1
|
Daneva GN, Tsiakanikas P, Adamopoulos PG, Scorilas A. Kallikrein-related peptidases: mechanistic understanding for potential therapeutic targeting in cancer. Expert Opin Ther Targets 2024:1-20. [PMID: 39431595 DOI: 10.1080/14728222.2024.2415014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Human kallikrein-related peptidases (KLKs) represent a subgroup of 15 serine endopeptidases involved in various physiological processes and pathologies, including cancer. AREAS COVERED This review aims to provide a comprehensive overview of the KLK family, highlighting their genomic structure, expression profiles and substrate specificity. We explore the role of KLKs in tumorigenesis, emphasizing their potential as biomarkers and therapeutic targets in cancer treatment. The dysregulated activity of KLKs has been linked to various malignancies, making them promising candidates for cancer diagnostics and therapy. EXPERT OPINION : Recent advancements in understanding the mechanistic pathways of KLK-related tumorigenesis offer new prospects for developing targeted cancer treatments. Expert opinion suggests that while significant progress has been made, further research is necessary to fully exploit KLKs' potential in clinical applications.
Collapse
Affiliation(s)
- Glykeria N Daneva
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Cherf GM, Lee RB, Mehta N, Clifford C, Torres K, Kintzing JR, Cochran JR. An engineered ultrahigh affinity bi-paratopic uPAR targeting agent confers enhanced tumor targeting. Biotechnol Bioeng 2024; 121:3169-3180. [PMID: 38965775 DOI: 10.1002/bit.28790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 07/06/2024]
Abstract
Urokinase-type plasminogen activator receptor (uPAR) is overexpressed on tumor cells in multiple types of cancer and contributes to disease progression and metastasis. In this work, we engineered a novel bi-paratopic uPAR targeting agent by fusing the binding domains of two native uPAR ligands: uPA and vitronectin, with a flexible peptide linker. The linker length was optimized to facilitate simultaneous engagement of both domains to their adjacent epitopes on uPAR, resulting in a high affinity and avid binding interaction. Furthermore, the individual domains were affinity-matured using yeast surface display and directed evolution, resulting in a bi-paratopic protein with affinity in the picomolar to femtomolar range. This engineered uPAR targeting agent demonstrated significantly enhanced tumor localization in mouse tumor models compared to the native uPAR ligand and warrants further investigation as a diagnostic and therapeutic agent for cancer.
Collapse
Affiliation(s)
- Gerald M Cherf
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Robert B Lee
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| | - Nishant Mehta
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Claire Clifford
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Kathleen Torres
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - James R Kintzing
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
- Stanford Cancer Institute, Stanford University, Stanford, California, USA
| |
Collapse
|
3
|
Haydak J, Azeloglu EU. Role of biophysics and mechanobiology in podocyte physiology. Nat Rev Nephrol 2024; 20:371-385. [PMID: 38443711 DOI: 10.1038/s41581-024-00815-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 03/07/2024]
Abstract
Podocytes form the backbone of the glomerular filtration barrier and are exposed to various mechanical forces throughout the lifetime of an individual. The highly dynamic biomechanical environment of the glomerular capillaries greatly influences the cell biology of podocytes and their pathophysiology. Throughout the past two decades, a holistic picture of podocyte cell biology has emerged, highlighting mechanobiological signalling pathways, cytoskeletal dynamics and cellular adhesion as key determinants of biomechanical resilience in podocytes. This biomechanical resilience is essential for the physiological function of podocytes, including the formation and maintenance of the glomerular filtration barrier. Podocytes integrate diverse biomechanical stimuli from their environment and adapt their biophysical properties accordingly. However, perturbations in biomechanical cues or the underlying podocyte mechanobiology can lead to glomerular dysfunction with severe clinical consequences, including proteinuria and glomerulosclerosis. As our mechanistic understanding of podocyte mechanobiology and its role in the pathogenesis of glomerular disease increases, new targets for podocyte-specific therapeutics will emerge. Treating glomerular diseases by targeting podocyte mechanobiology might improve therapeutic precision and efficacy, with potential to reduce the burden of chronic kidney disease on individuals and health-care systems alike.
Collapse
Affiliation(s)
- Jonathan Haydak
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evren U Azeloglu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Hamada M, Varkoly KS, Riyadh O, Beladi R, Munuswamy-Ramanujam G, Rawls A, Wilson-Rawls J, Chen H, McFadden G, Lucas AR. Urokinase-Type Plasminogen Activator Receptor (uPAR) in Inflammation and Disease: A Unique Inflammatory Pathway Activator. Biomedicines 2024; 12:1167. [PMID: 38927374 PMCID: PMC11201033 DOI: 10.3390/biomedicines12061167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 06/28/2024] Open
Abstract
The urokinase-type plasminogen activator receptor (uPAR) is a unique protease binding receptor, now recognized as a key regulator of inflammation. Initially, uPA/uPAR was considered thrombolytic (clot-dissolving); however, recent studies have demonstrated its predominant immunomodulatory functions in inflammation and cancer. The uPA/uPAR complex has a multifaceted central role in both normal physiological and also pathological responses. uPAR is expressed as a glycophosphatidylinositol (GPI)-linked receptor interacting with vitronectin, integrins, G protein-coupled receptors, and growth factor receptors within a large lipid raft. Through protein-to-protein interactions, cell surface uPAR modulates intracellular signaling, altering cellular adhesion and migration. The uPA/uPAR also modifies extracellular activity, activating plasminogen to form plasmin, which breaks down fibrin, dissolving clots and activating matrix metalloproteinases that lyse connective tissue, allowing immune and cancer cell invasion and releasing growth factors. uPAR is now recognized as a biomarker for inflammatory diseases and cancer; uPAR and soluble uPAR fragments (suPAR) are increased in viral sepsis (COVID-19), inflammatory bowel disease, and metastasis. Here, we provide a comprehensive overview of the structure, function, and current studies examining uPAR and suPAR as diagnostic markers and therapeutic targets. Understanding uPAR is central to developing diagnostic markers and the ongoing development of antibody, small-molecule, nanogel, and virus-derived immune-modulating treatments that target uPAR.
Collapse
Affiliation(s)
- Mostafa Hamada
- College of Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (M.H.); (O.R.)
| | - Kyle Steven Varkoly
- Department of Internal Medicine, McLaren Macomb Hospital, Michigan State University College of Human Medicine, 1000 Harrington St., Mt Clemens, MI 48043, USA
| | - Omer Riyadh
- College of Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (M.H.); (O.R.)
| | - Roxana Beladi
- Department of Neurosurgery, Ascension Providence Hospital, Michigan State University College of Human Medicine, 16001 W Nine Mile Rd, Southfield, MI 48075, USA;
| | - Ganesh Munuswamy-Ramanujam
- Molecular Biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur 603203, India;
| | - Alan Rawls
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA; (A.R.); (J.W.-R.)
| | - Jeanne Wilson-Rawls
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA; (A.R.); (J.W.-R.)
| | - Hao Chen
- Department of Tumor Center, Lanzhou University Second Hospital, Lanzhou 730030, China;
| | - Grant McFadden
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 727 E Tyler St., Tempe, AZ 85287, USA;
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 727 E Tyler St., Tempe, AZ 85287, USA;
| |
Collapse
|
5
|
Fu Z, Chen Z, Ye J, Ji J, Ni W, Lin W, Lin H, Lu L, Zhu G, Xie Q, Yan F, Chen G, Liu F. Identifying PLAUR as a Pivotal Gene of Tumor Microenvironment and Regulating Mesenchymal Phenotype of Glioblastoma. Cancers (Basel) 2024; 16:840. [PMID: 38398231 PMCID: PMC10887327 DOI: 10.3390/cancers16040840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The mesenchymal (MES) phenotype of glioblastoma (GBM) is the most aggressive and therapy-resistant subtype of GBM. The MES phenotype transition during tumor progression results from both tumor-intrinsic genetic alterations and tumor-extrinsic microenvironmental factors. In this study, we sought to identify genes that can modulate the MES phenotype via both mechanisms. By integrating weighted gene co-expression network analysis (WGCNA) and the differential expression analysis of hypoxia-immunosuppression-related genes, we identified the plasminogen activator, urokinase receptor (PLAUR) as the hub gene. Functional enrichment analysis and GSVA analysis demonstrated that PLAUR was associated with the MES phenotype of glioma and the hypoxia-immunosuppression-related microenvironmental components. Single-cell sequencing analysis revealed that PLAUR mediated the ligand-receptor interaction between tumor-associated macrophages (TAMs) and glioma cells. Functional experiments in vitro with cell lines or primary glioma cells and xenograft models using BALB/c nude mice confirmed the role of PLAUR in promoting the MES phenotype of GBM. Our findings indicate that PLAUR regulates both glioma cells and tumor cell-extrinsic factors that favor the MES phenotype and suggest that PLAUR might be a potential target for GBM therapy.
Collapse
Affiliation(s)
- Zaixiang Fu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Zihang Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Jingya Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Jianxiong Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Weifang Ni
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Weibo Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Haopu Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Liquan Lu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Ganggui Zhu
- Department of Lung Transplantation, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China;
| | - Qin Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Feng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Fuyi Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| |
Collapse
|
6
|
Rath B, Stickler S, Hochmair MJ, Hamilton G. Expression of cytokines in pleural effusions and corresponding cell lines of small cell lung cancer. Transl Lung Cancer Res 2024; 13:5-15. [PMID: 38405004 PMCID: PMC10891412 DOI: 10.21037/tlcr-23-569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/29/2023] [Indexed: 02/27/2024]
Abstract
Background Small cell lung cancer (SCLC) is a neuroendocrine aggressive tumor with a dismal prognosis due to the lack of curative therapeutic modalities. Approximately 11% of these patients show a malignant pleural effusion (MPE) that increase in frequency with progression of the disease. In MPE, fluid accumulates due to leaky vessels and mesothelial surfaces as well as impaired removal of fluid due to impaired drainage. Methods For this investigation, three SCLC MPE samples and supernatants of the corresponding isolated cell lines were analyzed for the content of 105 cytokines, chemokines, and growth factors. Overexpressed pathways including these cytokines were identified using Reactome analysis tools. Results A large range of cytokines, including vascular endothelial growth factor A (VEGFA), were found to be expressed in the MPEs and conditioned media of the corresponding cell line. These mediators are involved in pathways such as interleukin (IL) signaling, growth factor stimulation, modulation of cell adhesion molecules and proliferative cell signaling. Cytokine expression by the corresponding SCLC cell lines revealed the specific contributions of the tumor cells and included high expression of VEGFA, tumor-promoting factors and mediators exerting immunosuppressive and protumor effects. MPEs used here showed marked stimulation of the proliferation of four permanent SCLC cell lines. Conclusions MPEs comprise a large number of cytokines with mixed activities on tumor cells and the invading SCLC cells release a number of protumor mediators and induce an immunosuppressive pleural environment.
Collapse
Affiliation(s)
- Barbara Rath
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sandra Stickler
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Maximilian J. Hochmair
- Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
| | - Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Pham DD, Pham TH, Bui TH, Britikova EV, Britikov VV, Bocharov EV, Usanov SA, Phan VC, Le TBT. In vitro and in vivo anti-tumor effect of Trichobakin fused with urokinase-type plasminogen activator ATF-TBK. Mol Biol Rep 2024; 51:130. [PMID: 38236367 DOI: 10.1007/s11033-023-09036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Trichobakin (TBK), a member of type I ribosome-inactivating proteins (RIPs), was first successfully cloned from Trichosanthes sp Bac Kan 8-98 in Vietnam. Previous study has shown that TBK acts as a potential protein synthesis inhibitor; however, the inhibition efficiency and specificity of TBK on cancer cells remain to be fully elucidated. METHODS AND RESULTS In this work, we employed TBK and TBK conjugated with a part of the amino-terminal fragment (ATF) of the urokinase-type plasminogen activator (uPA), which contains the Ω-loop that primarily interacts with urokinase-type plasminogen activator receptor, and can be a powerful carrier in the drug delivery to cancer cells. Four different human tumor cell lines and BALB/c mice bearing Lewis lung carcinoma cells (LLC) were used to evaluate the role of TBK and ATF-TBK in the inhibition of tumor growth. Here we showed that the obtained ligand fused RIP (ATF-TBK) reduced the growth of four human cancer cell lines in vitro in the uPA receptor level-dependent manner, including the breast adenocarcinoma MDA-MB 231 cells and MCF7 cells, the prostate carcinoma LNCaP cells and the hepatocellular carcinoma HepG2 cells. Furthermore, the conjugate showed anti-tumor activity and prolonged the survival time of tumor-bearing mice. The ATF-TBK also did not cause the death of mice with doses up to 48 mg/kg, and they were not significantly distinct on parameters of hematology and serum biochemistry between the control and experiment groups. CONCLUSIONS In conclusion, ATF-TBK reduced the growth of four different human tumor cell lines and inhibited lung tumor growth in a mouse model with little side effects. Hence, the ATF-TBK may be a target to consider as an anti-cancer agent for clinical trials.
Collapse
Affiliation(s)
- Dan Duc Pham
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18, Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Thi Hue Pham
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18, Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Thi Huyen Bui
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18, Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Elena V Britikova
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141, Minsk, Belarus
| | - Vladimir V Britikov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141, Minsk, Belarus
| | - Eduard V Bocharov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia, 117997
| | - Sergey A Usanov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141, Minsk, Belarus
| | - Van Chi Phan
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18, Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Thi Bich Thao Le
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18, Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
| |
Collapse
|
8
|
Lawaetz M, Christensen A, Juhl K, Lelkaitis G, Karnov K, Carlsen EA, Charabi BW, Loft A, Czyzewska D, von Buchwald C, Kjaer A. Diagnostic Value of Preoperative uPAR-PET/CT in Regional Lymph Node Staging of Oral and Oropharyngeal Squamous Cell Carcinoma: A Prospective Phase II Trial. Diagnostics (Basel) 2023; 13:3303. [PMID: 37958201 PMCID: PMC10649042 DOI: 10.3390/diagnostics13213303] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
The detection of lymph node metastases is a major challenge in oral and oropharyngeal squamous cell carcinoma (OSCC and OPSCC). 68Ga-NOTA-AE105 is a novel positron emission tomography (PET) radioligand with high affinity to urokinase-type plasminogen activator receptor (uPAR), a receptor expressed on the surfaces of tumor cells. The aim of this study was to investigate the diagnostic value of uPAR-PET/CT (computerized tomography) in detecting regional metastatic disease in patients with OSCC and OPSCC compared to the current imaging work-up. In this phase II trial, patients with OSCC and OPSCC referred for surgical treatment were prospectively enrolled. Before surgery, 68Ga-NOTA-AE105 uPAR-PET/CT was conducted, and SUVmax values were obtained from the primary tumor and the suspected lymph nodes. Histology results from lymph nodes were used as the standard of truth of metastatic disease. The diagnostic values of 68Ga-uPAR-PET/CT were compared to conventional routine preoperative imaging results (CT and/or MRI). The uPAR expression in resected primary tumors and metastases was determined by immunohistochemistry and quantified digitally (H-score). A total of 61 patients underwent uPAR-PET/CT. Of the 25 patients with histologically verified lymph node metastases, uPAR-PET/CT correctly identified regional metastatic disease in 14 patients, with a median lymph node metastasis size of 14 mm (range 3-27 mm). A significant correlation was found between SUVmax and the product of the H-score and tumor depth (r = 0.67; p = 0.003). The sensitivity and specificity of uPAR-PET/CT in detecting regional metastatic disease were 56% and 100%, respectively. When added to CT/MRI, uPAR-PET was able to upstage 2/11 (18%) of patients with occult metastases and increase the sensitivity to 64%. The sensitivity and specificity of 68Ga-NOTA-AE105 uPAR-PET/CT were equivalent to those of CT/MRI. The significant correlation between SUVmax and uPAR expression verified the target specificity of 68Ga-NOTA-AE105. Despite the target specificity, the sensitivity of imaging is too low for nodal staging and it cannot replace neck dissection.
Collapse
Affiliation(s)
- Mads Lawaetz
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark; (M.L.)
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark (D.C.)
| | - Anders Christensen
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark; (M.L.)
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark (D.C.)
| | - Karina Juhl
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark (D.C.)
| | - Giedrius Lelkaitis
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Kirstine Karnov
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark; (M.L.)
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark (D.C.)
| | - Esben Andreas Carlsen
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark (D.C.)
| | - Birgitte W. Charabi
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark; (M.L.)
| | - Annika Loft
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark (D.C.)
| | - Dorota Czyzewska
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark (D.C.)
| | - Christian von Buchwald
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark; (M.L.)
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark (D.C.)
| |
Collapse
|
9
|
Chu X, Li W, Hines MG, Lyakhov I, Mellors JW, Dimitrov DS. Human antibody V H domains targeting uPAR as candidate therapeutics for cancers. Front Oncol 2023; 13:1194972. [PMID: 37876962 PMCID: PMC10593477 DOI: 10.3389/fonc.2023.1194972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/24/2023] [Indexed: 10/26/2023] Open
Abstract
The high expression of uPAR has been linked to tumor progression, invasion, and metastasis in several types of cancer. Such overexpression of uPAR makes it a potential target for immunotherapies across common cancers such as breast, colorectal, lung, ovarian cancer, and melanoma. In our study, two high-affinity and specific human VH domain antibody candidates, designed as clones 3 and 115, were isolated from a phage-displayed human VH antibody library. Domain-based bispecific T- cell engagers (DbTE) based on these two antibodies exhibited potent killing of uPAR-positive cancer cells. Thus, these two anti-uPAR domain antibodies are promising candidates for treating uPAR positive cancers.
Collapse
Affiliation(s)
- Xiaojie Chu
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, United States
| | - Wei Li
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, United States
| | - Margaret G. Hines
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, United States
| | | | - John W. Mellors
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, United States
- Abound Bio, Pittsburgh, PA, United States
| | - Dimiter S. Dimitrov
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, United States
- Abound Bio, Pittsburgh, PA, United States
| |
Collapse
|
10
|
Ballonová L, Kulíšková P, Slanina P, Štíchová J, Vlková M, Hakl R, Litzman J, Souček P, Freiberger T. PLAUR splicing pattern in hereditary angioedema patients' monocytes and macrophages. Mol Biol Rep 2023; 50:4975-4982. [PMID: 37086298 DOI: 10.1007/s11033-023-08391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/17/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND The PLAUR gene encodes the urokinase-like plasminogen activator receptor (uPAR) and may undergo alternative splicing. Excluding cassette exons 3, 5 and 6 from the transcript results in truncated protein variants whose precise functions have not been elucidated yet. The PLAUR gene is one of several expressed in myeloid cells, where uPAR participates in different cellular processes, including the contact activation system and kallikrein-kinin system, which play an important role in hereditary angioedema (HAE) pathogenesis. A hypothesis about the PLAUR splicing pattern impact on HAE severity was tested. METHODS AND RESULTS The RT-PCR quantified by capillary electrophoresis was used. Although no significant difference in alternative transcript frequency was observed between healthy volunteers and HAE patients, a significant increase in all cassette exon inclusion variants was revealed during monocyte-to-macrophage differentiation. CONCLUSIONS PLAUR alternative splicing in monocytes and macrophages neither was different between HAE patients and healthy controls, nor reflected disease severity. However, the results showed an PLAUR splicing pattern was changing during monocyte-to-macrophage differentiation, but the significance of these changes is unknown and awaits future clarification.
Collapse
Affiliation(s)
- Lucie Ballonová
- Centre of Cardiovascular Surgery and Transplantation, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petra Kulíšková
- Centre of Cardiovascular Surgery and Transplantation, Brno, Czech Republic
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Peter Slanina
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Julie Štíchová
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcela Vlková
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Roman Hakl
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiří Litzman
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Přemysl Souček
- Centre of Cardiovascular Surgery and Transplantation, Brno, Czech Republic.
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Tomáš Freiberger
- Centre of Cardiovascular Surgery and Transplantation, Brno, Czech Republic
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
11
|
Han Y, Tu L, Zhang Y, Liu Q, Dong Q, Sun Z. A New Urokinase Plasminogen Activator Receptor‐Targeted Near‐Infrared Fluorescence (NIR) Probe for Glioma Imaging. ChemistrySelect 2023. [DOI: 10.1002/slct.202204504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Yunfeng Han
- Department of Nuclear Medicine Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
- Department of Nuclear Medicine Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China
| | - Le Tu
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education College of Chemistry Central China Normal University Wuhan 430079 China
| | - Yongxue Zhang
- Department of Nuclear Medicine Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China
| | - Qiuyu Liu
- Department of Radiology Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Qingjian Dong
- Department of Nuclear Medicine Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Ziyan Sun
- Department of Radiology Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| |
Collapse
|
12
|
Lawaetz M, Christensen A, Juhl K, Karnov K, Lelkaitis G, Kanstrup Fiehn AM, Kjaer A, von Buchwald C. Potential of uPAR, αvβ6 Integrin, and Tissue Factor as Targets for Molecular Imaging of Oral Squamous Cell Carcinoma: Evaluation of Nine Targets in Primary Tumors and Metastases by Immunohistochemistry. Int J Mol Sci 2023; 24:ijms24043853. [PMID: 36835265 PMCID: PMC9962929 DOI: 10.3390/ijms24043853] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
No clinically approved tumor-specific imaging agents for head and neck cancer are currently available. The identification of biomarkers with a high and homogenous expression in tumor tissue and minimal expression in normal tissue is essential for the development of new molecular imaging targets in head and neck cancer. We investigated the expression of nine imaging targets in both primary tumor and matched metastatic tissue of 41 patients with oral squamous cell carcinoma (OSCC) to assess their potential as targets for molecular imaging. The intensity, proportion, and homogeneity in the tumor and the reaction in neighboring non-cancerous tissue was scored. The intensity and proportion were multiplied to obtain a total immunohistochemical (IHC) score ranging from 0-12. The mean intensity in the tumor tissue and normal epithelium were compared. The expression rate was high for the urokinase-type plasminogen activator receptor (uPAR) (97%), integrin αvβ6 (97%), and tissue factor (86%) with a median total immunostaining score (interquartile range) for primary tumors of 6 (6-9), 12 (12-12), and 6 (2.5-7.5), respectively. For the uPAR and tissue factor, the mean staining intensity score was significantly higher in tumors compared to normal epithelium. The uPAR, integrin αvβ6, and tissue factor are promising imaging targets for OSCC primary tumors, lymph node metastases, and recurrences.
Collapse
Affiliation(s)
- Mads Lawaetz
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Correspondence:
| | - Anders Christensen
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Karina Juhl
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kirstine Karnov
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Giedrius Lelkaitis
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Anne-Marie Kanstrup Fiehn
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Christian von Buchwald
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| |
Collapse
|
13
|
A novel urokinase plasminogen activator receptor-targeted peptide-based probe for in-vivo molecular imaging of glioblastoma. Nucl Med Commun 2023; 44:142-149. [PMID: 36630218 DOI: 10.1097/mnm.0000000000001644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AIM The urokinase plasminogen activator receptor (uPAR) is a promising biomarker for cancer diagnosis and therapy. We herein fabricated a new type of uPAR-targeted imaging probe Al18F-NOTA-VC and preliminarily evaluated its potential application in PET imaging of the glioma model in vivo. METHODS Peptide VC was synthesized and identified by MALDI-TOF-MS. The IC50 between VC/precursor NOTA-VC and uPAR was then determined before the synthesis and purification of Al18F-NOTA-VC, followed by further studies of in-vitro properties of Al18F-NOTA-VC. Meanwhile, the AE105-based probe followed a similar procedure in-vitro test. Finally, the PET imaging properties, including uPAR-targeting ability and the metabolism of Al18F-NOTA-VC, were investigated. RESULTS The VC and NOTA-VC were obtained successfully and demonstrated a good affinity with uPAR. Followed by Al18F labeling successfully, excellent properties, including the serum stability, water solubility, and specificity of Al18F-NOTA-VC, were obtained in-vitro test compared with AE105 based probe. An excellent tumor uptake and renal excretion data of Al18F-NOTA-VC were acquired from in-vivo U87MG tumor model PET imaging, consistent with the subsequent biodistribution study. CONCLUSION In addition to the excellent specificity and high tumor/normal tissue contrast for uPAR-targeted PET imaging of U87MG tumor, Al18F-NOTA-VC possessed promising clearance ability by renal system route. These excellent properties facilitated Al18F-NOTA-VC to be a promising imaging agent for uPAR high-expressing tumors and, thus, provided a paradigm for developing peptide-based probes for uPAR-associated disease diagnosis.
Collapse
|
14
|
Sah DK, Khoi PN, Li S, Arjunan A, Jeong JU, Jung YD. (-)-Epigallocatechin-3-Gallate Prevents IL-1β-Induced uPAR Expression and Invasiveness via the Suppression of NF-κB and AP-1 in Human Bladder Cancer Cells. Int J Mol Sci 2022; 23:ijms232214008. [PMID: 36430487 PMCID: PMC9697952 DOI: 10.3390/ijms232214008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
(-)-Epigallocatechin-3-O-gallate (EGCG), a primary green tea polyphenol, has powerful iron scavengers, belongs to the family of flavonoids with antioxidant properties, and can be used to prevent cancer. Urokinase-type plasminogen activator receptors (uPARs) are glycosylphosphatidylinositol (GPI)-anchored cell membrane receptors that have crucial roles in cell invasion and metastasis of several cancers including bladder cancer. The mechanism of action of EGCG on uPAR expression has not been reported clearly yet. In this study, we investigated the effect of EGCG on interleukin (IL)-1β-induced cell invasion and uPAR activity in T24 human bladder cancer cells. Interestingly, nuclear factor (NF)-κB and activator protein (AP)-1 transcription factors were critically required for IL-1β-induced high uPAR expression, and EGCG suppressed the transcriptional activity of both the ERK1/2 and JNK signaling pathways with the AP-1 subunit c-Jun. EGCG blocked the IL-1β-stimulated reactive oxygen species (ROS) production, in turn suppressing NF-κB signaling and anti-invasion effects by inhibiting uPAR expression. These results suggest that EGCG may exert at least part of its anticancer effect by controlling uPAR expression through the suppression of ERK1/2, JNK, AP-1, and NF-κB.
Collapse
Affiliation(s)
- Dhiraj Kumar Sah
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Pham Ngoc Khoi
- Faculty of Basic Medical Sciences, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 740500, Vietnam
| | - Shinan Li
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Archana Arjunan
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Jae-Uk Jeong
- Department of Radiation Oncology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Correspondence:
| |
Collapse
|
15
|
Horwacik I. The Extracellular Matrix and Neuroblastoma Cell Communication-A Complex Interplay and Its Therapeutic Implications. Cells 2022; 11:cells11193172. [PMID: 36231134 PMCID: PMC9564247 DOI: 10.3390/cells11193172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Neuroblastoma (NB) is a pediatric neuroendocrine neoplasm. It arises from the sympatho-adrenal lineage of neural-crest-derived multipotent progenitor cells that fail to differentiate. NB is the most common extracranial tumor in children, and it manifests undisputed heterogeneity. Unsatisfactory outcomes of high-risk (HR) NB patients call for more research to further inter-relate treatment and molecular features of the disease. In this regard, it is well established that in the tumor microenvironment (TME), malignant cells are engaged in complex and dynamic interactions with the extracellular matrix (ECM) and stromal cells. The ECM can be a source of both pro- and anti-tumorigenic factors to regulate tumor cell fate, such as survival, proliferation, and resistance to therapy. Moreover, the ECM composition, organization, and resulting signaling networks are vastly remodeled during tumor progression and metastasis. This review mainly focuses on the molecular mechanisms and effects of interactions of selected ECM components with their receptors on neuroblastoma cells. Additionally, it describes roles of enzymes modifying and degrading ECM in NB. Finally, the article gives examples on how the knowledge is exploited for prognosis and to yield new treatment options for NB patients.
Collapse
Affiliation(s)
- Irena Horwacik
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
16
|
Cuccu A, Francescangeli F, De Angelis ML, Bruselles A, Giuliani A, Zeuner A. Analysis of Dormancy-Associated Transcriptional Networks Reveals a Shared Quiescence Signature in Lung and Colorectal Cancer. Int J Mol Sci 2022; 23:9869. [PMID: 36077264 PMCID: PMC9456317 DOI: 10.3390/ijms23179869] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Quiescent cancer cells (QCCs) are a common feature of solid tumors, representing a major obstacle to the long-term success of cancer therapies. We isolated QCCs ex vivo from non-small cell lung cancer (NSCLC) and colorectal cancer (CRC) xenografts with a label-retaining strategy and compared QCCs gene expression profiles to identify a shared "quiescence signature". Principal Component Analysis (PCA) revealed a specific component neatly discriminating quiescent and replicative phenotypes in NSCLC and CRC. The discriminating component showed significant overlapping, with 688 genes in common including ZEB2, a master regulator of stem cell plasticity and epithelial-to-mesenchymal transition (EMT). Gene set enrichment analysis showed that QCCs of both NSCLC and CRC had an increased expression of factors related to stemness/self renewal, EMT, TGF-β, morphogenesis, cell adhesion and chemotaxis, whereas proliferating cells overexpressed Myc targets and factors involved in RNA metabolism. Eventually, we analyzed in depth by means of a complex network approach, both the 'morphogenesis module' and the subset of differentially expressed genes shared by NCSLC and CRC. This allowed us to recognize different gene regulation network wiring for quiescent and proliferating cells and to underpin few genes central for network integration that may represent new therapeutic vulnerabilities. Altogether, our results highlight common regulatory pathways in QCCs of lung and colorectal tumors that may be the target of future therapeutic interventions.
Collapse
Affiliation(s)
- Adriano Cuccu
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Federica Francescangeli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Ann Zeuner
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
17
|
Guan X, Guan X, Wang Y, Lan T, Cheng T, Cui Y, Xu H. Circ_0003340 downregulation mitigates esophageal squamous cell carcinoma progression by targeting miR-940/PRKAA1 axis. Thorac Cancer 2022; 13:1164-1175. [PMID: 35297212 PMCID: PMC9013642 DOI: 10.1111/1759-7714.14377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 01/01/2023] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is a highly prevalent type of esophageal cancer (EC), usually found at an advanced stage with a high mortality rate, and it is now crucial to find new ways to diagnose and treat ESCC. This study analyzed the function of circular RNA_0003340 (circ_0003340)/microRNA‐940 (miR‐940)/protein kinase AMP‐activated alpha 1 catalytic subunit (PRKAA1) axis in ESCC. Methods Circ_0003340, miR‐940 and PRKAA1 contents were measured with the application of real‐time quantitative polymerase chain reaction (RT‐qPCR) and western blot. Cell proliferation, cell cycle, apoptosis, migration, invasion and angiogenesis were assessed with a cell counting kit‐8 (CCK8), 5‐ethynyl‐2′‐deoxyuridine (EdU), flow cytometry, wound healing, transwell and tube formation assays. We used both the luciferase reporter system and RNA immunoprecipitation (RIP) to analyze the relationship between miR‐940 and circ_0003340 or PRKAA1. Finally, xenograft models were applied to analyze the effect of circ_0003340 on tumor growth in vivo. Results Upregulated circ_0003340 and PRKAA1, and downregulated miR‐940 levels were detected in ESCC. Meanwhile, ESCC progression was apparently restrained by circ_0003340 knockdown in vitro. Circ_0003340 acted as a ceRNA for miR‐940 in regulating ESCC progression and miR‐940 was proved to target PRKAA1 to arrest ESCC progression in vitro. Finally, in vivo experiments established that silencing of circ_0003340 slowed tumor growth in vivo. Conclusion Circ_0003340 downregulation mitigated esophageal squamous cell carcinoma progression by targeting miR‐940/PRKAA1 axis.
Collapse
Affiliation(s)
- Xingzhuo Guan
- Department of Gastroenterology, Affiliated Hospital of Beihua University, Jilin City, China
| | - Xiaohui Guan
- Department of Gastroenterology, Affiliated Hospital of Beihua University, Jilin City, China
| | - Yuanshi Wang
- Department of Gastroenterology, Affiliated Hospital of Beihua University, Jilin City, China
| | - Tingzhu Lan
- Department of Gastroenterology, Affiliated Hospital of Beihua University, Jilin City, China
| | - Tongshuang Cheng
- Department of Gastroenterology, Affiliated Hospital of Beihua University, Jilin City, China
| | - Yan Cui
- Department of Gastroenterology, Affiliated Hospital of Beihua University, Jilin City, China
| | - Hongjun Xu
- Department of Gastroenterology, Affiliated Hospital of Beihua University, Jilin City, China
| |
Collapse
|