1
|
Chen S, Kim JK. The Role of Cannabidiol in Liver Disease: A Systemic Review. Int J Mol Sci 2024; 25:2370. [PMID: 38397045 PMCID: PMC10888697 DOI: 10.3390/ijms25042370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Cannabidiol (CBD), a non-psychoactive phytocannabinoid abundant in Cannabis sativa, has gained considerable attention for its anti-inflammatory, antioxidant, analgesic, and neuroprotective properties. It exhibits the potential to prevent or slow the progression of various diseases, ranging from malignant tumors and viral infections to neurodegenerative disorders and ischemic diseases. Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease, and viral hepatitis stand as prominent causes of morbidity and mortality in chronic liver diseases globally. The literature has substantiated CBD's potential therapeutic effects across diverse liver diseases in in vivo and in vitro models. However, the precise mechanism of action remains elusive, and an absence of evidence hinders its translation into clinical practice. This comprehensive review emphasizes the wealth of data linking CBD to liver diseases. Importantly, we delve into a detailed discussion of the receptors through which CBD might exert its effects, including cannabinoid receptors, CB1 and CB2, peroxisome proliferator-activated receptors (PPARs), G protein-coupled receptor 55 (GPR55), transient receptor potential channels (TRPs), and their intricate connections with liver diseases. In conclusion, we address new questions that warrant further investigation in this evolving field.
Collapse
Affiliation(s)
- Si Chen
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea;
| | - Jeon-Kyung Kim
- Institute of New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| |
Collapse
|
2
|
Dominiak HSH, Hasselsteen SD, Nielsen SW, Andersen JR, Herrstedt J. Prevention of Taste Alterations in Patients with Cancer Receiving Paclitaxel- or Oxaliplatin-Based Chemotherapy-A Pilot Trial of Cannabidiol. Nutrients 2023; 15:3014. [PMID: 37447339 DOI: 10.3390/nu15133014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
INTRODUCTION Taste alteration is a common adverse effect of chemotherapy. This study aimed to investigate the effect of cannabidiol (CBD) on Lean Body Mass (LBM), and taste alterations during oxaliplatin- or paclitaxel-based chemotherapy. METHODS LBM was estimated by bioelectrical impedance analysis (BIA), and taste perception was evaluated by a randomized sensory test of six samples: sweet, salt, and umami, all in weak and strong concentrations. Taste perceptions were scored on visual analog scales. Patients in the intervention group received oral CBD 300 mg/day for 8 days; patients in the control group did not. Patients were followed for three cycles of chemotherapy. RESULTS Twenty-two/ten patients (intervention/control group) were eligible. No effects on LBM were demonstrated. At baseline, the control group was able to differentiate between weak and strong saltiness and weak and strong sweetness but lost this ability after three cycles of chemotherapy. At baseline, the intervention group was unable to differentiate between the concentrations but gained the ability to significantly differentiate between weak and strong sweetness (p = 0.03) and weak and strong saltiness (p = 0.04) after three cycles of chemotherapy and treatment with CBD. CONCLUSIONS CBD may improve patients' ability to differentiate taste strengths during chemotherapy.
Collapse
Affiliation(s)
- Helena S H Dominiak
- Department of Clinical Oncology, Zealand University Hospital, 4000 Roskilde, Denmark
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 2200 Frederiksberg, Denmark
| | - Simone D Hasselsteen
- Department of Clinical Oncology, Zealand University Hospital, 4000 Roskilde, Denmark
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 2200 Frederiksberg, Denmark
| | - Sebastian W Nielsen
- Department of Clinical Oncology, Zealand University Hospital, 4000 Roskilde, Denmark
| | - Jens Rikardt Andersen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 2200 Frederiksberg, Denmark
| | - Jørn Herrstedt
- Department of Clinical Oncology, Zealand University Hospital, 4000 Roskilde, Denmark
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, 2200 Frederiksberg, Denmark
| |
Collapse
|
3
|
The protective effect of cannabinoids against colorectal cancer cachexia through modulation of inflammation and immune responses. Biomed Pharmacother 2023; 161:114467. [PMID: 36871538 DOI: 10.1016/j.biopha.2023.114467] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Cancer cachexia is a multifactorial disorder characterized by weight loss and muscle wasting, and there are currently no FDA-approved medications. In the present study, upregulation of six cytokines was observed in serum samples from patients with colorectal cancer (CRC) and in mouse models. A negative correlation between the levels of the six cytokines and body mass index in CRC patients was seen. Gene Ontology analysis revealed that these cytokines were involved in regulating T cell proliferation. The infiltration of CD8+ T cells was found to be associated with muscle atrophy in mice with CRC. Adoptive transfer of CD8+ T cells isolated from CRC mice resulted in muscle wasting in recipients. The Genotype-Tissue Expression database showed that negative correlations between the expression of cachexia markers and cannabinoid receptor 2 (CB2) in human skeletal muscle tissues. Pharmacological treatment with Δ9-tetrahydrocannabinol (Δ9-THC), a selective CB2 agonist or overexpression of CB2 attenuated CRC-associated muscle atrophy. In contrast, knockout of CB2 with a CRISPR/Cas9-based strategy or depletion of CD8+ T cells in CRC mice abolished the Δ9-THC-mediated effects. This study demonstrates that cannabinoids ameliorate CD8+ T cell infiltration in CRC-associated skeletal muscle atrophy via a CB2-mediated pathway. Serum levels of the six-cytokine signature might serve as a potential biomarker to detect the therapeutic effects of cannabinoids in CRC-associated cachexia.
Collapse
|
4
|
Wang R, Wei L, Wazir J, Li L, Song S, Lin K, Pu W, Zhao C, Su Z, Zhao Q, Wang H. Curcumin treatment suppresses cachexia-associated adipose wasting in mice by blocking the cAMP/PKA/CREB signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154563. [PMID: 36610148 DOI: 10.1016/j.phymed.2022.154563] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/24/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Cachexia is a multifactorial debilitating syndrome that is responsible for 22% of mortality among cancer patients, and there are no effective therapeutic agents available. Curcumin, a polyphenolic compound derived from the plant turmeric, has been shown to have anti-inflammatory, antioxidant, anti-autophagic, and antitumor activities. However, its function in cancer cachexia remains largely unexplored. PURPOSE This study aimed to elucidate the mechanisms by which curcumin improves adipose atrophy in cancer cachexia. METHODS C26 tumor-bearing BALB/c mice and β3-adrenoceptor agonist CL316243 stimulated BALB/c mice were used to observe the therapeutic effects of curcumin on the lipid degradation of cancer cachexia in vivo. The effects of curcumin in vitro were examined using mature 3T3-L1 adipocytes treated with a conditioned medium of C26 tumor cells or CL316243. RESULTS Mice with C26 tumors and cachexia were protected from weight loss and adipose atrophy by curcumin (50 mg/kg, i.g.). Curcumin significantly reduced serum levels of free fatty acids and increased triglyceride levels. In addition, curcumin significantly inhibited PKA and CREB activation in the adipose tissue of cancer cachectic mice. Curcumin also ameliorated CL316243-induced adipose atrophy and inhibited hormone-mediated PKA and CREB activation in mice. Moreover, the lipid droplet degradation induced by C26 tumor cell conditioned medium in mature 3T3-L1 adipocytes was ameliorated by curcumin (20 µM) treatment. Curcumin also improved the lipid droplet degradation of mature 3T3-L1 adipocytes induced by CL316243. CONCLUSION Curcumin might be expected to be a therapeutic supplement for cancer cachexia patients, primarily through inhibiting adipose tissue loss via the cAMP/PKA/CREB signaling pathway.
Collapse
Affiliation(s)
- Ranran Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Lulu Wei
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Junaid Wazir
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Li Li
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Shiyu Song
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Kai Lin
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Wenyuan Pu
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Chen Zhao
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Zhonglan Su
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Hongwei Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
5
|
Sunil M, Karimi P, Leong R, Zuniga-Villanueva G, Ratcliffe EM. Therapeutic Effects of Medicinal Cannabinoids on the Gastrointestinal System in Pediatric Patients: A Systematic Review. Cannabis Cannabinoid Res 2022; 7:769-776. [PMID: 36219741 DOI: 10.1089/can.2022.0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Changes in cannabis legalization have generated interest in medicinal cannabinoids for therapeutic uses, including those that target the gastrointestinal (GI) tract. These effects are mediated through interactions with the endocannabinoid system. Given the increasing societal awareness of the therapeutic potential of cannabinoids, it is important to ensure pediatric representation in clinical studies investigating cannabinoid use. This systematic review aims to assess the efficacy of medicinal cannabinoids in treating GI symptoms in pediatric patients. A literature search of Medline, Embase, CINAHL, Web of Science, and the Cochrane Library was performed from inception until June 23, 2020. Study design, patient characteristics, type, dose and duration of medicinal cannabinoid therapy, and GI outcomes were extracted. From 7303 records identified, 5 studies met all inclusion criteria. Included studies focused on chemotherapy-induced nausea, inflammatory bowel disease, and GI symptoms associated with severe complex motor disorders. Results varied based on the symptom being treated, the type of cannabinoid, and the patient population. Medicinal cannabinoids may have a potential role in treating specific GI symptoms in specific patient populations. The limited number and heterogenicity of included studies highlight the demand for future research to distinguish effects among different cannabinoid types and patient populations and to examine drug interactions. As interest increases, higher quality studies are needed to understand the efficacy of cannabinoids as a pediatric GI treatment and whether these benefits outweigh the associated risks (Registration Number: PROSPERO CRD42020202486).
Collapse
Affiliation(s)
- Maria Sunil
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Parsa Karimi
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Russell Leong
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Gregorio Zuniga-Villanueva
- Division of Palliative Medicine, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada.,Department of Pediatrics, Tecnológico de Monterrey, Monterrey, Mexico
| | - Elyanne M Ratcliffe
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.,Division of Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada.,Michael G. DeGroote Centre for Medicinal Cannabis Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Wang Y, An Z, Lin D, Jin W. Targeting cancer cachexia: Molecular mechanisms and clinical study. MedComm (Beijing) 2022; 3:e164. [PMID: 36105371 PMCID: PMC9464063 DOI: 10.1002/mco2.164] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/12/2022] Open
Abstract
Cancer cachexia is a complex systemic catabolism syndrome characterized by muscle wasting. It affects multiple distant organs and their crosstalk with cancer constitute cancer cachexia environment. During the occurrence and progression of cancer cachexia, interactions of aberrant organs with cancer cells or other organs in a cancer cachexia environment initiate a cascade of stress reactions and destroy multiple organs including the liver, heart, pancreas, intestine, brain, bone, and spleen in metabolism, neural, and immune homeostasis. The role of involved organs turned from inhibiting tumor growth into promoting cancer cachexia in cancer progression. In this review, we depicted the complicated relationship of cancer cachexia with the metabolism, neural, and immune homeostasis imbalance in multiple organs in a cancer cachexia environment and summarized the treatment progress in recent years. And we discussed the molecular mechanism and clinical study of cancer cachexia from the perspective of multiple organs metabolic, neurological, and immunological abnormalities. Updated understanding of cancer cachexia might facilitate the exploration of biomarkers and novel therapeutic targets of cancer cachexia.
Collapse
Affiliation(s)
- Yong‐Fei Wang
- The First Clinical Medical College of Lanzhou UniversityLanzhouChina
- Institute of Cancer NeuroscienceMedical Frontier Innovation Research CenterThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Zi‐Yi An
- The First Clinical Medical College of Lanzhou UniversityLanzhouChina
- Institute of Cancer NeuroscienceMedical Frontier Innovation Research CenterThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Dong‐Hai Lin
- Key Laboratory for Chemical Biology of Fujian ProvinceMOE Key Laboratory of Spectrochemical Analysis and InstrumentationCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
| | - Wei‐Lin Jin
- The First Clinical Medical College of Lanzhou UniversityLanzhouChina
- Institute of Cancer NeuroscienceMedical Frontier Innovation Research CenterThe First Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
7
|
Yedigaryan L, Gatti M, Marini V, Maraldi T, Sampaolesi M. Shared and Divergent Epigenetic Mechanisms in Cachexia and Sarcopenia. Cells 2022; 11:2293. [PMID: 35892590 PMCID: PMC9332174 DOI: 10.3390/cells11152293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
Significant loss of muscle mass may occur in cachexia and sarcopenia, which are major causes of mortality and disability. Cachexia represents a complex multi-organ syndrome associated with cancer and chronic diseases. It is often characterized by body weight loss, inflammation, and muscle and adipose wasting. Progressive muscle loss is also a hallmark of healthy aging, which is emerging worldwide as a main demographic trend. A great challenge for the health care systems is the age-related decline in functionality which threatens the independence and quality of life of elderly people. This biological decline can also be associated with functional muscle loss, known as sarcopenia. Previous studies have shown that microRNAs (miRNAs) play pivotal roles in the development and progression of muscle wasting in both cachexia and sarcopenia. These small non-coding RNAs, often carried in extracellular vesicles, inhibit translation by targeting messenger RNAs, therefore representing potent epigenetic modulators. The molecular mechanisms behind cachexia and sarcopenia, including the expression of specific miRNAs, share common and distinctive trends. The aim of the present review is to compile recent evidence about shared and divergent epigenetic mechanisms, particularly focusing on miRNAs, between cachexia and sarcopenia to understand a facet in the underlying muscle wasting associated with these morbidities and disclose potential therapeutic interventions.
Collapse
Affiliation(s)
- Laura Yedigaryan
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
| | - Martina Gatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (T.M.)
| | - Vittoria Marini
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
| | - Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (T.M.)
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
- Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
8
|
Vinette B, Côté J, El-Akhras A, Mrad H, Chicoine G, Bilodeau K. Routes of administration, reasons for use, and approved indications of medical cannabis in oncology: a scoping review. BMC Cancer 2022; 22:319. [PMID: 35331185 PMCID: PMC8953058 DOI: 10.1186/s12885-022-09378-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/07/2022] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Some patients diagnosed with cancer use medical cannabis to self-manage undesirable symptoms, including nausea and pain. To improve patient safety and oncological care quality, the routes of administration for use of medical cannabis, patients' reasons, and prescribed indications must be better understood. METHODS Based on the Joanna Briggs Institute guidelines, a scoping review was conducted to map the current evidence regarding the use of medical cannabis in oncological settings based on the experiences of patients diagnosed with cancer and their healthcare providers. A search strategy was developed with a scientific librarian which included five databases (CINAHL, Web of Science, Medline, Embase, and PsycINFO) and two grey literature sources (Google Scholar and ProQuest). The inclusion criteria were: 1) population: adults aged 18 and over diagnosed with cancer; 2) phenomena of interest: reasons for cannabis use and/or the prescribed indications for medical cannabis; 3) context: oncological setting. French- or English-language primary empirical studies, knowledge syntheses, and grey literature published between 2000 and 2021 were included. Data were extracted by two independent reviewers and subjected to a thematic analysis. A narrative description approach was used to synthesize and present the findings. RESULTS We identified 5,283 publications, of which 163 met the eligibility criteria. Two main reasons for medical cannabis use emerged from the thematic analysis: limiting the impacts of cancer and its side effects; and staying connected to others. Our results also indicated that medical cannabis is mostly used for three approved indications: to manage refractory nausea and vomiting, to complement pain management, and to improve appetite and food intake. We highlighted 11 routes of administration for medical cannabis, with oils and oral solutions the most frequently reported. CONCLUSION Future studies should consider the multiple routes of administration for medical cannabis, such as inhalation and edibles. Our review highlights that learning opportunities would support the development of healthcare providers' knowledge and skills in assessing the needs and preferences of patients diagnosed with cancer who use medical cannabis.
Collapse
Affiliation(s)
- Billy Vinette
- Faculty of Nursing, University of Montreal, Montreal, QC, Canada.
- Research Chair in Innovative Nursing Practices, Montreal, QC, Canada.
- Quebec Network On Nursing Intervention Research, Montreal, QC, Canada.
- Center for Innovation in Nursing Education, Montreal, QC, Canada.
| | - José Côté
- Faculty of Nursing, University of Montreal, Montreal, QC, Canada
- Research Chair in Innovative Nursing Practices, Montreal, QC, Canada
- Quebec Network On Nursing Intervention Research, Montreal, QC, Canada
- Research center of the Montreal University Hospital Center, Montreal, QC, Canada
| | - Ali El-Akhras
- Faculty of Nursing, University of Montreal, Montreal, QC, Canada
| | - Hazar Mrad
- Faculty of Nursing, University of Montreal, Montreal, QC, Canada
| | - Gabrielle Chicoine
- Faculty of Nursing, University of Montreal, Montreal, QC, Canada
- Research Chair in Innovative Nursing Practices, Montreal, QC, Canada
- Quebec Network On Nursing Intervention Research, Montreal, QC, Canada
- Center for Innovation in Nursing Education, Montreal, QC, Canada
- Research center of the Montreal University Hospital Center, Montreal, QC, Canada
| | - Karine Bilodeau
- Faculty of Nursing, University of Montreal, Montreal, QC, Canada
- Quebec Network On Nursing Intervention Research, Montreal, QC, Canada
- Center for Innovation in Nursing Education, Montreal, QC, Canada
- Research center of the Montreal University Hospital Center, Montreal, QC, Canada
- Research Center of the Centre Intégré Universitaire de Santé Et de Services Sociaux de L'Est-de-L'Île-de-Montréal, Montreal, QC, Canada
| |
Collapse
|
9
|
Olivas-Aguirre M, Torres-López L, Villatoro-Gómez K, Perez-Tapia SM, Pottosin I, Dobrovinskaya O. Cannabidiol on the Path from the Lab to the Cancer Patient: Opportunities and Challenges. Pharmaceuticals (Basel) 2022; 15:366. [PMID: 35337163 PMCID: PMC8951434 DOI: 10.3390/ph15030366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 01/18/2023] Open
Abstract
Cannabidiol (CBD), a major non-psychotropic component of cannabis, is receiving growing attention as a potential anticancer agent. CBD suppresses the development of cancer in both in vitro (cancer cell culture) and in vivo (xenografts in immunodeficient mice) models. For critical evaluation of the advances of CBD on its path from laboratory research to practical application, in this review, we wish to call the attention of scientists and clinicians to the following issues: (a) the biological effects of CBD in cancer and healthy cells; (b) the anticancer effects of CBD in animal models and clinical case reports; (c) CBD's interaction with conventional anticancer drugs; (d) CBD's potential in palliative care for cancer patients; (e) CBD's tolerability and reported side effects; (f) CBD delivery for anticancer treatment.
Collapse
Affiliation(s)
- Miguel Olivas-Aguirre
- Laboratory of Immunobiology and Ionic Transport Regulation, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (M.O.-A.); (L.T.-L.); (K.V.-G.)
| | - Liliana Torres-López
- Laboratory of Immunobiology and Ionic Transport Regulation, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (M.O.-A.); (L.T.-L.); (K.V.-G.)
| | - Kathya Villatoro-Gómez
- Laboratory of Immunobiology and Ionic Transport Regulation, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (M.O.-A.); (L.T.-L.); (K.V.-G.)
| | - Sonia Mayra Perez-Tapia
- Unidad de Desarrollo e Investigación en Bioterapeúticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City 11340, Mexico;
| | - Igor Pottosin
- Laboratory of Immunobiology and Ionic Transport Regulation, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (M.O.-A.); (L.T.-L.); (K.V.-G.)
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (M.O.-A.); (L.T.-L.); (K.V.-G.)
| |
Collapse
|
10
|
O’Brien K. Cannabidiol (CBD) in Cancer Management. Cancers (Basel) 2022; 14:cancers14040885. [PMID: 35205633 PMCID: PMC8869992 DOI: 10.3390/cancers14040885] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Cannabidiol (CBD) is one of the main constituents of the plant Cannabis sativa. Surveys suggest that medicinal cannabis is popular amongst people diagnosed with cancer. CBD is one of the key constituents of cannabis, and does not have the potentially intoxicating effects that tetrahydrocannabinol (THC), the other key phytocannabinoid has. Research indicates the CBD may have potential for the treatment of cancer, including the symptoms and signs associated with cancer and its treatment. Preclinical research suggests CBD may address many of the pathways involved in the pathogenesis of cancers. Preclinical and clinical research also suggests some evidence of efficacy, alone or in some cases in conjunction with tetrahydrocannabinol (THC, the other key phytocannabinoid in cannabis), in treating cancer-associated pain, anxiety and depression, sleep problems, nausea and vomiting, and oral mucositis that are associated with cancer and/or its treatment. Studies also suggest that CBD may enhance orthodox treatments with chemotherapeutic agents and radiation therapy and protect against neural and organ damage. CBD shows promise as part of an integrative approach to the management of cancer. Abstract The plant Cannabis sativa has been in use medicinally for several thousand years. It has over 540 metabolites thought to be responsible for its therapeutic effects. Two of the key phytocannabinoids are cannabidiol (CBD) and tetrahydrocannabinol (THC). Unlike THC, CBD does not have potentially intoxicating effects. Preclinical and clinical research indicates that CBD has a wide range of therapeutic effects, and many of them are relevant to the management of cancer. In this article, we explore some of the potential mechanisms of action of CBD in cancer, and evidence of its efficacy in the integrative management of cancer including the side effects associated with its treatment, demonstrating its potential for integration with orthodox cancer care.
Collapse
Affiliation(s)
- Kylie O’Brien
- Adelaide Campus, Torrens University, Adelaide, SA 5000, Australia;
- NICM Health Research Centre, Western Sydney University, Westmead, Sydney, NSW 2145, Australia
- Releaf Group Ltd., St Kilda, VIC 3182, Australia
- International College of Cannabinoid Medicine, iccm.co, London N1 7GU, UK
| |
Collapse
|
11
|
Baba MR, Buch SA. Revisiting Cancer Cachexia: Pathogenesis, Diagnosis, and Current Treatment Approaches. Asia Pac J Oncol Nurs 2021; 8:508-518. [PMID: 34527780 PMCID: PMC8420916 DOI: 10.4103/apjon.apjon-2126] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 01/06/2023] Open
Abstract
The objective of this article is to group together various management strategies and to highlight the recent treatment modifications that attempt to target the multimodal etiological factors involved in cancer cachexia. The contemporary role of nursing fraternity in psychosocial and nutritional assessment of cancer patients is briefly discussed. Cachexia is a syndrome of metabolic disturbance, characterized by the inflammation and loss of muscle with or without loss of adipose tissue. In cancer cachexia, a multifaceted condition, patients suffer from loss of body weight that leads to a negative impact on the quality of life and survival of the patients. The main cancers associated with cachexia are that of pancreas, stomach, lung, esophagus, liver, and that of bowel. The changes include increased proteolysis, lipolysis, insulin resistance, high energy expenditure, and reduced intake of food, all leading to impaired response to different treatments. There is no standardized treatment for cancer cachexia that can stabilize or reverse this complex metabolic disorder at present. The mainstay of cancer cachexia therapy remains to be sufficient nutritional supplements with on-going efforts to explore the drugs that target heightened catabolic processes and complex inflammation. There is a need to develop a multimodal treatment approach combining pharmacology, exercise program, and nutritional support to target anorexia and the severe metabolic changes encountered in cancer cachexia.
Collapse
Affiliation(s)
- Mudasir Rashid Baba
- Department of Paediatric Rehabilitation, Yenepoya Physiotherapy College, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sajad Ahmad Buch
- Department of Oral Medicine and Radiology, Yenepoya Dental College, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
12
|
Boyle DA. Contemporary Insights into Cancer Cachexia for Oncology Nurses. Asia Pac J Oncol Nurs 2021; 8:462-470. [PMID: 34527776 PMCID: PMC8420918 DOI: 10.4103/apjon.apjon-2151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022] Open
Abstract
Cachexia is a complex, multiorgan phenomenon targeting skeletal muscle resulting from systemic metabolic imbalances. Multifocal in nature, It's ultimate outcome is significant muscle degradation and loss of adipose tissue exhibited as the "wasting syndrome" which is associated with significant functional decline. Currently, there are no approved biomarkers for screening nor therapeutic options to manage cancer cachexia. Furthermore, multiple psychosocial sequelae characterize the patient and family coping paradigm. Heightened education about the pathophysiology of cancer cachexia and awareness of intra-familial emotional distress can enhance oncology nurses' advocacy about, and attentiveness to, this common manifestation of advanced cancer.
Collapse
|
13
|
Chapek MA, Martindale RG. Nutrition in Cancer Therapy: Overview for the Cancer Patient. JPEN J Parenter Enteral Nutr 2021; 45:33-40. [PMID: 34459006 DOI: 10.1002/jpen.2259] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 11/10/2022]
Abstract
Despite significant advances in oncologic treatment, cancer-associated metabolic derangements remain largely poorly understood and often neglected in cancer care. Cancer cachexia and metabolic changes exhibited by neoplastic cells pose formidable barriers to improving outcomes and quality of life. Although cancer has traditionally been viewed as a proliferative disease caused by genetic mutations, newer perspectives suggest that it is primarily a metabolic disease. This paper discusses the etiology of cachexia and sarcopenia, and nutritional interventions that can address these wasting disorders. The role of inflammation in cancer and the methods for preventing and resolving inflammation with nutrition intervention are also explored. Several nutritional recommendations aimed at overcoming cachexia, resolving inflammation and improving cancer outcomes are provided based on current literature. This manuscript selected only a few areas in which to focus and is not all inclusive of the expansive literature available on the topic of cachexia. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Robert G Martindale
- Professor of Surgery, Division of GI and General Surgery, Oregon Health Sciences University, Portland, Oregon, United States
| |
Collapse
|
14
|
Cancer cachexia: molecular mechanism and pharmacological management. Biochem J 2021; 478:1663-1688. [PMID: 33970218 DOI: 10.1042/bcj20201009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/15/2022]
Abstract
Cancer cachexia often occurs in malignant tumors and is a multifactorial and complex symptom characterized by wasting of skeletal muscle and adipose tissue, resulting in weight loss, poor life quality and shorter survival. The pathogenic mechanism of cancer cachexia is complex, involving a variety of molecular substrates and signal pathways. Advancements in understanding the molecular mechanisms of cancer cachexia have provided a platform for the development of new targeted therapies. Although recent outcomes of early-phase trials have showed that several drugs presented an ideal curative effect, monotherapy cannot be entirely satisfactory in the treatment of cachexia-associated symptoms due to its complex and multifactorial pathogenesis. Therefore, the lack of definitive therapeutic strategies for cancer cachexia emphasizes the need to develop a better understanding of the underlying mechanisms. Increasing evidences show that the progression of cachexia is associated with metabolic alternations, which mainly include excessive energy expenditure, increased proteolysis and mitochondrial dysfunction. In this review, we provided an overview of the key mechanisms of cancer cachexia, with a major focus on muscle atrophy, adipose tissue wasting, anorexia and fatigue and updated the latest progress of pharmacological management of cancer cachexia, thereby further advancing the interventions that can counteract cancer cachexia.
Collapse
|
15
|
Olivas-Aguirre M, Torres-López L, Pottosin I, Dobrovinskaya O. Overcoming Glucocorticoid Resistance in Acute Lymphoblastic Leukemia: Repurposed Drugs Can Improve the Protocol. Front Oncol 2021; 11:617937. [PMID: 33777761 PMCID: PMC7991804 DOI: 10.3389/fonc.2021.617937] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoids (GCs) are a central component of multi-drug treatment protocols against T and B acute lymphoblastic leukemia (ALL), which are used intensively during the remission induction to rapidly eliminate the leukemic blasts. The primary response to GCs predicts the overall response to treatment and clinical outcome. In this review, we have critically analyzed the available data on the effects of GCs on sensitive and resistant leukemic cells, in order to reveal the mechanisms of GC resistance and how these mechanisms may determine a poor outcome in ALL. Apart of the GC resistance, associated with a decreased expression of receptors to GCs, there are several additional mechanisms, triggered by alterations of different signaling pathways, which cause the metabolic reprogramming, with an enhanced level of glycolysis and oxidative phosphorylation, apoptosis resistance, and multidrug resistance. Due to all this, the GC-resistant ALL show a poor sensitivity to conventional chemotherapeutic protocols. We propose pharmacological strategies that can trigger alternative intracellular pathways to revert or overcome GC resistance. Specifically, we focused our search on drugs, which are already approved for treatment of other diseases and demonstrated anti-ALL effects in experimental pre-clinical models. Among them are some “truly” re-purposed drugs, which have different targets in ALL as compared to other diseases: cannabidiol, which targets mitochondria and causes the mitochondrial permeability transition-driven necrosis, tamoxifen, which induces autophagy and cell death, and reverts GC resistance through the mechanisms independent of nuclear estrogen receptors (“off-target effects”), antibiotic tigecycline, which inhibits mitochondrial respiration, causing energy crisis and cell death, and some anthelmintic drugs. Additionally, we have listed compounds that show a classical mechanism of action in ALL but are not used still in treatment protocols: the BH3 mimetic venetoclax, which inhibits the anti-apoptotic protein Bcl-2, the hypomethylating agent 5-azacytidine, which restores the expression of the pro-apoptotic BIM, and compounds targeting the PI3K-Akt-mTOR axis. Accordingly, these drugs may be considered for the inclusion into chemotherapeutic protocols for GC-resistant ALL treatments.
Collapse
Affiliation(s)
- Miguel Olivas-Aguirre
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Liliana Torres-López
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Igor Pottosin
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| |
Collapse
|
16
|
Johnson S, Ziegler J, August DA. Cannabinoid use for appetite stimulation and weight gain in cancer care: Does recent evidence support an update of the European Society for Clinical Nutrition and Metabolism clinical guidelines? Nutr Clin Pract 2021; 36:793-807. [PMID: 33666957 DOI: 10.1002/ncp.10639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cannabinoids have been used medicinally for thousands of years. Clinical trials support their use for treatment of chemotherapy-induced nausea and vomiting and HIV- and AIDS-related anorexia. Cancer anorexia cachexia syndrome (CACS) is a common debilitating condition and is associated with poor prognosis. The 2016 European Society for Parenteral and Enteral Nutrition clinical guidelines on nutrition in cancer patients concluded that "there are insufficient consistent clinical data to recommend cannabinoids to improve taste disorders or anorexia in cancer patients." The increased attention that cannabinoids have received in recent years warrants an updated evaluation of the literature on this topic, as practitioners are likely to encounter cancer patients interested in cannabinoid use. A systematic literature search was performed to assess the current body of evidence concerning cannabinoid use for the stimulation of appetite and oral intake by cancer patients. Over the past 20 years, 6 randomized controlled trials have evaluated the impact of cannabinoids on appetite-related outcomes in oncology patients in comparison with a control group or placebo. Based on this literature, cannabinoids do not appear to improve appetite, oral intake, weight, chemosensory function, or appetite-related quality of life. Limitations of the literature include small sample sizes, lack of adjustment for confounding variables, and difficulties conducting true placebo-controlled trials with a drug that may result in psychoactive side effects. Further exploration of the impact of cannabinoid use on CACS by using large, well-designed clinical trials is needed.
Collapse
Affiliation(s)
- Stephani Johnson
- School of Health Professions, Rutgers University, Newark, New Jersey, USA
| | - Jane Ziegler
- School of Health Professions, Rutgers University, Newark, New Jersey, USA
| | - David A August
- School of Health Professions, Rutgers University, Newark, New Jersey, USA.,Division of Surgical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.,Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
17
|
The Extract of Arctium lappa L. Fruit (Arctii Fructus) Improves Cancer-Induced Cachexia by Inhibiting Weight Loss of Skeletal Muscle and Adipose Tissue. Nutrients 2020; 12:nu12103195. [PMID: 33086629 PMCID: PMC7603378 DOI: 10.3390/nu12103195] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Cachexia induced by cancer is a systemic wasting syndrome and it accompanies continuous body weight loss with the exhaustion of skeletal muscle and adipose tissue. Cancer cachexia is not only a problem in itself, but it also reduces the effectiveness of treatments and deteriorates quality of life. However, effective treatments have not been found yet. Although Arctii Fructus (AF) has been studied about several pharmacological effects, there were no reports on its use in cancer cachexia. Methods: To induce cancer cachexia in mice, we inoculated CT-26 cells to BALB/c mice through subcutaneous injection and intraperitoneal injection. To mimic cancer cachexia in vitro, we used conditioned media (CM), which was CT-26 colon cancer cells cultured medium. Results: In in vivo experiments, AF suppressed expression of interleukin (IL)-6 and atrophy of skeletal muscle and adipose tissue. As a result, the administration of AF decreased mortality by preventing weight loss. In adipose tissue, AF decreased expression of uncoupling protein 1 (UCP1) by restoring AMP-activated protein kinase (AMPK) activation. In in vitro model, CM increased muscle degradation factors and decreased adipocytes differentiation factors. However, these tendencies were ameliorated by AF treatment in C2C12 myoblasts and 3T3-L1 cells. Conclusion: Taken together, our study demonstrated that AF could be a therapeutic supplement for patients suffering from cancer cachexia.
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Cancer cachexia is a complex condition that occurs in approximately 50% of cancer patients and in 80% of those with advanced cancer. It is characterized by lean body mass loss, adipose tissue loss, altered metabolism, increased inflammation, and a decrease in quality of life. Cancer cachexia is a frustrating condition to manage and treatment requires an innovative approach. The purpose of this article is to review the current treatments for cancer cachexia and how they could be used in a multimodal approach. RECENT FINDINGS Cancer cachexia has many causes, but is primarily a result of reduced energy-protein intake and altered metabolism augmented by a proinflammatory state. There is not a formal consensus on diagnosing cancer cachexia, but proactive screening and assessments for malnutrition are an effective first step toward identifying high-risk patients. Treatment of cancer cachexia includes optimizing nutrition care, using appropriate pharmacological agents, preserving lean body mass, and the cooperation of the healthcare team. SUMMARY Cancer cachexia is a complex multifactorial condition that can only be successfully managed and treated with a multimodal approach that involves a multidisciplinary team that includes an oncology registered dietitian nutritionist and exercise physiologist that target early detection and management of cancer cachexia.
Collapse
|
19
|
Garai S, Kulkarni PM, Schaffer PC, Leo LM, Brandt AL, Zagzoog A, Black T, Lin X, Hurst DP, Janero DR, Abood ME, Zimmowitch A, Straiker A, Pertwee RG, Kelly M, Szczesniak AM, Denovan-Wright EM, Mackie K, Hohmann AG, Reggio PH, Laprairie RB, Thakur GA. Application of Fluorine- and Nitrogen-Walk Approaches: Defining the Structural and Functional Diversity of 2-Phenylindole Class of Cannabinoid 1 Receptor Positive Allosteric Modulators. J Med Chem 2020; 63:542-568. [PMID: 31756109 DOI: 10.1021/acs.jmedchem.9b01142] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cannabinoid 1 receptor (CB1R) allosteric ligands hold a far-reaching therapeutic promise. We report the application of fluoro- and nitrogen-walk approaches to enhance the drug-like properties of GAT211, a prototype CB1R allosteric agonist-positive allosteric modulator (ago-PAM). Several analogs exhibited improved functional potency (cAMP, β-arrestin 2), metabolic stability, and aqueous solubility. Two key analogs, GAT591 (6r) and GAT593 (6s), exhibited augmented allosteric-agonist and PAM activities in neuronal cultures, improved metabolic stability, and enhanced orthosteric agonist binding (CP55,940). Both analogs also exhibited good analgesic potency in the CFA inflammatory-pain model with longer duration of action over GAT211 while being devoid of adverse cannabimimetic effects. Another analog, GAT592 (9j), exhibited moderate ago-PAM potency and improved aqueous solubility with therapeutic reduction of intraocular pressure in murine glaucoma models. The SAR findings and the enhanced allosteric activity in this class of allosteric modulators were accounted for in our recently developed computational model for CB1R allosteric activation and positive allosteric modulation.
Collapse
Affiliation(s)
- Sumanta Garai
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Pushkar M Kulkarni
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Peter C Schaffer
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Luciana M Leo
- Center for Substance Abuse Research, Lewis Katz School of Medicine , Temple University , Philadelphia , Pennsylvania 19140 , United States
| | - Asher L Brandt
- College of Pharmacy and Nutrition , University of Saskatchewan , 104 Clinic Pl , Saskatoon , SK S7N2Z4 , Canada
| | - Ayat Zagzoog
- College of Pharmacy and Nutrition , University of Saskatchewan , 104 Clinic Pl , Saskatoon , SK S7N2Z4 , Canada
| | - Tallan Black
- College of Pharmacy and Nutrition , University of Saskatchewan , 104 Clinic Pl , Saskatoon , SK S7N2Z4 , Canada
| | - Xiaoyan Lin
- Program in Neuroscience, Psychological and Brain Sciences, and Gill Center for Biomolecular Science , Indiana University , Bloomington , Indiana 47405 , United States
| | - Dow P Hurst
- Center for Drug Discovery , University of North Carolina Greensboro , Greensboro , North Carolina 27402 , United States
| | - David R Janero
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Department of Chemistry and Chemical Biology, College of Science, and Health Sciences Entrepreneurs , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Mary E Abood
- Center for Substance Abuse Research, Lewis Katz School of Medicine , Temple University , Philadelphia , Pennsylvania 19140 , United States
| | - Anaelle Zimmowitch
- Program in Neuroscience, Psychological and Brain Sciences, and Gill Center for Biomolecular Science , Indiana University , Bloomington , Indiana 47405 , United States
| | - Alex Straiker
- Program in Neuroscience, Psychological and Brain Sciences, and Gill Center for Biomolecular Science , Indiana University , Bloomington , Indiana 47405 , United States
| | - Roger G Pertwee
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences , University of Aberdeen , Aberdeen AB25 2ZD , Scotland, U.K
| | - Melanie Kelly
- Department of Pharmacology, Faculty of Medicine , Dalhousie University , 5850 College St , Halifax , NS , B3H4R2 , Canada
| | - Anna-Maria Szczesniak
- Department of Pharmacology, Faculty of Medicine , Dalhousie University , 5850 College St , Halifax , NS , B3H4R2 , Canada
| | - Eileen M Denovan-Wright
- Department of Pharmacology, Faculty of Medicine , Dalhousie University , 5850 College St , Halifax , NS , B3H4R2 , Canada
| | - Ken Mackie
- Program in Neuroscience, Psychological and Brain Sciences, and Gill Center for Biomolecular Science , Indiana University , Bloomington , Indiana 47405 , United States
| | - Andrea G Hohmann
- Program in Neuroscience, Psychological and Brain Sciences, and Gill Center for Biomolecular Science , Indiana University , Bloomington , Indiana 47405 , United States
| | - Patricia H Reggio
- Center for Drug Discovery , University of North Carolina Greensboro , Greensboro , North Carolina 27402 , United States
| | - Robert B Laprairie
- College of Pharmacy and Nutrition , University of Saskatchewan , 104 Clinic Pl , Saskatoon , SK S7N2Z4 , Canada.,Department of Pharmacology, Faculty of Medicine , Dalhousie University , 5850 College St , Halifax , NS , B3H4R2 , Canada
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences , Northeastern University , Boston , Massachusetts 02115 , United States
| |
Collapse
|
20
|
Fraguas-Sánchez AI, Fernández-Carballido A, Simancas-Herbada R, Martin-Sabroso C, Torres-Suárez AI. CBD loaded microparticles as a potential formulation to improve paclitaxel and doxorubicin-based chemotherapy in breast cancer. Int J Pharm 2019; 574:118916. [PMID: 31811927 DOI: 10.1016/j.ijpharm.2019.118916] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 11/26/2022]
Abstract
Cannabidiol (CBD) has emerged as a potential agent for breast cancer management. In this work, the potential use of cannabidiol in solution (CBDsol) and encapsulated in polymeric microparticles when combined with paclitaxel (PTX) and doxorubicin (DOX) in breast cancer treatment has been evaluated for the first time using MCF-7 and MDA-MB-231 cells. CBDsol, previously administered at suboptimal concentrations (cell death < 10%), enhanced the PTX and DOX effect in both breast cancer cells. The co-administration of CBDsol and PTX or DOX showed a synergistic effect. PLGA-502 was selected as the most suitable polymer to develop CBD-loaded microparticles. The developed formulation (CBD-Mps) was effective as monotherapy, showing extended antiproliferative activity for at least 10 days, and when combined with PTX or DOX. In fact, the use of CBD-Mps allows the combination of both, pre and co-administration strategies, with a single administration, also showing a significant increase in PTX and DOX antiproliferative activity. Finally, the anticancer effect of both CBDsol and CBD-Mps as monotherapy or in combination with PTX was also confirmed in ovo, usingMDA-MB-231-derived tumours. This data evidences the promising inclusion of CBD in conventional breast cancer chemotherapy and the use of CBD-Mps for the extended release of this cannabinoid, optimising the effect of the chemotherapeutic agents.
Collapse
Affiliation(s)
- A I Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., 28040 Madrid, Spain
| | - A Fernández-Carballido
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., 28040 Madrid, Spain; Institute of Industrial Pharmacy, Faculty of Pharmacy,Complutense University of Madrid, Pl Ramón yCajal s/n., 28040 Madrid, Spain
| | - R Simancas-Herbada
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., 28040 Madrid, Spain
| | - C Martin-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., 28040 Madrid, Spain; Institute of Industrial Pharmacy, Faculty of Pharmacy,Complutense University of Madrid, Pl Ramón yCajal s/n., 28040 Madrid, Spain
| | - A I Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., 28040 Madrid, Spain; Institute of Industrial Pharmacy, Faculty of Pharmacy,Complutense University of Madrid, Pl Ramón yCajal s/n., 28040 Madrid, Spain.
| |
Collapse
|
21
|
Vapor Cannabis Exposure Promotes Genetic Plasticity in the Rat Hypothalamus. Sci Rep 2019; 9:16866. [PMID: 31728018 PMCID: PMC6856070 DOI: 10.1038/s41598-019-53516-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/29/2019] [Indexed: 01/03/2023] Open
Abstract
It is well established that cannabis use promotes appetite. However, how cannabis interacts with the brain’s appetite center, the hypothalamus, to stimulate feeding behavior is unknown. A growing body of evidence indicates that the hypothalamic transcriptome programs energy balance. Here, we tested the hypothesis that cannabis targets alternative polyadenylation (APA) sites within hypothalamic transcripts to regulate transcriptomic function. To do this, we used a novel cannabis vapor exposure model to characterize feeding in adult male Long Evans rats and aligned this behavioral response with APA events using a Whole Transcriptome Termini Sequencing (WTTS-Seq) approach as well as functional RNA abundance measurements with real-time quantitative polymerase chain reactions. We found that vapor cannabis exposure promoted food intake in free-feeding and behaviorally sated rats, validating the appetite stimulating properties of cannabis. Our WTTS-Seq analysis mapped 59 unique cannabis-induced hypothalamic APAs that occurred primarily within exons on transcripts that regulate synaptic function, excitatory synaptic transmission, and dopamine signaling. Importantly, APA insertions regulated RNA abundance of Slc6a3, the dopamine transporter, suggesting a novel genetic link for cannabis regulation of brain monoamine function. Collectively, these novel data indicate that a single cannabis exposure rapidly targets a key RNA processing mechanism linked to brain transcriptome function.
Collapse
|
22
|
Molfino A, Amabile MI, Giorgi A, Monti M, D’Andrea V, Muscaritoli M. Investigational drugs for the treatment of cancer cachexia: a focus on phase I and phase II clinical trials. Expert Opin Investig Drugs 2019; 28:733-740. [DOI: 10.1080/13543784.2019.1646727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Alessio Molfino
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Ida Amabile
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonella Giorgi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Massimo Monti
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Vito D’Andrea
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
23
|
Abstract
The family of chemical structures that interact with a cannabinoid receptor are broadly termed cannabinoids. Traditionally known for their psychotropic effects and their use as palliative medicine in cancer, cannabinoids are very versatile and are known to interact with several orphan receptors besides cannabinoid receptors (CBR) in the body. Recent studies have shown that several key pathways involved in cell growth, differentiation and, even metabolism and apoptosis crosstalk with cannabinoid signaling. Several of these pathways including AKT, EGFR, and mTOR are known to contribute to tumor development and metastasis, and cannabinoids may reverse their effects, thereby by inducing apoptosis, autophagy and modulating the immune system. In this book chapter, we explore how cannabinoids regulate diverse signaling mechanisms in cancer and immune cells within the tumor microenvironment and whether they impart a therapeutic effect. We also provide some important insight into the role of cannabinoids in cellular and whole body metabolism in the context of tumor inhibition. Finally, we highlight recent and ongoing clinical trials that include cannabinoids as a therapeutic strategy and several combinational approaches towards novel therapeutic opportunities in several invasive cancer conditions.
Collapse
|