1
|
Ullah A, Chen Y, Singla RK, Cao D, Shen B. Pro-inflammatory cytokines and CXC chemokines as game-changer in age-associated prostate cancer and ovarian cancer: Insights from preclinical and clinical studies' outcomes. Pharmacol Res 2024; 204:107213. [PMID: 38750677 DOI: 10.1016/j.phrs.2024.107213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Prostate cancer (PC) and Ovarian cancer (OC) are two of the most common types of cancer that affect the reproductive systems of older men and women. These cancers are associated with a poor quality of life among the aged population. Therefore, finding new and innovative ways to detect, treat, and prevent these cancers in older patients is essential. Finding biomarkers for these malignancies will increase the chance of early detection and effective treatment, subsequently improving the survival rate. Studies have shown that the prevalence and health of some illnesses are linked to an impaired immune system. However, the age-associated changes in the immune system during malignancies such as PC and OC are poorly understood. Recent research has suggested that the excessive production of inflammatory immune mediators, such as interleukin-6 (IL-6), interleukin-8 (IL-8), transforming growth factor (TGF), tumor necrosis factor (TNF), CXC motif chemokine ligand 1 (CXCL1), CXC motif chemokine ligand 12 (CXCL12), and CXC motif chemokine ligand 13 (CXCL13), etc., significantly impact the development of PC and OC in elderly patients. Our review focuses on the latest functional studies of pro-inflammatory cytokines (interleukins) and CXC chemokines, which serve as biomarkers in elderly patients with PC and OC. Thus, we aim to shed light on how these biomarkers affect the development of PC and OC in elderly patients. We also examine the current status and future perspective of cytokines (interleukins) and CXC chemokines-based therapeutic targets in OC and PC treatment for elderly patients.
Collapse
Affiliation(s)
- Amin Ullah
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yongxiu Chen
- Gynecology Department, Guangdong Women and Children Hospital, No. 521, Xingnan Road, Panyu District, Guangzhou 511442, China
| | - Rajeev K Singla
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Dan Cao
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bairong Shen
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Huldani H, Abdul-Jabbar Ali S, Al-Dolaimy F, Hjazi A, Denis Andreevich N, Oudaha KH, Almulla AF, Alsaalamy A, Kareem Oudah S, Mustafa YF. The potential role of interleukins and interferons in ovarian cancer. Cytokine 2023; 171:156379. [PMID: 37757536 DOI: 10.1016/j.cyto.2023.156379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
Ovarian cancer poses significant challenges and remains a highly lethal disease with limited treatment options. In the context of ovarian cancer, interleukins (ILs) and interferons (IFNs), important cytokines that play crucial roles in regulating the immune system, have emerged as significant factors influencing its development. This article provides a comprehensive review of the involvement of various ILs, including those from the IL-1 family, IL-2 family, IL-6 family, IL-8 family, IL-10 family, and IL-17 family, in ovarian cancer. The focus is on their impact on tumor growth, metastasis, and their role in evading immune responses within the tumor microenvironment. Additionally, the article conducts an in-depth examination of the oncogenic or antitumor roles of each IL in the context of ovarian cancer pathogenesis and progression. Besides, we elucidated the enhancements in the treatment of ovarian cancer through the utilization of type-I IFN and type-II IFN. Recent research has shed light on the intricate mechanisms through which specific ILs and IFNs contribute to the advancement of the disease. By incorporating recent findings, this review also seeks to inspire further investigations into unexplored mechanisms, fostering ongoing research to develop more effective therapeutic strategies for ovarian cancer. Moreover, through an in-depth analysis of IL- and IFN-associated clinical trials, we have highlighted their promising potential of in the treatment of ovarian cancer. These clinical trials serve to reinforce the significant outlook for utilizing ILs and IFNs as therapeutic agents in combating this disease.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | | | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Khulood H Oudaha
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Abbas F Almulla
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Shamam Kareem Oudah
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
3
|
Sitaru S, Budke A, Bertini R, Sperandio M. Therapeutic inhibition of CXCR1/2: where do we stand? Intern Emerg Med 2023; 18:1647-1664. [PMID: 37249756 PMCID: PMC10227827 DOI: 10.1007/s11739-023-03309-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
Mounting experimental evidence from in vitro and in vivo animal studies points to an essential role of the CXCL8-CXCR1/2 axis in neutrophils in the pathophysiology of inflammatory and autoimmune diseases. In addition, the pathogenetic involvement of neutrophils and the CXCL8-CXCR1/2 axis in cancer progression and metastasis is increasingly recognized. Consequently, therapeutic targeting of CXCR1/2 or CXCL8 has been intensively investigated in recent years using a wide array of in vitro and animal disease models. While a significant benefit for patients with unwanted neutrophil-mediated inflammatory conditions may be expected from a potential clinical use of inhibitors, their use in severe infections or sepsis might be problematic and should be carefully and thoroughly evaluated in animal models and clinical trials. Translating the approaches using inhibitors of the CXCL8-CXCR1/2 axis to cancer therapy is definitively a new and promising research avenue, which parallels the ongoing efforts to clearly define the involvement of neutrophils and the CXCL8-CXCR1/2 axis in neoplastic diseases. Our narrative review summarizes the current literature on the activation and inhibition of these receptors in neutrophils, key inhibitor classes for CXCR2 and the therapeutic relevance of CXCR2 inhibition focusing here on gastrointestinal diseases.
Collapse
Affiliation(s)
- Sebastian Sitaru
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilian University, Großhaderner Str. 9, Planegg-Martinsried, 82152, Munich, Germany
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Agnes Budke
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilian University, Großhaderner Str. 9, Planegg-Martinsried, 82152, Munich, Germany
| | | | - Markus Sperandio
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilian University, Großhaderner Str. 9, Planegg-Martinsried, 82152, Munich, Germany.
| |
Collapse
|
4
|
Lizcano-Meneses S, Hernández-Pando R, García-Aguirre I, Bonilla-Delgado J, Alvarado-Castro VM, Cisneros B, Gariglio P, Cortés-Malagón EM. Combined Inhibition of Indolamine-2,3-Dioxygenase 1 and C-X-C Chemokine Receptor Type 2 Exerts Antitumor Effects in a Preclinical Model of Cervical Cancer. Biomedicines 2023; 11:2280. [PMID: 37626777 PMCID: PMC10452145 DOI: 10.3390/biomedicines11082280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Cervical cancer is a public health problem diagnosed in advanced stages, and its main risk factor is persistent high-risk human papillomavirus infection. Today, it is necessary to study new treatment strategies, such as immunotherapy, that use different targets of the tumor microenvironment. In this study, the K14E7E2 mouse was used as a cervical cancer model to evaluate the inhibition of indolamine-2,3-dioxygenase 1 (IDO-1) and C-X-C chemokine receptor type 2 (CXCR-2) as potential anti-tumor targets. DL-1MT and SB225002 were administered for 30 days in two regimens (R1 and R2) based on combination and single therapy approaches to inhibit IDO-1 and CXCR-2, respectively. Subsequently, the reproductive tracts were resected and analyzed to determine the tumor areas, and IHCs were performed to assess proliferation, apoptosis, and CD8 cellular infiltration. Our results revealed that combined inhibition of IDO-1 and CXCR-2 significantly reduces the areas of cervical tumors (from 196.0 mm2 to 58.24 mm2 in R1 and 149.6 mm2 to 52.65 mm2 in R2), accompanied by regions of moderate dysplasia, decreased papillae, and reduced inflammation. Furthermore, the proliferation diminished, and apoptosis and intra-tumoral CD8 T cells increased. In conclusion, the combined inhibition of IDO-1 and CXCR-2 is helpful in the antitumor response against preclinical cervical cancer.
Collapse
Affiliation(s)
- Solangy Lizcano-Meneses
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.L.-M.)
| | - Rogelio Hernández-Pando
- Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico
| | - Ian García-Aguirre
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Instituto Tecnologico y de Estudios Superiores de Monterrey, Ciudad de México, Mexico City 14380, Mexico
| | - José Bonilla-Delgado
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Instituto Tecnologico y de Estudios Superiores de Monterrey, Toluca 50110, Mexico
- Research Unit, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico
| | | | - Bulmaro Cisneros
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.L.-M.)
| | - Patricio Gariglio
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.L.-M.)
| | - Enoc Mariano Cortés-Malagón
- Research Division, Hospital Juárez de México, Mexico City 07760, Mexico
- Genetics Laboratory, Hospital Nacional Homeopático, Mexico City 06800, Mexico
| |
Collapse
|
5
|
Fu X, Wang Q, Du H, Hao H. CXCL8 and the peritoneal metastasis of ovarian and gastric cancer. Front Immunol 2023; 14:1159061. [PMID: 37377954 PMCID: PMC10291199 DOI: 10.3389/fimmu.2023.1159061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
CXCL8 is the most representative chemokine produced autocrine or paracrine by tumor cells, endothelial cells and lymphocytes. It can play a key role in normal tissues and tumors by activating PI3K-Akt, PLC, JAK-STAT, and other signaling pathways after combining with CXCR1/2. The incidence of peritoneal metastasis in ovarian and gastric cancer is extremely high. The structure of the peritoneum and various peritoneal-related cells supports the peritoneal metastasis of cancers, which readily produces a poor prognosis, low 5-year survival rate, and the death of patients. Studies show that CXCL8 is excessively secreted in a variety of cancers. Thus, this paper will further elaborate on the mechanism of CXCL8 and the peritoneal metastasis of ovarian and gastric cancer to provide a theoretical basis for the proposal of new methods for the prevention, diagnosis, and treatment of cancer peritoneal metastasis.
Collapse
|
6
|
Hanelova K, Raudenska M, Kratochvilova M, Navratil J, Vicar T, Bugajova M, Gumulec J, Masarik M, Balvan J. Autophagy modulators influence the content of important signalling molecules in PS-positive extracellular vesicles. Cell Commun Signal 2023; 21:120. [PMID: 37226246 DOI: 10.1186/s12964-023-01126-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/06/2023] [Indexed: 05/26/2023] Open
Abstract
Extracellular vesicles (EVs) are important mediators of intercellular communication in the tumour microenvironment. Many studies suggest that cancer cells release higher amounts of EVs exposing phosphatidylserine (PS) at the surface. There are lots of interconnections between EVs biogenesis and autophagy machinery. Modulation of autophagy can probably affect not only the quantity of EVs but also their content, which can deeply influence the resulting pro-tumourigenic or anticancer effect of autophagy modulators. In this study, we found that autophagy modulators autophinib, CPD18, EACC, bafilomycin A1 (BAFA1), 3-hydroxychloroquine (HCQ), rapamycin, NVP-BEZ235, Torin1, and starvation significantly alter the composition of the protein content of phosphatidylserine-positive EVs (PS-EVs) produced by cancer cells. The greatest impact had HCQ, BAFA1, CPD18, and starvation. The most abundant proteins in PS-EVs were proteins typical for extracellular exosomes, cytosol, cytoplasm, and cell surface involved in cell adhesion and angiogenesis. PS-EVs protein content involved mitochondrial proteins and signalling molecules such as SQSTM1 and TGFβ1 pro-protein. Interestingly, PS-EVs contained no commonly determined cytokines, such as IL-6, IL-8, GRO-α, MCP-1, RANTES, and GM-CSF, which indicates that secretion of these cytokines is not predominantly mediated through PS-EVs. Nevertheless, the altered protein content of PS-EVs can still participate in the modulation of the fibroblast metabolism and phenotype as p21 was accumulated in fibroblasts influenced by EVs derived from CPD18-treated FaDu cells. The altered protein content of PS-EVs (data are available via ProteomeXchange with identifier PXD037164) also provides information about the cellular compartments and processes that are affected by the applied autophagy modulators. Video Abstract.
Collapse
Affiliation(s)
- Klara Hanelova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Monika Kratochvilova
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jiri Navratil
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Tomas Vicar
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3058/10, Brno, Czech Republic
| | - Maria Bugajova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jaromir Gumulec
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- First Faculty of Medicine, Charles University, Katerinska 32, 12108, Prague, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
7
|
Korbecki J, Bosiacki M, Barczak K, Łagocka R, Brodowska A, Chlubek D, Baranowska-Bosiacka I. Involvement in Tumorigenesis and Clinical Significance of CXCL1 in Reproductive Cancers: Breast Cancer, Cervical Cancer, Endometrial Cancer, Ovarian Cancer and Prostate Cancer. Int J Mol Sci 2023; 24:ijms24087262. [PMID: 37108425 PMCID: PMC10139049 DOI: 10.3390/ijms24087262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
C-X-C motif chemokine ligand 1 (CXCL1) is a member of the CXC chemokine subfamily and a ligand for CXCR2. Its main function in the immune system is the chemoattraction of neutrophils. However, there is a lack of comprehensive reviews summarizing the significance of CXCL1 in cancer processes. To fill this gap, this work describes the clinical significance and participation of CXCL1 in cancer processes in the most important reproductive cancers: breast cancer, cervical cancer, endometrial cancer, ovarian cancer, and prostate cancer. The focus is on both clinical aspects and the significance of CXCL1 in molecular cancer processes. We describe the association of CXCL1 with clinical features of tumors, including prognosis, ER, PR and HER2 status, and TNM stage. We present the molecular contribution of CXCL1 to chemoresistance and radioresistance in selected tumors and its influence on the proliferation, migration, and invasion of tumor cells. Additionally, we present the impact of CXCL1 on the microenvironment of reproductive cancers, including its effect on angiogenesis, recruitment, and function of cancer-associated cells (macrophages, neutrophils, MDSC, and Treg). The article concludes by summarizing the significance of introducing drugs targeting CXCL1. This paper also discusses the significance of ACKR1/DARC in reproductive cancers.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 Str., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ryta Łagocka
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Agnieszka Brodowska
- Department of Gynecology, Endocrinology and Gynecological Oncology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
8
|
Mo Y, Leung LL, Mak CSL, Wang X, Chan WS, Hui LMN, Tang HWM, Siu MKY, Sharma R, Xu D, Tsui SKW, Ngan HYS, Yung MMH, Chan KKL, Chan DW. Tumor-secreted exosomal miR-141 activates tumor-stroma interactions and controls premetastatic niche formation in ovarian cancer metastasis. Mol Cancer 2023; 22:4. [PMID: 36624516 PMCID: PMC9827705 DOI: 10.1186/s12943-022-01703-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Metastatic colonization is one of the critical steps in tumor metastasis. A pre-metastatic niche is required for metastatic colonization and is determined by tumor-stroma interactions, yet the mechanistic underpinnings remain incompletely understood. METHODS PCR-based miRNome profiling, qPCR, immunofluorescent analyses evaluated the expression of exosomal miR-141 and cell-to-cell communication. LC-MS/MS proteomic profiling and Dual-Luciferase analyses identified YAP1 as the direct target of miR-141. Human cytokine profiling, ChIP, luciferase reporter assays, and subcellular fractionation analyses confirmed YAP1 in modulating GROα production. A series of in vitro tumorigenic assays, an ex vivo model and Yap1 stromal conditional knockout (cKO) mouse model demonstrated the roles of miR-141/YAP1/GROα/CXCR1/2 signaling cascade. RNAi, CRISPR/Cas9 and CRISPRi systems were used for gene silencing. Blood sera, OvCa tumor tissue samples, and tissue array were included for clinical correlations. RESULTS Hsa-miR-141-3p (miR-141), an exosomal miRNA, is highly secreted by ovarian cancer cells and reprograms stromal fibroblasts into proinflammatory cancer-associated fibroblasts (CAFs), facilitating metastatic colonization. A mechanistic study showed that miR-141 targeted YAP1, a critical effector of the Hippo pathway, reducing the nuclear YAP1/TAZ ratio and enhancing GROα production from stromal fibroblasts. Stromal-specific knockout (cKO) of Yap1 in murine models shaped the GROα-enriched microenvironment, facilitating in vivo tumor colonization, but this effect was reversed after Cxcr1/2 depletion in OvCa cells. The YAP1/GROα correlation was demonstrated in clinical samples, highlighting the clinical relevance of this research and providing a potential therapeutic intervention for impeding premetastatic niche formation and metastatic progression of ovarian cancers. CONCLUSIONS This study uncovers miR-141 as an OvCa-derived exosomal microRNA mediating the tumor-stroma interactions and the formation of tumor-promoting stromal niche through activating YAP1/GROα/CXCRs signaling cascade, providing new insight into therapy for OvCa patients with peritoneal metastases.
Collapse
Affiliation(s)
- Yulan Mo
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Leanne L. Leung
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Celia S. L. Mak
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Xueyu Wang
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Wai-Sun Chan
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Lynn M. N. Hui
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Hermit W. M. Tang
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Michelle K. Y. Siu
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Rakesh Sharma
- grid.194645.b0000000121742757Centre for PanorOmic Sciences Proteomics and Metabolomics Core, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Dakang Xu
- grid.16821.3c0000 0004 0368 8293Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Stephen K. W. Tsui
- grid.10784.3a0000 0004 1937 0482School of Biomedical Sciences, The Chinese University of Hong Kong, SAR Hong Kong, China
| | - Hextan Y. S. Ngan
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Mingo M. H. Yung
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Karen K. L. Chan
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - David W. Chan
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China ,grid.10784.3a0000 0004 1937 0482School of Biomedical Sciences, The Chinese University of Hong Kong, SAR Hong Kong, China ,grid.511521.3School of Medicine, The Chinese University of Hong Kong-Shenzhen, Shenzhen, 518172 China
| |
Collapse
|
9
|
Zhan S, Yung MMH, Siu MKY, Jiao P, Ngan HYS, Chan DW, Chan KKL. New Insights into Ferroptosis Initiating Therapies (FIT) by Targeting the Rewired Lipid Metabolism in Ovarian Cancer Peritoneal Metastases. Int J Mol Sci 2022; 23:ijms232315263. [PMID: 36499591 PMCID: PMC9737695 DOI: 10.3390/ijms232315263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/24/2022] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is one of the most lethal gynecological cancers worldwide. The poor prognosis of this malignancy is substantially attributed to the inadequate symptomatic biomarkers for early diagnosis and effective remedies to cure the disease against chemoresistance and metastasis. Ovarian cancer metastasis is often relatively passive, and the single clusters of ovarian cancer cells detached from the primary ovarian tumor are transcoelomic spread by the peritoneal fluid throughout the peritoneum cavity and omentum. Our earlier studies revealed that lipid-enriched ascitic/omental microenvironment enforced metastatic ovarian cancer cells to undertake metabolic reprogramming and utilize free fatty acids as the main energy source for tumor progression and aggression. Intriguingly, cell susceptibility to ferroptosis has been tightly correlated with the dysregulated fatty acid metabolism (FAM), and enhanced iron uptake as the prominent features of ferroptosis are attributed to the strengthened lipid peroxidation and aberrant iron accumulation, suggesting that ferroptosis induction is a targetable vulnerability to prevent cancer metastasis. Therefore, the standpoints about tackling altered FAM in combination with ferroptosis initiation as a dual-targeted therapy against advanced ovarian cancer were highlighted herein. Furthermore, a discussion on the prospect and challenge of inducing ferroptosis as an innovative therapeutic approach for reversing remedial resistance in cancer interventions was included. It is hoped this proof-of-concept review will indicate appropriate directions for speeding up the translational application of ferroptosis-inducing compounds (FINs) to improve the efficacy of ovarian cancer treatment.
Collapse
Affiliation(s)
- Shijie Zhan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mingo M. H. Yung
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Michelle K. Y. Siu
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Peili Jiao
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hextan Y. S. Ngan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - David W. Chan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Medicine, The Chinese University of Hong Kong-Shenzhen, Shenzhen 518172, China
- Correspondence: (D.W.C.); (K.K.L.C.); Tel.: +86-755-2351-6153 (D.W.C.); +852-2255-4260 (K.K.L.C.); Fax: +852-2255-0947 (K.K.L.C.)
| | - Karen K. L. Chan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Correspondence: (D.W.C.); (K.K.L.C.); Tel.: +86-755-2351-6153 (D.W.C.); +852-2255-4260 (K.K.L.C.); Fax: +852-2255-0947 (K.K.L.C.)
| |
Collapse
|
10
|
Israr M, DeVoti JA, Papayannakos CJ, Bonagura VR. Role of chemokines in HPV-induced cancers. Semin Cancer Biol 2022; 87:170-183. [PMID: 36402301 DOI: 10.1016/j.semcancer.2022.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Human papillomaviruses (HPVs) cause cancers of the uterine cervix, oropharynx, anus, and vulvovaginal tract. Low-risk HPVs, such as HPV6 and 11, can also cause benign mucosal lesions including genital warts, and in patients with recurrent respiratory papillomatosis, lesions in the larynx, and on occasion, in the lungs. However, both high and less tumorigenic HPVs share a striking commonality in manipulating both innate and adaptive immune responses in HPV- infected keratinocytes, the natural host for HPV infection. In addition, immune/inflammatory cell infiltration into the tumor microenvironment influences cancer growth and prognosis, and this process is tightly regulated by different chemokines. Chemokines are small proteins and exert their biological effects by binding with G protein-coupled chemokine receptors (GPCRs) that are found on the surfaces of select target cells. Chemokines are not only involved in the establishment of a pro-tumorigenic microenvironment and organ-directed metastases but also involved in disease progression through enhancing tumor cell growth and proliferation. Therefore, having a solid grasp on chemokines and immune checkpoint modulators can help in the treatment of these cancers. In this review, we discuss the recent advances on the expression patterns and regulation of the main chemokines found in HPV-induced cancers, and their effects on both immune and non-immune cells in these lesions. Importantly, we also present the current knowledge of therapeutic interventions on the expression of specific chemokine and their receptors that have been shown to influence the development and progression of HPV-induced cancers.
Collapse
Affiliation(s)
- Mohd Israr
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - James A DeVoti
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Christopher J Papayannakos
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Vincent R Bonagura
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.
| |
Collapse
|
11
|
Ismail A, Abulsoud AI, Fathi D, Elshafei A, El-Mahdy HA, Elsakka EG, Aglan A, Elkhawaga SY, Doghish AS. The role of miRNAs in Ovarian Cancer Pathogenesis and Therapeutic Resistance - A Focus on Signaling Pathways Interplay. Pathol Res Pract 2022; 240:154222. [DOI: 10.1016/j.prp.2022.154222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
|
12
|
Kulinczak M, Sromek M, Panek G, Zakrzewska K, Lotocka R, Szafron LM, Chechlinska M, Siwicki JK. Endometrial Cancer-Adjacent Tissues Express Higher Levels of Cancer-Promoting Genes than the Matched Tumors. Genes (Basel) 2022; 13:genes13091611. [PMID: 36140779 PMCID: PMC9527013 DOI: 10.3390/genes13091611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Molecular alterations in tumor-adjacent tissues have recently been recognized in some types of cancer. This phenomenon has not been studied in endometrial cancer. We aimed to analyze the expression of genes associated with cancer progression and metabolism in primary endometrial cancer samples and the matched tumor-adjacent tissues and in the samples of endometria from cancer-free patients with uterine leiomyomas. Paired samples of tumor-adjacent tissues and primary tumors from 49 patients with endometrial cancer (EC), samples of endometrium from 25 patients with leiomyomas of the uterus, and 4 endometrial cancer cell lines were examined by the RT-qPCR, for MYC, NR5A2, CXCR2, HMGA2, LIN28A, OCT4A, OCT4B, OCT4B1, TWIST1, STK11, SNAI1, and miR-205-5p expression. The expression levels of MYC, NR5A2, SNAI1, TWIST1, and STK11 were significantly higher in tumor-adjacent tissues than in the matched EC samples, and this difference was not influenced by the content of cancer cells in cancer-adjacent tissues. The expression of MYC, NR5A2, and SNAI1 was also higher in EC-adjacent tissues than in samples from cancer-free patients. In addition, the expression of MYC and CXCR2 in the tumor related to non-endometrioid adenocarcinoma and reduced the risk of recurrence, respectively, and higher NR5A2 expression in tumor-adjacent tissue increased the risk of death. In conclusion, tissues proximal to EC present higher levels of some cancer-promoting genes than the matched tumors. Malignant tumor-adjacent tissues carry a diagnostic potential and emerge as new promising target of anticancer therapy.
Collapse
Affiliation(s)
- Mariusz Kulinczak
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Maria Sromek
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Grzegorz Panek
- Department of Gynecologic Oncology and Obstetrics, Centre of Postgraduate Medical Education, 00-416 Warsaw, Poland
| | - Klara Zakrzewska
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Renata Lotocka
- Cancer Molecular and Genetic Diagnostics Laboratory, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Lukasz Michal Szafron
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Magdalena Chechlinska
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Jan Konrad Siwicki
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-546-2787
| |
Collapse
|
13
|
Man X, Yang X, Wei Z, Tan Y, Li W, Jin H, Wang B. High expression level of CXCL1/GROα is linked to advanced stage and worse survival in uterine cervical cancer and facilitates tumor cell malignant processes. BMC Cancer 2022; 22:712. [PMID: 35764974 PMCID: PMC9241244 DOI: 10.1186/s12885-022-09749-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 05/31/2022] [Indexed: 11/22/2022] Open
Abstract
Background CXCL1 belongs to a member of the ELR + CXC chemokine subgroups that also known as GRO-alpha. It has been recognized that several types of human cancers constitutively express CXCL1, which may serve as a crucial mediator involved in cancer development and metastasis via an autocrine and/or paracrine fashion. However, the expression pattern and clinical significance of CXCL1 in human uterine cervix cancer (UCC), as well as its roles and mechanisms in UCC tumor biology remains entirely unclear. Methods The expression and clinical significance of CXCL1 in UCC tissues was explored using immunohistochemistry and bioinformatics analyses. The expression and effects of CXCL1 in HeLa UCC cells were assessed using ELISA, CCK-8 and transwell assays. Western blotting experiments were performed to evaluate the potential mechanism of CXCL1 on malignant behaviors of HeLa UCC cells. Results The current study demonstrated that CXCL1 was expressed in HeLa UCC cells, PHM1-41 human immortalized cervical stromal cells, as well as cervical tissues, with UCC tissues having an evidently high level of CXCL1. This high level of CXCL1 in cancer tissues was notably related to poor clinical stages and worse survival probability, rather than tumor infiltration and patient age. In addition, CXCL1 expression was extremely correlated with CCL20, CXCL8 and CXCL3 cancer-associated chemokines expression. In vitro, the growth and migration abilities of HeLa cells were significantly enhanced in the presence of exogenous CXCL1. Gain-function assay revealed that CXCL1 overexpression significantly promoted growth and migration response in HeLa cells in both autocrine and paracrine manners. Finally, we found that CXCL1 overexpression in HeLa cells influenced the expression of ERK signal-related genes, and HeLa cell malignant behaviors derived from CXCL1 overexpression were further interrupted in the presence of the ERK1/2 blocker. Conclusion Our findings demonstrate the potential roles of CXCL1 as a promoter and a novel understanding of the functional relationship between CXCL1 and the ERK signaling pathway in UCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09749-0.
Collapse
Affiliation(s)
- Xiaxia Man
- Department of Oncologic Gynecology, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xiaolin Yang
- Department of Geriatrics, The First hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Zhentong Wei
- Department of Oncologic Gynecology, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yuying Tan
- Department of Echocardiography, The First hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Wanying Li
- Department of Oncologic Gynecology, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Hongjuan Jin
- Department of Plastic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| | - Baogang Wang
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
14
|
Tang L, Liu XX, Yang XD, Tan S, Zou ZW. A compound formulation of EGF-modified paclitaxel micelles and EGF-modified emodin micelles enhance the therapeutic effect of ovarian cancer. J Liposome Res 2022; 33:89-101. [PMID: 35706398 DOI: 10.1080/08982104.2022.2086568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ovarian cancer is a serious threat to female health, although the incidence of it is relatively low, its mortality rate remains high due to its intense invasion and metastasis. Therefore, it is urgent to explore new treatment strategies for ovarian cancer. In this study, paclitaxel and emodin were encapsulated in different micelles, and loaded on the surface of the micelles with epidermal growth factor (EGF) as the targeting molecule, made compound formulations in proportion. In this study, EGF-modified paclitaxel micelles and EGF-modified emodin micelles were characterized, their inhibitory effects on SKOV3 cell proliferation and invasion were studied in vivo and in vitro, and its targeting ability was confirmed. The results showed that the shape, particle size, zeta potential, release rate, encapsulation rate, polydispersity index, and other physical and chemical properties of EGF-modified paclitaxel micelles plus EGF-modified emodin micelles meet the requirements, and the modification of EGF on the micelle surface could obviously improve the uptake of SKOV3 cells and inhibit the proliferation of SKOV3 cells. The compound formulation can inhibit the invasion and metastasis of ovarian cancer by inhibiting the expression of hypoxia inducible factor-α, MMP-2, MMP-9, and VE-cadherin. The in vivo studies have also showed significant pharmacodynamics results. These results indicated that EGF-modified paclitaxel micelles plus EGF-modified emodin micelles provide a new strategy for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ling Tang
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xiu-Xiu Liu
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xiao-Dan Yang
- Department of Obstetrics and Gynecology, Dalian Municipal Women and Children's Medical Center, Dalian, China
| | - Shuang Tan
- Department of Obstetrics and Gynecology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zhong-Wen Zou
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
15
|
Zhang R, Roque DM, Reader J, Lin J. Combined inhibition of IL‑6 and IL‑8 pathways suppresses ovarian cancer cell viability and migration and tumor growth. Int J Oncol 2022; 60:50. [PMID: 35315502 PMCID: PMC8973967 DOI: 10.3892/ijo.2022.5340] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/13/2021] [Indexed: 12/31/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological cancer type in the United States. The success of current chemotherapies is limited by chemoresistance and side effects. Targeted therapy is a promising future direction for cancer therapy. In the present study, the efficacy of co‑targeting IL‑6 and IL‑8 in human ovarian cancer cells by bazedoxifene (Baze) + SCH527123 (SCH) treatment was examined. ELISA, cell viability, cell proliferation, cell migration, cell invasion, western blotting and peritoneal ovarian tumor mouse model analyses were performed to analyze the expression levels of IL‑6 and IL‑8, tumor growth, tumor migration and invasion, and the possible pathways of human ovarian cancer cell lines (SKOV3, CAOV3 and OVCAR3) and patient‑derived OV75 ovarian cancer cells. Each cell line was treated by monotherapy or combination therapy. The results demonstrated that IL‑6 and IL‑8 were secreted by human ovarian cancer cell lines. Compared with the DMSO control, the combination of IL‑6/glycoprotein 130 inhibitor Baze and IL‑8 inhibitor SCH synergistically inhibited cell viability in ovarian cancer cells. Baze + SCH also inhibited cell migration and invasion, suppressed ovarian tumor growth and inhibited STAT3 and AKT phosphorylation, as well as survivin expression. Therefore, co‑targeting the IL‑6 and IL‑8 signaling pathways may be an effective approach for ovarian cancer treatment.
Collapse
Affiliation(s)
- Ruijie Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Dana M Roque
- Division of Gynecologic Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jocelyn Reader
- Division of Gynecologic Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
16
|
CXC Chemokine Signaling in Progression of Epithelial Ovarian Cancer: Theranostic Perspectives. Int J Mol Sci 2022; 23:ijms23052642. [PMID: 35269786 PMCID: PMC8910147 DOI: 10.3390/ijms23052642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Patients with epithelial ovarian cancer (EOC) are often diagnosed at an advanced stage due to nonspecific symptoms and ineffective screening approaches. Although chemotherapy has been available and widely used for the treatment of advanced EOC, the overall prognosis remains dismal. As part of the intrinsic defense mechanisms against cancer development and progression, immune cells are recruited into the tumor microenvironment (TME), and this process is directed by the interactions between different chemokines and their receptors. In this review, the functional significance of CXC chemokine ligands/chemokine receptors (CXCL/CXCR) and their roles in modulating EOC progression are summarized. The status and prospects of CXCR/CXCL-based theranostic strategies in EOC management are also discussed.
Collapse
|
17
|
CXCR2 Receptor: Regulation of Expression, Signal Transduction, and Involvement in Cancer. Int J Mol Sci 2022; 23:ijms23042168. [PMID: 35216283 PMCID: PMC8878198 DOI: 10.3390/ijms23042168] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/25/2023] Open
Abstract
Chemokines are a group of about 50 chemotactic cytokines crucial for the migration of immune system cells and tumor cells, as well as for metastasis. One of the 20 chemokine receptors identified to date is CXCR2, a G-protein-coupled receptor (GPCR) whose most known ligands are CXCL8 (IL-8) and CXCL1 (GRO-α). In this article we present a comprehensive review of literature concerning the role of CXCR2 in cancer. We start with regulation of its expression at the transcriptional level and how this regulation involves microRNAs. We show the mechanism of CXCR2 signal transduction, in particular the action of heterotrimeric G proteins, phosphorylation, internalization, intracellular trafficking, sequestration, recycling, and degradation of CXCR2. We discuss in detail the mechanism of the effects of activated CXCR2 on the actin cytoskeleton. Finally, we describe the involvement of CXCR2 in cancer. We focused on the importance of CXCR2 in tumor processes such as proliferation, migration, and invasion of tumor cells as well as the effects of CXCR2 activation on angiogenesis, lymphangiogenesis, and cellular senescence. We also discuss the importance of CXCR2 in cell recruitment to the tumor niche including tumor-associated neutrophils (TAN), tumor-associated macrophages (TAM), myeloid-derived suppressor cells (MDSC), and regulatory T (Treg) cells.
Collapse
|
18
|
Chang XT, Wu H, Li HL, Li HL, Zheng YB. PADI4 promotes epithelial-mesenchymal transition(EMT) in gastric cancer via the upregulation of interleukin 8. BMC Gastroenterol 2022; 22:25. [PMID: 35045833 PMCID: PMC8767667 DOI: 10.1186/s12876-022-02097-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/03/2022] [Indexed: 01/04/2023] Open
Abstract
Abstract
Background
Gastric cancer (GC) is one of the deadliest tumours due to its ability to metastasize. The Epithelial–to-mesenchymal transition plays a crucial role in promoting the GC metastasis, which increases the migration and metastasis of tumour cells. Peptidyl arginine deiminase IV (PADI4) is a susceptibility gene for gastric carcinoma. The aim of this study was to evaluate the functional roles of PADI4 in gastric cancer.
Methods
The expression of PADI4 was examined by qRT-PCR, western blot and immunohistochemistry. In addition, the functional roles of PADI4 were explored by over-expression PADI4 plasmids in gastric cancer cells.
Results
We found that the expression of PADI4 was up-regulated in GC. PADI4 overexpression in GC cells increased the proliferation, migration, metastasis, clone forming ability, and tumorigenic ability, but reduced the apoptosis ability. The Multi-Analyte ELISArray Kit results showed that interleukin 8 (IL-8) is upregulated in PADI4-overexpressing gastric cells. Using short interfering RNA (siRNA) to silence the expression of IL-8, we demonstrated that IL-8 silencing significantly inhibited the increased migratory capacity in PADI4-overexpressing GC cells.
Conclusions
Our data suggest that PADI4 accelerate metastasis by promoting IL-8 expression in gastric cancer cells, indicating that it is a new PADI4/IL-8 signalling pathway in metastatic GC.
Collapse
|
19
|
Dholariya S, Parchwani D, Radadiya M, Singh RD, Sonagra A, Patel D, Sharma G. CRISPR/Cas9: A Molecular Tool for Ovarian Cancer Management beyond Gene Editing. Crit Rev Oncog 2022; 27:1-22. [PMID: 37199299 DOI: 10.1615/critrevoncog.2022043814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ovarian cancer manifests with early metastases and has an adverse outcome, impacting the health of women globally. Currently, this malignancy is often treated with cytoreductive surgery and platinum-based chemotherapy. This treatment option has a limited success rate due to tumor recurrence and chemoresistance. Consequently, the fundamental objective of ovarian cancer treatment is the development of novel treatment approaches. As a new robust tool, the CRISPR/Cas9 gene-editing system has shown immense promise in elucidating the molecular basis of all the facets of ovarian cancer. Due to the precise gene editing capabilities of CRISPR-Cas9, researchers have been able to conduct a more comprehensive investigation of the genesis of ovarian cancer. This gained knowledge can be translated into the development of novel diagnostic approaches and newer therapeutic targets for this dreadful malignancy. There is encouraging preclinical evidence that suggests that CRISPR/Cas9 is a powerful versatile tool for selectively targeting cancer cells and inhibiting tumor growth, establishing new signaling pathways involved in carcinogenesis, and verifying biomolecules as druggable targets. In this review, we analyzed the current research and progress made using CRISPR/Cas9-based engineering strategies in the diagnosis and treatment, as well as the challenges in bringing this method to clinics. This comprehensive analysis will lay the basis for subsequent research in the future for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Sagar Dholariya
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Deepak Parchwani
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Madhuri Radadiya
- Department of Radiology, Pandit Dindayal Upadhyay (PDU) Medical College, Rajkot, Gujarat, India
| | - Ragini D Singh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Amit Sonagra
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | | | - Gaurav Sharma
- Department of Physiology, AIIMS, Rajkot, Gujarat, India
| |
Collapse
|
20
|
Nowak M, Janas Ł, Soja M, Głowacka E, Szyłło K, Misiek M, Klink M. Chemokine expression in patients with ovarian cancer or benign ovarian tumors. Arch Med Sci 2022; 18:682-689. [PMID: 35591828 PMCID: PMC9102528 DOI: 10.5114/aoms/110672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/12/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Chemokines play a crucial role in tumor growth and progression according to proangiogenic and immunosuppressive action. The aim of this study was to investigate the serum levels of selected chemokines in patients with ovarian cancer or benign ovarian tumors to assess their role in tumorigenesis and their potential use in preoperative diagnosis of an adnexal mass. MATERIAL AND METHODS The study group consisted of 59 women with ovarian cancer: 17 epithelial ovarian cancer (EOC) patients and 42 women with benign ovarian tumors. We measured in sera obtained preoperatively the level of CA125 and a panel of 5 chemokines - CX3CL1/fractalkine, CXCL1/GRO-α, CXCL12/SDF-1, CCL20/MIP-3α and IL-17F - using the chemiluminescence method with multiplexed bead based immunoassay. RESULTS CX3CL1 was significantly elevated in sera of advanced ovarian cancer patients compared to women with benign ovarian tumors. The significant elevation of CXCL1 was also observed (both early and advanced stages). A similar pattern was present with the standard ovarian cancer marker CA125. In our patients with endometriotic cysts CA125 levels were significantly higher than in women with other benign tumors, whereas all analyzed chemokines had similar serum titers in patients with endometriotic vs. other benign ovarian cysts. CONCLUSIONS CX3CL1 and CXCL1 are elevated in sera of EOC patients, which indicates their role in cancer development. Moreover, they might be useful in preoperative differential diagnosis of ovarian tumors, especially as they were not elevated in cases of endometriosis.
Collapse
Affiliation(s)
- Marek Nowak
- Department of Operative Gynecology and Gynecologic Oncology, Polish Mother’s Memorial Hospital – Research Institute, Lodz, Poland
| | - Łukasz Janas
- Department of Operative Gynecology and Gynecologic Oncology, Polish Mother’s Memorial Hospital – Research Institute, Lodz, Poland
| | - Malwina Soja
- Department of Operative Gynecology and Gynecologic Oncology, Polish Mother’s Memorial Hospital – Research Institute, Lodz, Poland
| | - Ewa Głowacka
- Laboratory Diagnostics Centre, Polish Mother’s Memorial Hospital – Research Institute, Lodz, Poland
| | - Krzysztof Szyłło
- Department of Operative Gynecology and Gynecologic Oncology, Polish Mother’s Memorial Hospital – Research Institute, Lodz, Poland
| | - Marcin Misiek
- Department of Gynecology, Holy Cross Cancer Centre, Kielce, Poland
| | - Magdalena Klink
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
21
|
Han ZJ, Li YB, Yang LX, Cheng HJ, Liu X, Chen H. Roles of the CXCL8-CXCR1/2 Axis in the Tumor Microenvironment and Immunotherapy. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010137. [PMID: 35011369 PMCID: PMC8746913 DOI: 10.3390/molecules27010137] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/12/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
In humans, Interleukin-8 (IL-8 or CXCL8) is a granulocytic chemokine with multiple roles within the tumor microenvironment (TME), such as recruiting immunosuppressive cells to the tumor, increasing tumor angiogenesis, and promoting epithelial-to-mesenchymal transition (EMT). All of these effects of CXCL8 on individual cell types can result in cascading alterations to the TME. The changes in the TME components such as the cancer-associated fibroblasts (CAFs), the immune cells, the extracellular matrix, the blood vessels, or the lymphatic vessels further influence tumor progression and therapeutic resistance. Emerging roles of the microbiome in tumorigenesis or tumor progression revealed the intricate interactions between inflammatory response, dysbiosis, metabolites, CXCL8, immune cells, and the TME. Studies have shown that CXCL8 directly contributes to TME remodeling, cancer plasticity, and the development of resistance to both chemotherapy and immunotherapy. Further, clinical data demonstrate that CXCL8 could be an easily measurable prognostic biomarker in patients receiving immune checkpoint inhibitors. The blockade of the CXCL8-CXCR1/2 axis alone or in combination with other immunotherapy will be a promising strategy to improve antitumor efficacy. Herein, we review recent advances focusing on identifying the mechanisms between TME components and the CXCL8-CXCR1/2 axis for novel immunotherapy strategies.
Collapse
Affiliation(s)
- Zhi-Jian Han
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
- Correspondence: (Z.-J.H.); (H.C.); Tel.: +86-186-9310-9388 (Z.-J.H.); +86-150-0946-7790 (H.C.)
| | - Yang-Bing Li
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
| | - Lu-Xi Yang
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
| | - Hui-Juan Cheng
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
| | - Xin Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China;
| | - Hao Chen
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
- Correspondence: (Z.-J.H.); (H.C.); Tel.: +86-186-9310-9388 (Z.-J.H.); +86-150-0946-7790 (H.C.)
| |
Collapse
|
22
|
Luo S, Wang Y, Tao Y, Li S, Wang Z, He W, Wang H, Wang N, Xu J, Song H. Application in Gene Editing in Ovarian Cancer Therapy. Cancer Invest 2021; 40:387-399. [PMID: 34758691 DOI: 10.1080/07357907.2021.1998521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The onset and progression of ovarian cancer (OC) are closely related to dysregulated gene expression. Current treatments for OC are mainly limited to surgery and chemotherapy. However, due to low drug sensitivity, the prognosis OC is exceptionally poor and the recurrence rate remains high. Hence, it is vital to develop new treatment strategies. Gene editing for site-specific genomic modification is a powerful novel tool for the treatment of OC. In this article, current gene editing research for the treatment of OC is reviewed to provide a reference for the clinical application of new approaches to improve treatment outcomes and prognosis.
Collapse
Affiliation(s)
- Shuang Luo
- National Joint Local Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guizhou Medical University, Guiyang, China.,Department of Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Yujiao Wang
- Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yongyu Tao
- Department of Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Shuo Li
- Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Zirui Wang
- Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Wei He
- Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Hangxing Wang
- Department of Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Nan Wang
- Department of Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Jianwei Xu
- National Joint Local Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guizhou Medical University, Guiyang, China.,Department of Clinical Medical College, Guizhou Medical University, Guiyang, China.,Department of General Surgery, Dalang Hospital, Dongguan, China.,Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Hailiang Song
- Department of General Surgery, Dalang Hospital, Dongguan, China
| |
Collapse
|
23
|
The Role of Chemokines in Cervical Cancers. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57111141. [PMID: 34833360 PMCID: PMC8619382 DOI: 10.3390/medicina57111141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022]
Abstract
Both clinical-pathological and experimental studies have shown that chemokines play a key role in activating the immune checkpoint modulator in cervical cancer progression and are associated with prognosis in tumor cell proliferation, invasion, angiogenesis, chemoresistance, and immunosuppression. Therefore, a clear understanding of chemokines and immune checkpoint modulators is essential for the treatment of this disease. This review discusses the origins and categories of chemokines and the mechanisms that are responsible for activating immune checkpoints in cervical dysplasia and cancer, chemokines as biomarkers, and therapy development that targets immune checkpoints in cervical cancer research.
Collapse
|
24
|
Qiu Y, Chen T, Hu R, Zhu R, Li C, Ruan Y, Xie X, Li Y. Next frontier in tumor immunotherapy: macrophage-mediated immune evasion. Biomark Res 2021; 9:72. [PMID: 34625124 PMCID: PMC8501632 DOI: 10.1186/s40364-021-00327-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor-associated macrophages (TAMs), at the core of immunosuppressive cells and cytokines networks, play a crucial role in tumor immune evasion. Increasing evidences suggest that potential mechanisms of macrophage-mediated tumor immune escape imply interpretation and breakthrough to bottleneck of current tumor immunotherapy. Therefore, it is pivotal to understand the interactions between macrophages and other immune cells and factors for enhancing existing anti-cancer treatments. In this review, we focus on the specific signaling pathways through which TAMs involve in tumor antigen recognition disorders, recruitment and function of immunosuppressive cells, secretion of immunosuppressive cytokines, crosstalk with immune checkpoints and formation of immune privileged sites. Furthermore, we summarize correlative pre-clinical and clinical studies to provide new ideas for immunotherapy. From our perspective, macrophage-targeted therapy is expected to be the next frontier of cancer immunotherapy.
Collapse
Affiliation(s)
- Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China
| | - Tong Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China.,The Second School of Clinical Medicine, Southern Medical University, No. 1838 GuangzhongDadaoBei, Guangzhou, Guangdong, 510515, P. R. China
| | - Rong Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China
| | - Ruiyi Zhu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China.,The Second School of Clinical Medicine, Southern Medical University, No. 1838 GuangzhongDadaoBei, Guangzhou, Guangdong, 510515, P. R. China
| | - Chujun Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China.,The Second School of Clinical Medicine, Southern Medical University, No. 1838 GuangzhongDadaoBei, Guangzhou, Guangdong, 510515, P. R. China
| | - Yingchen Ruan
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China.,The Second School of Clinical Medicine, Southern Medical University, No. 1838 GuangzhongDadaoBei, Guangzhou, Guangdong, 510515, P. R. China
| | - Xiaoling Xie
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528308, China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, P. R. China.
| |
Collapse
|
25
|
Choe D, Lee ES, Beeghly-Fadiel A, Wilson AJ, Whalen MM, Adunyah SE, Son DS. High-Fat Diet-Induced Obese Effects of Adipocyte-Specific CXCR2 Conditional Knockout in the Peritoneal Tumor Microenvironment of Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13195033. [PMID: 34638514 PMCID: PMC8508092 DOI: 10.3390/cancers13195033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 01/11/2023] Open
Abstract
Obesity contributes to ovarian cancer (OC) progression via tumorigenic chemokines. Adipocytes and OC cells highly express CXCR2, and its ligands CXCL1/8, respectively, indicating that the CXCL1/8-CXCR2 axis is a molecular link between obesity and OC. Here, we investigated how the adipocyte-specific CXCR2 conditional knockout (cKO) affected the peritoneal tumor microenvironment of OC in a high-fat diet (HFD)-induced obese mouse model. We first generated adipocyte-specific CXCR2 cKO in mice: adipose tissues were not different in crown-like structures and adipocyte size between the wild-type (WT) and cKO mice but expressed lower levels of CCL2/6 compared to the obese WT mice. HFD-induced obese mice had a shorter survival time than lean mice. Particularly, obese WT and cKO mice developed higher tumors and ascites burdens, respectively. The ascites from the obese cKO mice showed increased vacuole clumps but decreased the floating tumor burden, tumor-attached macrophages, triglyceride, free fatty acid, CCL2, and TNF levels compared to obese WT mice. A tumor analysis revealed that obese cKO mice attenuated inflammatory areas, PCNA, and F4/80 compared to obese WT mice, indicating a reduced tumor burden, and there were positive relationships between the ascites and tumor parameters. Taken together, the adipocyte-specific CXCR2 cKO was associated with obesity-induced ascites despite a reduced tumor burden, likely altering the peritoneal tumor microenvironment of OC.
Collapse
Affiliation(s)
- Deokyeong Choe
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA;
| | - Alicia Beeghly-Fadiel
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203, USA;
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA;
| | - Andrew J. Wilson
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA;
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Margaret M. Whalen
- Department of Chemistry, Tennessee State University, Nashville, TN 37209, USA;
| | - Samuel E. Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| | - Deok-Soo Son
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
- Correspondence:
| |
Collapse
|
26
|
Wang X, Yung MMH, Sharma R, Chen F, Poon YT, Lam WY, Li B, Ngan HYS, Chan KKL, Chan DW. Epigenetic Silencing of miR-33b Promotes Peritoneal Metastases of Ovarian Cancer by Modulating the TAK1/FASN/CPT1A/NF-κB Axis. Cancers (Basel) 2021; 13:cancers13194795. [PMID: 34638280 PMCID: PMC8508465 DOI: 10.3390/cancers13194795] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
Peritoneal metastases are frequently found in high-grade serous carcinoma (HGSOC) patients and are commonly associated with a poor prognosis. The tumor microenvironment (TME) is a complex milieu that plays a critical role in epigenetic alterations driving tumor development and metastatic progression. However, the impact of epigenetic alterations on metastatic ovarian cancer cells in the harsh peritoneal microenvironment remains incompletely understood. Here, we identified that miR-33b is frequently silenced by promoter hypermethylation in HGSOC cells derived from metastatic omental tumor tissues. Enforced expression of miR-33b abrogates the oncogenic properties of ovarian cancer cells cocultured in omental conditioned medium (OCM), which mimics the ascites microenvironment, and in vivo tumor growth. Of note, restoration of miR-33b inhibited OCM-upregulated de novo lipogenesis and fatty acid β-oxidation in ovarian cancer cells, indicating that miR-33b may play a novel tumor suppressor role in the lipid-mediated oncogenic properties of metastatic ovarian cancer cells found in the omentum. Mechanistic studies demonstrated that miR-33b directly targets transforming growth factor beta-activated kinase 1 (TAK1), thereby suppressing the activities of fatty acid synthase (FASN) and carnitine palmitoyltransferase 1A (CPT1A) in modulating lipid metabolic activities and simultaneously inhibiting the phosphorylation of NF-κB signaling to govern the oncogenic behaviors of ovarian cancer cells. Thus, our data suggest that a lipid-rich microenvironment may cause epigenetic silencing of miR-33b, which negatively modulates ovarian cancer peritoneal metastases, at least in part, by suppressing TAK1/FASN/CPT1A/NF-κB signaling.
Collapse
Affiliation(s)
- Xueyu Wang
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (X.W.); (M.M.H.Y.); (F.C.); (Y.-T.P.); (H.Y.S.N.)
| | - Mingo M. H. Yung
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (X.W.); (M.M.H.Y.); (F.C.); (Y.-T.P.); (H.Y.S.N.)
| | - Rakesh Sharma
- Centre for PanorOmic Sciences Proteomics and Metabolomics Core, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Fushun Chen
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (X.W.); (M.M.H.Y.); (F.C.); (Y.-T.P.); (H.Y.S.N.)
| | - Ying-Tung Poon
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (X.W.); (M.M.H.Y.); (F.C.); (Y.-T.P.); (H.Y.S.N.)
| | - Wai-Yip Lam
- Lee’s Pharmaceutical (HK) Ltd., 1/F Building 20E, Phase 3, Hong Kong Science Park, Shatin, Hong Kong, China; (W.-Y.L.); (B.L.)
| | - Benjamin Li
- Lee’s Pharmaceutical (HK) Ltd., 1/F Building 20E, Phase 3, Hong Kong Science Park, Shatin, Hong Kong, China; (W.-Y.L.); (B.L.)
| | - Hextan Y. S. Ngan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (X.W.); (M.M.H.Y.); (F.C.); (Y.-T.P.); (H.Y.S.N.)
| | - Karen K. L. Chan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (X.W.); (M.M.H.Y.); (F.C.); (Y.-T.P.); (H.Y.S.N.)
- Correspondence: (K.K.L.C.); (D.W.C.)
| | - David W. Chan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (X.W.); (M.M.H.Y.); (F.C.); (Y.-T.P.); (H.Y.S.N.)
- Correspondence: (K.K.L.C.); (D.W.C.)
| |
Collapse
|
27
|
Lepsenyi M, Algethami N, Al-Haidari AA, Algaber A, Syk I, Rahman M, Thorlacius H. CXCL2-CXCR2 axis mediates αV integrin-dependent peritoneal metastasis of colon cancer cells. Clin Exp Metastasis 2021; 38:401-410. [PMID: 34115261 PMCID: PMC8318971 DOI: 10.1007/s10585-021-10103-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/14/2021] [Indexed: 01/10/2023]
Abstract
Peritoneal metastasis is an insidious aspect of colorectal cancer. The aim of the present study was to define mechanisms regulating colon cancer cell adhesion and spread to peritoneal wounds after abdominal surgery. Mice was laparotomized and injected intraperitoneally with CT-26 colon carcinoma cells and metastatic noduli in the peritoneal cavity was quantified after treatment with a CXCR2 antagonist or integrin-αV-antibody. CT-26 cells expressed cell surface chemokine receptors CXCR2, CXCR3, CXCR4 and CXCR5. Stimulation with the CXCR2 ligand, CXCL2, dose-dependently increased proliferation and migration of CT-26 cells in vitro. The CXCR2 antagonist, SB225002, dose-dependently decreased CXCL2-induced proliferation and migration of colon cancer cells in vitro. Intraperitoneal administration of CT-26 colon cancer cells resulted in wide-spread growth of metastatic nodules at the peritoneal surface of laparotomized animals. Laparotomy increased gene expression of CXCL2 at the incisional line. Pretreatment with CXCR2 antagonist reduced metastatic nodules by 70%. Moreover, stimulation with CXCL2 increased CT-26 cell adhesion to extracellular matrix (ECM) proteins in a CXCR2-dependent manner. CT-26 cells expressed the αV, β1 and β3 integrin subunits and immunoneutralization of αV abolished CXCL2-triggered adhesion of CT-26 to vitronectin, fibronectin and fibrinogen. Finally, inhibition of the αV integrin significantly attenuated the number of carcinomatosis nodules by 69% in laparotomized mice. These results were validated by use of the human colon cancer cell line HT-29 in vitro. Our data show that colon cancer cell adhesion and growth on peritoneal wound sites is mediated by a CXCL2-CXCR2 signaling axis and αV integrin-dependent adhesion to ECM proteins.
Collapse
Affiliation(s)
- Mattias Lepsenyi
- Section of Surgery, Department of Clinical Sciences, Malmö, Skåne University Hospital, Lund University, 20502, Malmö, Sweden
| | - Nader Algethami
- Section of Surgery, Department of Clinical Sciences, Malmö, Skåne University Hospital, Lund University, 20502, Malmö, Sweden
| | - Amr A Al-Haidari
- Section of Surgery, Department of Clinical Sciences, Malmö, Skåne University Hospital, Lund University, 20502, Malmö, Sweden
| | - Anwar Algaber
- Section of Surgery, Department of Clinical Sciences, Malmö, Skåne University Hospital, Lund University, 20502, Malmö, Sweden
| | - Ingvar Syk
- Section of Surgery, Department of Clinical Sciences, Malmö, Skåne University Hospital, Lund University, 20502, Malmö, Sweden
| | - Milladur Rahman
- Section of Surgery, Department of Clinical Sciences, Malmö, Skåne University Hospital, Lund University, 20502, Malmö, Sweden
| | - Henrik Thorlacius
- Section of Surgery, Department of Clinical Sciences, Malmö, Skåne University Hospital, Lund University, 20502, Malmö, Sweden.
| |
Collapse
|
28
|
Liu X, Lan T, Mo F, Yang J, Wei Y, Wei X. Antitumor and Radiosensitization Effects of a CXCR2 Inhibitor in Nasopharyngeal Carcinoma. Front Cell Dev Biol 2021; 9:689613. [PMID: 34124076 PMCID: PMC8188356 DOI: 10.3389/fcell.2021.689613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/29/2021] [Indexed: 02/05/2023] Open
Abstract
CXCR2, a member of the G-protein-coupled cell surface chemokine receptor family, is commonly found on leukocytes, endothelial cells and tumor cells including nasopharyngeal carcinoma cells. However, how the activity of CXCR2 and its ligand CXCL8 affects the development of nasopharyngeal carcinoma (NPC) remains unknown. Here, we found that CXCR2 and CXCL8 were both predicted poor prognosis in NPC patients. Furthermore, we identified that treatment with CXCR2 antagonist SB225002 of nasopharyngeal carcinoma cell lines resulted tumorigenesis inhibition in vitro and in vivo. In addition, we found that SB225002 could enhance NPC cells radiosensitivity through regulating cell circle distribution and interfering with cellular DNA damage repair. SB225002 also exhibited an efficient radiosensitization effect in C666-1 and HONE-1 bearing mice. Functionally, we showed that SB225002 reduced microvessel density and proliferation and induced tumor apoptosis. Furthermore, changes in the tumor microenvironment were also observed in this study. We observed that SB225002 reduced tumor-associated neutrophils (TANs) in the tumors tissue which were recruited especially after irradiation. Taken together, our results suggested that targeting the CXCL8-CXCR2 pathway is a promising therapeutic strategy for comprehensive NPC treatment.
Collapse
Affiliation(s)
- Xiaobei Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
29
|
Selection of a picomolar antibody that targets CXCR2-mediated neutrophil activation and alleviates EAE symptoms. Nat Commun 2021; 12:2547. [PMID: 33953162 PMCID: PMC8100106 DOI: 10.1038/s41467-021-22810-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/29/2021] [Indexed: 01/01/2023] Open
Abstract
Receptors and their ligands are important therapeutic targets for about one third of marketed drugs. Here, we describe an epitope-guided approach for selection of antibodies that modulate cellular signaling of targeted receptors. We chose CXC chemokine receptor 2 (CXCR2) in the G-protein coupled receptor superfamily as receptor and a CXCR2 N-terminal peptide for antibody selection. We obtain a highly selective, tight-binding antibody from a 1011-member antibody library using combinatorial enrichment. Structural and Hydrogen-Deuterium-Exchange mass spectrometry analyses demonstrate antibody interaction with an N-terminal region of CXCR2 that is part of the IL-8 epitope. The antibody strongly inhibits IL-8-induced and CXCR2-mediated neutrophil chemotaxis in vitro and alleviates hCXCR2-dependent experimental autoimmune encephalomyelitis symptoms in mice. As inappropriate neutrophil migration accompanies many diseases including inflammatory bowel disease, glomerulonephritis, allergic asthma, chronic obstructive pulmonary disease, and cancer, this antibody has potential for development as a therapeutic agent, akin to anti-TNF antibodies. However, an important difference here is that the antibody targets the chemokine receptor and competes with natural ligand, rather than targeting the ligand itself. CXCR2 is central to neutrophil chemotaxis and hence to some inflammatory diseases. Here the authors demonstrate the value of an epitope-guided antibody panning method to develop a tight binding anti-hCXCR2 antibody, along with crystal structures of this antibody and antigen, that can block neutrophil chemotaxis and protect mice in an EAE model.
Collapse
|
30
|
Vahedpour Z, Abedzadeh-Kalahroudi M, Sehat M, Piroozmand A, Memar M. Comparison of Cervical Levels of Interleukins-6 and -8 in Patients with and without Cervical Intraepithelial Neoplasia. Asian Pac J Cancer Prev 2021; 22:1225-1230. [PMID: 33906316 PMCID: PMC8325114 DOI: 10.31557/apjcp.2021.22.4.1225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction: Interleukins-6 and -8 are two pro-inflammatory cytokines increasing in serum and local levels under malignant conditions. There are limited evidences on the association between cervical level of these two factors and cervical intraepithelial neoplasia (CIN). So, this study aimed to explore the association between cervical levels of IL-6 and IL-8 with cervical premalignant lesions. Methods: The present case-control study was conducted on married women undergone Pap smear for routine screening in two groups as the group with CIN (n=100) and the healthy control group (n=100). Cervical secretions were collected using sterile swab and the levels of IL-8 and IL-6 were measured by enzyme-linked immunosorbent assay (ELISA). The obtained data were analyzed by SPSS software. Results: The mean cervical IL-6 level was 568.66±594.62 pg/ml in the patients with CIN and 212.7±213.9 pg/ml in the controls (P <0.001). The cervical IL-8 levels in the case and control groups were measured to be 1320.43±876.5 pg/ml and 1053.59±747.64 pg/ml, respectively (p=0.02). By modifying the confounding size effect of the age and marital duration, it was determined that cervical levels of IL-6 and IL-8 were both associated with CIN. Conclusion: Our results showed that the cervical levels of IL-6 and IL-8 are associated with CIN independent of age and marital duration.
Collapse
Affiliation(s)
- Zahra Vahedpour
- Autoimmune Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Mojtaba Sehat
- Kashan Trauma Research Center Head of Department of Community Medicine, Faculty of Medicine Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmad Piroozmand
- Autoimmune Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Maedeh Memar
- Department of Obstetrics and Gynecology; Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
31
|
Ding HM, Zhang H, Wang J, Zhou JH, Shen FR, Ji RN, Shi JY, Chen YG. miR‑302c‑3p and miR‑520a‑3p suppress the proliferation of cervical carcinoma cells by targeting CXCL8. Mol Med Rep 2021; 23:322. [PMID: 33760117 PMCID: PMC7974325 DOI: 10.3892/mmr.2021.11961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 11/09/2020] [Indexed: 01/03/2023] Open
Abstract
The aim of the present study was to identify the differentially expressed microRNAs (miRs) in cervical carcinoma (CC) tissues and cells and to explore the function of miR-302c-3p and miR-520a-3p in the proliferation of CC cells. Potential dysregulated miRNAs in CC tissues and tumour-adjacent tissues were detected. Reverse transcription-quantitative PCR (RT-qPCR) was performed to determine the expression of miR-302c-3p, miR-520a-3p and CXCL8 in CC tissues and cell lines. The target genes of the miRNAs were predicted using miRTarBase and verified by luciferase reporter assays. RT-qPCR and western blotting were performed to measure the expression of C-X-C motif ligand (CXCL)8 after transfection. The effect on proliferation was verified by Cell Counting Kit assay and ethynyl-2-deoxyuridine staining. Flow cytometry was utilised to assess the effect on apoptosis. In the present study, miR-302c-3p and miR-520a-3p were markedly downregulated in CC cell lines compared to the normal cervical cell line H8. Functionally, overexpression of miR-302c-3p and/or miR-520a-3p inhibited proliferation and promoted the apoptosis of CC cell lines in vitro, while the knockdown of miR-302c-3p and/or miR-520a-3p had the opposite effect. Furthermore, miR-302c-3p and miR-520a-3p could both bind to CXCL8. Inhibition of CXCL8 in combination with miR-302c-3p and/or miR-520a-3p overexpression exerted proliferation-suppressive and apoptosis-stimulating effects on CC cells, whereas restoring CXCL8 attenuated the miR-302c-3p- and miR-520a-3p-induced anti-proliferative and pro-apoptotic effects. miR-302c-3p and miR-520a-3p suppress the proliferation of CC cells by downregulating the expression of CXCL8, which may provide a novel target for the treatment of CC.
Collapse
Affiliation(s)
- Hong-Mei Ding
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hong Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Juan Wang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jin-Hua Zhou
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Fang-Rong Shen
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ru-Ning Ji
- Department of Medical Engineering, Suzhou Municipal Hospital, Suzhou, Jiangsu 215008, P.R. China
| | - Jia-Yin Shi
- Department of Dermatology, Suzhou Municipal Hospital, Suzhou, Jiangsu 215008, P.R. China
| | - You-Guo Chen
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
32
|
PLAU directs conversion of fibroblasts to inflammatory cancer-associated fibroblasts, promoting esophageal squamous cell carcinoma progression via uPAR/Akt/NF-κB/IL8 pathway. Cell Death Discov 2021; 7:32. [PMID: 33574243 PMCID: PMC7878926 DOI: 10.1038/s41420-021-00410-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/18/2020] [Accepted: 01/17/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) plays an important role in the tumor microenvironment. The heterogeneity of CAFs affects the effect of CAFs on promoting or inhibiting tumors, which can be regulated by other cells in the tumor microenvironment through paracrine methods. The urokinase-type plasminogen activator (PLAU) system mediates cell proliferation, migration, adhesion, and other functions through the proteolytic system, intracellular signal transduction, and chemokine activation. PLAU promotes tumor progression in many tumors. We explored the function of PLAU in ESCC and the influence of PLAU secreted by tumor cells on the heterogeneity of CAFs. We found that PLAU is highly expressed in ESCC, which is related to poor prognosis and can be used as a prognostic marker for ESCC. Through loss-of function and gain-of function experiments, we found that PLAU promoted ESCC proliferation and clone formation via MAPK pathway, and promotes migration by upregulating Slug and MMP9, which can be reversed by the MEK 1/2 inhibitor U0126. At the same time, through sequencing, cytokine detection, and RT-qPCR verification, we found that tumor cells secreted PLAU promoted the conversion of fibroblasts to inflammatory CAFs, which upregulated expression and secretion of IL8 via the uPAR/Akt/NF-κB pathway. The IL8 secreted by CAFs in turn promotes the high expression of PLAU in tumor cells and further promoted the progression of ESCC. In summary, PLAU was not only a prognostic marker of ESCC, which promoted tumor cell proliferation and migration, but also promoted the formation of inflammatory CAFs by the PLAU secreted by tumor cells.
Collapse
|
33
|
Wang N, Wang S, Wang X, Zheng Y, Yang B, Zhang J, Pan B, Gao J, Wang Z. Research trends in pharmacological modulation of tumor-associated macrophages. Clin Transl Med 2021; 11:e288. [PMID: 33463063 PMCID: PMC7805405 DOI: 10.1002/ctm2.288] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
As one of the most abundant immune cell populations in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play important roles in multiple solid malignancies, including breast cancer, prostate cancer, liver cancer, lung cancer, ovarian cancer, gastric cancer, pancreatic cancer, and colorectal cancer. TAMs could contribute to carcinogenesis, neoangiogenesis, immune-suppressive TME remodeling, cancer chemoresistance, recurrence, and metastasis. Therefore, reprogramming of the immune-suppressive TAMs by pharmacological approaches has attracted considerable research attention in recent years. In this review, the promising pharmaceutical targets, as well as the existing modulatory strategies of TAMs were summarized. The chemokine-chemokine receptor signaling, tyrosine kinase receptor signaling, metabolic signaling, and exosomal signaling have been highlighted in determining the biological functions of TAMs. Besides, both preclinical research and clinical trials have suggested the chemokine-chemokine receptor blockers, tyrosine kinase inhibitors, bisphosphonates, as well as the exosomal or nanoparticle-based targeting delivery systems as the promising pharmacological approaches for TAMs deletion or reprogramming. Lastly, the combined therapies of TAMs-targeting strategies with traditional treatments or immunotherapies as well as the exosome-like nanovesicles for cancer therapy are prospected.
Collapse
Affiliation(s)
- Neng Wang
- The Research Center for Integrative MedicineSchool of Basic Medical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Shengqi Wang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Xuan Wang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Yifeng Zheng
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Bowen Yang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Juping Zhang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Bo Pan
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Jianli Gao
- Academy of Traditional Chinese MedicineZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Zhiyu Wang
- The Research Center for Integrative MedicineSchool of Basic Medical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| |
Collapse
|
34
|
Modeling the Early Steps of Ovarian Cancer Dissemination in an Organotypic Culture of the Human Peritoneal Cavity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1330:75-94. [PMID: 34339031 DOI: 10.1007/978-3-030-73359-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The majority of ovarian cancer patients present clinically with wide-spread metastases throughout the peritoneal cavity, metastasizing to the mesothelium-lined peritoneum and visceral adipose depots within the abdomen. This unique metastatic tumor microenvironment is comprised of multiple cell types, including mesothelial cells, fibroblasts, adipocytes, macrophages, neutrophils, and T lymphocytes. Modeling advancements, including complex 3D systems and organoids, coupled with 2D cocultures, in vivo mouse models, and ex vivo human tissue cultures have greatly enhanced our understanding of the tumor-stroma interactions that are required for successful metastasis of ovarian cancer cells. However, advanced multifaceted model systems that incorporate frequency and spatial distribution of all cell types present in the tumor microenvironment of ovarian cancer are needed to enhance our knowledge of ovarian cancer biology in order to identify methods for preventing and treating metastatic disease. This review highlights the utility of recently developed modeling approaches, summarizes some of the resulting progress using these techniques, and suggests how these strategies may be implemented to elucidate signaling processes among cell types of the tumor microenvironment that promote ovarian cancer metastasis.
Collapse
|
35
|
Szyposzynska A, Bielawska-Pohl A, Krawczenko A, Doszyn O, Paprocka M, Klimczak A. Suppression of Ovarian Cancer Cell Growth by AT-MSC Microvesicles. Int J Mol Sci 2020; 21:ijms21239143. [PMID: 33266317 PMCID: PMC7730946 DOI: 10.3390/ijms21239143] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022] Open
Abstract
Transport of bioactive cargo of microvesicles (MVs) into target cells can affect their fate and behavior and change their microenvironment. We assessed the effect of MVs derived from human immortalized mesenchymal stem cells of adipose tissue-origin (HATMSC2-MVs) on the biological activity of the ovarian cancer cell lines ES-2 (clear cell carcinoma) and OAW-42 (cystadenocarcinoma). The HATMSC2-MVs were characterized using dynamic light scattering (DLS), transmission electron microscopy, and flow cytometry. The anti-tumor properties of HATMSC2-MVs were assessed using MTT for metabolic activity and flow cytometry for cell survival, cell cycle progression, and phenotype. The secretion profile of ovarian cancer cells was evaluated with a protein antibody array. Both cell lines internalized HATMSC2-MVs, which was associated with a decreased metabolic activity of cancer cells. HATMSC2-MVs exerted a pro-apoptotic and/or necrotic effect on ES-2 and OAW-42 cells and increased the expression of anti-tumor factors in both cell lines compared to control. In conclusion, we confirmed an effective transfer of HATMSC2-MVs into ovarian cancer cells that resulted in the inhibition of cell proliferation via different pathways, apoptosis and/or necrosis, which, with high likelihood, is related to the presence of different anti-tumor factors secreted by the ES-2 and OAW-42 cells.
Collapse
|
36
|
Lee JM, Annunziata CM, Hays JL, Cao L, Choyke P, Yu M, An D, Turkbey IB, Minasian LM, Steinberg SM, Chen H, Wright J, Kohn EC. Phase II trial of bevacizumab and sorafenib in recurrent ovarian cancer patients with or without prior-bevacizumab treatment. Gynecol Oncol 2020; 159:88-94. [PMID: 32747013 DOI: 10.1016/j.ygyno.2020.07.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/21/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To examine whether blocking multiple points of the angiogenesis pathway by addition of sorafenib, a multi-kinase inhibitor against VEGFR2/3, Raf, c-Kit, and PDGFR, to bevacizumab would yield clinical activity in ovarian cancer (OvCa). METHODS This phase II study tested bevacizumab plus sorafenib in two cohorts; bevacizumab-naïve and bevacizumab-exposed patients. Bevacizumab (5 mg/kg IV every 2 weeks) was given with sorafenib 200 mg bid 5 days-on/2 days-off. The primary objective was response rate using a Simon two-stage optimal design. Progression-free survival (PFS) and toxicity were the secondary endpoints. Exploratory correlative studies included plasma cytokine concentrations, tissue proteomics and dynamic contrast-enhanced-magnetic resonance imaging (DCE-MRI). RESULTS Between March 2007 and August 2012, 54 women were enrolled, 41 bevacizumab-naive and 13 bevacizumab-prior, with median 5 (2-9) and 6 (5-9) prior systemic therapies, respectively. Nine of 35 (26%) evaluable bevacizumab-naive patients attained partial responses (PR), and 18 had stable disease (SD) ≥ 4 months. No responses were seen in the bevacizumab-prior group and 7 (54%) patients had SD ≥ 4 months, including one exceptional responder with SD of 27 months. The overall median PFS was 5.5 months (95%CI: 4.0-6.8 months). Treatment-related grade 3/4 adverse events (≥5%) included hypertension (17/54 [31%]; grade 3 in 16 patients and grade 4 in one patient) and venous thrombosis or pulmonary embolism (5/54 [9%]; grade 3 in 4 patients and grade 4 in one patient). Pretreatment low IL8 concentration was associated with PFS ≥ 4 months (p = .031). CONCLUSIONS The bevacizumab and sorafenib combination did not meet the pre-specified primary endpoint although some clinical activity was seen in heavily-pretreated bevacizumab-naive OvCa patients with platinum-resistant disease. Anticipated class toxicities required close monitoring and dose modifications.
Collapse
Affiliation(s)
- Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, United States of America.
| | - Christina M Annunziata
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, United States of America
| | - John L Hays
- Division of Medical Oncology, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, United States of America
| | - Liang Cao
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, United States of America
| | - Peter Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, United States of America
| | - Minshu Yu
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, United States of America
| | - Daniel An
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, United States of America
| | - Ismail Baris Turkbey
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, United States of America
| | - Lori M Minasian
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, United States of America
| | - Seth M Steinberg
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, United States of America
| | - Helen Chen
- Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, MD, United States of America
| | - John Wright
- Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, MD, United States of America
| | - Elise C Kohn
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, United States of America
| |
Collapse
|
37
|
Micheli DC, Jammal MP, Martins-Filho A, Côrtes JRXDM, Souza CND, Nomelini RS, Murta EFC, Tavares-Murta BM. Serum cytokines and CXCR2: potential tumour markers in ovarian neoplasms. Biomarkers 2020; 25:474-482. [PMID: 32544350 DOI: 10.1080/1354750x.2020.1783574] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE The aim was to investigate the systemic levels of cytokines and the expression of the chemokine receptor CXCR2 in circulating neutrophils in patients with non-neoplastic ovarian lesions, benign neoplasia or malignant neoplasia. MATERIALS AND METHODS Controls and patients with ovarian tumours were pre-operatively compared for the production of cytokines (IL-2, IL-5, IL-6, IL-8, IL-10 and TNF-α) by ELISA, and for the expression of the chemokine receptor, CXCR2, in neutrophils, by flow cytometry. Randomly selected patients within the malignant group were re-evaluated for the inflammatory parameters at 30 days after surgery. RESULTS The serum concentrations of IL-6, IL-8 and IL-10 were significantly higher in the benign and malignant neoplasia than in the control group, and their levels were significantly higher in ovarian cancer patients than in patients with non-neoplastic tumours or benign neoplasia. Treatment reduced IL-8 serum levels but did not affect CXCR2 expression in neutrophils. Cut-off values for IL-6, IL-8, and IL-10 comparing malignant vs. benign neoplasia were 11.3, 71.7, 14.8, and comparing malignant neoplasm vs. non-neoplastic lesions were 7.2, 43.5, 12.3, respectively. CONCLUSIONS Serum IL-6, IL-8, and IL-10 levels, and expression of CXCR2 in circulating neutrophils seem promising for distinguishing ovarian cancer patients from patients with benign tumours.
Collapse
Affiliation(s)
- Douglas Côbo Micheli
- Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Millena Prata Jammal
- Research Institute of Oncology/Department of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Agrimaldo Martins-Filho
- Research Institute of Oncology/Department of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | | | - Cristiane Naffah de Souza
- Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Rosekeila Simões Nomelini
- Research Institute of Oncology/Department of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Eddie Fernando Candido Murta
- Research Institute of Oncology/Department of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | | |
Collapse
|
38
|
Plasma IL8 Is a Biomarker for TAK1 Activation and Predicts Resistance to Nanoliposomal Irinotecan in Patients with Gemcitabine-Refractory Pancreatic Cancer. Clin Cancer Res 2020; 26:4661-4669. [DOI: 10.1158/1078-0432.ccr-20-0395] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/25/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022]
|
39
|
Baci D, Bosi A, Gallazzi M, Rizzi M, Noonan DM, Poggi A, Bruno A, Mortara L. The Ovarian Cancer Tumor Immune Microenvironment (TIME) as Target for Therapy: A Focus on Innate Immunity Cells as Therapeutic Effectors. Int J Mol Sci 2020; 21:ijms21093125. [PMID: 32354198 PMCID: PMC7247443 DOI: 10.3390/ijms21093125] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/27/2022] Open
Abstract
Ovarian cancer (OvCA) accounts for one of the leading causes of death from gynecologic malignancy. Despite progress in therapy improvements in OvCA, most patients develop a recurrence after first-line treatments, dependent on the tumor and non-tumor complexity/heterogeneity of the neoplasm and its surrounding tumor microenvironment (TME). The TME has gained greater attention in the design of specific therapies within the new era of immunotherapy. It is now clear that the immune contexture in OvCA, here referred as tumor immune microenvironment (TIME), acts as a crucial orchestrator of OvCA progression, thus representing a necessary target for combined therapies. Currently, several advancements of antitumor immune responses in OvCA are based on the characterization of tumor-infiltrating lymphocytes, which have been shown to correlate with a significantly improved clinical outcome. Here, we reviewed the literature on selected TIME components of OvCA, such as macrophages, neutrophils, γδ T lymphocytes, and natural killer (NK) cells; these cells can have a role in either supporting or limiting OvCA, depending on the TIME stimuli. We also reviewed and discussed the major (immune)-therapeutic approaches currently employed to target and/or potentiate macrophages, neutrophils, γδ T lymphocytes, and NK cells in the OvCA context.
Collapse
Affiliation(s)
- Denisa Baci
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (D.B.); (M.G.); (M.R.); (D.M.N.)
| | - Annalisa Bosi
- Laboratory of Pharmacology, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| | - Matteo Gallazzi
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (D.B.); (M.G.); (M.R.); (D.M.N.)
| | - Manuela Rizzi
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (D.B.); (M.G.); (M.R.); (D.M.N.)
| | - Douglas M. Noonan
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (D.B.); (M.G.); (M.R.); (D.M.N.)
- IRCCS MultiMedica, 20138 Milan, Italy;
| | - Alessandro Poggi
- UOSD Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | | | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (D.B.); (M.G.); (M.R.); (D.M.N.)
- Correspondence:
| |
Collapse
|
40
|
Bai R, Dou K, Wu Y, Ma Y, Sun J. The NF-κB modulated miR-194-5p/IGF1R/PPFIBP axis is crucial for the tumorigenesis of ovarian cancer. J Cancer 2020; 11:3433-3445. [PMID: 32284739 PMCID: PMC7150469 DOI: 10.7150/jca.40604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
miRNAs are involved in the tumorigenesis of various malignancies. In the current study, we found that miR-194-5p expression is downregulated in ovarian cancer tissues, and downregulation of miR-194-5p expression promotes proliferation, invasion and migration of human ovarian cancer cells in vitro and ovarian tumor growth in nude mice. We further found that IGF1R and PPFIBP are targets of miR-194-5p, and downregulation of miR-194-5p expression increases IGF1R and PPFIBP expression, resulting in increased proliferation, invasion and migration of ovarian cancer cells. Moreover, we showed that NF-κB can bind to the promoter region of miR-194-5p, and negatively regulate the expression of miR-194-5p in ovarian cancer cells. Taken together, our results suggested a NF-κB modulated miR-194-5p/IGF1R/ PPFIBP axis that is crucial for the tumorigenesis of ovarian cancer, which provides a new insight into the development of ovarian cancer.
Collapse
Affiliation(s)
- Ru Bai
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Kaikai Dou
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yang Wu
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yongjing Ma
- Department of Gynecological Tumors Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jianmin Sun
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.,Division of Translational Cancer Research, Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
41
|
Ma D, Zou Y, Chu Y, Liu Z, Liu G, Chu J, Li M, Wang J, Sun SY, Chang Z. A cell-permeable peptide-based PROTAC against the oncoprotein CREPT proficiently inhibits pancreatic cancer. Am J Cancer Res 2020; 10:3708-3721. [PMID: 32206117 PMCID: PMC7069095 DOI: 10.7150/thno.41677] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
Cancers remain a threat to human health due to the lack of effective therapeutic strategies. Great effort has been devoted to the discovery of drug targets to treat cancers, but novel oncoproteins still need to be unveiled for efficient therapy. Methods: We show that CREPT is highly expressed in pancreatic cancer and is associated with poor disease-free survival. CREPT overexpression promotes but CREPT deletion blocks colony formation and proliferation of pancreatic cancer cells. To provide a proof of concept for CREPT as a new target for the inhibition of pancreatic cancer, we designed a cell-permeable peptide-based proteolysis targeting chimera (PROTAC), named PRTC, based on the homodimerized leucine-zipper-like motif in the C-terminus domain of CREPT to induce its degradation in vivo. Results: PRTC has high affinity for CREPT, with Kd = 0.34 +/- 0.11 μM and is able to permeate into cells because of the attached membrane-transportable peptide RRRRK. PRTC effectively induces CREPT degradation in a proteasome-dependent manner. Intriguingly, PRTC inhibits colony formation, cell proliferation, and motility in pancreatic cancer cells and ultimately impairs xenograft tumor growth, comparable to the effect of CREPT deletion. Conclusions: PRTC-induced degradation of CREPT leads to inhibition of tumor growth, which is promising for the development of new drugs against pancreatic cancer. In addition, using an interacting motif based on the dimerized structure of proteins may be a new way to design a PROTAC aiming at degrading any protein without known interacting small molecules or peptides.
Collapse
|
42
|
Zhang W, Liu Y, Zhou X, Zhao R, Wang H. Applications of CRISPR-Cas9 in gynecological cancer research. Clin Genet 2020; 97:827-834. [PMID: 32040210 DOI: 10.1111/cge.13717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022]
Abstract
Gynecological cancers pose a significant threat to women's health worldwide, with cervical cancer, ovarian cancer, and endometrial cancer having high incidences. Current gynecological cancer treatment methods mainly include surgery, chemotherapy, radiotherapy, and chemoradiotherapy. The CRISPR-Cas9 gene editing technology as a new therapeutic method has shown tremendous effect in the treatment of other cancers, promoting research on its potential therapeutic effect in gynecological cancer. In this article, we reviewed the current research status of CRISPR-Cas9 technology in gynecological cancer, focusing on the importance of studying the mechanism of CRISPR-Cas9 in gynecological cancer treatment, thereby laying a foundation for further research on its clinical application.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
Catani MV, Savini I, Tullio V, Gasperi V. The "Janus Face" of Platelets in Cancer. Int J Mol Sci 2020; 21:ijms21030788. [PMID: 31991775 PMCID: PMC7037171 DOI: 10.3390/ijms21030788] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022] Open
Abstract
Besides their vital role in hemostasis and thrombosis, platelets are also recognized to be involved in cancer, where they play an unexpected central role: They actively influence cancer cell behavior, but, on the other hand, platelet physiology and phenotype are impacted by tumor cells. The existence of this platelet-cancer loop is supported by a large number of experimental and human studies reporting an association between alterations in platelet number and functions and cancer, often in a way dependent on patient, cancer type and treatment. Herein, we shall report on an update on platelet-cancer relationships, with a particular emphasis on how platelets might exert either a protective or a deleterious action in all steps of cancer progression. To this end, we will describe the impact of (i) platelet count, (ii) bioactive molecules secreted upon platelet activation, and (iii) microvesicle-derived miRNAs on cancer behavior. Potential explanations of conflicting results are also reported: Both intrinsic (heterogeneity in platelet-derived bioactive molecules with either inhibitory or stimulatory properties; features of cancer cell types, such as aggressiveness and/or tumour stage) and extrinsic (heterogeneous characteristics of cancer patients, study design and sample preparation) factors, together with other confounding elements, contribute to “the Janus face” of platelets in cancer. Given the difficulty to establish the univocal role of platelets in a tumor, a better understanding of their exact contribution is warranted, in order to identify an efficient therapeutic strategy for cancer management, as well as for better prevention, screening and risk assessment protocols.
Collapse
Affiliation(s)
- Maria Valeria Catani
- Correspondence: (M.V.C.); (V.G.); Tel.: +39-06-72596465 (M.V.C.); +39-06-72596465 (V.G.)
| | | | | | - Valeria Gasperi
- Correspondence: (M.V.C.); (V.G.); Tel.: +39-06-72596465 (M.V.C.); +39-06-72596465 (V.G.)
| |
Collapse
|
44
|
Li J, Wang L, Tian J, Zhou Z, Li J, Yang H. Nongenetic engineering strategies for regulating receptor oligomerization in living cells. Chem Soc Rev 2020; 49:1545-1568. [DOI: 10.1039/c9cs00473d] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nongenetic strategies for regulating receptor oligomerization in living cells based on DNA, protein, small molecules and physical stimuli.
Collapse
Affiliation(s)
- Jingying Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| | - Liping Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| | - Jinmiao Tian
- Institute of Molecular Medicine
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai
| | - Zhilan Zhou
- Institute of Molecular Medicine
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| |
Collapse
|
45
|
Xun Y, Yang H, Li J, Wu F, Liu F. CXC Chemokine Receptors in the Tumor Microenvironment and an Update of Antagonist Development. Rev Physiol Biochem Pharmacol 2020; 178:1-40. [PMID: 32816229 DOI: 10.1007/112_2020_35] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chemokine receptors, a diverse group within the seven-transmembrane G protein-coupled receptor superfamily, are frequently overexpressed in malignant tumors. Ligand binding activates multiple downstream signal transduction cascades that drive tumor growth and metastasis, resulting in poor clinical outcome. These receptors are thus considered promising targets for anti-tumor therapy. This article reviews recent studies on the expression and function of CXC chemokine receptors in various tumor microenvironments and recent developments in cancer therapy using CXC chemokine receptor antagonists.
Collapse
Affiliation(s)
- Yang Xun
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China
| | - Hua Yang
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China
| | - Jiekai Li
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China
| | - Fuling Wu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Fang Liu
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China.
| |
Collapse
|
46
|
Liu P, Li X, Lv W, Xu Z. Inhibition of CXCL1-CXCR2 axis ameliorates cisplatin-induced acute kidney injury by mediating inflammatory response. Biomed Pharmacother 2019; 122:109693. [PMID: 31812015 DOI: 10.1016/j.biopha.2019.109693] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/11/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022] Open
Abstract
One of the limiting side effects of cisplatin use in cancer chemotherapy is nephrotoxicity. Inflammation is now believed to play a major role in the pathogenesis of cisplatin-induced acute kidney injury (AKI), and the mediators of inflammation contribute to it. CXCL1 was recently reported to be involved in renal physiology and pathology in ischemia mouse model; however, its roles and mechanisms in cisplatin-induced AKI are completely unknown. We observed that CXCL1 and CXCR2 expression in the kidney was markedly increased on day 7 after cisplatin treatment. Subsequently, we demonstrate that inhibition of CXCL1-CXCR2 signaling axis, using genetic and pharmacological approaches, reduces renal damage following cisplatin treatment as compared with control mice. Specifically, deficiency of CXCL1 or CXCR2 extensively preserved the renal histology and maintained the kidney functions after cisplatin treatment, which was associated with reduced expression of the pro-inflammatory cytokines and infiltration of neutrophils in the kidneys as compared. Furthermore, inhibition of CXCR2 by intragastric administration of repertaxin in mice with AKI reduces kidney injury associated with a reduction of inflammatory cytokines and neutrophils infiltration. Finally, we found that CXCL1/CXCR2 regulated cisplatin-induced inflammatory responses via the P38 and NF-κB signaling pathways in vitro and in vivo. In conclusion, our results indicate that CXCL1-CXCR2 signaling axis plays a crucial role in the pathogenesis of cisplatin-induced AKI through regulation of inflammatory response and maybe a novel therapeutic target for cisplatin-induced AKI.
Collapse
Affiliation(s)
- Peng Liu
- Department of Intensive Care Unit, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Xinxiu Li
- Department of Experimental Medical Science, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China; Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China.
| | - Weixing Lv
- Department of Intensive Care Unit, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Zhaojun Xu
- Department of Intensive Care Unit, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China.
| |
Collapse
|
47
|
Wen J, Zhao Z, Huang L, Wang L, Miao Y, Wu J. IL-8 promotes cell migration through regulating EMT by activating the Wnt/β-catenin pathway in ovarian cancer. J Cell Mol Med 2019; 24:1588-1598. [PMID: 31793192 PMCID: PMC6991660 DOI: 10.1111/jcmm.14848] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
Interleukin‐8 (IL‐8), as an inflammatory chemokine, has been previously shown to contribute to tumorigenesis in several malignancies including the ovarian cancer. However, little is known about how IL‐8 promotes the metastasis and invasion of ovarian cancers cells. In this study, we found that IL‐8 and its receptors CXCR1 and CXCR2 were up‐regulated in advanced ovarian serous cancer tissues. Furthermore, the level of IL‐8 and its receptors CXCR1 and CXCR2 expression were associated with ovarian cancer stage, grade and lymph node metastasis. In vitro, IL‐8 promoted ovarian cancer cell migration, initiated the epithelial‐mesenchymal transition (EMT) program and activated Wnt/β‐catenin signalling. However, when treated with Reparixin (inhibitor of both IL‐8 receptors CXCR1 and CXCR2), effect of both endogenous and exogenous IL‐8 was reversed. Together, our results indicated that IL‐8 triggered ovarian cancer cells migration partly through Wnt/β‐catenin pathway mediated EMT, and IL‐8 may be an important molecule in the invasion and metastasis of ovarian cancer.
Collapse
Affiliation(s)
- Jirui Wen
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China.,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhiwei Zhao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Liwei Huang
- West China School of Stomatology Medicine, Sichuan University, Chengdu, China
| | - Ling Wang
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yali Miao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jiang Wu
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Qian S, Golubnitschaja O, Zhan X. Chronic inflammation: key player and biomarker-set to predict and prevent cancer development and progression based on individualized patient profiles. EPMA J 2019; 10:365-381. [PMID: 31832112 PMCID: PMC6882964 DOI: 10.1007/s13167-019-00194-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022]
Abstract
A strong relationship exists between tumor and inflammation, which is the hot point in cancer research. Inflammation can promote the occurrence and development of cancer by promoting blood vessel growth, cancer cell proliferation, and tumor invasiveness, negatively regulating immune response, and changing the efficacy of certain anti-tumor drugs. It has been demonstrated that there are a large number of inflammatory factors and inflammatory cells in the tumor microenvironment, and tumor-promoting immunity and anti-tumor immunity exist simultaneously in the tumor microenvironment. The typical relationship between chronic inflammation and tumor has been presented by the relationships between Helicobacter pylori, chronic gastritis, and gastric cancer; between smoking, development of chronic pneumonia, and lung cancer; and between hepatitis virus (mainly hepatitis virus B and C), development of chronic hepatitis, and liver cancer. The prevention of chronic inflammation is a factor that can prevent cancer, so it effectively inhibits or blocks the occurrence, development, and progression of the chronic inflammation process playing important roles in the prevention of cancer. Monitoring of the causes and inflammatory factors in chronic inflammation processes is a useful way to predict cancer and assess the efficiency of cancer prevention. Chronic inflammation-based biomarkers are useful tools to predict and prevent cancer.
Collapse
Affiliation(s)
- Shehua Qian
- 1Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
- 2Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
- 3State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Olga Golubnitschaja
- 4Radiological Clinic, UKB, Excellence Rheinische Friedrich-Wilhelms-University of Bonn, Sigmund-Freud-Str 25, 53105 Bonn, Germany
- 5Breast Cancer Research Centre, UKB, Excellence Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
- 6Centre for Integrated Oncology, Cologne-Bonn, Excellence Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Xianquan Zhan
- 1Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
- 2Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
- 3State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
- 7Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan People's Republic of China
- 8National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan People's Republic of China
| |
Collapse
|
49
|
Associations between TAB2 Gene Polymorphisms and Epithelial Ovarian Cancer in a Chinese Population. DISEASE MARKERS 2019; 2019:8012979. [PMID: 31485280 PMCID: PMC6710735 DOI: 10.1155/2019/8012979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/03/2019] [Accepted: 07/17/2019] [Indexed: 02/05/2023]
Abstract
Background Epithelial ovarian cancer (EOC) is highly lethal worldwide. Factors involved in the inflammation and hormone-associated signaling pathway play vital roles in EOC carcinogenesis. The transforming growth factor-β- (TGF-β-) activated kinase 1 (MAP3K7) binding protein 2 (TAB2), mediating convergence of inflammatory and estrogen, may be implicated in EOC. The present study is aimed at exploring the association between the TAB2 gene polymorphisms and EOC. Methods Three single nucleotide polymorphisms (SNPs) (rs237028, rs521845, and rs652921) of TAB2 were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in 221 patients and 252 healthy controls. Associations between SNPs and clinical characteristics were performed either with the χ 2 test or with Fisher's exact test. The Kaplan-Meier method and Cox proportional hazard models were used to detect associations between genotypes and overall survival. Results The rs237028 polymorphism was significantly associated with an increased risk of EOC with an allelic genetic model (A vs. G; OR = 1.45; 95%CI = 1.07-1.96; P = 0.016), dominant genetic model (AA vs. AG-GG; OR = 1.66; CI 1.14-2.41; P = 0.008), and overdominant genetic model (AA-GG vs. AG; OR = 1.60; CI 1.08-2.36; P = 0.017). However, no significant association was observed between rs237028 polymorphism and overall survival. Conclusions Our study indicated that the rs237028 polymorphism in the TAB2 gene was associated with EOC susceptibility and the TAB2 gene might contribute to the initiation of EOC.
Collapse
|
50
|
Bi H, Zhang Y, Wang S, Fang W, He W, Yin L, Xue Y, Cheng Z, Yang M, Shen J. Interleukin-8 promotes cell migration via CXCR1 and CXCR2 in liver cancer. Oncol Lett 2019; 18:4176-4184. [PMID: 31516616 PMCID: PMC6732969 DOI: 10.3892/ol.2019.10735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 07/03/2019] [Indexed: 01/10/2023] Open
Abstract
Liver cancer (LC), which is one of the most common types of cancer worldwide, is notorious for its high morbidity and mortality rates. Interleukin-8 (IL-8), an important member of the CXC chemokine family that was originally classified as a potent neutrophil chemoattractant, has been shown to serve an important role in inflammation, tumor growth, invasion and metastasis through interactions with its receptors. However, the expression and functional roles of IL-8 and its receptors, CXC chemokine receptor (CXCR) 1 and CXCR2 in the progression of liver cancer remain to be fully elucidated. In the present study, it was shown that the mRNA levels of IL-8, CXCR1 and CXCR2 were increased in peripheral blood mononuclear cells from patients with liver cancer compared with those from patients with cirrhosis or normal controls (P<0.05). Higher levels of CXCR1, CXCR2 and IL-8 were associated with advanced tumor stage and increased risk of lymph node or distant metastasis. Immunohistochemistry showed that the IL-8, CXCR1 and CXCR2 proteins were expressed in the cytoplasm of hepatoma cells at higher intensities than those of normal controls (P<0.05). The semi-quantitative analysis revealed that the relative mean density of hepatic IL-8, CXCR1 and CXCR2 staining in liver cancer was significantly increased compared with that in normal liver tissues (P<0.05). The analysis revealed that the mRNA expression of IL-8 was positively associated with that of CXCR1 (r=0.618; P<0.05) and CXCR2 (r=0.569; P<0.05). The mRNA levels of CXCR1 and CXCR2 gradually increased with elevated expression of IL-8 in liver cancer. Experiments were performed using human Huh-7 and HepG2 cell lines, incubating cells with IL-8 and conducting in vitro migration and invasion assays. The results showed that the wound healing activity and migration of Huh-7 and HepG2 cells were increased by IL-8. Pretreatment of the cells with anti-CXCR1 or anti-CXCR2 (5 µM) for 30 min markedly inhibited IL-8-directed cell migration. Taken together, these results indicated that IL-8 promotes liver cancer cell migration via CXCR1 and CXCR2 and that targeting the CXCR1/2 may be a potential strategy for liver cancer treatment.
Collapse
Affiliation(s)
- Huijuan Bi
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Yu Zhang
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Shanshan Wang
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Wenhao Fang
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Wenjun He
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Lina Yin
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Ying Xue
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Zhixiang Cheng
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Minghui Yang
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Jilu Shen
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| |
Collapse
|