1
|
Zhao L, Deng X, Li Y, Zhao Q, Xiao L, Xue J, Chen A, Cheng W, Zhao M. Binding-driven forward tearing protospacer activated CRISPR-Cas12a system and applications for microRNA detection. J Nanobiotechnology 2024; 22:684. [PMID: 39516870 PMCID: PMC11545271 DOI: 10.1186/s12951-024-02915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
CRISPR-Cas12a system, characterized by its precise sequence recognition and cleavage activity, has emerged as a powerful and programmable tool for molecular diagnostics. However, current CRISPR-Cas12a-based nucleic acid detection methods, particularly microRNA (miRNA) detection, necessitate additional bio-engineering strategies to exert control over Cas12a activity. Herein, we propose an engineered target-responsive hairpin DNA activator (TRHDA) to mediate forward tearing protospacer activated CRISPR-Cas12a system, which enables direct miRNA detection with high specificity and sensitivity. Target miRNA specifically binding to hairpin DNA can drive forward tearing protospacer in the stem sequence of hairpin structure, facilitating the complementarity between crRNA spacer and protospacer to activate Cas12a. Upon the hairpin DNA as input-responsive activator of Cas12a, a universal biosensing method enables the multiple miRNAs (miR-21, let-7a, miR-30a) detection and also has exceptional capability in identifying single-base mismatches and distinguishing homologous let-7/miR-30 family members. Besides, TRHDA-mediated Cas12a-powered biosensing has realized the evaluation of miR-21 expression levels in diverse cellular contexts by intracellular imaging. Considering the easy programmability of hairpin DNA in responsive region, this strategy could expand for the other target molecules detection (e.g., proteins, micromolecules, peptides, exosomes), which offers significant implications for biomarkers diagnostics utilizing the CRISPR-Cas12a system toolbox.
Collapse
Affiliation(s)
- Lina Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiangyu Deng
- Department of Clinical Laboratory, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Yuqing Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Qing Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Lizhu Xiao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jianjiang Xue
- Department of Clinical Laboratory, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Anyi Chen
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Min Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
Xie H, Yin Z, Wei G, Li B, Cui H, Fan H, Zhang J. Sensitive detection of K-ras gene by a dual-mode "on-off-on" sensor based on bipyridine ruthenium-MOF and bis-enzymatic cleavage technology. Bioelectrochemistry 2024; 161:108845. [PMID: 39514942 DOI: 10.1016/j.bioelechem.2024.108845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/27/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
This study developed a dual-mode "on-off-on" sensor based on a bipyridine ruthenium metal-organic framework (Ru-MOF) and dual enzyme cleavage technology for the sensitive detection of the K-ras gene. The sensor combines electrogenerated chemiluminescence (ECL) and fluorescence (FL) detection modes, achieving high sensitivity and specificity in detecting the K-ras gene through catalytic hairpin assembly (CHA) and dual enzyme cleavage reactions. Experimental results showed that the detection limits for the K-ras gene were 0.044 fM (ECL) and 0.16 fM (FL), demonstrating excellent selectivity and stability during detection. Through testing actual samples, the sensor has shown potential for application in complex biological environments. This method offers an efficient and reliable new tool for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Haotian Xie
- Jiangxi University of Chinese Medicine, Nan Chang, Jiangxi 330004, China
| | - Zhaojiang Yin
- Clinical Medical Research Center, Yichun People's Hospital, Yichun, China
| | - Guobin Wei
- Jiangxi University of Chinese Medicine, Nan Chang, Jiangxi 330004, China
| | - Binghui Li
- Jiangxi University of Chinese Medicine, Nan Chang, Jiangxi 330004, China
| | - Hanfeng Cui
- Jiangxi University of Chinese Medicine, Nan Chang, Jiangxi 330004, China.
| | - Hao Fan
- Jiangxi University of Chinese Medicine, Nan Chang, Jiangxi 330004, China.
| | - Jing Zhang
- Jiangxi University of Chinese Medicine, Nan Chang, Jiangxi 330004, China.
| |
Collapse
|
3
|
Zhang L, He X, Bai H, Yu X, Wu P, Cai Z, Ren Y, Luo Y, Zhuang W, Hu J, Ying B, Luo F, Yao Y, Sun X, Hu W. On-Site Visualization Assay for Tumor-Associated miRNAs: Using Ru@TiO 2 as a Peroxidase-like Nanozyme. Anal Chem 2024; 96:16499-16504. [PMID: 39383474 DOI: 10.1021/acs.analchem.4c03922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Accurate diagnosis of highly aggressive and deadly tumors is essential for effective treatment and improved patient outcomes, and microRNAs (miRNAs) have emerged as crucial biomarkers for their roles in tumor initiation, progression, and metastasis. Herein, we present an on-site visualization colorimetric assay for tumor-associated miRNAs using ruthenium nanoparticle decorated titanium dioxide nanoribbon (Ru@TiO2) as a peroxidase-like (POD) nanozyme. Remarkably, the Ru@TiO2 nanozyme can catalyze the oxidation of chromogenic substrates through its POD-like activity, which is effectively inhibited by pyrophosphate generated during the rolling circle amplification process, thereby enabling miRNA detection through a visible colorimetric readout. This approach provides a highly sensitive and specificity assay for miRNAs in diluted human serum with a detection limit of 100 pM. It shows great potential for clinical diagnostics and biological research, offering a promising tool for early cancer diagnosis and molecular diagnostics.
Collapse
Affiliation(s)
- Limei Zhang
- Department of Laboratory Medicine & Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Xun He
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Hao Bai
- Department of Laboratory Medicine & Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Xingzhi Yu
- Department of Laboratory Medicine & Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Peilin Wu
- Department of Laboratory Medicine & Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhengwei Cai
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Yuchun Ren
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yongsong Luo
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Weihua Zhuang
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Jie Hu
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Binwu Ying
- Department of Laboratory Medicine & Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fengming Luo
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yongchao Yao
- Department of Laboratory Medicine & Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Xuping Sun
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Wenchuang Hu
- Department of Laboratory Medicine & Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| |
Collapse
|
4
|
Ou X, Li K, Liu M, Song J, Zuo Z, Guo Y. EXPAR for biosensing: recent developments and applications. Analyst 2024; 149:4135-4157. [PMID: 39034763 DOI: 10.1039/d4an00609g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Emerging as a promising novel amplification technique, the exponential amplification reaction (EXPAR) offers significant advantages due to its potent exponential amplification capability, straightforward reaction design, rapid reaction kinetics, and isothermal operation. The past few years have witnessed swift advancements and refinements in EXPAR-based technologies, with numerous high-performance biosensing systems documented. A deeper understanding of the EXPAR mechanism has facilitated the proposal of novel strategies to overcome limitations inherent to traditional EXPAR. Furthermore, the synergistic integration of EXPAR with diverse amplification methodologies, including the use of a CRISPR/Cas system, metal nanoparticles, aptamers, alternative isothermal amplification techniques, and enzymes, has significantly bolstered analytical efficacy, aiming to enhance specificity, sensitivity, and amplification efficiency. This comprehensive review presents a detailed exposition of the EXPAR mechanism and analyzes its primary challenges. Additionally, we summarize the latest research advancements in the biomedical field concerning the integration of EXPAR with diverse amplification technologies for sensing strategies. Finally, we discuss the challenges and future prospects of EXPAR technology in the realms of biosensing and clinical applications.
Collapse
Affiliation(s)
- Xinyi Ou
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, PR China.
- Department of Laboratory Medicine, The Affiliated Hospital, Southwest Medical University, PR China
| | - Kunxiang Li
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, PR China.
- Department of Laboratory Medicine, The Affiliated Hospital, Southwest Medical University, PR China
| | - Miao Liu
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, PR China.
| | - Jiajun Song
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, PR China.
- Department of Laboratory Medicine, The Affiliated Hospital, Southwest Medical University, PR China
| | - Zhihua Zuo
- Department of Clinical Laboratory, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan, 637003, PR China.
| | - Yongcan Guo
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, PR China.
- Department of Laboratory Medicine, The Affiliated Hospital, Southwest Medical University, PR China
| |
Collapse
|
5
|
Xie J, Chen J, Zhang Y, Li C, Liu P, Duan WJ, Chen JX, Chen J, Dai Z, Li M. A dual-signal amplification strategy based on rolling circle amplification and APE1-assisted amplification for highly sensitive and specific miRNA analysis for early diagnosis of alzheimer's disease. Talanta 2024; 272:125747. [PMID: 38364557 DOI: 10.1016/j.talanta.2024.125747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
MicroRNA (miRNA) is involved in the progression of Alzheimer's disease (AD) and emerges as a promising AD biomarker and therapeutic target. Therefore, there is an urgent need to develop convenient and precise miRNA detection methods for AD diagnosis. Herein, a dual-signal amplification strategy based on rolling circle amplification and APE1-assisted amplification for miRNA analysis for early diagnosis of AD was proposed. The strategy consisted of dumbbell-shaped probe (DP) as amplification template and a reporter probe (RP) with an AP site modification. In the presence of the target miRNA, the miRNAs bound to the toehold domain of DP and DP was activated into a circular template. Then, RCA reaction was triggered, producing a large number of long-stranded products containing repeated sequences. After RCA, APE1 enzyme recognized and removed AP site in the complex of RCA/RP products. By coupling RCA with APE1-assisted amplification, this method has high sensitivity with the limit of detection (LOD) of 1.82 fM. Moreover, by using DP as template for RCA reaction, high specificity can be achieved. By detecting miR-206 in serum using this method, the expression of miR-206 can be accurately distinguished between AD patients and healthy individuals, indicating that this method has broad application prospects in clinical diagnosis.
Collapse
Affiliation(s)
- Juan Xie
- Center of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China
| | - Jing Chen
- Center of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China
| | - Ya Zhang
- Center of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China
| | - Changhong Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Piao Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Wen-Jun Duan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Jin-Xiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China.
| | - Jun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Minmin Li
- Center of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
6
|
Xi Q, Wang SY, Deng XB, Zhang CH. Catalytic Hairpin Assembly-Based Self-Ratiometric Gel Electrophoresis Detection Platform for Reliable Nucleic Acid Analysis. BIOSENSORS 2024; 14:232. [PMID: 38785706 PMCID: PMC11118829 DOI: 10.3390/bios14050232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
The development of gel electrophoresis-based biodetection assays for point-of-care analysis are highly demanding. In this work, we proposed a ratiometric gel electrophoresis-based biosensing platform by employing catalytic hairpin assembly (CHA) process functions as both the signal output and the signal amplification module. Two types of nucleic acids, DNA and miRNA, are chosen for demonstration. The proposed strategy indeed provides a new paradigm for the design of a portable detection platform and may hold great potential for sensitive diagnoses.
Collapse
Affiliation(s)
- Qiang Xi
- Hunan Prevention and Treatment Institute for Occupational Diseases, Affiliated Prevention and Treatment Institute for Occupational Diseases of University of South China, Changsha 410007, China; (Q.X.); (S.-Y.W.)
| | - Si-Yi Wang
- Hunan Prevention and Treatment Institute for Occupational Diseases, Affiliated Prevention and Treatment Institute for Occupational Diseases of University of South China, Changsha 410007, China; (Q.X.); (S.-Y.W.)
| | - Xiao-Bing Deng
- Hunan Prevention and Treatment Institute for Occupational Diseases, Affiliated Prevention and Treatment Institute for Occupational Diseases of University of South China, Changsha 410007, China; (Q.X.); (S.-Y.W.)
| | - Chong-Hua Zhang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
7
|
Li X, Wang H, Qi X, Ji Y, Li F, Chen X, Li K, Li L. PCR Independent Strategy-Based Biosensors for RNA Detection. BIOSENSORS 2024; 14:200. [PMID: 38667193 PMCID: PMC11048163 DOI: 10.3390/bios14040200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
RNA is an important information and functional molecule. It can respond to the regulation of life processes and is also a key molecule in gene expression and regulation. Therefore, RNA detection technology has been widely used in many fields, especially in disease diagnosis, medical research, genetic engineering and other fields. However, the current RT-qPCR for RNA detection is complex, costly and requires the support of professional technicians, resulting in it not having great potential for rapid application in the field. PCR-free techniques are the most attractive alternative. They are a low-cost, simple operation method and do not require the support of large instruments, providing a new concept for the development of new RNA detection methods. This article reviews current PCR-free methods, overviews reported RNA biosensors based on electrochemistry, SPR, microfluidics, nanomaterials and CRISPR, and discusses their challenges and future research prospects in RNA detection.
Collapse
Affiliation(s)
- Xinran Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (X.Q.); (F.L.)
| | - Haoqian Wang
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China;
| | - Xin Qi
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (X.Q.); (F.L.)
| | - Yi Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Fukai Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (X.Q.); (F.L.)
| | - Xiaoyun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Kai Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (X.Q.); (F.L.)
| | - Liang Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (X.Q.); (F.L.)
| |
Collapse
|
8
|
Zhou S, Li X, Shu X, Cai X, Wu H, Ding S, Yan Y. An all-in-one enzymatic DNA network based on catalytic hairpin assembly for label-free and highly sensitive detection of APE1. Anal Chim Acta 2023; 1278:341678. [PMID: 37709426 DOI: 10.1016/j.aca.2023.341678] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 09/16/2023]
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1), identified as a prospective cancer biomarker, plays a vital role in the occurrence and progression of cancer cell lines and impacts on genome stability. However, conventional approaches typically rely on the interactions between the antigen and antibody, limiting their utility for qualitative assessments of APE1 expression. Herein, an all-in-one enzymatic DNA network (EDN) assay with catalytic hairpin assembly for label-free and ultrasensitive detection of APE1 has been developed. In this work, the blocking strand can inhibit the initiator by obstructing the complementary region, preventing the hairpin from hybridizing in the absence of APE1 targets. While the presence of targets can activate the unlocking of the initiator, which can trigger the catalytic hairpin reaction, and increase the fluorescent signal. Under optimal conditions, the developed sensing method can detect the target APE1 down to 4.78 × 10-6 U mL-1 with a wide linear range from 5 × 10-6 U mL-1 to 30 U mL-1. This strategy has also been successfully applied to the analysis of complicated biological samples compared to ELISA, demonstrating its potential applications in biochemical and molecular biology research as well as clinical diagnostics. Overall, benefiting from the high amplification efficiency, this strategy has successfully and simply detected low-abundance APE1 without additional enzyme isolation steps, presenting great potential for clinical detection applications.
Collapse
Affiliation(s)
- Shaoying Zhou
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China; Department of Clinical Laboratory, The People's Hospital of Yubei District of Chongqing City, Chongqing, 400120, China.
| | - Xingrong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiaojia Shu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoying Cai
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Haiping Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yurong Yan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
9
|
Xu W, Sun X, Ling P, Wang L, Gao X, Yang P, Tang C, Gao F. Sensitive Electrochemical Sensor for Glycoprotein Detection Using a Self-Serviced-Track 3D DNA Walker and Catalytic Hairpin Assembly Enzyme-Free Signal Amplification. Anal Chem 2023; 95:6122-6129. [PMID: 36971831 DOI: 10.1021/acs.analchem.3c00422] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Approaches for the detection of targets in the cellular microenvironment have been extensively developed. However, developing a method with sensitive and accurate analysis for noninvasive cancer diagnosis has remained challenging until now. Here, we reported a sensitive and universal electrochemical platform that integrates a self-serviced-track 3D DNA walker and catalytic hairpin assembly (CHA) triggering G-Quadruplex/Hemin DNAzyme assembly signal amplification. In the presence of a target, the aptamer recognition initiated the 3D DNA walker on the cell surface autonomous running and releasing DNA (C) from the triple helix. The released DNA C as the target-triggered CHA moiety, and then G-quadruplex/hemin, was formed on the surface of electrode. Eventually, a large amount of G-quadruplex/hemin was formed on the sensor surface to generate an amplified electrochemical signal. Using N-acetylgalactosamine as a model, benefiting from the high selectivity and sensitivity of the self-serviced-track 3D DNA walker and the CHA, this designed method showed a detection limit of 39 cell/mL and 2.16 nM N-acetylgalactosamine. Furthermore, this detection strategy was enzyme free and exhibited highly sensitive, accurate, and universal detection of a variety of targets by using the corresponding DNA aptamer in clinical sample analysis, showing potential for early and prognostic diagnostic application.
Collapse
|
10
|
Wei B, Huang B, Zhao X. An overview of biochemical technologies for the cancer biomarker miR-21 detection. ANAL SCI 2023; 39:815-827. [PMID: 36840858 DOI: 10.1007/s44211-023-00304-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023]
Abstract
In recent years, the incidence of cancer has continuously increased, in which various miRNAs have been proposed as biomarkers for the early screening of cancer patients. As a consequence, the development of accurate methods for miRNA quantification has become a major research challenge worldwide. As one of the first discovered oncogenic miRNAs, microRNA-21 (miR-21) has been highlighted for its critical role in cancers. This review describes the main techniques currently available for miR-21 detection, compares the differences of the methods and the amplification strategies, and provides an overview of the state of knowledge in the field.
Collapse
Affiliation(s)
- Buyun Wei
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Biao Huang
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xueqin Zhao
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
11
|
Chen L, Yang W, Li D, Ma Y, Chen L, You S, Liu S. Poly cytosine (C)/poly adenine (A) modified probe for signal "on-off-on" assay of single-base mismatched dsDNA by a competitive mechanism. Anal Chim Acta 2023; 1239:340705. [PMID: 36628713 DOI: 10.1016/j.aca.2022.340705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Direct discrimination of single-base mismatched dsDNA by a simple method or strategy would provide enormous opportunities for applications in the fields of life sciences and disease diagnosis. Herein, the peroxidase-mimicking activity of a metal-organic framework nanoprobe (MOF) was well exploited for the direct discrimination of single-base mismatched dsDNA based on a competition-induced signal on-off-on mechanism. The single-base mismatched dsDNA related with FecB gene (usually guanine (G)/thymine (T) mismatch) and MIL-88B-NH2 were used as target and MOF model, respectively. Firstly, polyA/polyC were loosely adsorbed onto the MOFs via the weak interaction to block the peroxidase activity of MOF, inducing the signal transition from on to off. Unexpectedly, the single-base mismatched (GT) dsDNA could reverse the signal response of MOF probe from off to on. But it could not occur for other nonspecific mismatches, such as CT and TT-mismatched dsDNA. A synergistic interaction mechanism between multiple GT mismatches and polyA/polyC was attempted to explain the competitive dissociation of polyA/polyC from MOF for the recovery of peroxidase activity. With it, a wide linear detection ranges from 10-9 M-10-5 M of GT mismatched dsDNA and a low detection limit of 0.247 nM could be achieved, even in the real samples. The effect of mismatched base number or position was also studied. Such a simple, rapid, cost-effective, and one-step mixing and checking method for single-base mismatched dsDNA discrimination eliminates the complex sample pretreatment, special DNA probe design, exclusive amplification or signal readout means. It thus offers a simple and effective route for direct discrimination of mismatched dsDNA and might hold a huge potential for the applications in gene analysis, disease diagnosis, and elementary research in life sciences.
Collapse
Affiliation(s)
- Lihua Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Key Laboratory of Ecochemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Wenjie Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Key Laboratory of Ecochemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Dong Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Key Laboratory of Ecochemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yunkang Ma
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Key Laboratory of Ecochemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Lili Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Key Laboratory of Ecochemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Shuang You
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Key Laboratory of Ecochemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Shufeng Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
12
|
Xu Y, Zhang Q, Chen R, Cao H, Tang J, Wu Y, Lu X, Chu B, Song B, Wang H, He Y. NIR-II Photoacoustic-Active DNA Origami Nanoantenna for Early Diagnosis and Smart Therapy of Acute Kidney Injury. J Am Chem Soc 2022; 144:23522-23533. [PMID: 36508257 DOI: 10.1021/jacs.2c10323] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, we designed and synthesized a novel microRNA (miR)-responsive nanoantenna capable of early diagnosis and smart treatment of acute kidney injury (AKI). The nanoantenna was made of two miniature gold nanorods (AuNRs) (e.g., length: ∼48 nm; width: ∼9 nm) linked together by a rectangular DNA origami nanostructure (rDONs) scaffold (e.g., length: ∼90 nm; width: ∼60 nm) (rDONs@AuNR dimer). The surface plasmon resonance peak of the constructed nanoantenna is located within the NIR-II window (e.g., ∼1060 nm), thus guaranteeing photoacoustic (PA) imaging of the nanoantenna in deep tissues. Intriguingly, the nanoantenna displayed exclusive kidney retention in both healthy mice and ischemia reperfusion-induced AKI mice by leveraging the kidney-targeting ability of rDONs. Distinguished from the stable signals in the healthy mice, the PA signals of the nanoantenna would turn down in the AKI mice due to the AuNR detached from rDONs upon interaction with miR-21, which were up-expressed in AKI mice. The limit of detection toward miR-21 was down to 2.8 nM, enabling diagnosis of AKI as early as 10 min post-treatment with ischemia reperfusion, around 2 orders of magnitude earlier than most established probes. Moreover, the naked rDON scaffold generated by AKI could capture more reactive oxygen species (e.g., 1.5-fold more than rDONs@AuNR dimer), alleviating ischemic AKI. This strategy provided a new avenue for early diagnosis and smart treatment of AKI.
Collapse
Affiliation(s)
- Yanan Xu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Qian Zhang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Runzhi Chen
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Haiting Cao
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jie Tang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Yuqi Wu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Xing Lu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Binbin Chu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Bin Song
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
13
|
Toehold-mediated biosensors: Types, mechanisms and biosensing strategies. Biosens Bioelectron 2022; 220:114922. [DOI: 10.1016/j.bios.2022.114922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
|
14
|
Wu H, Zou M, Fan X, Su F, Xiao F, Zhou M, Sun Y, Zhao F, Wu G. Facile, Rapid, and Low-Cost Detection for Influenza Viruses and Respiratory Syncytial Virus Based on a Catalytic DNA Assembly Circuit. ACS OMEGA 2022; 7:15074-15081. [PMID: 35557683 PMCID: PMC9089383 DOI: 10.1021/acsomega.2c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/30/2022] [Indexed: 05/13/2023]
Abstract
Influenza viruses and respiratory syncytial virus (RSV) have contributed to severe respiratory infections, causing huge economic and healthcare burdens. To achieve rapid and precise detection of influenza viruses and RSV, we proposed a catalytic hairpin assembly (CHA) combined with the lateral flow immunoassay (CHA-LFIA) detection method. The presence of the target RNA triggers the initiation of CHA circuits. H1/H2 complexes, the amplified signal products, which were labeled with digoxin and biotin, were detected with a highly sensitive lateral flow immunoassay system. The sensitivity of the CHA-LFIA system to influenza A and B viruses and RSV reached up to 1, 1, and 5 pM, respectively. In addition, this method exhibited excellent capability for differentiating between target RNA and base-mismatched RNA. The results demonstrated that an enzyme-free, rapid, highly sensitive, and specific method had been developed to detect influenza A and B viruses and RSV.
Collapse
Affiliation(s)
- Huina Wu
- Medical
School of Southeast University, Nanjing 210009, People’s
Republic of China
| | - Mingyuan Zou
- Medical
School of Southeast University, Nanjing 210009, People’s
Republic of China
| | - Xiaobo Fan
- Medical
School of Southeast University, Nanjing 210009, People’s
Republic of China
| | - Feiya Su
- Medical
School of Southeast University, Nanjing 210009, People’s
Republic of China
| | - Feng Xiao
- Medical
School of Southeast University, Nanjing 210009, People’s
Republic of China
| | - Meiling Zhou
- Medical
School of Southeast University, Nanjing 210009, People’s
Republic of China
| | - Yan Sun
- Medical
School of Southeast University, Nanjing 210009, People’s
Republic of China
| | - Fengfeng Zhao
- Medical
School of Southeast University, Nanjing 210009, People’s
Republic of China
| | - Guoqiu Wu
- Center
of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, People’s Republic
of China
- Diagnostics
Department, Medical School of Southeast
University, Nanjing 210009, People’s Republic of China
- Jiangsu
Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing 210009, People’s Republic
of China
| |
Collapse
|
15
|
Qiao Y, Du J, Ge R, Lu H, Wu C, Li J, Yang S, Zada S, Dong H, Zhang X. A Sample and Detection Microneedle Patch for Psoriasis MicroRNA Biomarker Analysis in Interstitial Fluid. Anal Chem 2022; 94:5538-5545. [PMID: 35315641 DOI: 10.1021/acs.analchem.1c04401] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Skin interstitial fluid (ISF) containing a great variety of molecular biomarkers derived from cells and subcutaneous blood capillaries has recently emerged as a clinically potential component for early diagnosis of a wide range of diseases; however, the minimally invasive sampling and detection of cell-free biomarkers in ISF is still a key challenge. Herein, we developed microneedles (MNs) that consist of gelatin methacryloyl (GelMA) and graphene oxide (GO) for the enrichment and sensitive detection of multiple microRNA (miRNA) biomarkers from skin ISF. The GO-GelMA MNs exhibited robust mechanical properties, fast sampling kinetics, and large swelling capacity, which enabled collecting ISF volume high to 21.34 μL in 30 min, facilitating effective miRNA analysis. It preliminarily realized the sensitive detection of three types of psoriasis-related miRNAs biomarkers either on the patch itself or in solution after release from the hydrogel by combining catalytic hairpin assembly signal amplification reaction. The automated and minimally invasive ISF miRNA detection technology of GO-GelMA MNs has great potential to monitor cell-free clinically informative biomarkers for personalized diagnosis and prognosis.
Collapse
Affiliation(s)
- Yuchun Qiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Jinya Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Rujiao Ge
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Huiting Lu
- Department of Chemistry, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Chaoxiong Wu
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, China
| | - Jinze Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Shuangshuang Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Shah Zada
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China.,Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, China
| | - Xueji Zhang
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, China
| |
Collapse
|
16
|
Catalytic hairpin assembly as cascade nucleic acid circuits for fluorescent biosensor: design, evolution and application. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Qian J, Zhang Q, Liu M, Wang Y, Lu M. A portable system for isothermal amplification and detection of exosomal microRNAs. Biosens Bioelectron 2022; 196:113707. [PMID: 34695686 DOI: 10.1016/j.bios.2021.113707] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/20/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
Exosomal microRNAs (miRNAs) play a key role in cell-cell communication to regulate gene expression in target cells and have great potential as biomarkers for disease diagnosis. This paper reports an on-chip exosomal miRNA amplification and detection system for rapid analysis of exosomal miRNAs. The compact system consists of two connected flow cells for processing exosomes and detecting miRNAs, respectively. The miRNAs extracted from exosomes were quantitatively measured using the on-chip exponential amplification reaction (EXPAR) assay. The sensor chip was designed to store multiple oligonucleotide templates for the EXPAR, mix sample and reagent, and simultaneously analyze multiple exosomal miRNAs of interest. To facilitate the miRNA analysis, a portable detection instrument was built on an IoT platform using a low-cost microcontroller to execute the EXPAR assay, collect fluorescent images, and analyze amplification curves. Here, we studied the miRNA profiles carried by exosomes derived from three different phenotypes of tissue macrophages. The affordable instrument, rapid assay, multiplexed analysis, as well as disposable sensor chip, would boost the development of point-of-care liquid biopsy tests using exosomal miRNAs.
Collapse
Affiliation(s)
- Jingjing Qian
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Qinming Zhang
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Mingdian Liu
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Yixuan Wang
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Meng Lu
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA; Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
18
|
Lu X, Yao C, Sun L, Li Z. Plasmon-enhanced biosensors for microRNA analysis and cancer diagnosis. Biosens Bioelectron 2022; 203:114041. [DOI: 10.1016/j.bios.2022.114041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022]
|
19
|
Zou M, Su F, Zhang R, Jiang X, Xiao H, Yan X, Yang C, Fan X, Wu G. Rapid point-of-care testing for SARS-CoV-2 virus nucleic acid detection by an isothermal and nonenzymatic Signal amplification system coupled with a lateral flow immunoassay strip. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 342:129899. [PMID: 33840901 PMCID: PMC8019248 DOI: 10.1016/j.snb.2021.129899] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/15/2021] [Accepted: 03/31/2021] [Indexed: 05/26/2023]
Abstract
An outbreak of a new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), began in December 2019. Accurate, rapid, convenient, and relatively inexpensive diagnostic methods for SARS-CoV-2 infection are important for public health and optimal clinical care. The current gold standard for diagnosing SARS-CoV-2 infection is reverse transcription-polymerase chain reaction (RT-PCR). However, RTPCR assays are designed for use in well-equipped laboratories with sophisticated laboratory infrastructure and highly trained technicians, and are unsuitable for use in under-equipped laboratories and in the field. In this study, we report the development of an accurate, rapid, and easy-to-implement isothermal and nonenzymatic signal amplification system (a catalytic hairpin assembly (CHA) reaction) coupled with a lateral flow immunoassay (LFIA) strip-based detection method that can detect SARSCoV-2 in oropharyngeal swab samples. Our method avoids RNA isolation, PCR amplification, and elaborate result analysis, which typically takes 6-8 h. The entire CHA-LFIA detection method, from nasopharyngeal sampling to obtaining test results, takes less than 90 min. Such methods are simple and require no expensive equipment, only a simple thermostatically controlled water bath and a fluorescence reader device. We validated our method using synthetic oligonucleotides and clinical samples from 15 patients with SARS-CoV-2 infection and 15 healthy individuals. Our detection method provides a fast, simple, and sensitive (with a limit of detection (LoD) of 2000 copies/mL) alternative to the SARS-CoV-2 RT-PCR assay, with 100 % positive and negative predictive agreements.
Collapse
Affiliation(s)
- Mingyuan Zou
- Medical School of Southeast University, Nanjing, 210009, People's Republic of China
| | - Feiya Su
- Medical School of Southeast University, Nanjing, 210009, People's Republic of China
| | - Rui Zhang
- Medical School of Southeast University, Nanjing, 210009, People's Republic of China
| | - Xinglu Jiang
- Medical School of Southeast University, Nanjing, 210009, People's Republic of China
| | - Han Xiao
- Medical School of Southeast University, Nanjing, 210009, People's Republic of China
| | - XueJiao Yan
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213000, People's Republic of China
| | - Chuankun Yang
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China
| | - Xiaobo Fan
- Medical School of Southeast University, Nanjing, 210009, People's Republic of China
| | - Guoqiu Wu
- Medical School of Southeast University, Nanjing, 210009, People's Republic of China
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, People's Republic of China
| |
Collapse
|
20
|
Peng Y, Pan Y, Sun Z, Li J, Yi Y, Yang J, Li G. An electrochemical biosensor for sensitive analysis of the SARS-CoV-2 RNA. Biosens Bioelectron 2021; 186:113309. [PMID: 33984795 PMCID: PMC8107000 DOI: 10.1016/j.bios.2021.113309] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 12/25/2022]
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) is continuously worsening globally, herein we have proposed an electrochemical biosensor for the sensitive monitoring of SARS-CoV-2 RNA. The presence of target RNA firstly triggers the catalytic hairpin assembly circuit and then initiates terminal deoxynucleotidyl transferase-mediated DNA polymerization. Consequently, a large number of long single-stranded DNA products can be produced, and these negatively charged DNA products will bind a massive of positively charged electroactive molecular of Ru(NH3)63+ due to the electrostatic adsorption. Therefore, significantly amplified electrochemical signals can be generated for sensitive analysis of SARS-CoV-2 RNA in the range of 0.1-1000 pM with the detection limit as low as 26 fM. Besides the excellent distinguishing ability for SARS-CoV-2 RNA against single-base mismatched RNA, the proposed biosensor can also be successfully applied to complex matrices, as well as clinical patient samples with high stability, which shows great prospects of clinical application.
Collapse
Affiliation(s)
- Ying Peng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Yanhong Pan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Zhaowei Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Jinlong Li
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, PR China
| | - Yongxiang Yi
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, PR China.
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
21
|
Liu X, Bu S, Wei H, Wang Z, Yu S, Li Z, Hao Z, He X, Wan J. Visual assay of Escherichia coli O157:H7 based on an isothermal strand displacement and hybrid chain reaction amplification strategy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3379-3385. [PMID: 34235517 DOI: 10.1039/d1ay00644d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Here, we describe a simple, sensitive, and enzyme-free method for visual point-of-care detection of 16S rRNA of Escherichia coli O157:H7 based on an isothermal strand displacement-hybrid chain reaction (ISD-HCR) and lateral flow strip (LFS). In this study, the secondary structure of 16S rRNA of E. coli O157:H7 was unwound by two helper oligonucleotides to expose the single-strand-specific nucleic acid sequence. The free specific sequence promoted the toehold-mediated strand displacement reaction to output a large number of FITC-labeled single-stranded DNA probes (capture probe [CP]). The 3'-end sequence of the reporter probe propagated a chain reaction of hybridization events between the two hairpin probes modified with biotin to form long nicked DNA polymers with multiple biotins (RP-HCR complexes); the free CP and RP-HCR complexes then form CP/RP-HCR complexes. The biotin-labeled double-stranded DNA CP/RP-HCR polymers then introduced numerous streptavidin (SA)-labeled gold nanoparticles (AuNPs) on the LFS. The accumulation of AuNPs produced a characteristic red band, which enabled visual detection of changes in the signal of 16S rRNA of E. coli O157:H7. The current approach could detect E. coli O157:H7 at concentrations as low as 102 CFU mL-1 without instrumentation. This approach thus provides a simple, sensitive, and low-cost tool for point-of-care detection of pathogenic bacteria, especially in resource-limited countries.
Collapse
Affiliation(s)
- Xiu Liu
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Shandilya R, Ranjan S, Khare S, Bhargava A, Goryacheva IY, Mishra PK. Point-of-care diagnostics approaches for detection of lung cancer-associated circulating miRNAs. Drug Discov Today 2021; 26:1501-1509. [PMID: 33647439 DOI: 10.1016/j.drudis.2021.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/03/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Circulating cell-free miRNAs (ccf-miRs) have gained significant interest as biomarkers for lung cancer (LC) diagnosis. However, the clinical application of ccf-miRs is mainly limited by time, cost, and expertise-related problems of existing detection strategies. Recently, the development of different point-of-care (POC) approaches offers useful on-site platforms, because these technologies have important features such as portability, rapid turnaround time, minimal sample requirement, and cost-effectiveness. In this review, we discuss different POC approaches for detecting ccf-miRs and highlight the utility of incorporating nanomaterials for enhanced biorecognition and signal transduction, further improving their diagnostic applicability in LC settings.
Collapse
Affiliation(s)
- Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Shashi Ranjan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Surbhi Khare
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Irina Yu Goryacheva
- Department of General and Inorganic Chemistry, Institute of Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
23
|
Borum RM, Jokerst JV. Hybridizing clinical translatability with enzyme-free DNA signal amplifiers: recent advances in nucleic acid detection and imaging. Biomater Sci 2021; 9:347-366. [PMID: 32734995 PMCID: PMC7855509 DOI: 10.1039/d0bm00931h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nucleic acids have become viable prognostic and diagnostic biomarkers for a diverse class of diseases, particularly cancer. However, the low femtomolar to attomolar concentration of nucleic acids in human samples require sensors with excellent detection capabilities; many past and current platforms fall short or are economically difficult. Strand-mediated signal amplifiers such as hybridization chain reaction (HCR) and catalytic hairpin assembly (CHA) are superior methods for detecting trace amounts of biomolecules because one target molecule triggers the continuous production of synthetic double-helical DNA. This cascade event is highly discriminatory to the target via sequence specificity, and it can be coupled with fluorescence, electrochemistry, magnetic moment, and electrochemiluminescence for signal reporting. Here, we review recent advances in enhancing the sensing abilities in HCR and CHA for improved live-cell imaging efficiency, lowered limit of detection, and optimized multiplexity. We further outline the potential for clinical translatability of HCR and CHA by summarizing progress in employing these two tools for in vivo imaging, human sample testing, and sensing-treating dualities. We finally discuss their future prospects and suggest clinically-relevant experiments to supplement further related research.
Collapse
Affiliation(s)
- Raina M Borum
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
| | | |
Collapse
|
24
|
Chen L, Zhang Q, Liu W, Xiao H, Liu X, Fan L, Wang Y, Li H, Cao C. A facile thermometer-like electrophoresis titration biosensor for alternative miRNA assay via moving reaction boundary chip. Biosens Bioelectron 2021; 171:112676. [DOI: 10.1016/j.bios.2020.112676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/14/2020] [Accepted: 10/01/2020] [Indexed: 01/07/2023]
|
25
|
Emerging isothermal amplification technologies for microRNA biosensing: Applications to liquid biopsies. Mol Aspects Med 2020; 72:100832. [DOI: 10.1016/j.mam.2019.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 02/07/2023]
|
26
|
Iglesias MS, Grzelczak M. Using gold nanoparticles to detect single-nucleotide polymorphisms: toward liquid biopsy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:263-284. [PMID: 32082965 PMCID: PMC7006498 DOI: 10.3762/bjnano.11.20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/21/2020] [Indexed: 05/02/2023]
Abstract
The possibility of detecting genetic mutations rapidly in physiological media through liquid biopsy has attracted the attention within the materials science community. The physical properties of nanoparticles combined with robust transduction methods ensure an improved sensitivity and specificity of a given assay and its implementation into point-of-care devices for common use. Covering the last twenty years, this review gives an overview of the state-of-the-art of the research on the use of gold nanoparticles in the development of colorimetric biosensors for the detection of single-nucleotide polymorphism as cancer biomarker. We discuss the main mechanisms of the assays that either are assisted by DNA-based molecular machines or by enzymatic reactions, summarize their performance and provide an outlook towards future developments.
Collapse
Affiliation(s)
- María Sanromán Iglesias
- Centro de Física de Materiales CSIC-UPV/EHU and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia-Sebastián, Spain
| | - Marek Grzelczak
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
27
|
Chen X, Pan W, Li B, Zheng L. [Construction and application of a magnetic and catalytic hairpin assembly-based platform for detecting dual membrane proteins on exosomes]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1453-1460. [PMID: 31907155 DOI: 10.12122/j.issn.1673-4254.2019.12.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To construct a magnetic and catalytic hairpin assembly-based platform for detection of dual membrane proteins on exosomes. METHODS Exosomes in supernatant of breast cancer MDA-MB-231 cell culture were separated, purified and characterized. Super-resolution imaging and Western blotting were performed to confirm the expression of the membrane protein CD63 on the exosomes. Polyacrylamide gel electrophoresis was used to verify the combination of AptEpCAM-T and exosomes. Fluorescence experiments were carried out to test the feasibility of CHA nucleic acid sequence, optimize the reaction conditions, and determine the specificity of the detection platform. RESULTS Super-resolution imaging and Western blotting showed that breast cancer MDA-MB-231 cell-derived exosomes expressed abundant membrane protein CD63. Polyacrylamide gel electrophoresis indicated that AptEpCAM-T could recognize and bind to exosomes. The results of specificity test showed that the signal-to-noise ratio of the detection platform was 1.10±0.01 for detecting normal human breast epithelial cell-derived exosomes, and was 2.09±0.08 for breast cancer cell-derived exosomes. CONCLUSIONS Magnetic and catalytic hairpin assembly-based detection platform allows simultaneous detection of two membrane proteins expressed on exosomes and identification of the expressions of membrane proteins on exosomes from different sources.
Collapse
Affiliation(s)
- Xianhua Chen
- Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Clinical Laboratory, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou 545007, China
| | - Weilun Pan
- Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bo Li
- Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lei Zheng
- Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
28
|
Ning Z, Zheng Y, Pan D, Zhang Y, Shen Y. Coupling aptazyme and catalytic hairpin assembly for cascaded dual signal amplified electrochemiluminescence biosensing. Biosens Bioelectron 2019; 150:111945. [PMID: 31818762 DOI: 10.1016/j.bios.2019.111945] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/22/2019] [Accepted: 11/30/2019] [Indexed: 01/22/2023]
Abstract
Developing reliable and sensitive detection methods for adenosine triphosphate (ATP) is vital for both clinical diagnosis and food safety. In this work, by coupling aptazyme- and catalytic hairpin assembly (CHA)-based signal amplification and electrochemiluminescence (ECL), an ultrasensitive biosensor for sensing ATP was fabricated using Ru(bpy)32+-doped silica nanoparticles (RuSiO2) as ECL probes and a ferrocene-functionalized hairpin DNA (hairpin-Fc) as quencher. The aptazyme-triggered cleavage of the DNA substrate and the CHA reaction both led to the circular release of trigger DNA, resulting in a significant dual signal amplification, with unprecedented enhancement up to 940-fold. Moreover, the bioconjugation of the DNA substrate with Au@Fe3O4 facilitated the separation and purification of the released trigger DNA, and effectively reduced the background signal. As a result, the as-prepared ECL biosensor exhibited a much lower detection limit of 0.054 pM for ATP, compared to those in previous reports, and showed high reliability for ATP detection in both spiked serum samples and Staphylococcus aureus. This work offers a new perspective for designing nucleic acid-based signal amplification for detecting ATP in bacterial analysis and clinical diagnosis.
Collapse
Affiliation(s)
- Zhenqiang Ning
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yongjun Zheng
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Deng Pan
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yanfei Shen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
29
|
Fluorometric determination of microRNA using arched probe-mediated isothermal exponential amplification combined with DNA-templated silver nanoclusters. Mikrochim Acta 2019; 186:715. [PMID: 31654142 DOI: 10.1007/s00604-019-3836-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/16/2019] [Indexed: 12/24/2022]
Abstract
A highly sensitive fluorometric method is described for the determination of microRNA-141. It is based on the use of arched probe-mediated isothermal exponential amplification reaction (EXPAR) and of DNA-templated silver nanoclusters (DNA-AgNCs). The EXPAR utilizes microRNA-141 as the trigger, polymerases and endonucleases as amplification activators, and two arched probes as exponential amplification templates. This enables the conversion of microRNA to a large number of reporter sequences under isothermal conditions within minutes. The generated reporter sequences act as scaffolds for the synthesis of fluorescent DNA-AgNCs by reduction of Ag (I) with NaBH4. The DNA-AgNCs function as signalling fluorophores with excitation/emission maxima at 540/610 nm. The method exhibits high sensitivity for microRNA-141 with a detection limit as low as 0.87 fM and a dynamic range from 1 fM to 500 fM. The method can distinguish nucleotides in the microRNA-200 family. Graphical abstract Schematic representation of a fluorometric method for sensitive detection of microRNA based on arched probe-mediated isothermal exponential amplification combined with DNA-templated silver nanoclusters.
Collapse
|
30
|
Liu X, Zhou X, Xia X, Xiang H. Catalytic hairpin assembly-based double-end DNAzyme cascade-feedback amplification for sensitive fluorescence detection of HIV-1 DNA. Anal Chim Acta 2019; 1096:159-165. [PMID: 31883582 DOI: 10.1016/j.aca.2019.10.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 11/30/2022]
Abstract
In this work, a simple all-nucleic acid cascade-feedback amplification strategy for homogeneous and protein enzyme-free fluorescence detection of HIV-1 related DNA (HIV-1 DNA) has been proposed by integrating catalytic hairpin assembly (CHA) circuit with double-end Mg2+-dependent DNAzyme autocatalytic feedback amplification. Here, the active double-end DNAzyme assemblies were derived from target-catalyzed CHA circuit, which further circularly cleaved the ribonucleotide-containing quenched fluorogenic hairpin substrates to generate distinctly amplified fluorescence signal. Meanwhile, the released quencher-labeled fragments as target DNA analogues were also able to autocatalyze CHA-DNAzyme reaction process, thus improving the determination sensitivity of HIV-1 DNA. The result demonstrated that the fluorescence intensity increment of double-end DNAzyme was over 3 times higher than that of single-end DNAzyme. The sensing method displayed a good linear range from 1 pM to 2 nM with a detectable minimum concentration of 1 pM and high specificity towards different mismatched target DNAs. Moreover, the practical application potential of the proposed method for target DNA detection in complex biological matrices was also assessed. Considering the appealing feature of programmable nucleic acids in CHA-DNAzyme sensing platform, the current strategy may provide a prospective design for detection of broad-spectrum nucleic acid biomarkers.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xiaomei Zhou
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xinyu Xia
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Hua Xiang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
31
|
Liu J, Zhang Y, Xie H, Zhao L, Zheng L, Ye H. Applications of Catalytic Hairpin Assembly Reaction in Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902989. [PMID: 31523917 DOI: 10.1002/smll.201902989] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/15/2019] [Indexed: 05/26/2023]
Abstract
Nucleic acids are considered as perfect programmable materials for cascade signal amplification and not merely as genetic information carriers. Among them, catalytic hairpin assembly (CHA), an enzyme-free, high-efficiency, and isothermal amplification method, is a typical example. A typical CHA reaction is initiated by single-stranded analytes, and substrate hairpins are successively opened, resulting in thermodynamically stable duplexes. CHA circuits, which were first proposed in 2008, present dozens of systems today. Through in-depth research on mechanisms, the CHA circuits have been continuously enriched with diverse reaction systems and improved analytical performance. After a short time, the CHA reaction can realize exponential amplification under isothermal conditions. Under certain conditions, the CHA reaction can even achieve 600 000-fold signal amplification. Owing to its promising versatility, CHA is able to be applied for analysis of various markers in vitro and in living cells. Also, CHA is integrated with nanomaterials and other molecular biotechnologies to produce diverse readouts. Herein, the varied CHA mechanisms, hairpin designs, and reaction conditions are introduced in detail. Additionally, biosensors based on CHA are presented. Finally, challenges and the outlook of CHA development are considered.
Collapse
Affiliation(s)
- Jumei Liu
- Department of Clinical Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, P. R. China
| | - Ye Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Huabin Xie
- Department of Clinical Laboratory, Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361006, P. R. China
| | - Li Zhao
- School of Medicine, Xiamen University, Xiamen, 361102, P. R. China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Huiming Ye
- Department of Clinical Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, P. R. China
- School of Medicine, Xiamen University, Xiamen, 361102, P. R. China
| |
Collapse
|
32
|
Wu M, Hou P, Dong L, Cai L, Chen Z, Zhao M, Li J. Manganese dioxide nanosheets: from preparation to biomedical applications. Int J Nanomedicine 2019; 14:4781-4800. [PMID: 31308658 PMCID: PMC6613456 DOI: 10.2147/ijn.s207666] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022] Open
Abstract
Advancements in nanotechnology and molecular biology have promoted the development of a diverse range of models to intervene in various disorders (from diagnosis to treatment and even theranostics). Manganese dioxide nanosheets (MnO2 NSs), a typical two-dimensional (2D) transition metal oxide of nanomaterial that possesses unique structure and distinct properties have been employed in multiple disciplines in recent decades, especially in the field of biomedicine, including biocatalysis, fluorescence sensing, magnetic resonance imaging and cargo-loading functionality. A brief overview of the different synthetic methodologies for MnO2 NSs and their state-of-the-art biomedical applications is presented below, as well as the challenges and future perspectives of MnO2 NSs.
Collapse
Affiliation(s)
- Muyu Wu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China.,Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu, People's Republic of China
| | - Pingfu Hou
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Lina Dong
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Lulu Cai
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Zhudian Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Mingming Zhao
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China.,Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu, People's Republic of China.,Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| |
Collapse
|
33
|
Zhu CS, Zhu L, Tan DA, Qiu XY, Liu CY, Xie SS, Zhu LY. Avenues Toward microRNA Detection In Vitro: A Review of Technical Advances and Challenges. Comput Struct Biotechnol J 2019; 17:904-916. [PMID: 31346383 PMCID: PMC6630062 DOI: 10.1016/j.csbj.2019.06.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 02/07/2023] Open
Abstract
Over the decades, the biological role of microRNAs (miRNAs) in the post-transcriptional regulation of gene expression has been discovered in many cancer types, thus initiating the tremendous expectation of their application as biomarkers in the diagnosis, prognosis, and treatment of cancer. Hence, the development of efficient miRNA detection methods in vitro is in high demand. Extensive efforts have been made based on the intrinsic properties of miRNAs, such as low expression levels, high sequence homology, and short length, to develop novel in vitro miRNA detection methods with high accuracy, low cost, practicality, and multiplexity at point-of-care settings. In this review, we mainly summarized the newly developed in vitro miRNA detection methods classified by three key elements, including biological recognition elements, additional micro-/nano-materials and signal transduction/readout elements, their current challenges and further applications are also discussed.
Collapse
Affiliation(s)
- Chu-shu Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
- Corresponding authors.
| | - De-an Tan
- Department of Clinical Laboratory, Hospital of National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Xin-yuan Qiu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Chuan-yang Liu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Si-si Xie
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Lv-yun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
- Corresponding authors.
| |
Collapse
|
34
|
Simmel FC, Yurke B, Singh HR. Principles and Applications of Nucleic Acid Strand Displacement Reactions. Chem Rev 2019; 119:6326-6369. [PMID: 30714375 DOI: 10.1021/acs.chemrev.8b00580] [Citation(s) in RCA: 384] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dynamic DNA nanotechnology, a subfield of DNA nanotechnology, is concerned with the study and application of nucleic acid strand-displacement reactions. Strand-displacement reactions generally proceed by three-way or four-way branch migration and initially were investigated for their relevance to genetic recombination. Through the use of toeholds, which are single-stranded segments of DNA to which an invader strand can bind to initiate branch migration, the rate with which strand displacement reactions proceed can be varied by more than 6 orders of magnitude. In addition, the use of toeholds enables the construction of enzyme-free DNA reaction networks exhibiting complex dynamical behavior. A demonstration of this was provided in the year 2000, in which strand displacement reactions were employed to drive a DNA-based nanomachine (Yurke, B.; et al. Nature 2000, 406, 605-608). Since then, toehold-mediated strand displacement reactions have been used with ever increasing sophistication and the field of dynamic DNA nanotechnology has grown exponentially. Besides molecular machines, the field has produced enzyme-free catalytic systems, all DNA chemical oscillators and the most complex molecular computers yet devised. Enzyme-free catalytic systems can function as chemical amplifiers and as such have received considerable attention for sensing and detection applications in chemistry and medical diagnostics. Strand-displacement reactions have been combined with other enzymatically driven processes and have also been employed within living cells (Groves, B.; et al. Nat. Nanotechnol. 2015, 11, 287-294). Strand-displacement principles have also been applied in synthetic biology to enable artificial gene regulation and computation in bacteria. Given the enormous progress of dynamic DNA nanotechnology over the past years, the field now seems poised for practical application.
Collapse
Affiliation(s)
| | - Bernard Yurke
- Micron School of Materials Science and Engineering , Boise State University , Boise , ID 83725 , United States
| | - Hari R Singh
- Physics Department , TU München , 85748 Garching , Germany
| |
Collapse
|
35
|
Dai W, Lu H, Yang F, Dong H, Zhang X. Accurate detection of intracellular microRNAs using functional Mo2C quantum dots nanoprobe. Chem Commun (Camb) 2019; 55:10615-10618. [DOI: 10.1039/c9cc04261j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A functionalized Mo2C quantum dots nanoprobe was developed for accurate detection of intracellular mature microRNAs.
Collapse
Affiliation(s)
- Wenhao Dai
- Research Center for Bioengineering and Sensing Technology
- School of Chemistry and Bioengineering
- University of Science & Technology Beijing
- Beijing 100083
- P. R. China
| | - Huiting Lu
- School of Chemistry & Biological Engineering University of Science & Technology Beijing
- Beijing 100083
- P. R. China
| | - Fan Yang
- Research Center for Bioengineering and Sensing Technology
- School of Chemistry and Bioengineering
- University of Science & Technology Beijing
- Beijing 100083
- P. R. China
| | - Haifeng Dong
- Research Center for Bioengineering and Sensing Technology
- School of Chemistry and Bioengineering
- University of Science & Technology Beijing
- Beijing 100083
- P. R. China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology
- School of Chemistry and Bioengineering
- University of Science & Technology Beijing
- Beijing 100083
- P. R. China
| |
Collapse
|
36
|
Zhang T, Chai H, Meng F, Guo Z, Jiang Y, Miao P. DNA-Functionalized Porous Fe 3O 4 Nanoparticles for the Construction of Self-Powered miRNA Biosensor with Target Recycling Amplification. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36796-36804. [PMID: 30303365 DOI: 10.1021/acsami.8b15419] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Herein, we have developed an ultrasensitive self-powered biosensor for miRNA assay based on biofuel cells. The system is composed of indium tin oxide cathode and graphene oxide/gold nanoparticle/glucose oxidase anode. Redox probe of [Fe(CN)6]3- is entrapped inside porous Fe3O4 nanoparticles by DNA. However, in the presence of target miRNA, hybridization reaction occurs between miRNA and DNA, which initiates the release of [Fe(CN)6]3-. Moreover, duplex specific nuclease is further employed to trigger target recycling amplification. As a result, much more redox probes are released and the open circuit voltage is significantly increased. A "signal-on" self-powered biosensor for miRNA quantification is thus developed. The detection range is from 10 aM to 10 fM; meanwhile, the limit of detection is as low as 1.4 aM, which is superior to that in most reported methods. Therefore, the proposed biosensor is expected to be a powerful point-of-care tool for miRNA diagnostics, which may have wide applications in the future.
Collapse
Affiliation(s)
- Tian Zhang
- University of Science and Technology of China , Hefei 230026 , People's Republic of China
- Suzhou Institute of Biomedical Engineering and Technology , Chinese Academy of Sciences , Suzhou 215163 , People's Republic of China
| | - Hua Chai
- University of Science and Technology of China , Hefei 230026 , People's Republic of China
- Suzhou Institute of Biomedical Engineering and Technology , Chinese Academy of Sciences , Suzhou 215163 , People's Republic of China
| | - Fanyu Meng
- University of Science and Technology of China , Hefei 230026 , People's Republic of China
- Suzhou Institute of Biomedical Engineering and Technology , Chinese Academy of Sciences , Suzhou 215163 , People's Republic of China
| | - Zhenzhen Guo
- Suzhou Institute of Biomedical Engineering and Technology , Chinese Academy of Sciences , Suzhou 215163 , People's Republic of China
| | - Yu Jiang
- Department of Orthopedics , Nanjing Medical University Affiliated Wuxi Second Hospital , Wuxi 214000 , People's Republic of China
| | - Peng Miao
- University of Science and Technology of China , Hefei 230026 , People's Republic of China
- Suzhou Institute of Biomedical Engineering and Technology , Chinese Academy of Sciences , Suzhou 215163 , People's Republic of China
| |
Collapse
|