1
|
Maji S, Aliabouzar M, Quesada C, Chiravuri A, Macpherson A, Pinch A, Kazyak K, Emara Z, Abeid BA, Kent RN, Midekssa FS, Zhang M, Baker BM, Franceschi RT, Fabiilli ML. Ultrasound-generated bubbles enhance osteogenic differentiation of mesenchymal stromal cells in composite collagen hydrogels. Bioact Mater 2025; 43:82-97. [PMID: 39345992 PMCID: PMC11439547 DOI: 10.1016/j.bioactmat.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Hydrogels can improve the delivery of mesenchymal stromal cells (MSCs) by providing crucial biophysical cues that mimic the extracellular matrix. The differentiation of MSCs is dependent on biophysical cues like stiffness and viscoelasticity, yet conventional hydrogels cannot be dynamically altered after fabrication and implantation to actively direct differentiation. We developed a composite hydrogel, consisting of type I collagen and phase-shift emulsion, where osteogenic differentiation of MSCs can be non-invasively modulated using ultrasound. When exposed to ultrasound, the emulsion within the hydrogel was non-thermally vaporized into bubbles, which locally compacted and stiffened the collagen matrix surrounding each bubble. Bubble growth and matrix compaction were correlated, with collagen regions proximal (i.e., ≤ ∼60 μm) to the bubble displaying a 2.5-fold increase in Young's modulus compared to distal regions (i.e., > ∼60 μm). The viability and proliferation of MSCs, which were encapsulated within the composite hydrogel, were not impacted by bubble formation. In vitro and in vivo studies revealed encapsulated MSCs exhibited significantly elevated levels of RUNX2 and osteocalcin, markers of osteogenic differentiation, in collagen regions proximal to the bubble compared to distal regions. Additionally, alkaline phosphatase activity and calcium deposition were enhanced adjacent to the bubble. An opposite trend was observed for CD90, a marker of MSC stemness. Following subcutaneous implantation, bubbles persisted in the hydrogels for two weeks, which led to localized collagen alignment and increases in nuclear asymmetry. These results are a significant step toward controlling the 3D differentiation of MSCs in a non-invasive and on-demand manner.
Collapse
Affiliation(s)
- Somnath Maji
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Mitra Aliabouzar
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Carole Quesada
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Anjali Chiravuri
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Aidan Macpherson
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Abigail Pinch
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Karsyn Kazyak
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Ziyad Emara
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Bachir A Abeid
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Robert N Kent
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Firaol S Midekssa
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Man Zhang
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Renny T Franceschi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mario L Fabiilli
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Hallam KA, Nikolai RJ, Jhunjhunwala A, Emelianov SY. Laser-activated perfluorocarbon nanodroplets for intracerebral delivery and imaging via blood-brain barrier opening and contrast-enhanced imaging. J Nanobiotechnology 2024; 22:356. [PMID: 38902773 PMCID: PMC11191388 DOI: 10.1186/s12951-024-02601-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Ultrasound and photoacoustic (US/PA) imaging is a promising tool for in vivo visualization and assessment of drug delivery. However, the acoustic properties of the skull limit the practical application of US/PA imaging in the brain. To address the challenges in targeted drug delivery to the brain and transcranial US/PA imaging, we introduce and evaluate an intracerebral delivery and imaging strategy based on the use of laser-activated perfluorocarbon nanodroplets (PFCnDs). METHODS Two specialized PFCnDs were developed to facilitate blood‒brain barrier (BBB) opening and contrast-enhanced US/PA imaging. In mice, PFCnDs were delivered to brain tissue via PFCnD-induced BBB opening to the right side of the brain. In vivo, transcranial US/PA imaging was performed to evaluate the utility of PFCnDs for contrast-enhanced imaging through the skull. Ex vivo, volumetric US/PA imaging was used to characterize the spatial distribution of PFCnDs that entered brain tissue. Immunohistochemical analysis was performed to confirm the spatial extent of BBB opening and the accuracy of the imaging results. RESULTS In vivo, transcranial US/PA imaging revealed localized photoacoustic (PA) contrast associated with delivered PFCnDs. In addition, contrast-enhanced ultrasound (CEUS) imaging confirmed the presence of nanodroplets within the same area. Ex vivo, volumetric US/PA imaging revealed PA contrast localized to the area of the brain where PFCnD-induced BBB opening had been performed. Immunohistochemical analysis revealed that the spatial distribution of immunoglobulin (IgG) extravasation into the brain closely matched the imaging results. CONCLUSIONS Using our intracerebral delivery and imaging strategy, PFCnDs were successfully delivered to a targeted area of the brain, and they enabled contrast-enhanced US/PA imaging through the skull. Ex vivo imaging, and immunohistochemistry confirmed the accuracy and precision of the approach.
Collapse
Affiliation(s)
- Kristina A Hallam
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Robert J Nikolai
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Anamik Jhunjhunwala
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Stanislav Y Emelianov
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
3
|
Van Namen A, Jandhyala S, Spatarelu CP, Tichauer KM, Samkoe KS, Luke GP. Multiplex Ultrasound Imaging of Perfluorocarbon Nanodroplets Enabled by Decomposition of Postvaporization Dynamics. NANO LETTERS 2024; 24:209-214. [PMID: 38156794 DOI: 10.1021/acs.nanolett.3c03719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Despite the real-time, nonionizing, and cost-effective nature of ultrasound imaging, there is a dearth of methods to visualize two or more populations of contrast agents simultaneously─a technique known as multiplex imaging. Here, we present a new approach to multiplex ultrasound imaging using perfluorocarbon (PFC) nanodroplets. The nanodroplets, which undergo a liquid-to-gas phase transition in response to an acoustic trigger, act as activatable contrast agents. This work characterized the dynamic responses of two PFC nanodroplets with boiling points of 28 and 56 °C. These characteristic responses were then used to demonstrate that the relative concentrations of the two populations of PFC nanodroplets could be accurately measured in the same imaging volume within an average error of 1.1%. Overall, the findings indicate the potential of this approach for multiplex ultrasound imaging, allowing for the simultaneous visualization of multiple molecular targets simultaneously.
Collapse
Affiliation(s)
- Austin Van Namen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Sidhartha Jandhyala
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | | | - Kenneth M Tichauer
- Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Kimberley S Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
- Translational Engineering in Cancer Research Program, Dartmouth Cancer Center, Lebanon, New Hampshire 03766, United States
| | - Geoffrey P Luke
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
- Translational Engineering in Cancer Research Program, Dartmouth Cancer Center, Lebanon, New Hampshire 03766, United States
| |
Collapse
|
4
|
Mendes MIP, Coelho CDF, Schaberle FA, Moreno MJ, Calvete MJF, Arnaut LG. Nanodroplet vaporization with pulsed-laser excitation repeatedly amplifies photoacoustic signals at low vaporization thresholds. RSC Adv 2023; 13:35040-35049. [PMID: 38046627 PMCID: PMC10690495 DOI: 10.1039/d3ra05639b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023] Open
Abstract
Nanodroplets' explosive vaporization triggered by absorption of laser pulses produces very large volume changes. These volume changes are two orders of magnitude higher than those of thermoelastic expansion generated by equivalent laser pulses, and should generate correspondingly higher photoacoustic waves (PAW). The generation of intense PAWs is desirable in photoacoustic tomography (PAT) to increase sensitivity. The biocompatibility and simplicity of nanodroplets obtained by sonication of perfluoropentane (PFP) in an aqueous solution of bovine serum albumin (BSA) containing a dye make them particularly appealing for use as contrast agents in clinical applications of PAT. Their usefulness depends on stability and reproducible vaporization of nanodroplets (liquid PFP inside) to microbubbles (gaseous PFP inside), and reversible condensation to nanodroplets. This work incorporates porphyrins with fluorinated chains and BSA labelled with fluorescent probes in PFP nanodroplets to investigate the structure and properties of such nanodroplets. Droplets prepared with average diameters in the 400-1000 nm range vaporize when exposed to nanosecond laser pulses with fluences above 3 mJ cm-2 and resist coalescence. The fluorinated chains are likely responsible for the low vaporization threshold, ∼2.5 mJ cm-2, which was obtained from the laser fluence dependence of the photoacoustic wave amplitudes. Only ca. 10% of the droplets incorporate fluorinated porphyrins. Nevertheless, PAWs generated with nanodroplets are ten times higher than those generated by aqueous BSA solutions containing an equivalent amount of porphyrin. Remarkably, successive laser pulses result in similar amplification, indicating that the microbubbles revert back to nanodroplets at a rate faster than the laser repetition rate (10 Hz). PFP nanodroplets are promising contrast agents for PAT and their performance increases with properly designed dyes.
Collapse
Affiliation(s)
- Maria Inês P Mendes
- CQC-IMS, Chemistry Department, University of Coimbra 3004-535 Coimbra Portugal
- LaserLeap Technologies Rua Coronel Júlio Veiga Simão, Edifício B, CTCV, S/N 3025-307 Coimbra Portugal
| | - Carlos D F Coelho
- CQC-IMS, Chemistry Department, University of Coimbra 3004-535 Coimbra Portugal
| | - Fábio A Schaberle
- CQC-IMS, Chemistry Department, University of Coimbra 3004-535 Coimbra Portugal
| | - Maria João Moreno
- CQC-IMS, Chemistry Department, University of Coimbra 3004-535 Coimbra Portugal
| | - Mário J F Calvete
- CQC-IMS, Chemistry Department, University of Coimbra 3004-535 Coimbra Portugal
| | - Luis G Arnaut
- CQC-IMS, Chemistry Department, University of Coimbra 3004-535 Coimbra Portugal
| |
Collapse
|
5
|
Zhang G, Liao C, Hu JR, Hu HM, Lei YM, Harput S, Ye HR. Nanodroplet-Based Super-Resolution Ultrasound Localization Microscopy. ACS Sens 2023; 8:3294-3306. [PMID: 37607403 DOI: 10.1021/acssensors.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Over the past decade, super-resolution ultrasound localization microscopy (SR-ULM) has revolutionized ultrasound imaging with its capability to resolve the microvascular structures below the ultrasound diffraction limit. The introduction of this imaging technique enables the visualization, quantification, and characterization of tissue microvasculature. The early implementations of SR-ULM utilize microbubbles (MBs) that require a long image acquisition time due to the requirement of capturing sparsely isolated microbubble signals. The next-generation SR-ULM employs nanodroplets that have the potential to significantly reduce the image acquisition time without sacrificing the resolution. This review discusses various nanodroplet-based ultrasound localization microscopy techniques and their corresponding imaging mechanisms. A summary is given on the preclinical applications of SR-ULM with nanodroplets, and the challenges in the clinical translation of nanodroplet-based SR-ULM are presented while discussing the future perspectives. In conclusion, ultrasound localization microscopy is a promising microvasculature imaging technology that can provide new diagnostic and prognostic information for a wide range of pathologies, such as cancer, heart conditions, and autoimmune diseases, and enable personalized treatment monitoring at a microlevel.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan 430080, People's Republic of China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, PSL University, CNRS, Paris 75015, France
| | - Chen Liao
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan 430080, People's Republic of China
- Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Jun-Rui Hu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Hai-Man Hu
- Department of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Yu-Meng Lei
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan 430080, People's Republic of China
| | - Sevan Harput
- Department of Electrical and Electronic Engineering, London South Bank University, London SE1 0AA, U.K
| | - Hua-Rong Ye
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan 430080, People's Republic of China
| |
Collapse
|
6
|
Zhao AX, Zhu YI, Chung E, Lee J, Morais S, Yoon H, Emelianov S. Factors Influencing the Repeated Transient Optical Droplet Vaporization Threshold and Lifetimes of Phase Change, Perfluorocarbon Nanodroplets. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2238. [PMID: 37570555 PMCID: PMC10421047 DOI: 10.3390/nano13152238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Perfluorocarbon nanodroplets (PFCnDs) are sub-micrometer emulsions composed of a surfactant-encased perfluorocarbon (PFC) liquid and can be formulated to transiently vaporize through optical stimulation. However, the factors governing repeated optical droplet vaporization (ODV) have not been investigated. In this study, we employ high-frame-rate ultrasound (US) to characterize the ODV thresholds of various formulations and imaging parameters and identify those that exhibit low vaporization thresholds and repeatable vaporization. We observe a phenomenon termed "preconditioning", where initial laser pulses generate reduced US contrast that appears linked with an increase in nanodroplet size. Variation in laser pulse repetition frequency is found not to change the vaporization threshold, suggesting that "preconditioning" is not related to residual heat. Surfactants (bovine serum albumin, lipids, and zonyl) impact the vaporization threshold and imaging lifetime, with lipid shells demonstrating the best performance with relatively low thresholds (21.6 ± 3.7 mJ/cm2) and long lifetimes (t1/2 = 104 ± 21.5 pulses at 75 mJ/cm2). Physiological stiffness does not affect the ODV threshold and may enhance nanodroplet stability. Furthermore, PFC critical temperatures are found to correlate with vaporization thresholds. These observations enhance our understanding of ODV behavior and pave the way for improved nanodroplet performance in biomedical applications.
Collapse
Affiliation(s)
- Andrew X. Zhao
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Atlanta, GA 30332, USA;
| | - Yiying I. Zhu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA (E.C.); (J.L.); (S.M.)
| | - Euisuk Chung
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA (E.C.); (J.L.); (S.M.)
| | - Jeehyun Lee
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA (E.C.); (J.L.); (S.M.)
| | - Samuel Morais
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA (E.C.); (J.L.); (S.M.)
| | - Heechul Yoon
- School of Electronics and Electrical Engineering, Dankook University, Yongin-si 16890, Republic of Korea;
| | - Stanislav Emelianov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Atlanta, GA 30332, USA;
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA (E.C.); (J.L.); (S.M.)
| |
Collapse
|
7
|
Aliabouzar M, Kripfgans OD, Brian Fowlkes J, Fabiilli ML. Bubble nucleation and dynamics in acoustic droplet vaporization: a review of concepts, applications, and new directions. Z Med Phys 2023; 33:387-406. [PMID: 36775778 PMCID: PMC10517405 DOI: 10.1016/j.zemedi.2023.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 02/12/2023]
Abstract
The development of phase-shift droplets has broadened the scope of ultrasound-based biomedical applications. When subjected to sufficient acoustic pressures, the perfluorocarbon phase in phase-shift droplets undergoes a phase-transition to a gaseous state. This phenomenon, termed acoustic droplet vaporization (ADV), has been the subject of substantial research over the last two decades with great progress made in design of phase-shift droplets, fundamental physics of bubble nucleation and dynamics, and applications. Here, we review experimental approaches, carried out via high-speed microscopy, as well as theoretical models that have been proposed to study the fundamental physics of ADV including vapor nucleation and ADV-induced bubble dynamics. In addition, we highlight new developments of ADV in tissue regeneration, which is a relatively recently exploited application. We conclude this review with future opportunities of ADV for advanced applications such as in situ microrheology and pressure estimation.
Collapse
Affiliation(s)
- Mitra Aliabouzar
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Oliver D Kripfgans
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - J Brian Fowlkes
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mario L Fabiilli
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Sabuncu S, Javier Ramirez R, Fischer JM, Civitci F, Yildirim A. Ultrafast Background-Free Ultrasound Imaging Using Blinking Nanoparticles. NANO LETTERS 2023; 23:659-666. [PMID: 36594885 DOI: 10.1021/acs.nanolett.2c04504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Localization-based ultrasound imaging methods that use microbubbles or nanodroplets offer high-resolution imaging with improved sensitivity and reduced background signal. However, these methods require long acquisition times (typically seconds to minutes), preventing their use for real-time imaging and, thus, limiting their clinical translational potential. Here, we present a new ultrafast localization method using blinking ultrasound-responsive nanoparticles (BNPs). When activated with high frame rate (1 kHz) plane wave ultrasound pulses with a mechanical index of 1.5, the BNPs incept growth of micrometer-sized bubbles, which in turn collapse and generate a blinking ultrasound signal. We showed that background-free ultrasound images could be obtained by localizing these blinking events using acquisition times as low as 11 ms. In addition, we demonstrated that BNPs enable in vivo background-free ultrasound imaging in mice. We envision that BNPs will facilitate the clinical translation of localization-based ultrasound imaging for more sensitive detection of cancer and other diseases.
Collapse
Affiliation(s)
- Sinan Sabuncu
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health and Science University, Portland, Oregon 97201, United States
| | - Ruth Javier Ramirez
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health and Science University, Portland, Oregon 97201, United States
| | - Jared M Fischer
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health and Science University, Portland, Oregon 97201, United States
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Fehmi Civitci
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health and Science University, Portland, Oregon 97201, United States
| | - Adem Yildirim
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health and Science University, Portland, Oregon 97201, United States
- Division of Oncological Sciences, Knight Cancer Institute, School of Medicine, Oregon Health and Science University, Portland, Oregon 97201, United States
| |
Collapse
|
9
|
Recent progress in theranostic microbubbles. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Welch PJ, Li DS, Forest CR, Pozzo LD, Shi C. Perfluorocarbon nanodroplet size, acoustic vaporization, and inertial cavitation affected by lipid shell composition in vitro. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:2493. [PMID: 36319242 PMCID: PMC9812515 DOI: 10.1121/10.0014934] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/17/2022] [Accepted: 10/04/2022] [Indexed: 05/25/2023]
Abstract
Perfluorocarbon nanodroplets (PFCnDs) are ultrasound contrast agents that phase-transition from liquid nanodroplets to gas microbubbles when activated by laser irradiation or insonated with an ultrasound pulse. The dynamics of PFCnDs can vary drastically depending on the nanodroplet composition, including the lipid shell properties. In this paper, we investigate the effect of varying the ratio of PEGylated to non-PEGylated phospholipids in the outer shell of PFCnDs on the acoustic nanodroplet vaporization (liquid to gas phase transition) and inertial cavitation (rapid collapse of the vaporized nanodroplets) dynamics in vitro when insonated with focused ultrasound. Nanodroplets with a high concentration of PEGylated lipids had larger diameters and exhibited greater variance in size distribution compared to nanodroplets with lower proportions of PEGylated lipids in the lipid shell. PFCnDs with a lipid shell composed of 50:50 PEGylated to non-PEGylated lipids yielded the highest B-mode image intensity and duration, as well as the greatest pressure difference between acoustic droplet vaporization onset and inertial cavitation onset. We demonstrate that slight changes in lipid shell composition of PFCnDs can significantly impact droplet phase transitioning and inertial cavitation dynamics. These findings can help guide researchers to fabricate PFCnDs with optimized compositions for their specific applications.
Collapse
Affiliation(s)
- Phoebe J Welch
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | - Craig R Forest
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Lilo D Pozzo
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Chengzhi Shi
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
11
|
Fan CH, Ho YJ, Lin CW, Wu N, Chiang PH, Yeh CK. State-of-the-art of ultrasound-triggered drug delivery from ultrasound-responsive drug carriers. Expert Opin Drug Deliv 2022; 19:997-1009. [PMID: 35930441 DOI: 10.1080/17425247.2022.2110585] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The development of new tools to locally and non-invasively transferring therapeutic substances at the desired site in deep living tissue has been a long sought-after goal within the drug delivery field. Among the established methods, ultrasound (US) with US-responsive carriers holds great promise and demonstrates on-demand delivery of a variety of functional substances with spatial precision of several millimeters in deep-seated tissues in animal models and humans. These properties have motivated several explorations of US with US responsive carriers as a modality for neuromodulation and the treatment of various diseases, such as stroke and cancer. AREAS COVERED This article briefly discussed three specific mechanisms that enhance in vivo drug delivery via US with US-responsive carriers: 1) permeabilizing cellular membrane, 2) increasing the permeability of vessels, and 3) promoting cellular endocytotic uptake. Besides, a series of US-responsive drug carriers are discussed, with an emphasis on the relation between structural feature and therapeutic outcome. EXPERT OPINION This article summarized current development for each of US-responsive drug carrier, focusing on the routes of enhancing delivery and applications. The mechanisms of interaction between US-responsive carriers and US energy, such as cavitation, hyperthermia, and reactive oxygen species, as well as how these interactions can improve drug delivery into target cell/tissue. It can be expected that there are serval efforts to further identification of US-responsive particles, design of novel US waveform sequence, and survey of optimal combination between US parameters and US-responsive carriers for better controlling the spatiotemporal drug release profile, stability, and safety in vivo. The authors believe these will provide novel tools for precisely designing treatment strategies and significantly benefit the clinical management of several diseases.
Collapse
Affiliation(s)
- Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ju Ho
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chia-Wei Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Nan Wu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Hua Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
12
|
Spatarelu CP, Van Namen A, Jandhyala S, Luke GP. Fluorescent Phase-Changing Perfluorocarbon Nanodroplets as Activatable Near-Infrared Probes. Int J Mol Sci 2022; 23:ijms23137312. [PMID: 35806326 PMCID: PMC9266996 DOI: 10.3390/ijms23137312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
The sensitivity of fluorescence imaging is limited by the high optical scattering of tissue. One approach to improve sensitivity to small signals is to use a contrast agent with a signal that can be externally modulated. In this work, we present a new phase-changing perfluorocarbon nanodroplet contrast agent loaded with DiR dye. The nanodroplets undergo a liquid-to-gas phase transition when exposed to an externally applied laser pulse. This results in the unquenching of the encapsulated dye, thus increasing the fluorescent signal, a phenomenon that can be characterized by an ON/OFF ratio between the fluorescence of activated and nonactivated nanodroplets, respectively. We investigate and optimize the quenching/unquenching of DiR upon nanodroplets’ vaporization in suspension, tissue-mimicking phantoms and a subcutaneous injection mouse model. We also demonstrate that the vaporized nanodroplets produce ultrasound contrast, enabling multimodal imaging. This work shows that these nanodroplets could be applied to imaging applications where high sensitivity is required.
Collapse
Affiliation(s)
| | - Austin Van Namen
- Dartmouth College, 15 Thayer Drive, Hanover, NH 03755, USA; (C.-P.S.); (A.V.N.); (S.J.)
| | - Sidhartha Jandhyala
- Dartmouth College, 15 Thayer Drive, Hanover, NH 03755, USA; (C.-P.S.); (A.V.N.); (S.J.)
| | - Geoffrey P. Luke
- Dartmouth College, 15 Thayer Drive, Hanover, NH 03755, USA; (C.-P.S.); (A.V.N.); (S.J.)
- Norris Cotton Cancer Center, 1 Medical Center Drive, Lebanon, NH 03766, USA
- Correspondence:
| |
Collapse
|
13
|
Jandhyala S, Van Namen A, Spatarelu CP, Luke GP. EGFR-Targeted Perfluorohexane Nanodroplets for Molecular Ultrasound Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2251. [PMID: 35808089 PMCID: PMC9268413 DOI: 10.3390/nano12132251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023]
Abstract
Perfluorocarbon nanodroplets offer an alternative to gaseous microbubbles as contrast agents for ultrasound imaging. They can be acoustically activated to induce a liquid-to-gas phase transition and provide contrast in ultrasound images. In this study, we demonstrate a new strategy to synthesize antibody-conjugated perfluorohexane nanodroplet (PFHnD-Ab) ultrasound contrast agents that target cells overexpressing the epidermal growth factor receptor (EGFR). The perfluorohexane nanodroplets (PFHnD) containing a lipophilic DiD fluorescent dye were synthesized using a phospholipid shell. Antibodies were conjugated to the surface through a hydrazide-aldehyde reaction. Cellular binding was confirmed using fluorescence microscopy; the DiD fluorescence signal of the PFHnD-Ab was 5.63× and 6× greater than the fluorescence signal in the case of non-targeted PFHnDs and the EGFR blocking control, respectively. Cells were imaged in tissue-mimicking phantoms using a custom ultrasound imaging setup consisting of a high-intensity focused ultrasound transducer and linear array imaging transducer. Cells with conjugated PFHnD-Abs exhibited a significantly higher (p < 0.001) increase in ultrasound amplitude compared to cells with non-targeted PFHnDs and cells exposed to free antibody before the addition of PFHnD-Abs. The developed nanodroplets show potential to augment the use of ultrasound in molecular imaging cancer diagnostics.
Collapse
Affiliation(s)
- Sidhartha Jandhyala
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; (S.J.); (A.V.N.); (C.-P.S.)
| | - Austin Van Namen
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; (S.J.); (A.V.N.); (C.-P.S.)
| | - Catalina-Paula Spatarelu
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; (S.J.); (A.V.N.); (C.-P.S.)
| | - Geoffrey P. Luke
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; (S.J.); (A.V.N.); (C.-P.S.)
- Translational Engineering in Cancer Program, Dartmouth Cancer Center, Lebanon, NH 03756, USA
| |
Collapse
|
14
|
Burgess MT, Aliabouzar M, Aguilar C, Fabiilli ML, Ketterling JA. Slow-Flow Ultrasound Localization Microscopy Using Recondensation of Perfluoropentane Nanodroplets. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:743-759. [PMID: 35125244 PMCID: PMC8983467 DOI: 10.1016/j.ultrasmedbio.2021.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/24/2021] [Accepted: 12/07/2021] [Indexed: 05/03/2023]
Abstract
Ultrasound localization microscopy (ULM) is an emerging, super-resolution imaging technique for detailed mapping of the microvascular structure and flow velocity via subwavelength localization and tracking of microbubbles. Because microbubbles rely on blood flow for movement throughout the vascular space, acquisition times can be long in the smallest, low-flow microvessels. In addition, detection of microbubbles in low-flow regions can be difficult because of minimal separation of microbubble signal from tissue. Nanoscale, phase-change contrast agents (PCCAs) have emerged as a switchable, intermittent or persisting contrast agent for ULM via acoustic droplet vaporization (ADV). Here, the focus is on characterizing the spatiotemporal contrast properties of less volatile perfluoropentane (PFP) PCCAs. The results indicate that at physiological temperature, nanoscale PFP PCCAs with diameters less than 100 nm disappear within microseconds after ADV with high-frequency ultrasound (16 MHz, 5- to 6-MPa peak negative pressure) and that nanoscale PFP PCCAs have an inherent deactivation mechanism via immediate recondensation after ADV. This "blinking" on-and-off contrast signal allowed separation of flow in an in vitro flow phantom, regardless of flow conditions, although with a need for some replenishment at very low flow conditions to maintain count rate. This blinking behavior allows for rapid spatial mapping in areas of low or no flow with ULM, but limits velocity tracking because there is no stable bubble formation with nanoscale PFP PCCAs.
Collapse
Affiliation(s)
- Mark T Burgess
- Lizzi Center for Biomedical Engineering, Riverside Research, New York, New York, USA.
| | - Mitra Aliabouzar
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Christian Aguilar
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mario L Fabiilli
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey A Ketterling
- Lizzi Center for Biomedical Engineering, Riverside Research, New York, New York, USA
| |
Collapse
|
15
|
Mitcham TM, Nevozhay D, Chen Y, Nguyen LD, Pinton GF, Lai SY, Sokolov KV, Bouchard RR. Effect of Perfluorocarbon Composition on Activation of Phase-Changing Ultrasound Contrast Agents. Med Phys 2022; 49:2212-2219. [PMID: 35195908 PMCID: PMC9041204 DOI: 10.1002/mp.15564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 11/29/2022] Open
Abstract
Background While microbubble contrast agents (MCAs) are commonly used in ultrasound (US), they are inherently limited to vascular targets due to their size. Alternatively, phase‐changing nanodroplet contrast agents (PNCAs) can be delivered as nanoscale agents (i.e., small enough to extravasate), but when exposed to a US field of sufficient mechanical index (MI), they convert to MCAs, which can be visualized with high contrast using nonlinear US. Purpose To investigate the effect of perfluorocarbon (PFC) core composition and presence of cholesterol in particle coatings on stability and image contrast generated from acoustic activation of PNCAs using high‐frequency US suitable for clinical imaging. Methods PNCAs with varied core compositions (i.e., mixtures of perfluoropentane [C5] and/or perfluorohexane [C6]) and two coating formulations (i.e., with and without cholesterol) were characterized and investigated for thermal/temporal stability and postactivation, nonlinear US contrast in phantom and in vivo environments. Through hydrophone measurements and nonlinear numerical modeling, MI was estimated for pulse sequences used for PNCA activation. Results All PNCA compositions were characterized to have similar diameters (249–267 nm) and polydispersity (0.151–0.185) following fabrication. While PNCAs with majority C5 core composition showed higher levels of spontaneous signal (i.e., not due to US activation) in phantoms than C6‐majority PNCAs, all compositions were stable during imaging experiments. When activating PNCAs with a 12.3‐MHz US pulse (MI = 1.1), C6‐core particles with cholesterol‐free coatings (i.e., CF‐C6‐100 particles) generated a median contrast of 3.1, which was significantly higher (p < 0.001) than other formulations. Further, CF‐C6‐100 particles were activated in a murine model, generating US contrast ≥3.4. Conclusion C6‐core PNCAs can provide high‐contrast US imaging with minimal nonspecific activation in phantom and in vivo environments.
Collapse
Affiliation(s)
- Trevor M Mitcham
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Dmitry Nevozhay
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yunyun Chen
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linh D Nguyen
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gianmarco F Pinton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Stephen Y Lai
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Konstantin V Sokolov
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Department of Bioengineering, Rice University, Houston, TX, USA.,Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Richard R Bouchard
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
16
|
Namen AV, Jandhyala S, Jordan T, Luke GP. Repeated Acoustic Vaporization of Perfluorohexane Nanodroplets for Contrast-Enhanced Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3497-3506. [PMID: 34191726 PMCID: PMC8667194 DOI: 10.1109/tuffc.2021.3093828] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Superheated perfluorocarbon nanodroplets are emerging ultrasound imaging contrast agents that boast biocompatible components, unique phase-change dynamics, and therapeutic loading capabilities. Upon exposure to a sufficiently high-intensity pulse of acoustic energy, the nanodroplet's perfluorocarbon core undergoes a liquid-to-gas phase change and becomes an echogenic microbubble, providing ultrasound contrast. The controllable activation leads to high-contrast images, while the small size of the nanodroplets promotes longer circulation times and better in vivo stability. One drawback, however, is that the nanodroplets can only be vaporized a single time, limiting their versatility. Recently, we and others have addressed this issue by using a perfluorohexane core, which has a boiling point above body temperature. Thus after vaporization, the microbubbles recondense back into their stable nanodroplet form. Previous work with perfluorohexane nanodroplets relied on optical activation via pulsed laser absorption of an encapsulated dye. This strategy limits the imaging depth and temporal resolution of the method. In this study, we overcome these limitations by demonstrating acoustic droplet vaporization with 1.1-MHz high-intensity focused ultrasound (HIFU). A short-duration, high-amplitude pulse of focused ultrasound provides a sufficiently strong peak negative pressure to initiate vaporization. A custom imaging sequence was developed to enable the synchronization of a HIFU transducer and a linear array imaging transducer. We show a visualization of repeated acoustic activation of perfluorohexane nanodroplets in polyacrylamide tissue-mimicking phantoms. We further demonstrate the detection of hundreds of vaporization events from individual nanodroplets with activation thresholds well below the tissue cavitation limit. Overall, this approach has the potential to result in reliable and repeatable contrast-enhanced ultrasound imaging at clinically relevant depths.
Collapse
|
17
|
Peng C, Chen M, Spicer JB, Jiang X. Acoustics at the nanoscale (nanoacoustics): A comprehensive literature review.: Part II: Nanoacoustics for biomedical imaging and therapy. SENSORS AND ACTUATORS. A, PHYSICAL 2021; 332:112925. [PMID: 34937992 PMCID: PMC8691754 DOI: 10.1016/j.sna.2021.112925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In the past decade, acoustics at the nanoscale (i.e., nanoacoustics) has evolved rapidly with continuous and substantial expansion of capabilities and refinement of techniques. Motivated by research innovations in the last decade, for the first time, recent advancements of acoustics-associated nanomaterials/nanostructures and nanodevices for different applications are outlined in this comprehensive review, which is written in two parts. As part II of this two-part review, this paper concentrates on nanoacoustics in biomedical imaging and therapy applications, including molecular ultrasound imaging, photoacoustic imaging, ultrasound-mediated drug delivery and therapy, and photoacoustic drug delivery and therapy. Firstly, the recent developments of nanosized ultrasound and photoacoustic contrast agents as well as their various imaging applications are examined. Secondly, different types of nanomaterials/nanostructures as nanocarriers for ultrasound and photoacoustic therapies are discussed. Finally, a discussion of challenges and future research directions are provided for nanoacoustics in medical imaging and therapy.
Collapse
Affiliation(s)
- Chang Peng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Mengyue Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - James B. Spicer
- Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
18
|
Kuriakose M, Borden MA. Microbubbles and Nanodrops for photoacoustic tomography. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Ultrasound and Photoacoustic Imaging of Laser-Activated Phase-Change Perfluorocarbon Nanodroplets. PHOTONICS 2021. [DOI: 10.3390/photonics8100405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Laser-activated perfluorocarbon nanodroplets (PFCnDs) are emerging phase-change contrast agents that showed promising potential in ultrasound and photoacoustic (US/PA) imaging. Unlike monophase gaseous microbubbles, PFCnDs shift their state from liquid to gas via optical activation and can provide high US/PA contrast on demand. Depending on the choice of perfluorocarbon core, the vaporization and condensation dynamics of the PFCnDs are controllable. Therefore, these configurable properties of activation and deactivation of PFCnDs are employed to enable various imaging approaches, including contrast-enhanced imaging and super-resolution imaging. In addition, synchronous application of both acoustic and optical pulses showed a promising outcome vaporizing PFCnDs with lower activation thresholds. Furthermore, due to their sub-micrometer size, PFCnDs can be used for molecular imaging of extravascular tissue. PFCnDs can also be an effective therapeutic tool. As PFCnDs can carry therapeutic drugs or other particles, they can be used for drug delivery, as well as photothermal and photodynamic therapies. Blood barrier opening for neurological applications was recently demonstrated with optically-triggered PFCnDs. This paper specifically focuses on the activation and deactivation properties of laser-activated PFCnDs and associated US/PA imaging approaches, and briefly discusses their theranostic potential and future directions.
Collapse
|
20
|
Ho YJ, Huang CC, Fan CH, Liu HL, Yeh CK. Ultrasonic technologies in imaging and drug delivery. Cell Mol Life Sci 2021; 78:6119-6141. [PMID: 34297166 PMCID: PMC11072106 DOI: 10.1007/s00018-021-03904-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
Ultrasonic technologies show great promise for diagnostic imaging and drug delivery in theranostic applications. The development of functional and molecular ultrasound imaging is based on the technical breakthrough of high frame-rate ultrasound. The evolution of shear wave elastography, high-frequency ultrasound imaging, ultrasound contrast imaging, and super-resolution blood flow imaging are described in this review. Recently, the therapeutic potential of the interaction of ultrasound with microbubble cavitation or droplet vaporization has become recognized. Microbubbles and phase-change droplets not only provide effective contrast media, but also show great therapeutic potential. Interaction with ultrasound induces unique and distinguishable biophysical features in microbubbles and droplets that promote drug loading and delivery. In particular, this approach demonstrates potential for central nervous system applications. Here, we systemically review the technological developments of theranostic ultrasound including novel ultrasound imaging techniques, the synergetic use of ultrasound with microbubbles and droplets, and microbubble/droplet drug-loading strategies for anticancer applications and disease modulation. These advancements have transformed ultrasound from a purely diagnostic utility into a promising theranostic tool.
Collapse
Affiliation(s)
- Yi-Ju Ho
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
21
|
Krafft MP, Riess JG. Therapeutic oxygen delivery by perfluorocarbon-based colloids. Adv Colloid Interface Sci 2021; 294:102407. [PMID: 34120037 DOI: 10.1016/j.cis.2021.102407] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
After the protocol-related indecisive clinical trial of Oxygent, a perfluorooctylbromide/phospholipid nanoemulsion, in cardiac surgery, that often unduly assigned the observed untoward effects to the product, the development of perfluorocarbon (PFC)-based O2 nanoemulsions ("blood substitutes") has come to a low. Yet, significant further demonstrations of PFC O2-delivery efficacy have continuously been reported, such as relief of hypoxia after myocardial infarction or stroke; protection of vital organs during surgery; potentiation of O2-dependent cancer therapies, including radio-, photodynamic-, chemo- and immunotherapies; regeneration of damaged nerve, bone or cartilage; preservation of organ grafts destined for transplantation; and control of gas supply in tissue engineering and biotechnological productions. PFC colloids capable of augmenting O2 delivery include primarily injectable PFC nanoemulsions, microbubbles and phase-shift nanoemulsions. Careful selection of PFC and other colloid components is critical. The basics of O2 delivery by PFC nanoemulsions will be briefly reminded. Improved knowledge of O2 delivery mechanisms has been acquired. Advanced, size-adjustable O2-delivering nanoemulsions have been designed that have extended room-temperature shelf-stability. Alternate O2 delivery options are being investigated that rely on injectable PFC-stabilized microbubbles or phase-shift PFC nanoemulsions. The latter combine prolonged circulation in the vasculature, capacity for penetrating tumor tissues, and acute responsiveness to ultrasound and other external stimuli. Progress in microbubble and phase-shift emulsion engineering, control of phase-shift activation (vaporization), understanding and control of bubble/ultrasound/tissue interactions is discussed. Control of the phase-shift event and of microbubble size require utmost attention. Further PFC-based colloidal systems, including polymeric micelles, PFC-loaded organic or inorganic nanoparticles and scaffolds, have been devised that also carry substantial amounts of O2. Local, on-demand O2 delivery can be triggered by external stimuli, including focused ultrasound irradiation or tumor microenvironment. PFC colloid functionalization and targeting can help adjust their properties for specific indications, augment their efficacy, improve safety profiles, and expand the range of their indications. Many new medical and biotechnological applications involving fluorinated colloids are being assessed, including in the clinic. Further uses of PFC-based colloidal nanotherapeutics will be briefly mentioned that concern contrast diagnostic imaging, including molecular imaging and immune cell tracking; controlled delivery of therapeutic energy, as for noninvasive surgical ablation and sonothrombolysis; and delivery of drugs and genes, including across the blood-brain barrier. Even when the fluorinated colloids investigated are designed for other purposes than O2 supply, they will inevitably also carry and deliver a certain amount of O2, and may thus be considered for O2 delivery or co-delivery applications. Conversely, O2-carrying PFC nanoemulsions possess by nature a unique aptitude for 19F MR imaging, and hence, cell tracking, while PFC-stabilized microbubbles are ideal resonators for ultrasound contrast imaging and can undergo precise manipulation and on-demand destruction by ultrasound waves, thereby opening multiple theranostic opportunities.
Collapse
Affiliation(s)
- Marie Pierre Krafft
- University of Strasbourg, Institut Charles Sadron (CNRS), 23 rue du Loess, 67034 Strasbourg, France.
| | - Jean G Riess
- Harangoutte Institute, 68160 Ste Croix-aux-Mines, France
| |
Collapse
|
22
|
Aliabouzar M, Kripfgans OD, Wang WY, Baker BM, Brian Fowlkes J, Fabiilli ML. Stable and transient bubble formation in acoustically-responsive scaffolds by acoustic droplet vaporization: theory and application in sequential release. ULTRASONICS SONOCHEMISTRY 2021; 72:105430. [PMID: 33401189 PMCID: PMC7803826 DOI: 10.1016/j.ultsonch.2020.105430] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 05/08/2023]
Abstract
Acoustically-responsive scaffolds (ARSs), which are fibrin hydrogels containing monodispersed perfluorocarbon (PFC) emulsions, respond to ultrasound in an on-demand, spatiotemporally-controlled manner via a mechanism termed acoustic droplet vaporization (ADV). Previously, ADV has been used to control the release of bioactive payloads from ARSs to stimulate regenerative processes. In this study, we used classical nucleation theory (CNT) to predict the nucleation pressure in emulsions of different PFC cores as well as the corresponding condensation pressure of the ADV-generated bubbles. According to CNT, the threshold bubble radii above which ADV-generated bubbles remain stable against condensation were 0.4 µm and 5.2 µm for perfluoropentane (PFP) and perfluorohexane (PFH) bubbles, respectively, while ADV-generated bubbles of any size in perfluorooctane (PFO) condense back to liquid at ambient condition. Additionally, consistent with the CNT findings, stable bubble formation from PFH emulsion was experimentally observed using confocal imaging while PFO emulsion likely underwent repeated vaporization and recondensation during ultrasound pulses. In further experimental studies, we utilized this unique feature of ADV in generating stable or transient bubbles, through tailoring the PFC core and ultrasound parameters (excitation frequency and pulse duration), for sequential delivery of two payloads from PFC emulsions in ARSs. ADV-generated stable bubbles from PFH correlated with complete release of the payload while transient ADV resulted in partial release, where the amount of payload release increased with the number of ultrasound exposure. Overall, these results can be used in developing drug delivery strategies using ARSs.
Collapse
Affiliation(s)
- Mitra Aliabouzar
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Oliver D Kripfgans
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - William Y Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - J Brian Fowlkes
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Mario L Fabiilli
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
23
|
Boerner P, Nevozhay D, Hatamimoslehabadi M, Chawla HS, Zvietcovich F, Aglyamov S, Larin KV, Sokolov KV. Repetitive optical coherence elastography measurements with blinking nanobombs. BIOMEDICAL OPTICS EXPRESS 2020; 11:6659-6673. [PMID: 33282515 PMCID: PMC7687956 DOI: 10.1364/boe.401734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/19/2020] [Accepted: 10/06/2020] [Indexed: 05/04/2023]
Abstract
Excitation of dye-loaded perfluorocarbon nanoparticles (nanobombs) can generate highly localized axially propagating longitudinal shear waves (LSW) that can be used to quantify tissue mechanical properties without transversal scanning of the imaging beam. In this study, we used repetitive excitations of dodecafluoropentane (C5) and tetradecafluorohexane (C6) nanobombs by a nanosecond-pulsed laser to produce multiple LSWs from a single spot in a phantom. A 1.5 MHz Fourier-domain mode-locked laser in combination with a phase correction algorithm was used to perform elastography. Multiple nanobomb activations were also monitored by detecting photoacoustic signals. Our results demonstrate that C6 nanobombs can be used for repetitive generation of LSW from a single spot for the purpose of material elasticity assessment. This study opens new avenues for continuous quantification of tissue mechanical properties using single delivery of the nanoparticles.
Collapse
Affiliation(s)
- Paul Boerner
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
- Equal contribution
| | - Dmitry Nevozhay
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Equal contribution
| | | | | | - Fernando Zvietcovich
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Salavat Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Kirill V Larin
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Konstantin V Sokolov
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Austin, Texas 78712, USA
| |
Collapse
|
24
|
MAGE-Targeted Gold Nanoparticles for Ultrasound Imaging-Guided Phototherapy in Melanoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6863231. [PMID: 33015175 PMCID: PMC7519981 DOI: 10.1155/2020/6863231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/22/2020] [Accepted: 09/03/2020] [Indexed: 11/18/2022]
Abstract
Gold nanorods exhibit a wide variety of applications such as tumor molecular imaging and photothermal therapy (PTT) due to their tunable optical properties. Several studies have demonstrated that the combination of other therapeutic strategies may improve PTT efficiency. A method called optical droplet vaporization (ODV) was considered as another noninvasive imaging and therapy strategy. Via the ODV method, superheated perfluorocarbon droplets can be vaporized to a gas phase for enhancing ultrasound imaging; meanwhile, this violent process can cause damage to cells and tissue. In addition, active targeting through the functionalization with targeting ligands can effectively increase nanoprobe accumulation in the tumor area, improving the sensitivity and specificity of imaging and therapy. Our study prepared a nanoparticle loaded with gold nanorods and perfluorinated hexane and conjugated to a monoclonal antibody (MAGE-1 antibody) to melanoma-associated antigens (MAGE) targeting melanoma, investigated the synergistic effect of PTT/ODV therapy, and monitored the therapeutic effect using ultrasound. The prepared MAGE-Au-PFH-NPs achieved complete eradication of tumors. Meanwhile, the MAGE-Au-PFH-NPs also possess significant ultrasound imaging signal enhancement, which shows the potential for imaging-guided tumor therapy in the future.
Collapse
|
25
|
|
26
|
Melich R, Zorgani A, Padilla F, Charcosset C. Preparation of perfluorocarbon emulsions by premix membrane emulsification for Acoustic Droplet Vaporization (ADV) in biomedical applications. Biomed Microdevices 2020; 22:62. [PMID: 32880712 DOI: 10.1007/s10544-020-00504-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Perfluorocarbon (PFC) droplets are used in acoustic droplet vaporization (ADV), a phenomenon where droplets vaporize into gas microbubbles under exposure to ultrasound. The size and the size distribution of a phase change contrast agent is an important factor in determining the ADV threshold and the biodistribution. Thus, high throughout manufacturing of uniform-sized droplets, required to maintain spatial control of the vaporization process, remains challenging. This work describes a parametric evaluation of a novel process using premix membrane emulsification (PME) to produce homogeneous PFC emulsions at high rate with moderate pressure using Shirasu Porous Glass (SPG) membranes. In this study, we investigated the effect of several process parameters on the resulting pressure and droplet size: membrane pore size, flow rate, and dispersed phase type. The functionality of the manufactured emulsions for ADV was also demonstrated. Vaporization of the PFC emulsions was obtained using an imaging ultrasound transducer at 7.813 MHz, and the ADV thresholds were determined. Here, the pressure threshold for ADV was determined to be 1.49 MPa for uniform-sized perfluorohexane (PFHex) droplets with a mean size of 1.51 μm and a sharp distribution (CV and span respectively of 20% and 0.6). Thus, a uniform-sized droplet showed a more homogeneous vaporization with a uniform response in the focal region of the transducer. Indeed, polydispersed droplets had a more diffuse response outside the focal region due to the presence of large droplets that vaporize at lower energies. The ADV threshold of uniform-sized PFC droplets was found to decrease with the droplet diameter and the bulk fluid temperature, and to increase with the boiling temperature of PFC and the presence of an oil layer surrounding the PFC core.
Collapse
Affiliation(s)
- Romain Melich
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100, Villeurbanne, France
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, F-69003, LYON, France
| | - Ali Zorgani
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, F-69003, LYON, France
| | - Frédéric Padilla
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, F-69003, LYON, France.
- Department of Radiology, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Focused Ultrasound Foundation, 1230 Cedars Court, Suite 206, Charlottesville, VA, USA.
| | - Catherine Charcosset
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100, Villeurbanne, France.
| |
Collapse
|
27
|
Cimorelli M, Flynn MA, Angel B, Reimold E, Fafarman A, Huneke R, Kohut A, Wrenn S. A Voltage-Sensitive Ultrasound Enhancing Agent for Myocardial Perfusion Imaging in a Rat Model. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2388-2399. [PMID: 32593498 DOI: 10.1016/j.ultrasmedbio.2020.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Echocardiographers with specialized expertise sometimes perform myocardial perfusion imaging using U.S. Food and Drug Administration-approved microbubbles in an off-label capacity, correlating microbubble replenishment in the near field with blood flow through the myocardium. This study reports the in vivo clinical feasibility of a voltage-sensitive ultrasound enhancing agent (UEA) for myocardial perfusion imaging. Four UEAs were injected into Sprague-Dawley rats while ultrasound images were collected to quantify brightness in the left ventricular (LV) cavity, septal wall, and posterior wall in systole and diastole. Formulation IV, a phase change agent nested within a negatively charged phospholipid bilayer, increased the tissue-to-cavity ratio in both systole and diastole in the septal wall, 6 dB, and in the posterior wall, 5 dB, while leaving the LV cavity at baseline. This outcome improves the signal of the myocardium relative to the LV cavity and shows promise as a myocardial perfusion UEA.
Collapse
Affiliation(s)
- Michael Cimorelli
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Michael A Flynn
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Brett Angel
- Cardiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Emily Reimold
- University Laboratory Animal Resources, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Aaron Fafarman
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Richard Huneke
- University Laboratory Animal Resources, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrew Kohut
- Cardiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven Wrenn
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
28
|
Cimorelli M, Flynn MA, Angel B, Fafarman A, Kohut A, Wrenn S. An Ultrasound Enhancing Agent with Nonlinear Acoustic Activity that Depends on the Presence of an Electric Field. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2370-2387. [PMID: 32616427 DOI: 10.1016/j.ultrasmedbio.2020.04.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
The nonlinear acoustic properties of microbubble ultrasound enhancing agents have allowed for the development of subharmonic, second harmonic, and contrast-pulse sequence ultrasound imaging modes, which enhance the quality, reduce the noise, and improve the diagnostic capabilities of clinical ultrasound. This study details acoustic scattering responses of perfluorobutane (PFB) microbubbles, an un-nested perfluoropentane (PFP) nanoemulsion, and two nested PFP nanoemulsions-one comprising a negatively charged phospholipid bilayer and another comprising a zwitterionic phospholipid bilayer-when excited at 1 or 2.25 MHz over a peak negative pressure range of 200 kPa to 4 MPa in the absence and presence of a 1-Hz, 1-V/cm electric field. The only sample that exhibited an increase in nonlinear activity in the presence of an electric field at both excitation frequencies was the negatively charged nested PFP nanoemulsion; the most pronounced effect was observed at an excitation of 2.25 MHz. Interestingly, the application of an electric field not only increased the nonlinear acoustic activity of the negatively charged nested PFP nanoemulsion but increased it beyond that seen when the nanoemulsion is un-nested and on the same scale as PFB microbubbles.
Collapse
Affiliation(s)
- Michael Cimorelli
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Michael A Flynn
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Brett Angel
- Cardiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Aaron Fafarman
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Andrew Kohut
- Cardiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven Wrenn
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
29
|
Jing B, Brown ME, Davis ME, Lindsey BD. Imaging the Activation of Low-Boiling-Point Phase-Change Contrast Agents in the Presence of Tissue Motion Using Ultrafast Inter-frame Activation Ultrasound Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1474-1489. [PMID: 32143861 PMCID: PMC7199438 DOI: 10.1016/j.ultrasmedbio.2020.01.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 05/13/2023]
Abstract
Nanoscale phase-change contrast agents (PCCAs) have been found to have great potential in non-invasive extravascular imaging and therapeutic delivery. However, the contrast-to-tissue ratio (CTR) of PCCA images is usually limited because of either physiological motion or incomplete cancelation of tissue signal. Therefore, to improve the CTR of PCCA images in the presence of physiological motion, a new imaging technique, ultrafast inter-frame activation ultrasound (UIAU) imaging, is proposed and validated. Results of studies with controlled motion in tissue-mimicking phantoms indicate UIAU could provide significantly higher CTRs (maximum: 17.3 ± 0.9 dB) relative to conventional pulse inversion imaging (maximum CTR: 3.4 ± 1.4 dB). UIAU has CTRs up to 16.1 ± 1.0 dB relative to 3.9 ± 2.3 dB for differential imaging in the presence of physiological motion at 20 mm/s. In vivo imaging of PCCAs in the rat liver also reveals the ability of UIAU to enhance PCCA image contrast in the presence of physiological motion.
Collapse
Affiliation(s)
- Bowen Jing
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Milton E Brown
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA; Children's Heart Research & Outcomes Center, Children's Healthcare of Atlanta & Emory University, Atlanta, Georgia, USA; Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Brooks D Lindsey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
30
|
Abdalkader R, Unga J, Yamashita F, Maruyama K, Hashida M. Evaluation of the Theranostic Potential of Perfluorohexane-Based Acoustic Nanodroplets. Biol Pharm Bull 2019; 42:2038-2044. [DOI: 10.1248/bpb.b19-00525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Rodi Abdalkader
- Institute for Advanced Study (KUIAS), Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University
| | - Johan Unga
- Faculty of Pharma-Sciences, Teikyo University
| | | | | | - Mitsuru Hashida
- Institute for Advanced Study (KUIAS), Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University
| |
Collapse
|
31
|
Meng Z, Zhou X, She J, Zhang Y, Feng L, Liu Z. Ultrasound-Responsive Conversion of Microbubbles to Nanoparticles to Enable Background-Free in Vivo Photoacoustic Imaging. NANO LETTERS 2019; 19:8109-8117. [PMID: 31597418 DOI: 10.1021/acs.nanolett.9b03331] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Photoacoustic (PA) imaging based on the photon-to-ultrasound conversion allows the imaging of optical absorbers in deep tissues with high spatial resolution. However, the inherent optical absorbance of biomolecules (e.g., hemoglobin, melanin, etc.) would show up as tissue background signals to interfere with signals from the contrast agent during in vivo PA imaging, limiting the imaging sensitivity. Herein, an ultrasound (US)-responsive PA imaging probe based on microbubbles (MBs) containing gold nanoparticles (Au NPs) is designed for in vivo "background-free" PA imaging. The obtained Au@lip MBs with separated Au NPs decorated within the lipid shell of MBs show low PA signals under near-infrared (NIR) excitation. Interestingly, under exposure to US pulses, those Au@lip MBs would burst to form nanoscale aggregates of Au@lip NPs, which exhibit significantly enhanced NIR PA signals due to their red-shifted surface plasmon resonance. Therefore, by subtracting the PA image captured pre-US burst from that captured post-US burst, the tissue background PA signals could be deducted to enable background-free PA imaging with high sensitivities as demonstrated by multiple ex vivo and in vivo experiments. This work presents a simple yet effective strategy to deduct background signals during PA imaging, which is promising for accurate PA detection of targets in tissues with a strong background.
Collapse
Affiliation(s)
- Zhouqi Meng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Xuanfang Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Jialin She
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Yaojia Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| |
Collapse
|
32
|
Nevozhay D, Weiger M, Friedl P, Sokolov KV. Spatiotemporally controlled nano-sized third harmonic generation agents. BIOMEDICAL OPTICS EXPRESS 2019; 10:3301-3316. [PMID: 31360600 PMCID: PMC6640828 DOI: 10.1364/boe.10.003301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 05/09/2023]
Abstract
Here, we present a new class of third harmonic generation (THG) imaging probes that can be activated with precise spatiotemporal control using non-linear excitation. These probes consist of lipid-coated perfluorocarbon nanodroplets with embedded visible chromophores. The droplets undergo phase transition from liquid to gas upon heating mediated by two-photon absorption of NIR light by the embedded dyes. Resulting microbubbles provide a sharp, local refractive index mismatch, which makes an excellent source of THG signal. Potential applications of these probes include activatable THG agents for biological imaging and "on-demand" delivery of various compounds under THG monitoring.
Collapse
Affiliation(s)
- Dmitry Nevozhay
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- School of Biomedicine, Far Eastern Federal University, 8 Sukhanova Street, Vladivostok, 690950, Russia
- Equal contribution
| | - Michael Weiger
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- Equal contribution
| | - Peter Friedl
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Cancer Genomics Centre, (CGC.nl), 3584 Utrecht, Netherlands
| | - Konstantin V. Sokolov
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- Department of Bioengineering, Rice University, 6100 Main St, Houston, TX 77005, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Austin, TX 78712, USA
| |
Collapse
|
33
|
Hallam KA, Emelianov SY. Toward optimization of blood brain barrier opening induced by laser-activated perfluorocarbon nanodroplets. BIOMEDICAL OPTICS EXPRESS 2019; 10:3139-3151. [PMID: 31360596 PMCID: PMC6640833 DOI: 10.1364/boe.10.003139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 05/09/2023]
Abstract
The blood brain barrier (BBB), a component of the brain's natural defense system, is often a roadblock for the monitoring and treatment of neurological disorders. Recently, we introduced a technique to open the blood brain barrier through the use of laser-activated perfluorohexane nanodroplets (PFHnDs), a phase-change nanoagent that undergoes repeated vaporization and recondensation when excited by a pulsed laser. Laser-activated PFHnDs were shown to enable noninvasive and localized opening of the BBB, allowing extravasation of various sized agents into the brain tissue. In this current work, the laser-activated PFHnD-induced BBB opening is further explored. In particular, laser fluence and the number of laser pulses used for the PFHnD-induced BBB opening are examined and evaluated both qualitatively and quantitatively to determine the effect of these parameters on BBB opening. The results of these studies show trends between increased laser fluence and an increased BBB opening as well as between an increased number of laser pulses and an increased BBB opening, however, with limitations on the extent of the BBB opening after a certain number of pulses. Overall, the results of these studies serve as a guideline to choosing suitable laser parameters for safe and effective BBB opening.
Collapse
Affiliation(s)
- Kristina A. Hallam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Stanislav Y. Emelianov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
34
|
Dumani DS, Sun IC, Emelianov SY. Ultrasound-guided immunofunctional photoacoustic imaging for diagnosis of lymph node metastases. NANOSCALE 2019; 11:11649-11659. [PMID: 31173038 PMCID: PMC6586492 DOI: 10.1039/c9nr02920f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Metastases, rather than primary tumors, determine mortality in the majority of cancer patients. A non-invasive immunofunctional imaging method was developed to detect sentinel lymph node (SLN) metastases using ultrasound-guided photoacoustic (USPA) imaging combined with glycol-chitosan-coated gold nanoparticles (GC-AuNPs) as an imaging contrast agent. GC-AuNPs, injected peritumorally into breast tumor-bearing mice, were taken up by immune cells, and subsequently transported to the SLN. Two-dimensional and three-dimensional USPA imaging was used to isolate the signal from GC-AuNP-tagged cells. Volumetric analysis was used to quantify GC-AuNP accumulation in the SLN after cellular uptake and transport by immune cells. The results show that the spatio-temporal distribution of GC-AuNPs in the SLN was affected by the presence of metastases. The parameter describing the spatial distribution of GC-AuNP-tagged cells within the SLN was more than 2-fold lower in metastatic lymph nodes compared with non-metastatic controls. Histological analysis confirmed that the distribution of GC-AuNP-tagged immune cells is changed by the presence of metastatic cells. The USPA immunofunctional imaging successfully distinguished metastatic from non-metastatic lymph nodes using biocompatible nanoparticles. This method could aid physicians in the detection of micrometastases, thus guiding SLN biopsy and avoiding unnecessary biopsy procedures.
Collapse
|
35
|
Liu CH, Nevozhay D, Zhang H, Das S, Schill A, Singh M, Aglyamov S, Sokolov KV, Larin KV. Longitudinal elastic wave imaging using nanobomb optical coherence elastography. OPTICS LETTERS 2019; 44:3162-3165. [PMID: 31199406 PMCID: PMC6805140 DOI: 10.1364/ol.44.003162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/23/2019] [Indexed: 05/20/2023]
Abstract
Wave-based optical coherence elastography (OCE) is a rapidly emerging technique for elasticity assessment of tissues having high displacement sensitivity and simple implementation. However, most current noncontact wave excitation techniques are unable to target a specific tissue site in 3D and rely on transversal scanning of the imaging beam. Here, we demonstrate that dye-loaded perfluorocarbon nanoparticles (nanobombs) excited by a pulsed laser can produce localized axially propagating longitudinal shear waves while adhering to the laser safety limit. A phase-correction method was developed and implemented to perform sensitive nanobomb elastography using a ∼1.5 MHz Fourier domain mode-locking laser. The nanobomb activation was also monitored by detecting photoacoustic signals. The highly localized elastic waves detected by the nanobomb OCE suggest the possibility of high-resolution 3D elastographic imaging.
Collapse
Affiliation(s)
- Chih-Hao Liu
- Department of Biomedical Engineering, University of Houston, Texas, 77204, USA
| | - Dmitry Nevozhay
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
- School of Biomedicine, Far Eastern Federal University, Vladivostok, 690090, Russian Federation
| | - Hongqiu Zhang
- Department of Biomedical Engineering, University of Houston, Texas, 77204, USA
| | - Susobhan Das
- Department of Biomedical Engineering, University of Houston, Texas, 77204, USA
| | - Alexander Schill
- Department of Biomedical Engineering, University of Houston, Texas, 77204, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Texas, 77204, USA
| | - Salavat Aglyamov
- Department of Mechanical Engineering, University of Houston, Texas, 77204, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Konstantin V. Sokolov
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Bioengineering, Rice University, Texas, 77030, USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Texas, 77204, USA
| |
Collapse
|
36
|
Yarmoska SK, Yoon H, Emelianov SY. Lipid Shell Composition Plays a Critical Role in the Stable Size Reduction of Perfluorocarbon Nanodroplets. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1489-1499. [PMID: 30975536 PMCID: PMC6491255 DOI: 10.1016/j.ultrasmedbio.2019.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 05/20/2023]
Abstract
Perfluorocarbon nanodroplets (PFCnDs) are phase-change contrast agents that have the potential to enable extravascular contrast-enhanced ultrasound and photoacoustic (US/PA) imaging. Producing consistently small, monodisperse PFCnDs remains a challenge without resorting to technically challenging methods. We investigated the impact of variable shell composition on PFCnD size and US/PA image properties. Our results suggest that increasing the molar percentage of PEGylated lipid reduces the size and size variance of PFCnDs. Furthermore, our imaging studies revealed that nanodroplets with more PEGylated lipids produce increased US/PA signal compared with those with the standard formulation. Finally, we highlight the ability of this approach to facilitate US/PA imaging in a murine model of breast cancer. These data indicate that, through a facile synthesis process, it is possible to produce monodisperse, small-sized PFCnDs. Novel in their simplicity, these methods may promote the use of PFCnDs among a broader user base to study a variety of extravascular phenomena.
Collapse
Affiliation(s)
- Steven K Yarmoska
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Heechul Yoon
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Stanislav Y Emelianov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia, USA; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
37
|
Santiesteban DY, Hallam KA, Yarmoska SK, Emelianov SY. Color-coded perfluorocarbon nanodroplets for multiplexed ultrasound and Photoacoustic imaging. NANO RESEARCH 2019; 12:741-747. [PMID: 31572565 PMCID: PMC6768563 DOI: 10.1007/s12274-019-2279-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/19/2018] [Accepted: 12/25/2018] [Indexed: 05/19/2023]
Abstract
Laser-activated perfluorocarbon nanodroplets are an emerging class of phase change, dual-contrast agents that can be utilized in ultrasound and photoacoustic imaging. Through the ability to differentiate subpopulations of nanodroplets via laser activation at different wavelengths of near-infrared light, optically-triggered color-coded perfluorocarbon nanodroplets present themselves as an attractive tool for multiplexed ultrasound and photoacoustic imaging. In particular, laser-activated droplets can be used to provide quantitative spatiotemporal information regarding distinct biological targets, allowing for their potential use in a wide range of diagnos tic and therapeutic applications. In the work presented, laser-activated color-coded perfluorocarbon nanodroplets are synthesized to selectively respond to laser irradiation at corresponding wavelengths. The dynamic ultrasound and photoacoustic signals produced by laser-activated perfluorocarbon nanodroplets are evaluated in situ prior to implementation in a murine model. In vivo, these particles are used to distinguish unique particle trafficking mechanisms and are shown to provide ultrasound and photoacoustic contrast for up to 72 hours within lymphatics. Overall, the conducted studies show that laser-activated color-coded perfluorocarbon nanodroplets are a promising agent for multiplexed ultrasound and photoacoustic imaging.
Collapse
Affiliation(s)
- Daniela Y. Santiesteban
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Kristina A. Hallam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- School of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Steven K. Yarmoska
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Stanislav Y. Emelianov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- School of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Corresponding author,
| |
Collapse
|
38
|
Zhu YI, Yoon H, Zhao AX, Emelianov SY. Leveraging the Imaging Transmit Pulse to Manipulate Phase-Change Nanodroplets for Contrast-Enhanced Ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:692-700. [PMID: 30703017 PMCID: PMC6545583 DOI: 10.1109/tuffc.2019.2895248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Phase-change perfluorohexane nanodroplets (PFHnDs) are a new class of recondensable submicrometer-sized contrast agents that have potential for contrast-enhanced and super-resolution ultrasound imaging with an ability to reach extravascular targets. The PFHnDs can be optically triggered to undergo vaporization, resulting in spatially stationary, temporally transient microbubbles. The vaporized PFHnDs are hyperechoic in ultrasound imaging for several to hundreds of milliseconds before recondensing to their native, hypoechoic, liquid nanodroplet state. The decay of echogenicity, i.e., the dynamic behavior of the ultrasound signal from optically triggered PFHnDs in ultrasound imaging, can be captured using high-frame-rate ultrasound imaging. We explore the possibility to manipulate the echogenicity dynamics of optically triggered PFHnDs in ultrasound imaging by changing the phase of the ultrasound imaging pulse. Specifically, the ultrasound imaging system was programmed to transmit two imaging pulses with inverse polarities. We show that the imaging pulse phase can affect the amplitude and the temporal behavior of PFHnD echogenicity in ultrasound imaging. The results of this study demonstrate that the ultrasound echogenicity is significantly increased (about 78% improvement) and the hyperechoic timespan of optically triggered PFHnDs is significantly longer (about four times) if the nanodroplets are imaged by an ultrasound pulse starting with rarefactional pressure versus a pulse starting with compressional pressure. Our finding has direct and significant implications for contrast-enhanced ultrasound imaging of droplets in applications such as super-resolution imaging and molecular imaging where detection of individual or low-concentration PFHnDs is required.
Collapse
|
39
|
Aliabouzar M, Kumar KN, Sarkar K. Effects of droplet size and perfluorocarbon boiling point on the frequency dependence of acoustic vaporization threshold. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:1105. [PMID: 30823782 PMCID: PMC7112712 DOI: 10.1121/1.5091781] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Phase shift liquid perfluorocarbon (PFC) droplets vaporizable by ultrasound into echogenic microbubble above a threshold pressure, termed acoustic droplet vaporization (ADV), are used for therapeutic and diagnostic applications. This study systematically investigated the effect of excitation frequency (2.25, 10, and 15 MHz) on the ADV and inertial cavitation (IC) thresholds of lipid-coated PFC droplets of three different liquid cores-perfluoropentane (PFP), perfluorohexane (PFH), and perfluorooctyl bromide (PFOB)-and of two different sizes-average diameters smaller than 3 μm and larger than 10 μm-in a tubeless setup. This study found that the ADV threshold increases with frequency for the lowest boiling point liquid, PFP, for both large and small size droplets. For higher boiling point liquids, PFH and PFOB, this study did not detect vaporization for small size droplets at the excitation levels (maximum 4 MPa peak negative) studied here. The large PFOB droplets experienced ADV only at the highest excitation frequency 15 MHz. For large PFH droplets, ADV threshold decreases with frequency that could possibly be due to the superharmonic focusing being a significant effect at larger sizes and the higher excitation pressures. ADV thresholds at all the frequencies studied here occurred at lower rarefactional pressures than IC thresholds indicating that phase transition precedes inertial cavitation.
Collapse
Affiliation(s)
- Mitra Aliabouzar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Krishna N Kumar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Kausik Sarkar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
40
|
Mou C, Yang Y, Bai Y, Yuan P, Wang Y, Zhang L. Hyaluronic acid and polydopamine functionalized phase change nanoparticles for ultrasound imaging-guided photothermal-chemotherapy. J Mater Chem B 2019; 7:1246-1257. [DOI: 10.1039/c8tb03056a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hyaluronic acid and polydopamine functionalized phase change nanoparticles for ultrasound imaging-guided photothermal-chemotherapy.
Collapse
Affiliation(s)
- Chongyan Mou
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- College of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Yang Yang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
- Institute of Ultrasound Imaging
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Yan Bai
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- College of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Pei Yuan
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- College of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Yiwu Wang
- Experimental Teaching and Management Center
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Liangke Zhang
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- College of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| |
Collapse
|
41
|
Yoon H, Hallam KA, Yoon C, Emelianov SY. Super-Resolution Imaging With Ultrafast Ultrasound Imaging of Optically Triggered Perfluorohexane Nanodroplets. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:2277-2285. [PMID: 29993686 PMCID: PMC6325306 DOI: 10.1109/tuffc.2018.2829740] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Super-resolution imaging with moving microbubbles has shown potential in identifying fine details of deep-lying vascular compartments. To image the extravascular targets, this paper has employed nanometer-sized, optically triggered perfluorohexane nanodroplets (PFHnDs). In response to pulsed laser irradiation, the PFHnDs repeatedly vaporize and stochastically recondense, resulting in random changes of ultrasound signals. Our previous study has shown that the stochastic recondensation of the PFHnDs can be used to isolate individual PFHnDs for super-resolution imaging. This paper introduces an improved method for super-resolution imaging with ultrafast ultrasound imaging of PFHnDs. The previous method was based on subtraction of two consecutive ultrasound images to detect signals from recondensed, isolated droplets, whereas our current method compounds respective multiple pre- and post-recondensation ultrafast ultrasound images prior to subtraction to improve the spatial resolution further. To evaluate the axial and lateral resolutions of our method, we repeatedly imaged a phantom containing PFHnDs using a programmable ultrasound system synchronized with a pulsed laser system. As a result, our method improved the lateral and axial resolutions by 54% and 68%, respectively, over the previous super-resolution imaging approach, indicating that it can be used for localizing extravascular molecular targets with superior accuracy.
Collapse
Affiliation(s)
- Heechul Yoon
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA ()
| | - Kristina A. Hallam
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332 USA
| | - Changhan Yoon
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongsangnam-do 50834 Republic of Korea
| | - Stanislav Y. Emelianov
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA, and with Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332 USA ()
| |
Collapse
|
42
|
Hallam KA, Donnelly EM, Karpiouk AB, Hartman RK, Emelianov SY. Laser-activated perfluorocarbon nanodroplets: a new tool for blood brain barrier opening. BIOMEDICAL OPTICS EXPRESS 2018; 9:4527-4538. [PMID: 30615730 PMCID: PMC6157760 DOI: 10.1364/boe.9.004527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/08/2018] [Accepted: 08/20/2018] [Indexed: 05/03/2023]
Abstract
A major obstacle in the monitoring and treatment of neurological diseases is the blood brain barrier (BBB), a semipermeable barrier that prevents the delivery of many therapeutics and imaging contrast agents to the brain. In this work, we explored the possibility of laser-activated perfluorocarbon nanodroplets (PFCnDs) to open the BBB and deliver agents to the brain tissue. Specifically, near infrared (NIR) dye-loaded PFCnDs comprised of a perfluorocarbon (PFC) core with a boiling point above physiological temperature were repeatedly vaporized and recondensed from liquid droplet to gas bubble under pulsed laser excitation. As a result, this pulse-to-pulse repeated behavior enabled the recurring interaction of PFCnDs with the endothelial lining of the BBB, allowing for a BBB opening and extravasation of dye into the brain tissue. The blood brain barrier opening and delivery of agents to tissue was confirmed on the macro and the molecular level by evaluating Evans Blue staining, ultrasound-guided photoacoustic (USPA) imaging, and histological tissue analysis. The demonstrated PFCnD-assisted pulsed laser method for BBB opening, therefore, represents a tool that has the potential to enable non-invasive, cost-effective, and efficient image-guided delivery of contrast and therapeutic agents to the brain.
Collapse
Affiliation(s)
- Kristina A. Hallam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eleanor M. Donnelly
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrei B. Karpiouk
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Robin K. Hartman
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Stanislav Y. Emelianov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
43
|
Zlitni A, Gambhir SS. Molecular imaging agents for ultrasound. Curr Opin Chem Biol 2018; 45:113-120. [PMID: 29631121 PMCID: PMC6609297 DOI: 10.1016/j.cbpa.2018.03.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 12/28/2022]
Abstract
Ultrasound (US) imaging is a safe, sensitive and affordable imaging modality with a wide usage in the clinic. US signal can be further enhanced by using echogenic contrast agents (UCAs) which amplify the US signal. Developments in UCAs which are targeted to sites of disease allow the use of US imaging to provide molecular information. Unfortunately, traditional UCAs are too large to leave the vascular space limiting the application of molecular US to intravascular markers. In this mini review, we highlight the most recent reports on the application of molecular US imaging in the clinic and summarize the latest nanoparticle platforms used to develop nUCAs. We believe that the highlighted technologies will have a great impact on the evolution of the US imaging field.
Collapse
Affiliation(s)
- Aimen Zlitni
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, United States
| | - Sanjiv S Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, United States; Department of Bioengineering, Department of Materials Science and Engineering, Stanford University, Stanford, CA, United States.
| |
Collapse
|
44
|
Yoon H, Emelianov SY. Combined Multiwavelength Photoacoustic and Plane-Wave Ultrasound Imaging for Probing Dynamic Phase-Change Contrast Agents. IEEE Trans Biomed Eng 2018; 66:595-598. [PMID: 29993455 DOI: 10.1109/tbme.2018.2849077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The purpose of this study was to introduce combined multiwavelength photoacoustic (PA) and plane-wave ultrasound (US) imaging referred to as mwPA/pwUS imaging capable of probing the rapid dynamic behavior of optically activated phase-change contrast agents. METHODS A dedicated mwPA/pwUS imaging sequence was developed based on a programmable US system synchronized with a tunable laser to irradiate tissue with laser pulses at desired optical wavelengths and to acquire post laser pulse PA images followed by ultrafast plane-wave US images. To evaluate the mwPA/pwUS imaging, a capillary filled with optically responsive perfluorohexane nanodroplets (PFHnDs) containing a dye with the peak absorption at 760 nm was imaged with optical wavelengths ranging from 700 to 940 nm. The differences between post-laser ultrafast US images [i.e., differential US (ΔUS)] were taken to visualize the recondensation dynamics of PFHnDs at each wavelength. RESULTS The PA images of PFHnDs showed higher contrast near 760 nm wavelength, corresponding to the peak absorption of the dye encapsulated in the PFHnDs. Moreover, the ΔUS signals immediately after 760-nm pulsed laser irradiation were also high due to the increased US contrast associated with vaporized PFHnDs. CONCLUSION The mwPA/pwUS imaging allowed for the US-based optical spectroscopic characterization of PFHnDs and their dynamics. SIGNIFICANCE The introduced mwPA/pwUS imaging sequence can be used in various clinical applications where both spectroscopic PA imaging of endogenous and/or exogenous chromophores and ultrafast US imaging of phase-change nanodroplets are desired.
Collapse
|
45
|
Li X, Wang D, Ran H, Hao L, Cao Y, Ao M, Zhang N, Song J, Zhang L, Yi H, Wang Z, Li P. A preliminary study of photoacoustic/ultrasound dual-mode imaging in melanoma using MAGE-targeted gold nanoparticles. Biochem Biophys Res Commun 2018; 502:255-261. [PMID: 29802849 DOI: 10.1016/j.bbrc.2018.05.155] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/22/2018] [Indexed: 11/29/2022]
Abstract
Nanoprobes are small enough to circulate within the vasculature and can reach tumour tissues through the endothelial gap, providing a new strategy for accurate tumour monitoring and imaging-guided antitumour therapy at the molecular level. Both photoacoustic and ultrasonic imaging are noninvasive tools for cancer detection via the application of nanoprobes. In this study, a polymeric multifunctional nanoparticle probe loaded with gold nanorods (Au-NRs) and liquid perfluorocarbon (perfluorinated hexane/PFH) and conjugated to a monoclonal antibody (MAGE-1 antibody) to melanoma-associated antigens (MAGE) targeting melanoma was successfully prepared by the double emulsion and carbodiimide methods as a targeted photoacoustic/ultrasound dual-mode imaging contrast agent (MAGE-Au-PFH-NPs). Cell-targeting experiments in vitro showed large amounts of MAGE-Au-PFH-NPs surrounding B16 melanoma cells in the targeted group. The photoacoustic signal in the targeted group was significantly increased, and the duration was longer than that in the untargeted group in vivo. The photoacoustic signal of the nanoprobes was enhanced with increased Au-NR concentration in the photoacoustic experiment in vitro. The enhanced signal was observed by ultrasound after 808-nm laser irradiation. A cytotoxicity and biocompatibility test showed that MAGE-Au-PFH-NPs exhibited good biological safety. The MAGE-Au-PFH-NPs can be used as a photoacoustic/ultrasound dual-mode contrast agent to lay the foundation for a promising new approach for the noninvasive targeting, monitoring and treatment of tumours.
Collapse
Affiliation(s)
- Xuelin Li
- Institute of Ultrasound ImagingofChongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, China
| | - Dong Wang
- The First Affiliated Hospital of Chongqing Medical University, Department of Ultrasound, Chongqing 400016, China
| | - Haitao Ran
- Institute of Ultrasound ImagingofChongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, China
| | - Lan Hao
- Institute of Ultrasound ImagingofChongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, China
| | - Yang Cao
- Institute of Ultrasound ImagingofChongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, China
| | - Meng Ao
- Institute of Ultrasound ImagingofChongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, China
| | - Nan Zhang
- Institute of Ultrasound ImagingofChongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, China
| | - Jiao Song
- Institute of Ultrasound ImagingofChongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, China
| | - Liang Zhang
- Institute of Ultrasound ImagingofChongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, China
| | - Hengjing Yi
- Institute of Ultrasound ImagingofChongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, China
| | - Zhigang Wang
- Institute of Ultrasound ImagingofChongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, China.
| | - Pan Li
- Institute of Ultrasound ImagingofChongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, China.
| |
Collapse
|
46
|
Cao Y, Chen Y, Yu T, Guo Y, Liu F, Yao Y, Li P, Wang D, Wang Z, Chen Y, Ran H. Drug Release from Phase-Changeable Nanodroplets Triggered by Low-Intensity Focused Ultrasound. Am J Cancer Res 2018; 8:1327-1339. [PMID: 29507623 PMCID: PMC5835939 DOI: 10.7150/thno.21492] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022] Open
Abstract
Background: As one of the most effective triggers with high tissue-penetrating capability and non-invasive feature, ultrasound shows great potential for controlling the drug release and enhancing the chemotherapeutic efficacy. In this study, we report, for the first time, construction of a phase-changeable drug-delivery nanosystem with programmable low-intensity focused ultrasound (LIFU) that could trigger drug-release and significantly enhance anticancer drug delivery. Methods: Liquid-gas phase-changeable perfluorocarbon (perfluoropentane) and an anticancer drug (doxorubicin) were simultaneously encapsulated in two kinds of nanodroplets. By triggering LIFU, the nanodroplets could be converted into microbubbles locally in tumor tissues for acoustic imaging and the loaded anticancer drug (doxorubicin) was released after the microbubble collapse. Based on the acoustic property of shell materials, such as shell stiffness, two types of nanodroplets (lipid-based nanodroplets and PLGA-based nanodroplets) were activated by different acoustic pressure levels. Ultrasound irradiation duration and power of LIFU were tested and selected to monitor and control the drug release from nanodroplets. Various ultrasound energies were introduced to induce the phase transition and microbubble collapse of nanodroplets in vitro (3 W/3 min for lipid nanodroplets; 8 W/3 min for PLGA nanodroplets). Results: We detected three steps in the drug-releasing profiles exhibiting the programmable patterns. Importantly, the intratumoral accumulation and distribution of the drug with LIFU exposure were significantly enhanced, and tumor proliferation was substantially inhibited. Co-delivery of two drug-loaded nanodroplets could overcome the physical barriers of tumor tissues during chemotherapy. Conclusion: Our study provides a new strategy for the efficient ultrasound-triggered chemotherapy by nanocarriers with programmable LIFU capable of achieving the on-demand drug release.
Collapse
|
47
|
Lacour T, Guédra M, Valier-Brasier T, Coulouvrat F. A model for acoustic vaporization dynamics of a bubble/droplet system encapsulated within a hyperelastic shell. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:23. [PMID: 29390781 DOI: 10.1121/1.5019467] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanodroplets have great, promising medical applications such as contrast imaging, embolotherapy, or targeted drug delivery. Their functions can be mechanically activated by means of focused ultrasound inducing a phase change of the inner liquid known as the acoustic droplet vaporization (ADV) process. In this context, a four-phases (vapor + liquid + shell + surrounding environment) model of ADV is proposed. Attention is especially devoted to the mechanical properties of the encapsulating shell, incorporating the well-known strain-softening behavior of Mooney-Rivlin material adapted to very large deformations of soft, nearly incompressible materials. Various responses to ultrasound excitation are illustrated, depending on linear and nonlinear mechanical shell properties and acoustical excitation parameters. Different classes of ADV outcomes are exhibited, and a relevant threshold ensuring complete vaporization of the inner liquid layer is defined. The dependence of this threshold with acoustical, geometrical, and mechanical parameters is also provided.
Collapse
Affiliation(s)
- Thomas Lacour
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7190, Institut Jean Le Rond ∂'Alembert, F-75005 Paris, France
| | - Matthieu Guédra
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7190, Institut Jean Le Rond ∂'Alembert, F-75005 Paris, France
| | - Tony Valier-Brasier
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7190, Institut Jean Le Rond ∂'Alembert, F-75005 Paris, France
| | - François Coulouvrat
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7190, Institut Jean Le Rond ∂'Alembert, F-75005 Paris, France
| |
Collapse
|
48
|
Yoon H, Yarmoska SK, Hannah AS, Yoon C, Hallam KA, Emelianov SY. Contrast-enhanced ultrasound imaging in vivo with laser-activated nanodroplets. Med Phys 2017; 44:3444-3449. [PMID: 28391597 PMCID: PMC5503159 DOI: 10.1002/mp.12269] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/04/2017] [Accepted: 04/04/2017] [Indexed: 12/16/2022] Open
Abstract
PURPOSE This study introduces a real-time contrast-enhanced ultrasound imaging method with recently developed laser-activated nanodroplets (LANDs), a new class of phase-change nanometer-scale contrast agents that provides perceptible, sustained high-contrast with ultrasound. METHODS In response to pulsed laser irradiation, the LANDs-, which contain liquid perfluorohexane and optical fuses-blink (vaporize and recondense). That is, they change their state from liquid nanodroplets to gas microbubbles, and then back to liquid nanodroplets. In their gaseous microbubble state, the LANDs provide high-contrast ultrasound, but the microbubbles formed in situ typically recondense in tens of milliseconds. As a result, LAND visualization by standard, real-time ultrasound is limited. However, the periodic optical triggering of LANDs allows us to observe corresponding transient, periodic changes in ultrasound contrast. This study formulates a probability function that measures how ultrasound temporal signals vary in periodicity. Then, the estimated probability is mapped onto a B-scan image to construct a LAND-localized, contrast-enhanced image. We verified our method through phantom and in vivo experiments using an ultrasound system (Vevo 2100, FUJIFILM VisualSonics, Inc., Toronto, ON, Canada) operating with a 40-MHz linear array and interfaced with a 10 Hz Nd:YAG laser (Phocus, Opotek Inc., Carlsbad, CA, USA) operating at the fundamental 1064 nm wavelength. RESULTS From the phantom study, the results showed improvements in the contrast-to-noise ratio of our approach over conventional ultrasound ranging from 129% to 267%, with corresponding execution times of 0.10 to 0.29 s, meaning that the developed method is computationally efficient while yielding high-contrast ultrasound. Furthermore, in vivo sentinel lymph node (SLN) imaging results demonstrated that our technique could accurately identify the SLN. CONCLUSIONS The results indicate that our approach enables efficient and robust LAND localization in real time with substantially improved contrast, which is essential for the successful translation of this contrast agent platform to clinical settings.
Collapse
Affiliation(s)
- Heechul Yoon
- School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGeorgia30332USA
| | - Steven K. Yarmoska
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory University School of MedicineAtlantaGeorgia30332USA
| | - Alexander S. Hannah
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory University School of MedicineAtlantaGeorgia30332USA
- Applied Physics LaboratoryCenter for Industrial and Medical UltrasoundUniversity of WashingtonSeattleWashington98105USA
| | - Changhan Yoon
- Department of Biomedical EngineeringInje UniversityGimhaeGyeongnam621‐749Korea
| | - Kristina A. Hallam
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory University School of MedicineAtlantaGeorgia30332USA
| | - Stanislav Y. Emelianov
- School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGeorgia30332USA
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory University School of MedicineAtlantaGeorgia30332USA
| |
Collapse
|