1
|
Umek N, Pušnik L, Ugwoke CK, Šink Ž, Horvat S, Janáček J, Cvetko E. Skeletal muscle myosin heavy chain expression and 3D capillary network changes in streptozotocin-induced diabetic female mice. BIOMOLECULES & BIOMEDICINE 2024; 24:582-592. [PMID: 37902457 PMCID: PMC11088899 DOI: 10.17305/bb.2023.9843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 10/31/2023]
Abstract
It is not well-understood how type 1 diabetes (T1DM) affects skeletal muscle histological phenotype, particularly capillarisation. This study aimed to analyze skeletal muscle myosin heavy chain (MyHC) fibre type changes and 3D capillary network characteristics in experimental T1DM mice. Female C57BL/6J-OlaHsd mice were categorized into streptozotocin (STZ)-induced diabetic (n = 12) and age-matched non-diabetic controls (n =12). The muscle fibre phenotype of the soleus, gluteus maximus, and gastrocnemius muscles were characterized based on the expression of MyHC isoforms, while capillaries of the gluteus maximus were assessed with immunofluorescence staining, confocal laser microscopy and 3D image analysis. STZ-induced diabetic mice exhibited elevated glucose levels, reduced body weight, and prolonged thermal latency, verifying the T1DM phenotype. In both T1DM and non-diabetic mice, the gluteus maximus and gastrocnemius muscles predominantly expressed fast-twitch type 2b fibers, with no significant differences noted. However, the soleus muscle in non-diabetic mice had a greater proportion of type 2a fibers and comparable type 1 fiber densities (26.2 ± 14.6% vs 21.9 ± 13.5%) relative to diabetic mice. T1DM mice showed reduced fiber diameters (P = 0.026), and the 3D capillary network analysis indicated a higher capillary length per muscle volume in the gluteus maximus of diabetic mice compared to controls (P < 0.05). Overall, T1DM induced significant changes in the skeletal muscle, including shifts in MyHC fibre types, decreased fibre diameters, and increased relative capillarisation, possibly due to muscle fibre atrophy. Our findings emphasize the superior detail provided by the 3D analytical method for characterizing skeletal muscle capillary architecture, highlighting caution in interpreting 2D data for capillary changes in T1DM.
Collapse
Affiliation(s)
- Nejc Umek
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Luka Pušnik
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Žiga Šink
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Simon Horvat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jiří Janáček
- Laboratory of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Erika Cvetko
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Boix-Lemonche G, Hildebrand T, Haugen HJ, Petrovski G, Nogueira LP. Contrast-enhanced Micro-CT 3D visualization of cell distribution in hydrated human cornea. Heliyon 2024; 10:e25828. [PMID: 38356495 PMCID: PMC10865036 DOI: 10.1016/j.heliyon.2024.e25828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Background The cornea, a vital component of the human eye, plays a crucial role in maintaining visual clarity. Understanding its ultrastructural organization and cell distribution is fundamental for elucidating corneal physiology and pathology. This study comprehensively examines the microarchitecture of the hydrated human cornea using contrast-enhanced micro-computed tomography (micro-CT). Method Fresh human corneal specimens were carefully prepared and hydrated to mimic their in vivo state. Contrast enhancement with Lugol's iodine-enabled high-resolution Micro-CT imaging. The cells' three-dimensional (3D) distribution within the cornea was reconstructed and analyzed. Results The micro-CT imaging revealed exquisite details of the corneal ultrastructure, including the spatial arrangement of cells throughout its depth. This novel approach allowed for the visualization of cells' density and distribution in different corneal layers. Notably, our findings highlighted variations in cell distribution between non-hydrated and hydrated corneas. Conclusions This study demonstrates the potential of contrast-enhanced micro-CT as a valuable tool for non-destructive, 3D visualization and quantitative analysis of cell distribution in hydrated human corneas. These insights contribute to a better understanding of corneal physiology and may have implications for research in corneal diseases and tissue engineering.
Collapse
Affiliation(s)
- Gerard Boix-Lemonche
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | | | | | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
- Department of Ophthalmology, and Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, Split, Croatia
- UKLO Network, University St. Kliment Ohridski – Bitola, Bitola, Macedonia
| | - Liebert Parreiras Nogueira
- Oral Research Laboratory, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Nicolas N, Dinet V, Roux E. 3D imaging and morphometric descriptors of vascular networks on optically cleared organs. iScience 2023; 26:108007. [PMID: 37810224 PMCID: PMC10551892 DOI: 10.1016/j.isci.2023.108007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
The vascular system is a multi-scale network whose functionality depends on its structure, and for which structural alterations can be linked to pathological shifts. Though biologists use multiple 3D imaging techniques to visualize vascular networks, the 3D image processing methodologies remain sources of biases, and the extraction of quantitative morphometric descriptors remains flawed. The article, first, reviews the current 3D image processing methodologies, and morphometric descriptors of vascular network images mainly obtained by light-sheet microscopy on optically cleared organs, found in the literature. Second, it proposes operator-independent segmentation and skeletonization methodologies using the freeware ImageJ. Third, it gives more extractable network-level (density, connectivity, fractal dimension) and segment-level (length, diameter, tortuosity) 3D morphometric descriptors and how to statistically analyze them. Thus, it can serve as a guideline for biologists using 3D imaging techniques of vascular networks, allowing the production of more comparable studies in the future.
Collapse
Affiliation(s)
- Nabil Nicolas
- University Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, F-33600 Pessac, France
| | - Virginie Dinet
- University Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, F-33600 Pessac, France
| | - Etienne Roux
- University Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, F-33600 Pessac, France
| |
Collapse
|
4
|
Schneider B, Kopf KW, Mason E, Dawson M, Coronado Escobar D, Majka SM. Microcomputed tomography visualization and quantitation of the pulmonary arterial microvascular tree in mouse models of chronic lung disease. Pulm Circ 2023; 13:e12279. [PMID: 37645586 PMCID: PMC10461042 DOI: 10.1002/pul2.12279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Pulmonary vascular dysfunction is characterized by remodeling and loss of microvessels in the lung and is a major manifestation of chronic lung diseases (CLD). In murine models of CLD, the small arterioles and capillaries are the first and most prevalent vessels that are affected by pruning and remodeling. Thus, visualization of the pulmonary arterial vasculature in three dimensions is essential to define pruning and remodeling both temporally and spatially and its role in the pathogenesis of CLD, aging, and tissue repair. To this end, we have developed a novel method to visualize and quantitate the murine pulmonary arterial circulation using microcomputed tomography (µCT) imaging. Using this perfusion technique, we can quantitate microvessels to approximately 6 µM in diameter. We hypothesize that bleomycin-induced injury would have a significant impact on the arterial vascular structure. As proof of principle, we demonstrated that as a result of bleomycin-induced injury at peak fibrosis, significant alterations in arterial vessel structure were visible in the three-dimensional models as well as quantification. Thus, we have successfully developed a perfusion methodology and complementary analysis techniques, which allows for the reconstruction, visualization, and quantitation of the mouse pulmonary arterial microvasculature in three-dimensions. This tool will further support the examination and understanding of angiogenesis during the development of CLD as well as repair following injury.
Collapse
Affiliation(s)
- Ben Schneider
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep MedicineNational Jewish HealthDenverColoradoUSA
| | - Katrina W. Kopf
- Biological Resource CenterNational Jewish HealthDenverColoradoUSA
| | - Emma Mason
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep MedicineNational Jewish HealthDenverColoradoUSA
| | - Maggie Dawson
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep MedicineNational Jewish HealthDenverColoradoUSA
| | | | - Susan M. Majka
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep MedicineNational Jewish HealthDenverColoradoUSA
- Gates Center for Regenerative Medicine and Stem Cell BiologyUniversity of ColoradoAuroraColoradoUSA
| |
Collapse
|
5
|
Sodomora ОО. THE EFFECT OF MONOSODIUM GLUTAMATE CONSUMPTION ON CAROTID SINUS MORPHOLOGY: AN ELECTRON MICROSCOPY EXPERIMENTAL STUDY. BULLETIN OF PROBLEMS BIOLOGY AND MEDICINE 2023. [DOI: 10.29254/2077-4214-2022-4-167-316-321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
6
|
Neffeová K, Olejníčková V, Naňka O, Kolesová H. Development and diseases of the coronary microvasculature and its communication with the myocardium. WIREs Mech Dis 2022; 14:e1560. [DOI: 10.1002/wsbm.1560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Kristýna Neffeová
- Institute of Anatomy, First Faculty of Medicine Charles University Prague Czech Republic
| | - Veronika Olejníčková
- Institute of Anatomy, First Faculty of Medicine Charles University Prague Czech Republic
- Institute of Physiology Czech Academy of Science Prague Czech Republic
| | - Ondřej Naňka
- Institute of Anatomy, First Faculty of Medicine Charles University Prague Czech Republic
| | - Hana Kolesová
- Institute of Anatomy, First Faculty of Medicine Charles University Prague Czech Republic
- Institute of Physiology Czech Academy of Science Prague Czech Republic
| |
Collapse
|
7
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
8
|
Mostaghimi S, Mehrvar S, Foomani FH, Narayanan J, Fish B, Camara AKS, Medhora M, Ranji M. Vascular regression in the kidney: changes in 3D vessel structure with time post-irradiation. BIOMEDICAL OPTICS EXPRESS 2022; 13:4338-4352. [PMID: 36032582 PMCID: PMC9408260 DOI: 10.1364/boe.464426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Though angiogenesis has been investigated in depth, vascular regression and rarefaction remain poorly understood. Regression of renal vasculature accompanies many pathological states such as diabetes, hypertension, atherosclerosis, and radiotherapy. Radiation decreases microvessel density in multiple organs, though the mechanism is not known. By using a whole animal (rat) model with a single dose of partial body irradiation to the kidney, changes in the volume of renal vasculature were recorded at two time points, 60 and 90 days after exposure. Next, a novel vascular and metabolic imaging (VMI) technique was used to computationally assess 3D vessel diameter, volume, branch depth, and density over multiple levels of branching down to 70 µm. Four groups of rats were studied, of which two groups received a single dose of 12.5 Gy X-rays. The kidneys were harvested after 60 or 90 days from one irradiated and one non-irradiated group at each time point. Measurements of the 3D vasculature showed that by day-90 post-radiation, when renal function is known to deteriorate, total vessel volume, vessel density, maximum branch depth, and the number of terminal points in the kidneys decreased by 55%, 57%, 28%, and 53%, respectively. Decreases in the same parameters were not statistically significant at 60 days post-irradiation. Smaller vessels with internal diameters of 70-450 µm as well as large vessels of diameter 451-850 µm, both decreased by 90 days post-radiation. Vascular regression in the lungs of the same strain of irradiated rats has been reported to occur before 60 days supporting the hypothesis that this process is regulated in an organ-specific manner and occurs by a concurrent decrease in luminal diameters of small as well as large blood vessels.
Collapse
Affiliation(s)
- Soudeh Mostaghimi
- Department of Biomedical Engineering at University of California, Irvine, CA 92697, USA
| | | | - Farnaz H. Foomani
- Department of Electrical Engineering and Computer Science at University of Wisconsin, Milwaukee, WI 53211, USA
| | - Jayashree Narayanan
- Department of Radiation Oncology and Cardiovascular Research Center at Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian Fish
- Department of Radiation Oncology and Cardiovascular Research Center at Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amadou K. S. Camara
- Department of Anesthesiology and Cardiovascular Research Center at Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Meetha Medhora
- Department of Radiation Oncology and Cardiovascular Research Center at Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Contributed equally
| | - Mahsa Ranji
- Department of Electrical Engineering and Computer Science at Florida Atlantic University, Boca Raton, FL 33431, USA
- Contributed equally
| |
Collapse
|
9
|
Seiler C, Luepke M, Bach JP, Seifert H. Preparation of artificial vascularised tissue and the indirect determination of its void volume using μCT. VET MED-CZECH 2022; 67:387-394. [PMID: 39161852 PMCID: PMC11333037 DOI: 10.17221/100/2020-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 02/24/2022] [Indexed: 08/21/2024] Open
Abstract
The non-invasive determination of the vasculature volume would be very useful in many fields of medicine such as oncology and implantation. The purpose of this research was, therefore, to develop a methodology to investigate vascularisation in phantoms using microcomputed tomography (μCT) without having to visualise the single vessels. Epoxy resin and cotton candy were used to form the phantoms with microchannels. The size of the channels was measured via microscopy and the proportion of the void volume (PVV) was calculated. The phantoms were placed in contrast agent solutions of different concentrations and scanned in μCT. The mean CT numbers of the phantoms were calculated with the Amira software and displayed as a function of the determined PVV and the contrast agent concentration (CAC). The fabricated microchannels had the size of biological capillaries (diameter: 5 μm to 15 μm) and the phantoms showed a microchannel density of 5 to15 microchannels per mm². With an increasing CAC, the CT numbers increased significantly. Additionally, the phantoms with a higher PVV also had a higher CT number. The CT numbers and the PVV correlated moderately together, but significantly. The slope of the regression line increased with an increasing CAC.
Collapse
Affiliation(s)
- Christian Seiler
- Institute of General Radiology and Medical Physics, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Matthias Luepke
- Institute of General Radiology and Medical Physics, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Jan-Peter Bach
- Small Animal Clinic, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Hermann Seifert
- Institute of General Radiology and Medical Physics, University of Veterinary Medicine Foundation, Hannover, Germany
| |
Collapse
|
10
|
Brown EL, Lefebvre TL, Sweeney PW, Stolz BJ, Gröhl J, Hacker L, Huang Z, Couturier DL, Harrington HA, Byrne HM, Bohndiek SE. Quantification of vascular networks in photoacoustic mesoscopy. PHOTOACOUSTICS 2022; 26:100357. [PMID: 35574188 PMCID: PMC9095888 DOI: 10.1016/j.pacs.2022.100357] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Mesoscopic photoacoustic imaging (PAI) enables non-invasive visualisation of tumour vasculature. The visual or semi-quantitative 2D measurements typically applied to mesoscopic PAI data fail to capture the 3D vessel network complexity and lack robust ground truths for assessment of accuracy. Here, we developed a pipeline for quantifying 3D vascular networks captured using mesoscopic PAI and tested the preservation of blood volume and network structure with topological data analysis. Ground truth data of in silico synthetic vasculatures and a string phantom indicated that learning-based segmentation best preserves vessel diameter and blood volume at depth, while rule-based segmentation with vesselness image filtering accurately preserved network structure in superficial vessels. Segmentation of vessels in breast cancer patient-derived xenografts (PDXs) compared favourably to ex vivo immunohistochemistry. Furthermore, our findings underscore the importance of validating segmentation methods when applying mesoscopic PAI as a tool to evaluate vascular networks in vivo.
Collapse
Affiliation(s)
- Emma L. Brown
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Thierry L. Lefebvre
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Paul W. Sweeney
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Bernadette J. Stolz
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
| | - Janek Gröhl
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Lina Hacker
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Ziqiang Huang
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | | | | | - Helen M. Byrne
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
| | - Sarah E. Bohndiek
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
11
|
Ren H, Pu Z, Sun T, Chen T, Liu L, Liu Z, O’Shea C, Pavlovic D, Tan X, Lei M. High-Resolution 3D Heart Models of Cardiomyocyte Subpopulations in Cleared Murine Heart. Front Physiol 2022; 13:779514. [PMID: 35665220 PMCID: PMC9158482 DOI: 10.3389/fphys.2022.779514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Biological tissues are naturally three-dimensional (3D) opaque structures, which poses a major challenge for the deep imaging of spatial distribution and localization of specific cell types in organs in biomedical research. Here we present a 3D heart imaging reconstruction approach by combining an improved heart tissue-clearing technique with high-resolution light-sheet fluorescence microscopy (LSFM). We have conducted a three-dimensional and multi-scale volumetric imaging of the ultra-thin planes of murine hearts for up to 2,000 images per heart in x-, y-, and z three directions. High-resolution 3D volume heart models were constructed in real-time by the Zeiss Zen program. By using such an approach, we investigated detailed three-dimensional spatial distributions of two specific cardiomyocyte populations including HCN4 expressing pacemaker cells and Pnmt+ cell-derived cardiomyocytes by using reporter mouse lines Hcn4DreER/tdTomato and PnmtCre/ChR2-tdTomato. HCN4 is distributed throughout right atrial nodal regions (i.e., sinoatrial and atrioventricular nodes) and the superior-inferior vena cava axis, while Pnmt+ cell-derived cardiomyocytes show distinct ventral, left heart, and dorsal side distribution pattern. Our further electrophysiological analysis indicates that Pnmt + cell-derived cardiomyocytes rich left ventricular (LV) base is more susceptible to ventricular arrhythmia under adrenergic stress than left ventricular apex or right ventricle regions. Thus, our 3D heart imaging reconstruction approach provides a new solution for studying the geometrical, topological, and physiological characteristics of specific cell types in organs.
Collapse
Affiliation(s)
- Huiying Ren
- Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Luzhou Medical College, Luzhou, China
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhaoli Pu
- Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Luzhou Medical College, Luzhou, China
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tianyi Sun
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Tangting Chen
- Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Luzhou Medical College, Luzhou, China
| | - Leiying Liu
- Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Luzhou Medical College, Luzhou, China
| | - Zhu Liu
- Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Luzhou Medical College, Luzhou, China
| | - Christopher O’Shea
- Institute of Cardiovascular Sciences, College of Medicine and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, College of Medicine and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Xiaoqiu Tan
- Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Luzhou Medical College, Luzhou, China
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ming Lei
- Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Luzhou Medical College, Luzhou, China
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Bumgarner JR, Nelson RJ. Open-source analysis and visualization of segmented vasculature datasets with VesselVio. CELL REPORTS METHODS 2022; 2:100189. [PMID: 35497491 PMCID: PMC9046271 DOI: 10.1016/j.crmeth.2022.100189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/10/2022] [Accepted: 03/02/2022] [Indexed: 05/11/2023]
Abstract
Vascular networks are fundamental components of biological systems. Quantitative analysis and observation of the features of these networks can improve our understanding of their roles in health and disease. Recent advancements in imaging technologies have enabled the generation of large-scale vasculature datasets, but barriers to analyzing these datasets remain. Modern analysis options are mainly limited to paid applications or open-source terminal-based software that requires programming knowledge with high learning curves. Here, we describe VesselVio, an open-source application developed to analyze and visualize pre-binarized vasculature datasets and pre-constructed vascular graphs. Vasculature datasets and graphs can be loaded with annotations and processed with custom parameters. Here, the program is tested on ground-truth datasets and is compared with current pipelines. The utility of VesselVio is demonstrated by the analysis of multiple formats of 2D and 3D datasets acquired with several imaging modalities, including annotated mouse whole-brain vasculature volumes.
Collapse
Affiliation(s)
- Jacob R. Bumgarner
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - Randy J. Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
13
|
Preconditioning Exercise in Rats Attenuates Early Brain Injury Resulting from Subarachnoid Hemorrhage by Reducing Oxidative Stress, Inflammation, and Neuronal Apoptosis. Mol Neurobiol 2021; 58:5602-5617. [PMID: 34368932 DOI: 10.1007/s12035-021-02506-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 07/20/2021] [Indexed: 12/31/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a catastrophic form of stroke responsible for significant morbidity and mortality. Oxidative stress, inflammation, and neuronal apoptosis are important in the pathogenesis of early brain injury (EBI) following SAH. Preconditioning exercise confers neuroprotective effects, mitigating EBI; however, the basis for such protection is unknown. We investigated the effects of preconditioning exercise on brain damage and sensorimotor function after SAH. Male rats were assigned to either a sham-operated (Sham) group, exercise (Ex) group, or no-exercise (No-Ex) group. After a 3-week exercise program, they underwent SAH by endovascular perforation. Consciousness level, neurological score, and sensorimotor function were studied. The expression of nuclear factor erythroid 2 p45-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), 4-hydroxynonenal (4HNE), nitrotyrosine (NT), ionized calcium-binding adaptor molecule 1 (Iba1), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), interleukin 1β (IL-1β), 14-3-3γ, p-β-catenin Ser37, Bax, and caspase-3 were evaluated by immunohistochemistry or western blotting. The terminal deoxynucleotidyl transferase-mediated biotinylated dUTP nick end labeling (TUNEL) assay was also performed. After SAH, the Ex group had significantly reduced neurological deficits, sensorimotor dysfunction, and consciousness disorder compared with the No-Ex group. Nrf2, HO-1, and 14-3-3γ were significantly higher in the Ex group, while 4HNE, NT, Iba1, TNF-α, IL-6, IL-1β, Bax, caspase-3, and TUNEL-positive cells were significantly lower. Our findings suggest that preconditioning exercise ameliorates EBI after SAH. The expression of 4HNE and NT was reduced by Nrf2/HO-1 pathway activation; additionally, both oxidative stress and inflammation were reduced. Furthermore, preconditioning exercise reduced apoptosis, likely via the 14-3-3γ/p-β-catenin Ser37/Bax/caspase-3 pathway.
Collapse
|
14
|
Mehrvar S, Mostaghimi S, Camara AKS, Foomani FH, Narayanan J, Fish B, Medhora M, Ranji M. Three-dimensional vascular and metabolic imaging using inverted autofluorescence. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210064R. [PMID: 34240589 PMCID: PMC8265174 DOI: 10.1117/1.jbo.26.7.076002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/15/2021] [Indexed: 05/27/2023]
Abstract
SIGNIFICANCE Three-dimensional (3D) vascular and metabolic imaging (VMI) of whole organs in rodents provides critical and important (patho)physiological information in studying animal models of vascular network. AIM Autofluorescence metabolic imaging has been used to evaluate mitochondrial metabolites such as nicotinamide adenine dinucleotide (NADH) and flavine adenine dinucleotide (FAD). Leveraging these autofluorescence images of whole organs of rodents, we have developed a 3D vascular segmentation technique to delineate the anatomy of the vasculature as well as mitochondrial metabolic distribution. APPROACH By measuring fluorescence from naturally occurring mitochondrial metabolites combined with light-absorbing properties of hemoglobin, we detected the 3D structure of the vascular tree of rodent lungs, kidneys, hearts, and livers using VMI. For lung VMI, an exogenous fluorescent dye was injected into the trachea for inflation and to separate the airways, confirming no overlap between the segmented vessels and airways. RESULTS The kidney vasculature from genetically engineered rats expressing endothelial-specific red fluorescent protein TdTomato confirmed a significant overlap with VMI. This approach abided by the "minimum work" hypothesis of the vascular network fitting to Murray's law. Finally, the vascular segmentation approach confirmed the vascular regression in rats, induced by ionizing radiation. CONCLUSIONS Simultaneous vascular and metabolic information extracted from the VMI provides quantitative diagnostic markers without the confounding effects of vascular stains, fillers, or contrast agents.
Collapse
Affiliation(s)
- Shima Mehrvar
- University of Wisconsin–Milwaukee, Biophotonics Laboratory, Department of Electrical Engineering, Milwaukee, Wisconsin, United States
| | - Soudeh Mostaghimi
- University of Wisconsin–Milwaukee, Biophotonics Laboratory, Department of Electrical Engineering, Milwaukee, Wisconsin, United States
| | - Amadou K. S. Camara
- Medical College of Wisconsin, Department of Physiology, Milwaukee, Wisconsin, United States
- Medical College of Wisconsin, Cardiovascular Research Center, Department of Anesthesiology, Milwaukee, Wisconsin, United States
| | - Farnaz H. Foomani
- University of Wisconsin–Milwaukee, Biophotonics Laboratory, Department of Electrical Engineering, Milwaukee, Wisconsin, United States
| | - Jayashree Narayanan
- Medical College of Wisconsin, Department of Physiology, Milwaukee, Wisconsin, United States
- Medical College of Wisconsin, Cardiovascular Research Center, Department of Radiation Oncology, Milwaukee, Wisconsin, United States
| | - Brian Fish
- Medical College of Wisconsin, Department of Physiology, Milwaukee, Wisconsin, United States
- Medical College of Wisconsin, Cardiovascular Research Center, Department of Radiation Oncology, Milwaukee, Wisconsin, United States
| | - Meetha Medhora
- Medical College of Wisconsin, Department of Physiology, Milwaukee, Wisconsin, United States
- Medical College of Wisconsin, Cardiovascular Research Center, Department of Radiation Oncology, Milwaukee, Wisconsin, United States
| | - Mahsa Ranji
- Florida Atlantic University, Department of Computer and Electrical Engineering and Computer Science, Boca Raton, Florida, United States
| |
Collapse
|
15
|
Du Cheyne C, Smeets M, De Spiegelaere W. Techniques used to assess intussusceptive angiogenesis: A systematic review. Dev Dyn 2021; 250:1704-1716. [PMID: 34101289 DOI: 10.1002/dvdy.382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/25/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
Intussusceptive angiogenesis (IA) is an important physiological form of angiogenesis in which an existing vessel splits in two by the formation of an intraluminal tissue pillar. The presence of these intraluminal pillars form the hallmark of ongoing IA in growing vascular beds. However, their visualization is technically challenging. The goal of this systematic review was to investigate which techniques are being used to identify intraluminal pillars and to formulate important points to keep in mind when studying IA. A systematic literature search resulted in 154 evaluated articles of which the majority (65%) provided sufficient data to unambiguously demonstrate the presence of intraluminal pillars. Scanning electron microscopy imaging of vascular corrosion casts and serial sectioning of ultrathin sections are the most used techniques. New methods such as serial block face scanning electron microscopy and micro computed tomography (μCT) are gaining importance. Moreover, our results indicate that IA was studied in a variety of animals and tissues. IA is a biologically very relevant form of angiogenesis. Techniques to visualize intraluminal pillars need to have a minimal resolution of 1 μm and should provide information on the 3D-nature of the pillars. Optimally, several techniques are combined to demonstrate ongoing IA.
Collapse
Affiliation(s)
- Charis Du Cheyne
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Marloes Smeets
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
16
|
Kolesová H, Olejníčková V, Kvasilová A, Gregorovičová M, Sedmera D. Tissue clearing and imaging methods for cardiovascular development. iScience 2021; 24:102387. [PMID: 33981974 PMCID: PMC8086021 DOI: 10.1016/j.isci.2021.102387] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tissue imaging in 3D using visible light is limited and various clearing techniques were developed to increase imaging depth, but none provides universal solution for all tissues at all developmental stages. In this review, we focus on different tissue clearing methods for 3D imaging of heart and vasculature, based on chemical composition (solvent-based, simple immersion, hyperhydration, and hydrogel embedding techniques). We discuss in detail compatibility of various tissue clearing techniques with visualization methods: fluorescence preservation, immunohistochemistry, nuclear staining, and fluorescent dyes vascular perfusion. We also discuss myocardium visualization using autofluorescence, tissue shrinking, and expansion. Then we overview imaging methods used to study cardiovascular system and live imaging. We discuss heart and vessels segmentation methods and image analysis. The review covers the whole process of cardiovascular system 3D imaging, starting from tissue clearing and its compatibility with various visualization methods to the types of imaging methods and resulting image analysis.
Collapse
Affiliation(s)
- Hana Kolesová
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Science, Prague, Czech Republic
| | - Veronika Olejníčková
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Science, Prague, Czech Republic
| | - Alena Kvasilová
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martina Gregorovičová
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Science, Prague, Czech Republic
| | - David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Science, Prague, Czech Republic
| |
Collapse
|
17
|
Yasukagawa M, Shimada A, Shiozaki S, Tobita S, Yoshihara T. Phosphorescent Ir(III) complexes conjugated with oligoarginine peptides serve as optical probes for in vivo microvascular imaging. Sci Rep 2021; 11:4733. [PMID: 33637825 PMCID: PMC7910296 DOI: 10.1038/s41598-021-84115-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Imaging the vascular structures of organ and tumor tissues is extremely important for assessing various pathological conditions. Herein we present the new vascular imaging probe BTQ-Rn (n = 8, 12, 16), a phosphorescent Ir(III) complex containing an oligoarginine peptide as a ligand. This microvasculature staining probe can be chemically synthesized, unlike the commonly used tomato lectins labeled with a fluorophore such as fluorescein isothiocyanate (FITC). Intravenous administration of BTQ-R12 to mice and subsequent confocal luminescence microscope measurements enabled in vivo vascular imaging of tumors and various organs, including kidney, liver and pancreas. Dual color imaging of hepatic tissues of living mice fed a high-fat diet using BTQ-R12 and the lipid droplet-specific probe PC6S revealed small and large lipid droplets in the hepatocytes, causing distortion of the sinusoidal structure. BTQ-R12 selectively stains vascular endothelium and thus allows longer-term vascular network imaging compared to fluorescent dextran with a molecular weight of 70 kDa that circulate in the bloodstream. Furthermore, time-gated measurements using this phosphorescent vascular probe enabled imaging of blood vessel structures without interference from autofluorescence.
Collapse
Affiliation(s)
- Mami Yasukagawa
- grid.256642.10000 0000 9269 4097Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 Japan
| | - Aya Shimada
- grid.256642.10000 0000 9269 4097Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 Japan
| | - Shuichi Shiozaki
- grid.256642.10000 0000 9269 4097Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 Japan
| | - Seiji Tobita
- grid.256642.10000 0000 9269 4097Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 Japan
| | - Toshitada Yoshihara
- grid.256642.10000 0000 9269 4097Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 Japan
| |
Collapse
|
18
|
Notohamiprodjo S, Varasteh Z, Beer AJ, Niu G, Chen X(S, Weber W, Schwaiger M. Tumor Vasculature. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
19
|
Schneidereit D, Bröllochs A, Ritter P, Kreiß L, Mokhtari Z, Beilhack A, Krönke G, Ackermann JA, Faas M, Grüneboom A, Schürmann S, Friedrich O. An advanced optical clearing protocol allows label-free detection of tissue necrosis via multiphoton microscopy in injured whole muscle. Am J Cancer Res 2021; 11:2876-2891. [PMID: 33456578 PMCID: PMC7806485 DOI: 10.7150/thno.51558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/12/2020] [Indexed: 01/27/2023] Open
Abstract
Rationale: Structural remodeling or damage as a result of disease or injury is often not evenly distributed throughout a tissue but strongly depends on localization and extent of damaging stimuli. Skeletal muscle as a mechanically active organ can express signs of local or even systemic myopathic damage, necrosis, or repair. Conventionally, muscle biopsies (patients) or whole muscles (animal models) are mechanically sliced and stained to assess structural alterations histologically. Three-dimensional tissue information can be obtained by applying deep imaging modalities, e.g. multiphoton or light-sheet microscopy. Chemical clearing approaches reduce scattering, e.g. through matching refractive tissue indices, to overcome optical penetration depth limits in thick tissues. Methods: Here, we optimized a range of different clearing protocols. We find aqueous solution-based protocols employing (20-80%) 2,2'-thiodiethanol (TDE) to be advantageous over organic solvents (dibenzyl ether, cinnamate) regarding the preservation of muscle morphology, ease-of-use, hazard level, and costs. Results: Applying TDE clearing to a mouse model of local cardiotoxin (CTX)-induced muscle necrosis, a complete loss of myosin-II signals was observed in necrotic areas with little change in fibrous collagen or autofluorescence (AF) signals. The 3D aspect of myofiber integrity could be assessed, and muscle necrosis in whole muscle was quantified locally via the ratios of detected AF, forward- and backward-scattered Second Harmonic Generation (fSHG, bSHG) signals. Conclusion: TDE optical clearing is a versatile tool to study muscle architecture in conjunction with label-free multiphoton imaging in 3D in injury/myopathy models and might also be useful in studying larger biofabricated constructs in regenerative medicine.
Collapse
|
20
|
Jurtz VI, Skovbjerg G, Salinas CG, Roostalu U, Pedersen L, Hecksher-Sørensen J, Rolin B, Nyberg M, van de Bunt M, Ingvorsen C. Deep learning reveals 3D atherosclerotic plaque distribution and composition. Sci Rep 2020; 10:21523. [PMID: 33299076 PMCID: PMC7726562 DOI: 10.1038/s41598-020-78632-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Complications of atherosclerosis are the leading cause of morbidity and mortality worldwide. Various genetically modified mouse models are used to investigate disease trajectory with classical histology, currently the preferred methodology to elucidate plaque composition. Here, we show the strength of light-sheet fluorescence microscopy combined with deep learning image analysis for characterising and quantifying plaque burden and composition in whole aorta specimens. 3D imaging is a non-destructive method that requires minimal ex vivo handling and can be up-scaled to large sample sizes. Combined with deep learning, atherosclerotic plaque in mice can be identified without any ex vivo staining due to the autofluorescent nature of the tissue. The aorta and its branches can subsequently be segmented to determine how anatomical position affects plaque composition and progression. Here, we find the highest plaque accumulation in the aortic arch and brachiocephalic artery. Simultaneously, aortas can be stained for markers of interest (for example the pan immune cell marker CD45) and quantified. In ApoE-/- mice we observe that levels of CD45 reach a plateau after which increases in plaque volume no longer correlate to immune cell infiltration. All underlying code is made publicly available to ease adaption of the method.
Collapse
MESH Headings
- Animals
- Aorta/pathology
- Aortic Diseases
- Apolipoproteins E/analysis
- Atherosclerosis/complications
- Atherosclerosis/pathology
- Deep Learning
- Disease Models, Animal
- Female
- Image Processing, Computer-Assisted/methods
- Imaging, Three-Dimensional/methods
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Fluorescence/methods
- Plaque, Atherosclerotic/diagnostic imaging
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Receptors, LDL/analysis
Collapse
Affiliation(s)
| | - Grethe Skovbjerg
- Novo Nordisk A/S, Novo Nordisk Park, 2760, Maaloev, Denmark
- Gubra, 2970, Hoersholm, Denmark
| | | | | | - Louise Pedersen
- Novo Nordisk A/S, Novo Nordisk Park, 2760, Maaloev, Denmark
- University of Copenhagen, 1017, Copenhagen, Denmark
| | | | - Bidda Rolin
- Novo Nordisk A/S, Novo Nordisk Park, 2760, Maaloev, Denmark
- Gubra, 2970, Hoersholm, Denmark
| | - Michael Nyberg
- Novo Nordisk A/S, Novo Nordisk Park, 2760, Maaloev, Denmark
| | | | | |
Collapse
|
21
|
Kuo W, Le NA, Spingler B, Wenger RH, Kipar A, Hetzel U, Schulz G, Müller B, Kurtcuoglu V. Simultaneous Three-Dimensional Vascular and Tubular Imaging of Whole Mouse Kidneys With X-ray μCT. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:731-740. [PMID: 32627730 DOI: 10.1017/s1431927620001725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Concurrent three-dimensional imaging of the renal vascular and tubular systems on the whole-kidney scale with capillary level resolution is labor-intensive and technically difficult. Approaches based on vascular corrosion casting and X-ray micro computed tomography (μCT), for example, suffer from vascular filling artifacts and necessitate imaging with an additional modality to acquire tubules. In this work, we report on a new sample preparation, image acquisition, and quantification protocol for simultaneous vascular and tubular μCT imaging of whole, uncorroded mouse kidneys. The protocol consists of vascular perfusion with the water-soluble, aldehyde-fixable, polymeric X-ray contrast agent XlinCA, followed by laboratory-source μCT imaging and structural analysis using the freely available Fiji/ImageJ software. We achieved consistent filling of the entire capillary bed and staining of the tubules in the cortex and outer medulla. After imaging at isotropic voxel sizes of 3.3 and 4.4 μm, we segmented vascular and tubular systems and quantified luminal volumes, surface areas, diffusion distances, and vessel path lengths. This protocol permits the analysis of vascular and tubular parameters with higher reliability than vascular corrosion casting, less labor than serial sectioning and leaves tissue intact for subsequent histological examination with light and electron microscopy.
Collapse
Affiliation(s)
- Willy Kuo
- University of Zurich, Institute of Physiology, Winterthurerstrasse 190, 8057Zurich, Switzerland
- University of Zurich, National Centre of Competence in Research, Kidney. CH, Winterthurerstrasse 190, 8057Zurich, Switzerland
- University of Basel, Biomaterials Science Center, Department of Biomedical Engineering, Gewerbestrasse 14, 4123Allschwil, Switzerland
| | - Ngoc An Le
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057Zurich, Switzerland
| | - Bernhard Spingler
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057Zurich, Switzerland
| | - Roland H Wenger
- University of Zurich, Institute of Physiology, Winterthurerstrasse 190, 8057Zurich, Switzerland
- University of Zurich, National Centre of Competence in Research, Kidney. CH, Winterthurerstrasse 190, 8057Zurich, Switzerland
| | - Anja Kipar
- University of Zurich, Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, Winterthurerstrasse 268, 8057Zurich, Switzerland
| | - Udo Hetzel
- University of Zurich, Electron Microscopy Unit, Institute of Veterinary Pathology, Vetsuisse Faculty, Winterthurerstrasse 268, 8057Zurich, Switzerland
| | - Georg Schulz
- University of Basel, Biomaterials Science Center, Department of Biomedical Engineering, Gewerbestrasse 14, 4123Allschwil, Switzerland
| | - Bert Müller
- University of Basel, Biomaterials Science Center, Department of Biomedical Engineering, Gewerbestrasse 14, 4123Allschwil, Switzerland
| | - Vartan Kurtcuoglu
- University of Zurich, Institute of Physiology, Winterthurerstrasse 190, 8057Zurich, Switzerland
- University of Zurich, National Centre of Competence in Research, Kidney. CH, Winterthurerstrasse 190, 8057Zurich, Switzerland
- University of Zurich, Zurich Center for Integrative Human Physiology, 8057Zurich, Switzerland
| |
Collapse
|
22
|
Men Y, Wang Y, Yi Y, Jing D, Luo W, Shen B, Stenberg W, Chai Y, Ge WP, Feng JQ, Zhao H. Gli1+ Periodontium Stem Cells Are Regulated by Osteocytes and Occlusal Force. Dev Cell 2020; 54:639-654.e6. [PMID: 32652075 DOI: 10.1016/j.devcel.2020.06.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 02/04/2020] [Accepted: 06/02/2020] [Indexed: 01/05/2023]
Abstract
Teeth are attached to alveolar bone by the periodontal ligament (PDL), which contains stem cells supporting tissue turnover. Here, we identified Gli1+ cells in adult mouse molar PDL as multi-potential stem cells (PDLSCs) giving rise to PDL, alveolar bone, and cementum. They support periodontium tissue turnover and injury repair. Gli1+ PDLSCs are surrounding the neurovascular bundle and more enriched in the apical region. Canonical Wnt signaling is essential for their activation. Alveolar bone osteocytes negatively regulate Gli1+ PDLSCs activity through sclerostin, a Wnt inhibitor. Blockage of sclerostin accelerates the PDLSCs lineage contribution rate in vivo. Sclerostin expression is modulated by physiological occlusal force. Removal of occlusal force upregulates sclerostin and inhibits PDLSCs activation. In summary, Gli1+ cells are the multipotential PDLSCs in vivo. Osteocytes provide negative feedback to PDLSCs and inhibit their activities through sclerostin. Physiological occlusal force indirectly regulates PDLSCs activities by fine-tuning this feedback loop.
Collapse
Affiliation(s)
- Yi Men
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA; West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuhong Wang
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA; West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yating Yi
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Dian Jing
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Wenjing Luo
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Bo Shen
- Children's Research Institute, UT Southwestern Medical Center Dallas, TX 75235, USA
| | - William Stenberg
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Herman Ostrow School of Dentistry, Los Angeles, CA 90089, USA
| | - Woo-Ping Ge
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Jian Q Feng
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Hu Zhao
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA.
| |
Collapse
|
23
|
Fusco L, Gazzi A, Peng G, Shin Y, Vranic S, Bedognetti D, Vitale F, Yilmazer A, Feng X, Fadeel B, Casiraghi C, Delogu LG. Graphene and other 2D materials: a multidisciplinary analysis to uncover the hidden potential as cancer theranostics. Theranostics 2020; 10:5435-5488. [PMID: 32373222 PMCID: PMC7196289 DOI: 10.7150/thno.40068] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer represents one of the main causes of death in the world; hence the development of more specific approaches for its diagnosis and treatment is urgently needed in clinical practice. Here we aim at providing a comprehensive review on the use of 2-dimensional materials (2DMs) in cancer theranostics. In particular, we focus on graphene-related materials (GRMs), graphene hybrids, and graphdiyne (GDY), as well as other emerging 2DMs, such as MXene, tungsten disulfide (WS2), molybdenum disulfide (MoS2), hexagonal boron nitride (h-BN), black phosphorus (BP), silicene, antimonene (AM), germanene, biotite (black mica), metal organic frameworks (MOFs), and others. The results reported in the scientific literature in the last ten years (>200 papers) are dissected here with respect to the wide variety of combinations of imaging methodologies and therapeutic approaches, including drug/gene delivery, photothermal/photodynamic therapy, sonodynamic therapy, and immunotherapy. We provide a unique multidisciplinary approach in discussing the literature, which also includes a detailed section on the characterization methods used to analyze the material properties, highlighting the merits and limitations of the different approaches. The aim of this review is to show the strong potential of 2DMs for use as cancer theranostics, as well as to highlight issues that prevent the clinical translation of these materials. Overall, we hope to shed light on the hidden potential of the vast panorama of new and emerging 2DMs as clinical cancer theranostics.
Collapse
Affiliation(s)
- Laura Fusco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, Padua, Italy
- Cancer Program, Sidra Medicine, Doha, Qatar
| | - Arianna Gazzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, Padua, Italy
| | - Guotao Peng
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yuyoung Shin
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Sandra Vranic
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Flavia Vitale
- Department of Neurology, Bioengineering, Physical Medicine & Rehabilitation, Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| | - Acelya Yilmazer
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey
- Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Xinliang Feng
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Cinzia Casiraghi
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Lucia Gemma Delogu
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, Padua, Italy
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
24
|
Ning G, Zhang X, Zhang Q, Wang Z, Liao H. Real-time and multimodality image-guided intelligent HIFU therapy for uterine fibroid. Theranostics 2020; 10:4676-4693. [PMID: 32292522 PMCID: PMC7150484 DOI: 10.7150/thno.42830] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 01/26/2020] [Indexed: 12/02/2022] Open
Abstract
Rationale: High-intensity focused ultrasound (HIFU) therapy represents a noninvasive surgical approach to treat uterine fibroids. The operation of HIFU therapy relies on the information provided by medical images. In current HIFU therapy, all operations such as positioning of the lesion in magnetic resonance (MR) and ultrasound (US) images are manually performed by specifically trained doctors. Manual processing is an important limitation of the efficiency of HIFU therapy. In this paper, we aim to provide an automatic and accurate image guidance system, intelligent diagnosis, and treatment strategy for HIFU therapy by combining multimodality information. Methods: In intelligent HIFU therapy, medical information and treatment strategy are automatically processed and generated by a real-time image guidance system. The system comprises a novel multistage deep convolutional neural network for preoperative diagnosis and a nonrigid US lesion tracking procedure for HIFU intraoperative image-assisted treatment. In the process of intelligent therapy, the treatment area is determined from the autogenerated lesion area. Based on the autodetected treatment area, the HIFU foci are distributed automatically according to the treatment strategy. Moreover, an image-based unexpected movement warning and other physiological monitoring are used during the intelligent treatment procedure for safety assurance. Results: In the experiment, we integrated the intelligent treatment system on a commercial HIFU treatment device, and eight clinical experiments were performed. In the clinical validation, eight randomly selected clinical cases were used to verify the feasibility of the system. The results of the quantitative experiment indicated that our intelligent system met the HIFU clinical tracking accuracy and speed requirements. Moreover, the results of simulated repeated experiments confirmed that the autodistributed HIFU focus reached the level of intermediate clinical doctors. Operations performed by junior- or middle-level operators with the assistance of the proposed system can reach the level of operation performed by senior doctors. Various experiments prove that our proposed intelligent HIFU therapy process is feasible for treating common uterine fibroid cases. Conclusion: We propose an intelligent HIFU therapy for uterine fibroid which integrates multiple medical information processing procedures. The experiment results demonstrated that the proposed procedures and methods can achieve monitored and automatic HIFU diagnosis and treatment. This research provides a possibility for intelligent and automatic noninvasive therapy for uterine fibroid.
Collapse
|
25
|
Abstract
Recent developments within micro-computed tomography (μCT) imaging have combined to extend our capacity to image tissue in three (3D) and four (4D) dimensions at micron and sub-micron spatial resolutions, opening the way for virtual histology, live cell imaging, subcellular imaging and correlative microscopy. Pivotal to this has been the development of methods to extend the contrast achievable for soft tissue. Herein, we review the new capabilities within the field of life sciences imaging, and consider how future developments in this field could further benefit the life sciences community.
Collapse
Affiliation(s)
- Shelley D Rawson
- The Henry Royce Institute and School of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Jekaterina Maksimcuka
- The Henry Royce Institute and School of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Philip J Withers
- The Henry Royce Institute and School of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Sarah H Cartmell
- The Henry Royce Institute and School of Materials, The University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
26
|
Wöss C, Unterberger SH, Degenhart G, Akolkar A, Traxl R, Kuhn V, Schirmer M, Pallua AK, Tappert R, Pallua JD. Comparison of structure and composition of a fossil Champsosaurus vertebra with modern Crocodylidae vertebrae: A multi-instrumental approach. J Mech Behav Biomed Mater 2020; 104:103668. [PMID: 32174426 DOI: 10.1016/j.jmbbm.2020.103668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 11/30/2022]
Abstract
Information on the adaptation of bone structures during evolution is rare since histological data are limited. Micro- and nano-computed tomography of a fossilized vertebra from Champsosaurus sp., which has an estimated age of 70-73 million years, revealed lower porosity and higher bone density compared to modern Crocodylidae vertebrae. Mid-infrared reflectance and energy dispersive X-ray mapping excluded a petrification process, and demonstrated a typical carbonate apatite distribution, confirming histology in light- and electron microscopy of the preserved vertebra. As a consequence of this evolutionary process, the two vertebrae of modern Crocodylidae show reduced overall stiffness in the finite element analysis simulation compared to the fossilized Champsosaurus sp. vertebra, with predominant stiffness along the longitudinal z-axes.
Collapse
Affiliation(s)
- C Wöss
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstraße 44, 6020, Innsbruck, Austria
| | - S H Unterberger
- Unit for Material Technology, University of Innsbruck, Technikerstraße 13, 6020, Innsbruck, Austria
| | - G Degenhart
- Department of Radiology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - A Akolkar
- Illwerke vkw Professorship for Energy Efficiency, Vorarlberg University of Applied Sciences, Hochschulstraße 1, 6850, Dornbirn, Austria; Josef Ressel Center for Applied Computational Science in Energy, Finance, and Logistics, Hochschulstraße 1, 6850, Dornbirn, Austria
| | - R Traxl
- Unit for Material Technology, University of Innsbruck, Technikerstraße 13, 6020, Innsbruck, Austria
| | - V Kuhn
- Department of Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - M Schirmer
- Department of Internal Medicine, Clinic II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - A K Pallua
- Former Institute for Computed Tomography-Neuro CT, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - R Tappert
- Hyperspectral Intelligence Inc., Box 851, Gibsons, British Columbia, V0N 1V0, Canada
| | - J D Pallua
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstraße 44, 6020, Innsbruck, Austria; Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Müllerstraße 44, 6020, Innsbruck, Austria.
| |
Collapse
|
27
|
Le NA, Kuo W, Müller B, Kurtcuoglu V, Spingler B. Crosslinkable polymeric contrast agent for high-resolution X-ray imaging of the vascular system. Chem Commun (Camb) 2020; 56:5885-5888. [DOI: 10.1039/c9cc09883f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A contrast agent for X-ray micro computed tomography (μCT), called XlinCA, that combines reliable perfusion and permanent retention and contrast properties, was developed for ex vivo imaging.
Collapse
Affiliation(s)
- Ngoc An Le
- Department of Chemistry
- University of Zurich
- 8057 Zurich
- Switzerland
| | - Willy Kuo
- Institute of Physiology
- University of Zurich
- 8057 Zurich
- Switzerland
- National Centre of Competence in Research
| | - Bert Müller
- Biomaterials Science Center
- Department of Biomedical Engineering
- University of Basel
- 4123 Allschwil
- Switzerland
| | - Vartan Kurtcuoglu
- Institute of Physiology
- University of Zurich
- 8057 Zurich
- Switzerland
- National Centre of Competence in Research
| | | |
Collapse
|
28
|
Zhao Y, Ji D, Li Y, Zhao X, Lv W, Xin X, Han S, Hu C. Three-dimensional visualization of microvasculature from few-projection data using a novel CT reconstruction algorithm for propagation-based X-ray phase-contrast imaging. BIOMEDICAL OPTICS EXPRESS 2020; 11:364-387. [PMID: 32010522 PMCID: PMC6968748 DOI: 10.1364/boe.380084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/29/2019] [Accepted: 12/12/2019] [Indexed: 05/23/2023]
Abstract
Propagation-based X-ray phase-contrast imaging (PBI) is a powerful nondestructive imaging technique that can reveal the internal detailed structures in weakly absorbing samples. Extending PBI to CT (PBCT) enables high-resolution and high-contrast 3D visualization of microvasculature, which can be used for the understanding, diagnosis and therapy of diseases involving vasculopathy, such as cardiovascular disease, stroke and tumor. However, the long scan time for PBCT impedes its wider use in biomedical and preclinical microvascular studies. To address this issue, a novel CT reconstruction algorithm for PBCT is presented that aims at shortening the scan time for microvascular samples by reducing the number of projections while maintaining the high quality of reconstructed images. The proposed algorithm combines the filtered backprojection method into the iterative reconstruction framework, and a weighted guided image filtering approach (WGIF) is utilized to optimize the intermediate reconstructed images. Notably, the homogeneity assumption on the microvasculature sample is adopted as prior knowledge, and therefore, a prior image of microvasculature structures can be acquired by a k-means clustering approach. Then, the prior image is used as the guided image in the WGIF procedure to effectively suppress streaking artifacts and preserve microvasculature structures. To evaluate the effectiveness and capability of the proposed algorithm, simulation experiments on 3D microvasculature numerical phantom and real experiments with CT reconstruction on the microvasculature sample are performed. The results demonstrate that the proposed algorithm can, under noise-free and noisy conditions, significantly reduce the artifacts and effectively preserve the microvasculature structures on the reconstructed images and thus enables it to be used for clear and accurate 3D visualization of microvasculature from few-projection data. Therefore, for 3D visualization of microvasculature, the proposed algorithm can be considered an effective approach for reducing the scan time required by PBCT.
Collapse
Affiliation(s)
- Yuqing Zhao
- School of Biomedical Engineering and
Technology, Tianjin Medical University, Tianjin 300070, China
| | - Dongjiang Ji
- The School of Science, Tianjin University
of Technology and Education, Tianjin 300222, China
| | - Yimin Li
- School of Biomedical Engineering and
Technology, Tianjin Medical University, Tianjin 300070, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship
Hospital, Capital Medical University, Beijing 100050, China
| | - Wenjuan Lv
- School of Biomedical Engineering and
Technology, Tianjin Medical University, Tianjin 300070, China
| | - Xiaohong Xin
- School of Biomedical Engineering and
Technology, Tianjin Medical University, Tianjin 300070, China
| | - Shuo Han
- School of Biomedical Engineering and
Technology, Tianjin Medical University, Tianjin 300070, China
| | - Chunhong Hu
- School of Biomedical Engineering and
Technology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
29
|
Mei L, Zhu S, Yin W, Chen C, Nie G, Gu Z, Zhao Y. Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics 2020; 10:757-781. [PMID: 31903149 PMCID: PMC6929992 DOI: 10.7150/thno.39701] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/21/2019] [Indexed: 12/12/2022] Open
Abstract
The marked augment of drug-resistance to traditional antibiotics underlines the crying need for novel replaceable antibacterials. Research advances have revealed the considerable sterilization potential of two-dimension graphene-based nanomaterials. Subsequently, two-dimensional nanomaterials beyond graphene (2D NBG) as novel antibacterials have also demonstrated their power for disinfection due to their unique physicochemical properties and good biocompatibility. Therefore, the exploration of antibacterial mechanisms of 2D NBG is vital to manipulate antibacterials for future applications. Herein, we summarize the recent research progress of 2D NBG-based antibacterial agents, starting with a detailed introduction of the relevant antibacterial mechanisms, including direct contact destruction, oxidative stress, photo-induced antibacterial, control drug/metallic ions releasing, and the multi-mode synergistic antibacterial. Then, the effect of the physicochemical properties of 2D NBG on their antibacterial activities is also discussed. Additionally, a summary of the different kinds of 2D NBG is given, such as transition-metal dichalcogenides/oxides, metal-based compounds, nitride-based nanomaterials, black phosphorus, transition metal carbides, and nitrides. Finally, we rationally analyze the current challenges and new perspectives for future study of more effective antibacterial agents. This review not only can help researchers grasp the current status of 2D NBG antibacterials, but also may catalyze breakthroughs in this fast-growing field.
Collapse
Affiliation(s)
- Linqiang Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wenyan Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China
| | - Guangjun Nie
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Foster DS, Nguyen AT, Chinta M, Salhotra A, Jones RE, Mascharak S, Titan AL, Ransom RC, da Silva OL, Foley E, Briger E, Longaker MT. A Clearing Technique to Enhance Endogenous Fluorophores in Skin and Soft Tissue. Sci Rep 2019; 9:15791. [PMID: 31673001 PMCID: PMC6823366 DOI: 10.1038/s41598-019-50359-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/06/2019] [Indexed: 12/26/2022] Open
Abstract
Fluorescent proteins are used extensively in transgenic animal models to label and study specific cell and tissue types. Expression of these proteins can be imaged and analyzed using fluorescent and confocal microscopy. Conventional confocal microscopes cannot penetrate through tissue more than 4–6 μm thick. Tissue clearing procedures overcome this challenge by rendering thick specimens into translucent tissue. However, most tissue clearing techniques do not satisfactorily preserve expression of endogenous fluorophores. Using simple adjustments to the BABB (Benzoic Acid Benzyl Benzoate) clearing methodology, preservation of fluorophore expression can be maintained. Modified BABB tissue clearing is a reliable technique to clear skin and soft tissue specimens for the study of dermal biology, wound healing and fibrotic pathologies.
Collapse
Affiliation(s)
- Deshka S Foster
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Alan T Nguyen
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Malini Chinta
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ankit Salhotra
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - R Ellen Jones
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Shamik Mascharak
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ashley L Titan
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - R Chase Ransom
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Oscar L da Silva
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Eliza Foley
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Emma Briger
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
31
|
Sun W, Luo L, Feng Y, Cai Y, Zhuang Y, Xie RJ, Chen X, Chen H. Aggregation-Induced Emission Gold Clustoluminogens for Enhanced Low-Dose X-ray-Induced Photodynamic Therapy. Angew Chem Int Ed Engl 2019; 59:9914-9921. [PMID: 31418982 DOI: 10.1002/anie.201908712] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Indexed: 11/11/2022]
Abstract
The use of gold nanoparticles as radiosensitizers is an effective way to boost the killing efficacy of radiotherapy while drastically limiting the received dose and reducing the possible damage to normal tissues. Herein, we designed aggregation-induced emission gold clustoluminogens (AIE-Au) to achieve efficient low-dose X-ray-induced photodynamic therapy (X-PDT) with negligible side effects. The aggregates of glutathione-protected gold clusters (GCs) assembled through a cationic polymer enhanced the X-ray-excited luminescence by 5.2-fold. Under low-dose X-ray irradiation, AIE-Au strongly absorbed X-rays and efficiently generated hydroxyl radicals, which enhanced the radiotherapy effect. Additionally, X-ray-induced luminescence excited the conjugated photosensitizers, resulting in a PDT effect. The in vitro and in vivo experiments demonstrated that AIE-Au effectively triggered the generation of reactive oxygen species with an order-of-magnitude reduction in the X-ray dose, enabling highly effective cancer treatment.
Collapse
Affiliation(s)
- Wenjing Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Li Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yushuo Feng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yuting Cai
- College of Materials, Xiamen University, Xiamen, 361005, China
| | - Yixi Zhuang
- College of Materials, Xiamen University, Xiamen, 361005, China
| | - Rong-Jun Xie
- College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Hongmin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
32
|
Sun W, Luo L, Feng Y, Cai Y, Zhuang Y, Xie R, Chen X, Chen H. Aggregation‐Induced Emission Gold Clustoluminogens for Enhanced Low‐Dose X‐ray‐Induced Photodynamic Therapy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wenjing Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen University Xiamen 361102 China
| | - Li Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen University Xiamen 361102 China
| | - Yushuo Feng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen University Xiamen 361102 China
| | - Yuting Cai
- College of MaterialsXiamen University Xiamen 361005 China
| | - Yixi Zhuang
- College of MaterialsXiamen University Xiamen 361005 China
| | - Rong‐Jun Xie
- College of MaterialsXiamen University Xiamen 361005 China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and Bioengineering (NIBIB)National Institutes of Health (NIH) Bethesda MD 20892 USA
| | - Hongmin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen University Xiamen 361102 China
| |
Collapse
|
33
|
Bräutigam J, Bischoff I, Schürmann C, Buchmann G, Epah J, Fuchs S, Heiss E, Brandes RP, Fürst R. Narciclasine inhibits angiogenic processes by activation of Rho kinase and by downregulation of the VEGF receptor 2. J Mol Cell Cardiol 2019; 135:97-108. [PMID: 31381906 DOI: 10.1016/j.yjmcc.2019.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/22/2019] [Accepted: 08/01/2019] [Indexed: 11/18/2022]
Abstract
The process of angiogenesis is involved in several pathological conditions, such as tumor growth or age-related macular degeneration. Although the available anti-angiogenic drugs have improved the therapy of these diseases, major drawbacks, such as unwanted side effects and resistances, still exist. Consequently, the search for new anti-angiogenic substances is still ongoing. Narciclasine, a plant alkaloid from different members of the Amaryllidaceae family, has extensively been characterized as anti-tumor compound. Beyond the field of cancer, the compound has recently been shown to possess anti-inflammatory properties. Surprisingly, potential actions of narciclasine on endothelial cells in the context of angiogenesis have been neglected so far. Thus, we aimed to analyze the effects of narciclasine on angiogenic processes in vitro and in vivo and to elucidate the underlying mechanism. Narciclasine (100-300 nM) effectively inhibited the proliferation, undirected and directed migration, network formation and angiogenic sprouting of human primary endothelial cells. Moreover, narciclasine (1 mg/kg/day) strongly reduced the VEGF-triggered angiogenesis in vivo (Matrigel plug assay in mice). Narciclasine mediated its anti-angiogenic effects in part by a RhoA-independent activation of the Rho kinase ROCK. Most importantly, however, the compound reduced the de novo protein synthesis in endothelial cells by approx. 50% without exhibiting considerable cytotoxic effects. As a consequence, narciclasine diminished the presence of proteins with a short half-life, such as the VEGF receptor 2, which is the basis for its anti-angiogenic effects. Taken together, our study highlights narciclasine as an interesting anti-angiogenic compound that is worth to be further evaluated in preclinical studies.
Collapse
Affiliation(s)
- Jacqueline Bräutigam
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Iris Bischoff
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Christoph Schürmann
- Institute for Cardiovascular Physiology, Faculty of Medicine, Goethe University, Frankfurt, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt, Germany
| | - Giulia Buchmann
- Institute for Cardiovascular Physiology, Faculty of Medicine, Goethe University, Frankfurt, Germany
| | - Jeremy Epah
- Institute for Cardiovascular Physiology, Faculty of Medicine, Goethe University, Frankfurt, Germany
| | - Simone Fuchs
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Elke Heiss
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Faculty of Medicine, Goethe University, Frankfurt, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany.
| |
Collapse
|
34
|
Fan L, Wang S, He X, Gonzalez‐Fernandez E, Lechene C, Fan F, Roman RJ. Visualization of the intrarenal distribution of capillary blood flow. Physiol Rep 2019; 7:e14065. [PMID: 31008571 PMCID: PMC6475880 DOI: 10.14814/phy2.14065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 12/24/2022] Open
Abstract
This study describes a modified technique to fill the renal vasculature with a silicon rubber (Microfil) compound and obtain morphologic information about the intrarenal distribution of capillary blood flow under a variety of conditions. Kidneys and cremaster muscles of rats were perfused in vivo with Microfil using a perfusion pressure equal to the animal's mean arterial pressure at body temperature. Microfil did not alter arteriolar diameter or the pattern of flow in the microcirculation of the cremaster muscle. The modified protocol reproducibly filled the renal vasculature, including; glomerular, peritubular, and vasa recta capillaries. We compared the filling of the renal circulation in control rats with that seen in animals subjected to maneuvers reported to alter the intrarenal distribution of blood flow. Infusion of angiotensin II, hypotension, volume expansion, and mannitol- or furosemide-induced diuresis redistributed flow between renal cortical and medullary capillaries. The advantage of the current technique is that it provides anatomical information regarding the number, diameter, and branching patterns of capillaries in the postglomerular circulation critical in determining the intrarenal distribution of cortical and medullary blood flow.
Collapse
Affiliation(s)
- Letao Fan
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMississippi
| | - Shaoxun Wang
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMississippi
| | - Xiaochen He
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMississippi
| | | | - Claude Lechene
- Center of NanoimagingBrigham and Women's HospitalCambridgeMassachusetts
| | - Fan Fan
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMississippi
| | - Richard J. Roman
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMississippi
| |
Collapse
|