scientists in recent years. In this paper, we proposed a new computational method to predict miRNA-disease associations using improved random walk with restart and integrating multiple similarities (RWRMMDA). We used a WKNKN algorithm as a pre-processing step to solve the problem of sparsity and incompletion of data to reduce the negative impact of a large number of missing associations. Two heterogeneous networks in disease and miRNA spaces were built by integrating multiple similarity networks, respectively, and different walk probabilities could be designated to each linked neighbor node of the disease or miRNA node in line with its degree in respective networks. Finally, an improve extended random walk with restart algorithm based on miRNA similarity-based and disease similarity-based heterogeneous networks was used to calculate miRNA-disease association prediction probabilities. The experiments showed that our proposed method achieved a momentous performance with Global LOOCV AUC (Area Under Roc Curve) and AUPR (Area Under Precision-Recall Curve) values of 0.9882 and 0.9066, respectively. And the best AUC and AUPR values under fivefold cross-validation of 0.9855 and 0.8642 which are proven by statistical tests, respectively. In comparison with other previous related methods, it outperformed than NTSHMDA, PMFMDA, IMCMDA and MCLPMDA methods in both AUC and AUPR values. In case studies of Breast Neoplasms, Carcinoma Hepatocellular and Stomach Neoplasms diseases, it inferred 1, 12 and 7 new associations out of top 40 predicted associated miRNAs for each disease, respectively. All of these new inferred associations have been confirmed in different databases or literatures.
Collapse
Affiliation(s)
- Van Tinh Nguyen
- Faculty of Information Technology, Hanoi National University of Education, Hanoi, Vietnam
- Faculty of Information Technology, Hanoi University of Industry, 298 Cau Dien Street, Bac Tu Liem District, Hanoi, Vietnam
| | - Thi Tu Kien Le
- Faculty of Information Technology, Hanoi National University of Education, Hanoi, Vietnam
| | - Khoat Than
- Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Dang Hung Tran
- Faculty of Information Technology, Hanoi National University of Education, Hanoi, Vietnam.
| |
Collapse
|