1
|
Kondengadan SM, Wang B. Quantitative Factors Introduced in the Feasibility Analysis of Reactive Oxygen Species (ROS)-Sensitive Triggers. Angew Chem Int Ed Engl 2024; 63:e202403880. [PMID: 38630918 PMCID: PMC11192588 DOI: 10.1002/anie.202403880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
Reactive oxygen species (ROS) are critical for cellular signaling. Various pathophysiological conditions are also associated with elevated levels of ROS. Hence, ROS-sensitive triggers have been extensively used for selective payload delivery. Such applications are predicated on two key functions: (1) a sufficient magnitude of concentration difference for the interested ROS between normal tissue/cells and intended sites and (2) appropriate reaction kinetics to ensure a sufficient level of selectivity for payload release. Further, ROS refers to a group of species with varying reactivity, which should not be viewed as a uniform group. In this review, we critically analyze data on the concentrations of different ROS species under various pathophysiological conditions and examine how reaction kinetics affect the success of ROS-sensitive linker chemistry. Further, we discuss different ROS linker chemistry in the context of their applications in drug delivery and imaging. This review brings new insights into research in ROS-triggered delivery, highlights factors to consider in maximizing the chance for success and discusses pitfalls to avoid.
Collapse
Affiliation(s)
- Shameer M. Kondengadan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
2
|
Cardoso MA, Gonçalves HMR, Davis F. Reactive oxygen species in biological media are they friend or foe? Major In vivo and In vitro sensing challenges. Talanta 2023; 260:124648. [PMID: 37167678 DOI: 10.1016/j.talanta.2023.124648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/07/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
The role of Reactive Oxygen Species (ROS) on biological media has been shifting over the years, as the knowledge on the complex mechanism that lies in underneath their production and overall results has been growing. It has been known for some time that these species are associated with a number of health conditions. However, they also participate in the immunoactivation cascade process, and can have an active role in theranostics. Macrophages, for example, react to the presence of pathogens through ROS production, potentially allowing the development of new therapeutic strategies. However, their short lifetime and limited spatial distribution of ROS have been limiting factors to the development and understanding of this phenomenon. Even though, ROS have shown successful theranostic applications, e.g., photodynamic therapy, their wide applicability has been hampered by the lack of effective tools for monitoring these processes in real time. Thus the development of innovative sensing strategies for in vivo monitoring of the balance between ROS concentration and the resultant immune response is of the utmost relevance. Such knowledge could lead to major breakthroughs towards the development of more effective treatments for neurodegenerative diseases. Within this review we will present the current understanding on the interaction mechanisms of ROS with biological systems and their overall effect. Additionally, the most promising sensing tools developed so far, for both in vivo and in vitro tracking will be presented along with their main limitations and advantages. This review focuses on the four main ROS that have been studied these are: singlet oxygen species, hydrogen peroxide, hydroxyl radical and superoxide anion.
Collapse
Affiliation(s)
- Marita A Cardoso
- REQUIMTE, Instituto Superior de Engenharia Do Porto, 4200-072, Porto, Portugal
| | - Helena M R Gonçalves
- REQUIMTE, Instituto Superior de Engenharia Do Porto, 4200-072, Porto, Portugal; Biosensor NTech - Nanotechnology Services, Lda, Avenida da Liberdade, 249, 1° Andar, 1250-143, Lisboa, Portugal.
| | - Frank Davis
- Department of Engineering and Applied Design University of Chichester, Bognor Regis, West Sussex, PO21 1HR, UK
| |
Collapse
|
3
|
Kasumba DM, Huot S, Caron E, Fortin A, Laflamme C, Zamorano Cuervo N, Lamontagne F, Pouliot M, Grandvaux N. DUOX2 regulates secreted factors in virus-infected respiratory epithelial cells that contribute to neutrophil attraction and activation. FASEB J 2023; 37:e22765. [PMID: 36607642 PMCID: PMC10107641 DOI: 10.1096/fj.202201205r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/10/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
The first line of defense against respiratory viruses relies on the antiviral and proinflammatory cytokine response initiated in infected respiratory epithelial cells. The cytokine response not only restricts virus replication and spreading, but also orchestrates the subsequent immune response. The epithelial Dual Oxidase 2 (DUOX2) has recently emerged as a regulator of the interferon antiviral response. Here, we investigated the role of DUOX2 in the inflammatory cytokine response using a model of A549 cells deficient in DUOX2 generated using Crispr-Cas9 and infected by Sendai virus. We found that the absence of DUOX2 selectively reduced the induction of a restricted panel of 14 cytokines and chemokines secreted in response to Sendai virus by 20 to 89%. The secreted factors produced by epithelial cells upon virus infection promoted the migration, adhesion, and degranulation of primary human neutrophils, in part through the DUOX2-dependent secretion of TNF and chemokines. In contrast, DUOX2 expression did not impact neutrophil viability or NETosis, thereby highlighting a selective impact of DUOX2 in neutrophil functions. Overall, this study unveils previously unrecognized roles of epithelial DUOX2 in the epithelial-immune cells crosstalk during respiratory virus infection.
Collapse
Affiliation(s)
- Dacquin M Kasumba
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Sandrine Huot
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada.,Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec - Université Laval, Québec City, Québec, Canada
| | - Elise Caron
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Audray Fortin
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Cynthia Laflamme
- Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec - Université Laval, Québec City, Québec, Canada
| | - Natalia Zamorano Cuervo
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Felix Lamontagne
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Marc Pouliot
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada.,Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec - Université Laval, Québec City, Québec, Canada
| | - Nathalie Grandvaux
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
4
|
Geraskevich AV, Solomonenko AN, Dorozhko EV, Korotkova EI, Barek J. Electrochemical Sensors for the Detection of Reactive Oxygen Species in Biological Systems: A Critical Review. Crit Rev Anal Chem 2022; 54:742-774. [PMID: 35867547 DOI: 10.1080/10408347.2022.2098669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Reactive oxygen species (ROS) involving superoxide anion, hydrogen peroxide and hydroxyl radical play important role in human health. ROS are known to be the markers of oxidative stress associated with different pathologies including neurodegenerative and cardiovascular diseases, as well as cancer. Accordingly, ROS level detection in biological systems is an essential problem for biomedical and analytical research. Electrochemical methods seem to have promising prospects in ROS determination due to their high sensitivity, rapidity, and simple equipment. This review demonstrates application of modern electrochemical sensors for ROS detection in biological objects (e.g., cell lines and body fluids) over a decade between 2011 and 2021. Particular attention is paid to sensors materials and various types of modifiers for ROS selective detection. Moreover, the sensors comparative characteristics, their main advantages, disadvantages and their possibilities and limitations are discussed.
Collapse
Affiliation(s)
- Alina V Geraskevich
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Anna N Solomonenko
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Elena V Dorozhko
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Elena I Korotkova
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Jiří Barek
- UNESCO Laboratory of Environmental Electrochemistry, Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czechia, Czech Republic
| |
Collapse
|
5
|
Min Q, Ni Z, You M, Liu M, Zhou Z, Ke H, Ji X. Chemiexcitation-Triggered Prodrug Activation for Targeted Carbon Monoxide Delivery. Angew Chem Int Ed Engl 2022; 61:e202200974. [PMID: 35385195 DOI: 10.1002/anie.202200974] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 12/15/2022]
Abstract
Photolysis-based prodrug strategy can address some critical drug delivery issues, which otherwise are very challenging to tackle with traditional prodrug strategy. However, the need for external light irradiation significantly hampers its in vivo application due to the poor light accessibility of deep tissue. Herein, we propose a new strategy of chemiexcitation-triggered prodrug activation, wherein a photoresponsive prodrug is excited for drug payload release by chemiexcitation instead of photoirradiation. As such, the bond-cleavage power of photolysis can be employed to address some critical drug delivery issues while obviating the need for external light irradiation. We have established the proof of concept by the successful development of a chemiexcitation responsive carbon monoxide delivery platform, which exhibited specific CO release at the tumor site and pronounced tumor suppression effects. We anticipate that such a concept of chemiexcitation-triggered prodrug activation can be leveraged for the targeted delivery of other small molecule-based drug payloads.
Collapse
Affiliation(s)
- Qingqiang Min
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Zihui Ni
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Meng You
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Miao Liu
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Zhou Zhou
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Hengte Ke
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Xingyue Ji
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 215021, China
| |
Collapse
|
6
|
Velasco E, Delicado‐Miralles M, Hellings PW, Gallar J, Van Gerven L, Talavera K. Epithelial and sensory mechanisms of nasal hyperreactivity. Allergy 2022; 77:1450-1463. [PMID: 35174893 DOI: 10.1111/all.15259] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
"Nasal hyperreactivity" is a key feature in various phenotypes of upper airway diseases, whereby reactions of the nasal epithelium to diverse chemical and physical stimuli are exacerbated. In this review, we illustrate how nasal hyperreactivity can result from at least three types of mechanisms: (1) impaired barrier function, (2) hypersensitivity to external and endogenous stimuli, and (3) potentiation of efferent systems. We describe the known molecular basis of hyperreactivity related to the functional impairment of epithelial cells and somatosensory innervation, and indicate that the thermal, chemical, and mechanical sensors determining hyperreactivity in humans remain to be identified. We delineate research directions that may provide new insights into nasal hyperreactivity associated with rhinitis/rhinosinusitis pathophysiology and therapeutics. The elucidation of the molecular mechanisms underlying nasal hyperreactivity is essential for the treatment of rhinitis according to the precepts of precision medicine.
Collapse
Affiliation(s)
- Enrique Velasco
- Instituto de Neurociencias Universidad Miguel Hernández‐CSIC San Juan de Alicante Spain
- The European University of Brain and Technology‐Neurotech EU San Juan de Alicante Spain
| | | | - Peter W. Hellings
- Department of Otorhinolaryngology University Hospitals Leuven Leuven Belgium
| | - Juana Gallar
- Instituto de Neurociencias Universidad Miguel Hernández‐CSIC San Juan de Alicante Spain
- The European University of Brain and Technology‐Neurotech EU San Juan de Alicante Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante San Juan de Alicante Spain
| | - Laura Van Gerven
- Department of Otorhinolaryngology University Hospitals Leuven Leuven Belgium
- Department of Microbiology, Immunology and transplantation, Allergy and Clinical Immunology Research Unit KU Leuven Leuven Belgium
- Department of Neurosciences, Experimental Otorhinolaryngology, Rhinology Research KU Leuven Leuven Belgium
| | - Karel Talavera
- Laboratory of Ion Channel Research Department of Cellular and Molecular Medicine KU Leuven, VIB‐KU Leuven Center for Brain & Disease Research Leuven Belgium
| |
Collapse
|
7
|
Min Q, Ni Z, You M, Liu M, Zhou Z, Ke H, Ji X. Chemiexcitation‐Triggered Prodrug Activation for Targeted Carbon Monoxide Delivery. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Zihui Ni
- Soochow University Department of Pharmaceutics CHINA
| | - Meng You
- Soochow University Department of Pharmaceutics CHINA
| | - Miao Liu
- Soochow University Department of Medicinal Chemistry CHINA
| | - Zhou Zhou
- Soochow University Department of Medicinal Chemistry CHINA
| | - Hengte Ke
- Soochow University Department of Pharmaceutics CHINA
| | - Xingyue Ji
- Soochow University College of Pharmaceutical Science NO 199 Renai Road 215021 Suzhou CHINA
| |
Collapse
|
8
|
Wang B, Zeng H, Zuo X, Yang X, Wang X, He D, Yuan J. TLR4-Dependent DUOX2 Activation Triggered Oxidative Stress and Promoted HMGB1 Release in Dry Eye. Front Med (Lausanne) 2022; 8:781616. [PMID: 35096875 PMCID: PMC8793023 DOI: 10.3389/fmed.2021.781616] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/09/2021] [Indexed: 12/30/2022] Open
Abstract
Dry eye disease (DED) is one of the most common ocular surface diseases worldwide. DED has been characterized by excessive accumulation of reactive oxygen species (ROS), following significant corneal epithelial cell death and ocular surface inflammation. However, the key regulatory factor remains unclear. In this study, we tended to explore whether DUOX2 contributed to DED development and the underlying mechanism. Human corneal epithelial (HCE) cells were treated with hyperosmolarity, C57BL/6 mice were injected of subcutaneous scopolamine to imitate DED. Expression of mRNA was investigated by RNA sequencing (RNA-seq) and quantitative real-time PCR (qPCR). Protein changes and distribution of DUOX2, high mobility group box 1 (HMGB1), Toll-like receptor 4 (TLR4), and 4-hydroxynonenal (4-HNE) were evaluated by western blot assays and immunofluorescence. Cell death was assessed by Cell Counting Kit-8 (CCK8), lactate dehydrogenase (LDH) release, and propidium iodide (PI) staining. Cellular ROS levels and mitochondrial membrane potential (MMP) were analyzed by flow cytometry. RNA-seq and western blot assay indicated a significant increase of DUOX2 dependent of TLR4 activation in DED both in vitro and in vivo. Immunofluorescence revealed significant translocation of HMGB1 within corneal epithelial cells under hyperosmolar stress. Interestingly, after ablated DUOX2 expression by siRNA, we found a remarkable decrease of ROS level and recovered MMP in HCE cells. Moreover, knockdown of DUOX2 greatly inhibited HMGB1 release, protected cell viability and abolished inflammatory activation. Taken together, our data here suggest that upregulation of DUOX2 plays a crucial role in ROS production, thereafter, induce HMGB1 release and cell death, which triggers ocular surface inflammation in DED.
Collapse
Affiliation(s)
- Bowen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Hao Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Xin Zuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Xue Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Dalian He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Dumas A, Knaus UG. Raising the 'Good' Oxidants for Immune Protection. Front Immunol 2021; 12:698042. [PMID: 34149739 PMCID: PMC8213335 DOI: 10.3389/fimmu.2021.698042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Redox medicine is a new therapeutic concept targeting reactive oxygen species (ROS) and secondary reaction products for health benefit. The concomitant function of ROS as intracellular second messengers and extracellular mediators governing physiological redox signaling, and as damaging radicals instigating or perpetuating various pathophysiological conditions will require selective strategies for therapeutic intervention. In addition, the reactivity and quantity of the oxidant species generated, its source and cellular location in a defined disease context need to be considered to achieve the desired outcome. In inflammatory diseases associated with oxidative damage and tissue injury, ROS source specific inhibitors may provide more benefit than generalized removal of ROS. Contemporary approaches in immunity will also include the preservation or even elevation of certain oxygen metabolites to restore or improve ROS driven physiological functions including more effective redox signaling and cell-microenvironment communication, and to induce mucosal barrier integrity, eubiosis and repair processes. Increasing oxidants by host-directed immunomodulation or by exogenous supplementation seems especially promising for improving host defense. Here, we summarize examples of beneficial ROS in immune homeostasis, infection, and acute inflammatory disease, and address emerging therapeutic strategies for ROS augmentation to induce and strengthen protective host immunity.
Collapse
Affiliation(s)
- Alexia Dumas
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Min HJ, Park JS, Kim KS, Park SY, Choi H, Seo JH, Kang M, Yoon JH, Kim CH, Kim S, Cho HJ. Th2 cytokines-DUOX2-ROS-HMGB1 translocation axis is important in the pathogenesis of allergic rhinitis. Clin Sci (Lond) 2021; 135:483-494. [PMID: 33458745 DOI: 10.1042/cs20201212] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/21/2022]
Abstract
The function of high-mobility group box 1 (HMGB1) varies according to its location. However, the translocation mechanism behind HMGB1 remains unclear. We hypothesize that type 2 helper T cell (Th2) cytokines are involved in the translocation of HMGB1 in the upper airway epithelium. We investigated the mechanism behind HMGB1 translocation using Th2 cytokine stimulation and examined the clinical significance of HMGB1 translocation in allergic rhinitis (AR). Cytoplasmic and extracellular HMGB1 were increased in AR. Inhibiting HMGB1 translocation with glycyrrhizic acid (GA) decreased the level of antigen-specific immunoglobulin E (IgE), the degree of Periodic Acid-Schiff (PAS), and Sirius Red staining in the murine model. The in vivo reactive oxygen species (ROS) level in the nasal mucosa was higher in the mice with AR than in the controls. Th2 cytokine-induced up-regulation of the ROS and translocation of HMGB1 by Th2 cytokines was dependent on the generated ROS. The ROS level also increased in the murine model. We suggest that the Th2 cytokine-dual oxidase (DUOX)2-ROS-HMGB1 translocation axis is important in AR pathogenesis.
Collapse
Affiliation(s)
- Hyun Jin Min
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Joon Soon Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Kyung Soo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Seung Yong Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Honghwan Choi
- Division of Chemical Engineering, Konkuk University, Seoul, Republic of Korea
| | - Ju Hee Seo
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Miran Kang
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joo-Heon Yoon
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang-Hoon Kim
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sehoon Kim
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Hyung-Ju Cho
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Xu Y, Yang W, Zhang B. ROS-responsive probes for low-background optical imaging: a review. Biomed Mater 2021; 16:022002. [PMID: 33142272 DOI: 10.1088/1748-605x/abc745] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Optical imaging is a facile tool for visualizing biological processes and disease progression, but its image quality is largely limited by light-induced autofluorescence or background signals. To overcome this issue, low-background optical-imaging techniques including chemiluminescence imaging, afterglow imaging and photoacoustic imaging have been developed, based on their unique working mechanisms, which are: the detection of light emissions from chemical reactions, the cessation of light excitation before signal collection, and the detection of ultrasonic signals instead of light signals, respectively. Stimuli-responsive probes are highly desirable for improved imaging results since they can significantly reduce surrounding interference signals. Reactive oxygen species (ROS), which are closely implicated in a series of diseases such as cancer and inflammation, are frequently employed as initiators for responsive agents to selectively change the imaging signal. Thus, ROS-responsive agents incorporated into low-background imaging techniques can achieve a more promising imaging quality. In this review, recent advances in ROS-responsive probes for low-background optical-imaging techniques are summarized. Moreover, the approaches to improving the sensitivity of probes and tissue penetration depth are discussed in detail. In particular, we highlight the reaction mechanisms between the probes and ROS, revealing the potential for low-background optical imaging.
Collapse
Affiliation(s)
- Yan Xu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | | | | |
Collapse
|
12
|
Ye S, Hananya N, Green O, Chen H, Zhao AQ, Shen J, Shabat D, Yang D. A Highly Selective and Sensitive Chemiluminescent Probe for Real‐Time Monitoring of Hydrogen Peroxide in Cells and Animals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005429] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sen Ye
- Morningside Laboratory for Chemical Biology and Department of Chemistry The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI) The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Nir Hananya
- School of Chemistry Faculty of Exact Sciences Tel Aviv University Tel Aviv 69978 Israel
| | - Ori Green
- School of Chemistry Faculty of Exact Sciences Tel Aviv University Tel Aviv 69978 Israel
| | - Hansen Chen
- School of Chinese Medicine The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Angela Qian Zhao
- Morningside Laboratory for Chemical Biology and Department of Chemistry The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI) The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Jiangang Shen
- School of Chinese Medicine The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Doron Shabat
- School of Chemistry Faculty of Exact Sciences Tel Aviv University Tel Aviv 69978 Israel
| | - Dan Yang
- Morningside Laboratory for Chemical Biology and Department of Chemistry The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI) The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
13
|
Ye S, Hananya N, Green O, Chen H, Zhao AQ, Shen J, Shabat D, Yang D. A Highly Selective and Sensitive Chemiluminescent Probe for Real-Time Monitoring of Hydrogen Peroxide in Cells and Animals. Angew Chem Int Ed Engl 2020; 59:14326-14330. [PMID: 32472602 DOI: 10.1002/anie.202005429] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Indexed: 12/25/2022]
Abstract
Selective and sensitive molecular probes for hydrogen peroxide (H2 O2 ), which plays diverse roles in oxidative stress and redox signaling, are urgently needed to investigate the physiological and pathological effects of H2 O2 . A lack of reliable tools for in vivo imaging has hampered the development of H2 O2 mediated therapeutics. By combining a specific tandem Payne/Dakin reaction with a chemiluminescent scaffold, H2 O2 -CL-510 was developed as a highly selective and sensitive probe for detection of H2 O2 both in vitro and in vivo. A rapid 430-fold enhancement of chemiluminescence was triggered directly by H2 O2 without any laser excitation. Arsenic trioxide induced oxidative damage in leukemia was successfully detected. In particular, cerebral ischemia-reperfusion injury-induced H2 O2 fluxes were visualized in rat brains using H2 O2 -CL-510, providing a new chemical tool for real-time monitoring of H2 O2 dynamics in living animals.
Collapse
Affiliation(s)
- Sen Ye
- Morningside Laboratory for Chemical Biology and Department of Chemistry, The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Nir Hananya
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ori Green
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Angela Qian Zhao
- Morningside Laboratory for Chemical Biology and Department of Chemistry, The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Doron Shabat
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Dan Yang
- Morningside Laboratory for Chemical Biology and Department of Chemistry, The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
14
|
Cui D, Li J, Zhao X, Pu K, Zhang R. Semiconducting Polymer Nanoreporters for Near-Infrared Chemiluminescence Imaging of Immunoactivation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906314. [PMID: 31833600 DOI: 10.1002/adma.201906314] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Real-time in vivo imaging of immunoactivation is critical for longitudinal evaluation of cancer immunotherapy, which, however, is rarely demonstrated. This study reports semiconducting polymer nanoreporters (SPNRs) with superoxide anion (O2 •- )-activatable chemiluminescence signals for in vivo imaging of immunoactivation during cancer immunotherapy. SPNRs are designed to comprise an SP and a caged chemiluminescence phenoxy-dioxetane substrate, which respectively serve as the chemiluminescence acceptor and donor to enable intraparticle chemiluminescence resonance energy transfer. SPNRs are intrinsically fluorescent but only become chemiluminescent upon activation by O2 •- . Representing the first O2 •- -activatable near-infrared chemiluminescent reporter, SPNR3 sensitively differentiates higher O2 •- levels in immune cells from other cells including cancer and normal cells. Following systemic administration, SPNR3 passively accumulates into tumors in living mice and activates the chemiluminescence signals responding to the concentration of O2 •- in the tumor microenvironment. Moreover, the enhancement of in vivo chemiluminescence signal after cancer immunotherapy is correlated with increased population of T cells in the tumor, proving its feasibility in tracking of T cell activation. Thus, SPNRs represent the first kind of chemiluminescent reporters competent for in vivo imaging of immunoactivation.
Collapse
Affiliation(s)
- Dong Cui
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Xuhui Zhao
- The Affiliated Da Yi Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Ruiping Zhang
- The Affiliated Da Yi Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, P. R. China
| |
Collapse
|
15
|
Li J, Pu K. Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem Soc Rev 2019; 48:38-71. [DOI: 10.1039/c8cs00001h] [Citation(s) in RCA: 709] [Impact Index Per Article: 141.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent progress in developing organic semiconducting materials (OSMs) for deep-tissue optical imaging, cancer phototherapy and biological photoactivation is summarized.
Collapse
Affiliation(s)
- Jingchao Li
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| |
Collapse
|