1
|
Teng X, Chen H, Yang H, Liu H, Wang Y, Su Z, Tang C. Pre-clinical study of IR808 dye for cervical cancer in vitro and in vivo imaging. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03508-7. [PMID: 39367983 DOI: 10.1007/s00210-024-03508-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
There is an urgent need for improved methods for early screening and rapid diagnosis of cervical cancer since current conventional screening methods are plagued by operator subjectivity and unnecessary biopsies. IR808 is a tumour-targeting near-infrared (NIR) fluorescent dye that permits NIR imaging without the requirement of chemical conjugation. Our study investigates an IR808-based strategy for real-time monitoring of the cervix in vivo and rapid assessment of cervical specimens in vitro. We investigated the uptake of IR808 in vitro using normal cervical epithelial cells and three cervical cancer cell lines. The biodistribution of IR808 was examined in vivo via intravenous injection into tumour-bearing mice. Additionally, in vitro tissues were stained with IR808 to simulate the identification of cervical tumors in the clinical setting. Biocompatibility of the dye in both cellular and animal models was also examined. IR808 exhibited significant tumour-to-background ratios in fluorescence molecular imaging of in vivo tumors in nude mice. The application of NIR fluorescent dye IR808 in specific imaging screening, safe and non-invasive real-time monitoring, and rapid identification of cervical tumors from tissue specimens is expected to improve current screening methods for cervical cancer.
Collapse
Affiliation(s)
- Xiaohui Teng
- Department of Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Hongbiao Chen
- School of Medicine, Chenggong Hospital, Xiamen University, Xiamen, 361000, China
| | - Han Yang
- Department of Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Hongli Liu
- Department of Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Yanlong Wang
- Department of Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Zhiying Su
- Department of Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China.
| |
Collapse
|
2
|
P Neme N, Jansen TLC, Havenith RWA. Cyclopentene ring effects in cyanine dyes: a handle to fine-tune photophysical properties. Phys Chem Chem Phys 2024; 26:6235-6241. [PMID: 38305348 PMCID: PMC10866127 DOI: 10.1039/d3cp05219b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
The aim of this study is to investigate the photophysical properties of a cyanine dye analogue by performing first-principles calculations based on density functional theory (DFT) and time dependent-DFT. Cationic cyanine dyes are the subject of great importance due to their versatile applications and the tunability of their photophysical properties, such as by modifying their end groups and chain length. An example of this is the vinylene shift, which is experimentally known for these molecules, and it consists of a bathochromic (red) shift of approximately 100 nm of the 0-0 vibronic transition when a vinyl group is added to the polymethine chain. Our study shows that when the saturated moiety C2H4 of the cyclopentene ring is added to the chain, it interacts with the conjugated π-system, resulting in a smaller HOMO-LUMO gap. Here, we demonstrate the origin of this interaction and how it can be used to fine tune the absorption energies of this class of dyes.
Collapse
Affiliation(s)
- Natália P Neme
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands.
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Thomas L C Jansen
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands.
| | - Remco W A Havenith
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands.
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
- Department of Chemistry, Ghent University, Gent B-9000, Belgium
| |
Collapse
|
3
|
Zhu L, Wu W. Dual/Multi-Modal Image-Guided Diagnosis and Therapy Based on Luminogens with Aggregation-Induced Emission. Molecules 2024; 29:371. [PMID: 38257284 PMCID: PMC10819122 DOI: 10.3390/molecules29020371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The combination of multiple imaging methods has made an indelible contribution to the diagnosis, surgical navigation, treatment, and prognostic evaluation of various diseases. Due to the unique advantages of luminogens with aggregation-induced emission (AIE), their progress has been significant in the field of organic fluorescent contrast agents. Herein, this manuscript summarizes the recent advancements in AIE molecules as contrast agents for optical image-based dual/multi-modal imaging. We particularly focus on the exceptional properties of each material and the corresponding application in the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
| | - Wenbo Wu
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
4
|
Kircheva N, Petkova V, Dobrev S, Nikolova V, Angelova S, Dudev T. N-Methyl- and N-Phenylpiperazine Functionalized Styryl Dyes Inside Cucurbiturils: Theoretical Assessment of the Factors Governing the Host-Guest Recognition. Molecules 2023; 28:8130. [PMID: 38138619 PMCID: PMC10746092 DOI: 10.3390/molecules28248130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
The family of cucurbiturils (CBs), the unique pumpkin-shaped macrocycles, has received great attention over the past four decades owing to their remarkable recognition properties. They have found diverse applications including biosensing and drug delivery technologies. The cucurbituril complexation of guest molecules can modulate their pKas, improve their solubility in aqueous solution, and reduce the adverse effects of the drugs, as well as enhance the stability and/or enable targeted delivery of the drug molecule. Employing twelve cationic styryl dyes with N-methyl- and N-phenylpiperazine functionality as probes, we attempted to understand the factors that govern the host-guest complexation of such molecules within CB[7] and CB[8] host systems. Various key factors determining the process were recognized, such as the pH and dielectric constant of the medium, the cavity size of the host, the chemical characteristics of the substituents in the guest entity, and the presence/absence of metal cations. The presented results add to our understanding (at the molecular level) of the mechanism of encapsulation of styryl dyes by cucurbiturils, thus shedding new light on various aspects of the intriguing complexation chemistry and the underlying recognition processes.
Collapse
Affiliation(s)
- Nikoleta Kircheva
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (V.P.); (S.D.); (S.A.)
| | - Vladislava Petkova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (V.P.); (S.D.); (S.A.)
| | - Stefan Dobrev
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (V.P.); (S.D.); (S.A.)
| | - Valya Nikolova
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| | - Silvia Angelova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (V.P.); (S.D.); (S.A.)
- University of Chemical Technology and Metallurgy, 8 St. Kliment Ohridski Blvd, 1756 Sofia, Bulgaria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| |
Collapse
|
5
|
Zonjić I, Radić Stojković M, Crnolatac I, Tomašić Paić A, Pšeničnik S, Vasilev A, Kandinska M, Mondeshki M, Baluschev S, Landfester K, Glavaš-Obrovac L, Jukić M, Kralj J, Brozovic A, Horvat L, Tumir LM. Styryl dyes with N-Methylpiperazine and N-Phenylpiperazine Functionality: AT-DNA and G-quadruplex binding ligands and theranostic agents. Bioorg Chem 2022; 127:105999. [DOI: 10.1016/j.bioorg.2022.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
|
6
|
Zhang L, Jia H, Liu X, Zou Y, Sun J, Liu M, Jia S, Liu N, Li Y, Wang Q. Heptamethine Cyanine–Based Application for Cancer Theranostics. Front Pharmacol 2022; 12:764654. [PMID: 35222006 PMCID: PMC8874131 DOI: 10.3389/fphar.2021.764654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/09/2021] [Indexed: 01/31/2023] Open
Abstract
Cancer is the most common life-threatening malignant disease. The future of personalized cancer treatments relies on the development of functional agents that have tumor-targeted anticancer activities and can be detected in tumors through imaging. Cyanines, especially heptamethine cyanine (Cy7), have prospective application because of their excellent tumor-targeting capacity, high quantum yield, low tissue autofluorescence, long absorption wavelength, and low background interference. In this review, the application of Cy7 and its derivatives in tumors is comprehensively explored. Cy7 is enormously acknowledged in the field of non-invasive therapy that can “detect” and “kill” tumor cells via near-infrared fluorescence (NIRF) imaging, photothermal therapy (PTT), and photodynamic therapy (PDT). Furthermore, Cy7 is more available and has excellent properties in cancer theranostics by the presence of multifunctional nanoparticles via fulfilling multimodal imaging and combination therapy simultaneously. This review provides a comprehensive scope of Cy7’s application for cancer NIRF imaging, phototherapy, nanoprobe-based combination therapy in recent years. A deeper understanding of the application of imaging and treatment underlying Cy7 in cancer may provide new strategies for drug development based on cyanine. Thus, the review will lead the way to new types with optical properties and practical transformation to clinical practice.
Collapse
Affiliation(s)
- Lei Zhang
- School of Basic Medical Sciences, Laboratory for Nanomedicine, Henan University, Kaifeng, China
| | - Hang Jia
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Xuqian Liu
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Yaxin Zou
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Jiayi Sun
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Mengyu Liu
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Shuangshuang Jia
- School of Basic Medical Sciences, Laboratory for Nanomedicine, Henan University, Kaifeng, China
| | - Nan Liu
- Obstetrics Department, Kaifeng Maternity Hospital, Kaifeng, China
| | - Yanzhang Li
- School of Basic Medical Sciences, Laboratory for Nanomedicine, Henan University, Kaifeng, China
- *Correspondence: Qun Wang, ; Yanzhang Li,
| | - Qun Wang
- School of Basic Medical Sciences, Laboratory for Nanomedicine, Henan University, Kaifeng, China
- *Correspondence: Qun Wang, ; Yanzhang Li,
| |
Collapse
|
7
|
Samani ZR, Mehranpour A. An efficient route to the synthesis of novel zwitterionic pyridinium-cyanopropenides with 3-heteroaryl-substituted trimethinium salts. RSC Adv 2022; 12:16229-16234. [PMID: 35733684 PMCID: PMC9150544 DOI: 10.1039/d2ra02465a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, eight new zwitterionic derivatives were synthesized using a simple design method from the reaction of various 2-substituted 1,3-bis(dimethylamino)-trimethinium salts with malononitrile or ethyl 2-cyanoacetate in excellent yields in the presence of triethylamine in ethanol at reflux. The molecular structures of the new compounds were confirmed by IR, UV/vis, mass, 1H, and 13C NMR spectra as well as by elemental analyses. Synthesis of new zwitterionic derivatives via the reaction of 2-substituted 1,3-bis(dimethylamino)-trimethinium salts with malononitrile or ethyl cyanoacetate in the presence of Et3N in ethanol at reflux.![]()
Collapse
Affiliation(s)
- Ziba Rafiee Samani
- Department of Chemistry, Faculty of Sciences, Persian Gulf University, Bushehr, 75169, Iran
| | | |
Collapse
|
8
|
Galindo L, Gomes O, Graeff C, Batagin-Neto A. Optical and structural properties of cyanine dyes via electronic structure calculations. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Li Y, Zhou Y, Yue X, Dai Z. Cyanine conjugates in cancer theranostics. Bioact Mater 2021; 6:794-809. [PMID: 33024900 PMCID: PMC7528000 DOI: 10.1016/j.bioactmat.2020.09.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Cyanine is a meritorious fluorogenic core for the construction of fluorescent probes and its phototherapeutic potential has been enthusiastically explored as well. Alternatively, the covalent conjugation of cyanine with other potent therapeutic agents not only boosts its therapeutic efficacy but also broadens its therapeutic modality. Herein, we summarize miscellaneous cyanine-therapeutic agent conjugates in cancer theranostics from literature published between 2014 and 2020. The application scenarios of such theranostic cyanine conjugates covered common cancer therapeutic modalities, including chemotherapy, phototherapy and targeted therapy. Besides, cyanine conjugates that serve as nanocarriers for drug delivery are introduced as well. In an additional section, we analyze the potential of these conjugates for clinical translation. Overall, this review is aimed to stimulate research interest in exploring unattempted therapeutic agents and novel conjugation strategies and hopefully, accelerate clinical translation in this field.
Collapse
Affiliation(s)
- Yang Li
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yiming Zhou
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xiuli Yue
- School of Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Yang J, Zhao C, Lim J, Zhao L, Tourneau RL, Zhang Q, Dobson D, Joshi S, Pang J, Zhang X, Pal S, Andreou C, Zhang H, Kircher MF, Schmitthenner H. Structurally symmetric near-infrared fluorophore IRDye78-protein complex enables multimodal cancer imaging. Theranostics 2021; 11:2534-2549. [PMID: 33456558 PMCID: PMC7806473 DOI: 10.7150/thno.54928] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Most contemporary cancer therapeutic paradigms involve initial imaging as a treatment roadmap, followed by the active engagement of surgical operations. Current approved intraoperative contrast agents exemplified by indocyanine green (ICG) have a few drawbacks including the inability of pre-surgical localization. Alternative near-infrared (NIR) dyes including IRDye800cw are being explored in advanced clinical trials but often encounter low chemical yields and complex purifications owing to the asymmetric synthesis. A single contrast agent with ease of synthesis that works in multiple cancer types and simultaneously allows presurgical imaging, intraoperative deep-tissue three-dimensional visualization, and high-speed microscopic visualization of tumor margins via spatiotemporally complementary modalities would be beneficial. Methods: Due to the lack of commercial availability and the absence of detailed synthesis and characterization, we proposed a facile and scalable synthesis pathway for the symmetric NIR water-soluble heptamethine sulfoindocyanine IRDye78. The synthesis can be accomplished in four steps from commercially-available building blocks. Its symmetric resonant structure avoided asymmetric synthesis problems while still preserving the benefits of analogous IRDye800cw with commensurable optical properties. Next, we introduced a low-molecular-weight protein alpha-lactalbumin (α-LA) as the carrier that effectively modulates the hepatic clearance of IRDye78 into the preferred renal excretion pathway. We further implemented 89Zr radiolabeling onto the protein scaffold for positron emission tomography (PET). The multimodal imaging capability of the fluorophore-protein complex was validated in breast cancer and glioblastoma. Results: The scalable synthesis resulted in high chemical yields, typically 95% yield in the final step of the chloro dye. Chemical structures of intermediates and the final fluorophore were confirmed. Asymmetric IRDye78 exhibited comparable optical features as symmetric IRDye800cw. Its well-balanced quantum yield affords concurrent dual fluorescence and optoacoustic contrast without self-quenching nor concentration-dependent absorption. The NHS ester functionality modulates efficient covalent coupling to reactive side-chain amines to the protein carrier, along with desferrioxamine (DFO) for stable radiolabeling of 89Zr. The fluorophore-protein complex advantageously shifted the biodistribution and can be effectively cleared through the urinary pathway. The agent accumulates in tumors and enables triple-modal visualization in mouse xenograft models of both breast and brain cancers. Conclusion: This study described in detail a generalized strategic modulation of clearance routes towards the favorable renal clearance, via the introduction of α-LA. IRDye78 as a feasible alternative of IRDye800cw currently in clinical phases was proposed with a facile synthesis and fully characterized for the first time. This fluorophore-protein complex with stable radiolabeling should have great potential for clinical translation where it could enable an elegant workflow from preoperative planning to intraoperative deep tissue and high-resolution image-guided resection.
Collapse
|
11
|
Hensbergen AW, de Kleer MA, Boutkan MS, van Willigen DM, van der Wijk FA, Welling MM, Wester HJ, Buckle T, van Leeuwen FW. Evaluation of asymmetric orthogonal cyanine fluorophores. DYES AND PIGMENTS 2020; 183:108712. [DOI: 10.1016/j.dyepig.2020.108712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
|
12
|
Schmitz C, Pang Y, Gülz A, Gläser M, Horst J, Jäger M, Strehmel B. New High‐Power LEDs Open Photochemistry for Near‐Infrared‐Sensitized Radical and Cationic Photopolymerization. Angew Chem Int Ed Engl 2019; 58:4400-4404. [DOI: 10.1002/anie.201813696] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Christian Schmitz
- Department of Chemistry and Institute for Coatings and Surface ChemistryNiederrhein University of Applied Sciences Adlerstr. 1 47798 Krefeld Germany
| | - Yulian Pang
- Department of Chemistry and Institute for Coatings and Surface ChemistryNiederrhein University of Applied Sciences Adlerstr. 1 47798 Krefeld Germany
- College of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - André Gülz
- Department of Chemistry and Institute for Coatings and Surface ChemistryNiederrhein University of Applied Sciences Adlerstr. 1 47798 Krefeld Germany
| | - Marina Gläser
- Department of Chemistry and Institute for Coatings and Surface ChemistryNiederrhein University of Applied Sciences Adlerstr. 1 47798 Krefeld Germany
| | - Joachim Horst
- Department of Chemistry and Institute for Coatings and Surface ChemistryNiederrhein University of Applied Sciences Adlerstr. 1 47798 Krefeld Germany
| | - Martin Jäger
- Department of Chemistry and Institute for Coatings and Surface ChemistryNiederrhein University of Applied Sciences Adlerstr. 1 47798 Krefeld Germany
| | - Bernd Strehmel
- Department of Chemistry and Institute for Coatings and Surface ChemistryNiederrhein University of Applied Sciences Adlerstr. 1 47798 Krefeld Germany
| |
Collapse
|
13
|
Schmitz C, Pang Y, Gülz A, Gläser M, Horst J, Jäger M, Strehmel B. Neue Hochleistungs‐LEDs ermöglichen Photochemie für die Nahinfrarot‐sensibilisierte radikalische und kationische Photopolymerisation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813696] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christian Schmitz
- Department of Chemistry and Institute for Coatings and Surface ChemistryNiederrhein University of Applied Sciences Adlerstr. 1 47798 Krefeld Deutschland
| | - Yulian Pang
- Department of Chemistry and Institute for Coatings and Surface ChemistryNiederrhein University of Applied Sciences Adlerstr. 1 47798 Krefeld Deutschland
- College of ChemistryBeijing Normal University Beijing 100875 VR China
| | - André Gülz
- Department of Chemistry and Institute for Coatings and Surface ChemistryNiederrhein University of Applied Sciences Adlerstr. 1 47798 Krefeld Deutschland
| | - Marina Gläser
- Department of Chemistry and Institute for Coatings and Surface ChemistryNiederrhein University of Applied Sciences Adlerstr. 1 47798 Krefeld Deutschland
| | - Joachim Horst
- Department of Chemistry and Institute for Coatings and Surface ChemistryNiederrhein University of Applied Sciences Adlerstr. 1 47798 Krefeld Deutschland
| | - Martin Jäger
- Department of Chemistry and Institute for Coatings and Surface ChemistryNiederrhein University of Applied Sciences Adlerstr. 1 47798 Krefeld Deutschland
| | - Bernd Strehmel
- Department of Chemistry and Institute for Coatings and Surface ChemistryNiederrhein University of Applied Sciences Adlerstr. 1 47798 Krefeld Deutschland
| |
Collapse
|
14
|
Meng L, Ma X, Jiang S, Ji G, Han W, Xu B, Tian J, Tian W. High-efficiency fluorescent and magnetic multimodal probe for long-term monitoring and deep penetration imaging of tumors. J Mater Chem B 2019; 7:5345-5351. [DOI: 10.1039/c9tb00638a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High-quality multimodal imaging requires exogenous contrast agents with high sensitivity, spatial–temporal resolution, and high penetration depth for the accurate diagnosis and surveillance of cancer.
Collapse
Affiliation(s)
- Lingchen Meng
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Xibo Ma
- Key Laboratory of Molecular Imaging
- Institute of Automation
- Chinese Academy of Sciences
- Beijing
- China
| | - Shan Jiang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Guang Ji
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Wenkun Han
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Jie Tian
- Key Laboratory of Molecular Imaging
- Institute of Automation
- Chinese Academy of Sciences
- Beijing
- China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| |
Collapse
|
15
|
Cai Y, Si W, Huang W, Chen P, Shao J, Dong X. Organic Dye Based Nanoparticles for Cancer Phototheranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704247. [PMID: 29611290 DOI: 10.1002/smll.201704247] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/03/2018] [Indexed: 06/08/2023]
Abstract
Phototheranostics, which simultaneously combines photodynamic and/or photothermal therapy with deep-tissue diagnostic imaging, is a promising strategy for the diagnosis and treatment of cancers. Organic dyes with the merits of strong near-infrared absorbance, high photo-to-radical and/or photothermal conversion efficiency, great biocompatibility, ready chemical structure fine-tuning capability, and easy metabolism, have been demonstrated as attractive candidates for clinical phototheranostics. These organic dyes can be further designed and fabricated into nanoparticles (NPs) using various strategies. Compared to free molecules, these NPs can be equipped with multiple synergistic functions and show longer lifetime in blood circulation and passive tumor-targeting property via the enhanced permeability and retention effect. In this article, the recent progress of organic dye-based NPs for cancer phototheranostic applications is summarized, which extends the anticancer arsenal and holds promise for clinical uses in the near future.
Collapse
Affiliation(s)
- Yu Cai
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, 210008, China
| | - Weili Si
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| |
Collapse
|
16
|
Gao T, Bi A, Yang S, Liu Y, Kong X, Zeng W. Applications of Nanoparticles Probes for Prostate Cancer Imaging and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1096:99-115. [PMID: 30324350 DOI: 10.1007/978-3-319-99286-0_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prostate cancer (PCa) is the most common type of cancer in men with high morbidity and mortality. However, the current treatment with drugs often leads to chemotherapy resistance. It is known that the multi-disciplines research on molecular imaging is very helpful for early diagnosing, staging, restaging and precise treatment of PCa. In the past decades, the tumor-specific targeted drugs were developed for the clinic to treat prostate cancer. Among them, the emerging nanotechnology has brought about many exciting novel diagnosis and treatments systems for PCa. Nanotechnology can greatly enhance the treatment activity of PCa and provide novel theranostics platform by utilizing the unique physical/chemical properties, targeting strategy, or by loading with imaging/therapeutic agents. Herein, this chapter focuses on state-of-art advances in imaging and diagnosing PCa with nanomaterials and highlights the approaches used for functionalization of the targeted biomolecules, and in the treatment for various aspects of PCa with multifunctional nanoparticles, nanoplatforms and nanodelivery system.
Collapse
Affiliation(s)
- Tang Gao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Anyao Bi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Shuiqi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Yi Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Xiangqi Kong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China. .,Molecular Imaging Research Center, Central South University, Changsha, China.
| |
Collapse
|
17
|
Wycisk V, Achazi K, Hirsch O, Kuehne C, Dernedde J, Haag R, Licha K. Heterobifunctional Dyes: Highly Fluorescent Linkers Based on Cyanine Dyes. ChemistryOpen 2017; 6:437-446. [PMID: 28638777 PMCID: PMC5474662 DOI: 10.1002/open.201700013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 01/10/2023] Open
Abstract
Herein, we present a new synthetic route to cyanine-based heterobifunctional dyes and their application as fluorescent linkers between polymers and biomolecules. The synthesized compounds, designed in the visible spectral range, are equipped with two different reactive groups for highly selective conjugation under physiological conditions. By applying indolenine precursors with functionalized benzenes, we achieved water-soluble asymmetric cyanine dyes bearing maleimido and N-hydroxysuccinimidyl functionalities in a three-step synthesis. Spectroscopic characterization revealed good molar absorption coefficients and moderate fluorescence quantum yields. Further reaction with polyethylene glycol yielded dye-polymer conjugates that were subsequently coupled to the antibody cetuximab, often applied in cancer therapy. Successful coupling was confirmed by mass shifts detected by gel electrophoresis. Receptor-binding studies and live-cell imaging revealed that labeling did not alter the biological function. In sum, we provided a successful synthetic pathway to rigid heterobifunctional cyanine dyes that are applicable as fluorescent linkers, for example, for connecting antibodies with macromolecules. Our approach contributes to the field of bioconjugation chemistry, such as antibody-drug conjugates by combining diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Virginia Wycisk
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Katharina Achazi
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Ole Hirsch
- Physikalisch-Technische BundesanstaltAbbestr. 2–1210587BerlinGermany
| | - Christian Kuehne
- Institute of Laboratory Medicine, Clinical Chemistry and PathobiochemistryCharité-Universitätsmedizin BerlinAugustenburger Platz 113353BerlinGermany
| | - Jens Dernedde
- Institute of Laboratory Medicine, Clinical Chemistry and PathobiochemistryCharité-Universitätsmedizin BerlinAugustenburger Platz 113353BerlinGermany
| | - Rainer Haag
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Kai Licha
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| |
Collapse
|
18
|
Haque A, Faizi MSH, Rather JA, Khan MS. Next generation NIR fluorophores for tumor imaging and fluorescence-guided surgery: A review. Bioorg Med Chem 2017; 25:2017-2034. [PMID: 28284863 DOI: 10.1016/j.bmc.2017.02.061] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 12/11/2022]
Abstract
Cancer is a group of diseases responsible for the major causes of mortality and morbidity among people of all ages. Even though medical sciences have made enormous growth, complete treatment of this deadly disease is still a challenging task. Last few decades witnessed an impressive growth in the design and development of near infrared (NIR) fluorophores with and without recognition moieties for molecular recognitions, imaging and image guided surgeries. The present article reviews recently reported NIR emitting organic/inorganic fluorophores that targets and accumulates in organelle/organs specifically for molecular imaging of cancerous cells. Near infrared (NIR probe) with or without a tumor-targeting warhead have been considered and discussed for their applications in the field of cancer imaging. In addition, challenges persist in this area are also delineated in this review.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry, College of Sciences, Sultan Qaboos University, Muscat, Oman.
| | | | - Jahangir Ahmad Rather
- Department of Chemistry, College of Sciences, Sultan Qaboos University, Muscat, Oman
| | - Muhammad S Khan
- Department of Chemistry, College of Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|