1
|
Xue C, Chu Q, Shi Q, Zeng Y, Lu J, Li L. Wnt signaling pathways in biology and disease: mechanisms and therapeutic advances. Signal Transduct Target Ther 2025; 10:106. [PMID: 40180907 PMCID: PMC11968978 DOI: 10.1038/s41392-025-02142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 12/29/2024] [Indexed: 04/05/2025] Open
Abstract
The Wnt signaling pathway is critically involved in orchestrating cellular functions such as proliferation, migration, survival, and cell fate determination during development. Given its pivotal role in cellular communication, aberrant Wnt signaling has been extensively linked to the pathogenesis of various diseases. This review offers an in-depth analysis of the Wnt pathway, detailing its signal transduction mechanisms and principal components. Furthermore, the complex network of interactions between Wnt cascades and other key signaling pathways, such as Notch, Hedgehog, TGF-β, FGF, and NF-κB, is explored. Genetic mutations affecting the Wnt pathway play a pivotal role in disease progression, with particular emphasis on Wnt signaling's involvement in cancer stem cell biology and the tumor microenvironment. Additionally, this review underscores the diverse mechanisms through which Wnt signaling contributes to diseases such as cardiovascular conditions, neurodegenerative disorders, metabolic syndromes, autoimmune diseases, and cancer. Finally, a comprehensive overview of the therapeutic progress targeting Wnt signaling was given, and the latest progress in disease treatment targeting key components of the Wnt signaling pathway was summarized in detail, including Wnt ligands/receptors, β-catenin destruction complexes, and β-catenin/TCF transcription complexes. The development of small molecule inhibitors, monoclonal antibodies, and combination therapy strategies was emphasized, while the current potential therapeutic challenges were summarized. This aims to enhance the current understanding of this key pathway.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Pandey R, Natarajan P, Reddy UK, Du W, Sirbu C, Sissoko M, Hankins GR. Deciphering the dose-dependent effects of thymoquinone on cellular proliferation and transcriptomic changes in A172 glioblastoma cells. PLoS One 2025; 20:e0318185. [PMID: 39874307 PMCID: PMC11774404 DOI: 10.1371/journal.pone.0318185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/11/2025] [Indexed: 01/30/2025] Open
Abstract
Glioblastoma multiforme (GBM), the most prevalent primary malignant brain tumor in adults, exhibits a dismal 6.9% five-year survival rate post-diagnosis. Thymoquinone (TQ), the most abundant bioactive compound in Nigella sativa, has been extensively researched for its anticancer properties across various human cancers. However, its specific anti-cancer mechanisms and pathways in glioblastoma remain to be completely elucidated. In this study, we assessed the impact of different TQ concentrations on the viability of A172 cells using WST-8 and Toluidine blue assays, followed by RNA sequencing (RNA-Seq) to identify differentially expressed genes (DEGs). We confirmed their expression levels through quantitative RT-PCR and performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses for these DEGs. RNA-seq revealed no significant gene expression changes at 2.5 μM and 5 μM TQ concentrations. However, at 25 μM and 50 μM, TQ significantly reduced cell viability dose-dependently. We identified 1548 DEGs at 25 μM TQ (684 up-regulated, 864 down-regulated) and 2797 DEGs at 50 μM TQ (1528 up-regulated, 1269 downregulated), with 1202 DEGs common to both concentrations. TQ inhibited key pathways such as PI3K-Akt signaling, calcium signaling, focal adhesion, and ECM-receptor interaction in A172 cells. It downregulated several potential oncogenes (e.g., AEBP1, MIAT) and genes linked to GBM proliferation and migration (e.g., SOCS2, HCP5) while modulating Wnt signaling and up-regulating tumor suppressor genes (e.g., SPRY4, BEX2). TQ also affected p53 downstream targets, maintaining p53 levels. This study elucidates the anti-cancer mechanisms of TQ in A172 GBM cells, underscoring its effects on multiple signaling pathways and positioning TQ as a promising candidate for innovative glioblastoma treatment strategies.
Collapse
Affiliation(s)
- Rachana Pandey
- Department of Biology, West Virginia State University, Institute, WV, United States of America
| | - Purushothaman Natarajan
- Department of Biology, West Virginia State University, Institute, WV, United States of America
- Department of Agriculture, Food, and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, United States of America
| | - Umesh K. Reddy
- Department of Biology, West Virginia State University, Institute, WV, United States of America
| | - Wei Du
- Cancer Center, Charleston Area Medical Center, Charleston, WV, United States of America
- Institute for Academic Medicine, Charleston, WV, United States of America
| | - Cristian Sirbu
- Cancer Center, Charleston Area Medical Center, Charleston, WV, United States of America
- Institute for Academic Medicine, Charleston, WV, United States of America
| | - Moussa Sissoko
- Katmai Oncology Group, Anchorage, Alaska, United States of America
| | - Gerald R. Hankins
- Department of Biology, West Virginia State University, Institute, WV, United States of America
| |
Collapse
|
3
|
Ferreira JM, Gonçalves CS, Costa BM. Emerging roles and biomarker potential of WNT6 in human cancers. Cell Commun Signal 2024; 22:538. [PMID: 39529066 PMCID: PMC11552340 DOI: 10.1186/s12964-024-01892-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
The WNT6 ligand is a well-known activator of the WNT signaling pathway, considered a vital player in several important physiologic processes during embryonic development and maintaining homeostasis throughout life, regulating the proliferation and differentiation of multiple stem/progenitor cell types. More recently, as it is the case for many key molecular regulators of embryonic development, dysregulation of WNT6 has been implicated in cancer development and progression in multiple studies. In this review, we overview the most significant recent findings regarding WNT6 in the context of human malignancies, exploring its influence on multiple dimensions of tumor pathophysiology and highlighting the putative underlying WNT6-associated molecular mechanisms. We also discuss the potential clinical implications of WNT6 as a prognostic and therapeutic biomarker. This critical review highlights the emerging relevance of WNT6 in multiple human cancers, and its potential as a clinically-useful biomarker, addressing key unanswered questions that could lead to new opportunities in patient diagnosis, stratification, and the development of rationally-designed precision therapies.
Collapse
Affiliation(s)
- Joana M Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Céline S Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
4
|
Alves A, Silva AM, Moreira J, Nunes C, Reis S, Pinto M, Cidade H, Rodrigues F, Ferreira D, Costa PC, Correia-da-Silva M. Polymersomes for Sustained Delivery of a Chalcone Derivative Targeting Glioblastoma Cells. Brain Sci 2024; 14:82. [PMID: 38248297 PMCID: PMC10813242 DOI: 10.3390/brainsci14010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Glioblastoma (GBM) is a primary malignant tumor of the central nervous system responsible for the most deaths among patients with primary brain tumors. Current therapies for GBM are not effective, with the average survival of GBM patients after diagnosis being limited to a few months. Chemotherapy is difficult in this case due to the heterogeneity of GBM and the high efficacy of the blood-brain barrier, which makes drug absorption into the brain extremely difficult. In a previous study, 3',4',3,4,5-trimethoxychalcone (MB) showed antiproliferative and anti-invasion activities toward GBM cells. Polymersomes (PMs) are an attractive, new type of nanoparticle for drug administration, due to their high stability, enhanced circulation time, biodegradability, and sustained drug release. In the present study, different MB formulations, PEG2000-PCL and PEG5000-PCL, were synthesized, characterized, and compared in terms of 14-day stability and in vitro cytotoxicity (hCMEC/D3 and U-373 MG).
Collapse
Affiliation(s)
- Ana Alves
- UCIBIO—Applied Molecular Biosciences Unit, MedTech-Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal (P.C.C.)
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana M. Silva
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Joana Moreira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Center of Marine and Environment Research (CIIMAR), University of Porto, Terminal dos Cruzeiros do Porto de Leixões, Avenida General Norton de Matos P, 4450-208 Matosinhos, Portugal
| | - Claúdia Nunes
- LAQV, REQUIMTE—Associated Laboratory for Green Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE—Associated Laboratory for Green Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Center of Marine and Environment Research (CIIMAR), University of Porto, Terminal dos Cruzeiros do Porto de Leixões, Avenida General Norton de Matos P, 4450-208 Matosinhos, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Center of Marine and Environment Research (CIIMAR), University of Porto, Terminal dos Cruzeiros do Porto de Leixões, Avenida General Norton de Matos P, 4450-208 Matosinhos, Portugal
| | - Francisca Rodrigues
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Domingos Ferreira
- UCIBIO—Applied Molecular Biosciences Unit, MedTech-Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal (P.C.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paulo C. Costa
- UCIBIO—Applied Molecular Biosciences Unit, MedTech-Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal (P.C.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marta Correia-da-Silva
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Center of Marine and Environment Research (CIIMAR), University of Porto, Terminal dos Cruzeiros do Porto de Leixões, Avenida General Norton de Matos P, 4450-208 Matosinhos, Portugal
| |
Collapse
|
5
|
Gonzalez RD, Small GW, Green AJ, Akhtari FS, Havener TM, Quintanilha JCF, Cipriani AB, Reif DM, McLeod HL, Motsinger-Reif AA, Wiltshire T. RYK Gene Expression Associated with Drug Response Variation of Temozolomide and Clinical Outcomes in Glioma Patients. Pharmaceuticals (Basel) 2023; 16:ph16050726. [PMID: 37242509 DOI: 10.3390/ph16050726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Temozolomide (TMZ) chemotherapy is an important tool in the treatment of glioma brain tumors. However, variable patient response and chemo-resistance remain exceptionally challenging. Our previous genome-wide association study (GWAS) identified a suggestively significant association of SNP rs4470517 in the RYK (receptor-like kinase) gene with TMZ drug response. Functional validation of RYK using lymphocytes and glioma cell lines resulted in gene expression analysis indicating differences in expression status between genotypes of the cell lines and TMZ dose response. We conducted univariate and multivariate Cox regression analyses using publicly available TCGA and GEO datasets to investigate the impact of RYK gene expression status on glioma patient overall (OS) and progression-free survival (PFS). Our results indicated that in IDH mutant gliomas, RYK expression and tumor grade were significant predictors of survival. In IDH wildtype glioblastomas (GBM), MGMT status was the only significant predictor. Despite this result, we revealed a potential benefit of RYK expression in IDH wildtype GBM patients. We found that a combination of RYK expression and MGMT status could serve as an additional biomarker for improved survival. Overall, our findings suggest that RYK expression may serve as an important prognostic or predictor of TMZ response and survival for glioma patients.
Collapse
Affiliation(s)
- Ricardo D Gonzalez
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - George W Small
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adrian J Green
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27606, USA
| | - Farida S Akhtari
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Tammy M Havener
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Amber B Cipriani
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David M Reif
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Howard L McLeod
- Center for Precision Medicine and Functional Genomics, Utah Tech University, St. George, UT 84770, USA
| | - Alison A Motsinger-Reif
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Tim Wiltshire
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Werner J, Boonekamp KE, Zhan T, Boutros M. The Roles of Secreted Wnt Ligands in Cancer. Int J Mol Sci 2023; 24:5349. [PMID: 36982422 PMCID: PMC10049518 DOI: 10.3390/ijms24065349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/17/2023] Open
Abstract
Wnt ligands are secreted signaling proteins that display a wide range of biological effects. They play key roles in stimulating Wnt signaling pathways to facilitate processes such as tissue homeostasis and regeneration. Dysregulation of Wnt signaling is a hallmark of many cancers and genetic alterations in various Wnt signaling components, which result in ligand-independent or ligand-dependent hyperactivation of the pathway that have been identified. Recently, research is focusing on the impact of Wnt signaling on the interaction between tumor cells and their micro-environment. This Wnt-mediated crosstalk can act either in a tumor promoting or suppressing fashion. In this review, we comprehensively outline the function of Wnt ligands in different tumor entities and their impact on key phenotypes, including cancer stemness, drug resistance, metastasis, and immune evasion. Lastly, we elaborate approaches to target Wnt ligands in cancer therapy.
Collapse
Affiliation(s)
- Johannes Werner
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Kim E. Boonekamp
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany
| | - Tianzuo Zhan
- Department of Medicine II, Medical Faculty Mannheim, Mannheim University Hospital, Heidelberg University, D-68167 Mannheim, Germany;
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
- DKFZ-Hector Cancer Institute, University Medical Center Mannheim, D-68167 Mannheim, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany
- DKFZ-Hector Cancer Institute, University Medical Center Mannheim, D-68167 Mannheim, Germany
| |
Collapse
|
7
|
Bao H, Wu W, Li Y, Zong Z, Chen S. WNT6 participates in the occurrence and development of ovarian cancer by upregulating/activating the typical Wnt pathway and Notch1 signaling pathway. Gene 2022; 846:146871. [PMID: 36075327 DOI: 10.1016/j.gene.2022.146871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/06/2022] [Accepted: 09/01/2022] [Indexed: 11/04/2022]
Abstract
Wnt/β-catenin pathway is associated with the progression of various cancers such as gastric cancer, colorectal cancer, and endometrial cancer. Using the Kaplan-Meier Plotter database, we found that WNT6 was associated with progression-free survival (PFS) outcomes. Immunohistochemical analysis of ovarian cancer samples and normal ovaries showed that the expression of WNT6 protein was significantly increased in ovarian cancer samples. Further, we explored the possible role of WNT6 in the occurrence and development of ovarian cancer. Our results showed that the mRNA and protein expression of WNT6 were significantly higher in CAOV3 and OVCAR3 cells compared with other ovarian cancer cell lines and normal ovarian cell line IOSE-80 as well. The transformation of CAOV3 and OVCAR3 cells with short interfering WNT6 (siWNT6) significantly inhibited their proliferation and lamellipodia formation, causing cell cycle arrest and promoting cell apoptosis. Western blot experiments confirmed that the down-regulation of WNT6 inhibited the expression of β-catenin and Notch1. These results suggest that WNT6 plays an important role in the occurrence and development of ovarian cancer.
Collapse
Affiliation(s)
- Haijuan Bao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Wu Wu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Ying Li
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Zhihong Zong
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; China Medical University, Shenyang 110001, China.
| | - Shuo Chen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.
| |
Collapse
|
8
|
Xiang C, Liu X, Zhou D, Zhou Y, Wang X, Chen F. Identification of a glioma functional network from gene fitness data using machine learning. J Cell Mol Med 2022; 26:1253-1263. [PMID: 35044082 PMCID: PMC8831986 DOI: 10.1111/jcmm.17182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/25/2021] [Accepted: 01/03/2022] [Indexed: 01/02/2023] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive form of brain tumours that remains incurable despite recent advances in clinical treatments. Previous studies have focused on sub-categorizing patient samples based on clustering various transcriptomic data. While functional genomics data are rapidly accumulating, there exist opportunities to leverage these data to decipher glioma-associated biomarkers. We sought to implement a systematic approach to integrating data from high throughput CRISPR-Cas9 screening studies with machine learning algorithms to infer a glioma functional network. We demonstrated the network significantly enriched various biological pathways and may play roles in glioma tumorigenesis. From densely connected glioma functional modules, we further predicted 12 potential Wnt/β-catenin signalling pathway targeted genes, including AARSD1, HOXB5, ITGA6, LRRC71, MED19, MED24, METTL11B, SMARCB1, SMARCE1, TAF6L, TENT5A and ZNF281. Cox regression modelling with these targets was significantly associated with glioma overall survival prognosis. Additionally, TRIB2 was identified as a glioma neoplastic cell marker in single-cell RNA-seq of GBM samples. This work establishes novel strategies for constructing functional networks to identify glioma biomarkers for the development of diagnosis and treatment in clinical practice.
Collapse
Affiliation(s)
- Chun‐xiang Xiang
- Department of PathologyXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyang, HubeiChina
| | - Xi‐guo Liu
- Department of Head and Neck SurgeryHubei Cancer HospitalWuhan, HubeiChina
| | - Da‐quan Zhou
- Department of NeurosurgeryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyang, HubeiChina
| | - Yi Zhou
- Department of NeurosurgeryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyang, HubeiChina
| | - Xu Wang
- Department of NeurosurgeryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyang, HubeiChina
| | - Feng Chen
- Department of NeurosurgeryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyang, HubeiChina
| |
Collapse
|
9
|
HNRNPA2B1 inhibited SFRP2 and activated Wnt-β/catenin via m6A-mediated miR-106b-5p processing to aggravate stemness in lung adenocarcinoma. Pathol Res Pract 2022; 233:153794. [DOI: 10.1016/j.prp.2022.153794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 02/07/2023]
|
10
|
Martins EP, Gonçalves CS, Pojo M, Carvalho R, Ribeiro AS, Miranda‐Gonçalves V, Taipa R, Pardal F, Pinto AA, Custódia C, Faria CC, Baltazar F, Sousa N, Paredes J, Costa BM. Cadherin‐3
is a novel oncogenic biomarker with prognostic value in glioblastoma. Mol Oncol 2021; 16:2611-2631. [PMID: 34919784 PMCID: PMC9297769 DOI: 10.1002/1878-0261.13162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 11/08/2022] Open
Abstract
Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. The prognosis of patients is very poor, with a median overall survival of ~ 15 months after diagnosis. Cadherin‐3 (also known as P‐cadherin), a cell–cell adhesion molecule encoded by the CDH3 gene, is deregulated in several cancer types, but its relevance in GBM is unknown. In this study, we investigated the functional roles, the associated molecular signatures, and the prognostic value of CDH3/P‐cadherin in this highly malignant brain tumor. CDH3/P‐cadherin mRNA and protein levels were evaluated in human glioma samples. Knockdown and overexpression models of P‐cadherin in GBM were used to evaluate its functional role in vitro and in vivo. CDH3‐associated gene signatures were identified by enrichment analyses and correlations. The impact of CDH3 in the survival of GBM patients was assessed in independent cohorts using both univariable and multivariable models. We found that P‐cadherin protein is expressed in a subset of gliomas, with an increased percentage of positive samples in grade IV tumors. Concordantly, CDH3 mRNA levels in glioma samples from The Cancer Genome Atlas (TCGA) database are increased in high‐grade gliomas. P‐cadherin displays oncogenic functions in multiple knockdown and overexpression GBM cell models by affecting cell viability, cell cycle, cell invasion, migration, and neurosphere formation capacity. Genes that were positively correlated with CDH3 are enriched for oncogenic pathways commonly activated in GBM. In vivo, GBM cells expressing high levels of P‐cadherin generate larger subcutaneous tumors and cause shorter survival of mice in an orthotopic intracranial model. Concomitantly, high CDH3 expression is predictive of shorter overall survival of GBM patients in independent cohorts. Together, our results show that CDH3/P‐cadherin expression is associated with aggressiveness features of GBM and poor patient prognosis, suggesting that it may be a novel therapeutic target for this deadly brain tumor.
Collapse
Affiliation(s)
- Eduarda P. Martins
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Céline S. Gonçalves
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Marta Pojo
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Rita Carvalho
- i3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Rua Alfredo Allen 208, 4200‐135 Porto Portugal
| | - Ana S. Ribeiro
- i3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Rua Alfredo Allen 208, 4200‐135 Porto Portugal
| | - Vera Miranda‐Gonçalves
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Ricardo Taipa
- Neuropathology Unit Department of Neurosciences Centro Hospitalar do Porto Porto Portugal
| | - Fernando Pardal
- Department of Pathology, Hospital de Braga 4710‐243 Braga Portugal
| | - Afonso A. Pinto
- Department of Neurosurgery, Hospital de Braga 4710‐243 Braga Portugal
| | - Carlos Custódia
- Instituto de Medicina Molecular Faculdade de Medicina Universidade de Lisboa Lisbon Portugal
| | - Cláudia C. Faria
- Instituto de Medicina Molecular Faculdade de Medicina Universidade de Lisboa Lisbon Portugal
- Neurosurgery Department Hospital de Santa Maria Centro Hospitalar Lisboa Norte (CHLN) Lisbon Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Joana Paredes
- i3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Rua Alfredo Allen 208, 4200‐135 Porto Portugal
- Faculty of Medicine University of Porto Portugal
| | - Bruno M. Costa
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
| |
Collapse
|
11
|
Miranda-Gonçalves V, Gonçalves CS, Granja S, Vieira de Castro J, Reis RM, Costa BM, Baltazar F. MCT1 Is a New Prognostic Biomarker and Its Therapeutic Inhibition Boosts Response to Temozolomide in Human Glioblastoma. Cancers (Basel) 2021; 13:cancers13143468. [PMID: 34298681 PMCID: PMC8306807 DOI: 10.3390/cancers13143468] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Glioblastoma, the brain tumour with highest prevalence and lethality, exhibits a characteristic glycolytic phenotype with increased lactate production. Recently, we reported a MCT1 overexpression in GBMs tumours, being associated to tumour growth and aggressiveness. Thus, we aimed to disclose the role of MCT1 in GBM prognosis and in vivo therapy response. Importantly, MCT1 overexpression is associated with poor prognosis of GBM. Moreover, MCT1 inhibition retards GBM tumour growth and boosts response to temozolomide treatment. Abstract Background: Glioblastomas (GBMs) present remarkable metabolism reprograming, in which many cells display the “Warburg effect”, with the production of high levels of lactate that are extruded to the tumour microenvironment by monocarboxylate transporters (MCTs). We described previously that MCT1 is up-regulated in human GBM samples, and MCT1 inhibition decreases glioma cell viability and aggressiveness. In the present study, we aimed to unveil the role of MCT1 in GBM prognosis and to explore it as a target for GBM therapy in vivo. Methods: MCT1 activity and protein expression were inhibited by AR-C155858 and CHC compounds or stable knockdown with shRNA, respectively, to assess in vitro and in vivo the effects of MCT1 inhibition and on response of GBM to temozolomide. Survival analyses on GBM patient cohorts were performed using Cox regression and Log-rank tests. Results: High levels of MCT1 expression were revealed to be a predictor of poor prognosis in multiple cohorts of GBM patients. Functionally, in U251 GBM cells, MCT1 stable knockdown decreased glucose consumption and lactate efflux, compromising the response to the MCT1 inhibitors CHC and AR-C155858. MCT1 knockdown significantly increased the survival of orthotopic GBM intracranial mice models when compared to their control counterparts. Furthermore, MCT1 downregulation increased the sensitivity to temozolomide in vitro and in vivo, resulting in significantly longer mice survival. Conclusions: This work provides first evidence for MCT1 as a new prognostic biomarker of GBM survival and further supports MCT1 targeting, alone or in combination with classical chemotherapy, for the treatment of GBM.
Collapse
Affiliation(s)
- Vera Miranda-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (V.M.-G.); (C.S.G.); (S.G.); (J.V.d.C.); (R.M.R.); (B.M.C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Céline S. Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (V.M.-G.); (C.S.G.); (S.G.); (J.V.d.C.); (R.M.R.); (B.M.C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (V.M.-G.); (C.S.G.); (S.G.); (J.V.d.C.); (R.M.R.); (B.M.C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Research Centre in Health and Environment (CISA), School of Health (ESS), Polytechnic Institute of Porto (P.PORTO), 4200-072 Porto, Portugal
- Department of Pathological, Cytological and Thanatological Anatomy, School of Health (ESS), Polytechnic Institute of Porto (P.PORTO), 4200-072 Porto, Portugal
| | - Joana Vieira de Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (V.M.-G.); (C.S.G.); (S.G.); (J.V.d.C.); (R.M.R.); (B.M.C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Rui M. Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (V.M.-G.); (C.S.G.); (S.G.); (J.V.d.C.); (R.M.R.); (B.M.C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil
| | - Bruno M. Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (V.M.-G.); (C.S.G.); (S.G.); (J.V.d.C.); (R.M.R.); (B.M.C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (V.M.-G.); (C.S.G.); (S.G.); (J.V.d.C.); (R.M.R.); (B.M.C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Correspondence: ; Tel.: +351-253-604828
| |
Collapse
|
12
|
Feng Y, Tao L, Wang G, Li Z, Yang M, He W, Zhong X, Zhang Y, Yang J, Cheung S, McDonald F, Chen L. Aspirin inhibits prostaglandins to prevents colon tumor formation via down-regulating Wnt production. Eur J Pharmacol 2021; 906:174173. [PMID: 34033814 DOI: 10.1016/j.ejphar.2021.174173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/15/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023]
Abstract
According to numerous epidemiological studies, aspirin is a non-steroidal anti-inflammatory drug (NSAID) that reduces the occurrence and mortality of colorectal cancer (CRC). However, the underlying mechanisms are not well identified. In an effort to fill these gaps, we administered aspirin on mice one day before induction in an azoxymethane (AOM)/dextran sulfate sodium (DSS) induced CRC model. In this study, we assessed the effects of aspirin on tumorigenesis and tumor cell proliferation. Multi-layer analyses were carried out to identify changes in cytokines, metabolites, level of gene expressions, and proteins associated with tumorigenesis and aspirin treatment. The results showed that aspirin-treated mice developed fewer colon tumors in response to AOM/DSS, and aspirin can actively block cyclooxygenase (COX) metabolism and reduce levels of pro-inflammatory cytokines. In addition, the transcriptomic and proteomic analyses both indicated that aspirin has an inhibitory effect on the Wnt pathway. The in vitro results further indicated that aspirin inhibits WNT6 production, possibly by suppressing its transcription factor NR4A2, which in turn is regulated by prostaglandin E2, thereby ultimately inhibiting the Wnt pathway. These findings improve our understanding of the mechanisms behind aspirin's chemoprevention effect on CRC.
Collapse
Affiliation(s)
- Yaqian Feng
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China; Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Lei Tao
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China; Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China; Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Guoqiang Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China; Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zhen Li
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Mingming Yang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China; Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Weishen He
- Boston College, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA
| | - Xincheng Zhong
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Yong Zhang
- Advanced Biotechnology and Application Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China
| | - Jinliang Yang
- Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | | | - Fiona McDonald
- Bayer AG, Research & Development Pharmaceuticals, Berlin, 13342, Germany.
| | - Ligong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China; Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China; Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
13
|
Small Molecules of Marine Origin as Potential Anti-Glioma Agents. Molecules 2021; 26:molecules26092707. [PMID: 34063013 PMCID: PMC8124757 DOI: 10.3390/molecules26092707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022] Open
Abstract
Marine organisms are able to produce a plethora of small molecules with novel chemical structures and potent biological properties, being a fertile source for discovery of pharmacologically active compounds, already with several marine-derived agents approved as drugs. Glioma is classified by the WHO as the most common and aggressive form of tumor on CNS. Currently, Temozolomide is the only chemotherapeutic option approved by the FDA even though having some limitations. This review presents, for the first time, a comprehensive overview of marine compounds described as anti-glioma agents in the last decade. Nearly fifty compounds were compiled in this document and organized accordingly to their marine sources. Highlights on the mechanism of action and ADME properties were included. Some of these marine compounds could be promising leads for the discovery of new therapeutic alternatives for glioma treatment.
Collapse
|
14
|
Qin F, Fan Q, Yu PKN, Almahi WA, Kong P, Yang M, Cao W, Nie L, Chen G, Han W. Properties and gene expression profiling of acquired radioresistance in mouse breast cancer cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:628. [PMID: 33987326 PMCID: PMC8106033 DOI: 10.21037/atm-20-4667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Acquired radioresistant cells exhibit many characteristic changes which may influence cancer progression and further treatment options. The purpose of this study is to investigate the changes of radioresistant human epidermal growth factor receptor 2 (HER2)-positive breast cancer cells on both phenotypic and molecular levels. Methods We established an acquired radioresistant cell line from its parental NF639 cell line (HER2-positive) by fractionated radiation and assessed changes in cellular morphology, proliferation, migration, anti-apoptosis activity, basal reactive oxygen species (ROS) level and energy metabolism. RNA-sequencing (RNA-seq) was also used to reveal the potential regulating genes and molecular mechanisms associated with the acquired changed phenotypes. Real-time PCR was used to validate the results of RNA-seq. Results The NF639R cells exhibited increased radioresistance and enhanced activity of proliferation, migration and anti-apoptosis, but decreased basal ROS. Two main energy metabolism pathways, mitochondrial respiration and glycolytic, were also upregulated. Furthermore, 490 differentially expressed genes were identified by RNA-seq. Enrichment analysis based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes showed many differently expressed genes were significantly enriched in cell morphology, proliferation, migration, anti-apoptosis, antioxidation, tumor stem cells and energy metabolism and the signaling cascades such as the transforming growth factor-β, Wnt, Hedgehog, vascular endothelial growth factor, retinoic acid-inducible gene I (RIG-I)-like receptor, Toll-like receptor and nucleotide oligomerization domain (NOD)-like receptor were significantly altered in NF639R cells. Conclusions In clinical radiotherapy, repeat radiotherapy for short-term recurrence of breast cancer may result in enhanced radioresistance and promote malignant progression. Our research provided hints to understand the tumor resistance to radiotherapy de novo and recurrence with a worse prognosis following radiotherapy.
Collapse
Affiliation(s)
- Feng Qin
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Scinece Island Branch, Graduate School of USTC, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China.,Institute of Sericultural, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Qiang Fan
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Scinece Island Branch, Graduate School of USTC, Hefei, China
| | - Peter K N Yu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China.,State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Waleed Abdelbagi Almahi
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Scinece Island Branch, Graduate School of USTC, Hefei, China
| | - Peizhong Kong
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Scinece Island Branch, Graduate School of USTC, Hefei, China
| | - Miaomiao Yang
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Scinece Island Branch, Graduate School of USTC, Hefei, China.,Clinical Pathology Center, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Cao
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Scinece Island Branch, Graduate School of USTC, Hefei, China
| | - Lili Nie
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Guodong Chen
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Wei Han
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, China
| |
Collapse
|
15
|
Oliveira C, Gonçalves CS, Martins EP, Neves NM, Reis RL, Costa BM, Silva TH, Martins A. Fucoidan/chitosan nanoparticles functionalized with anti-ErbB-2 target breast cancer cells and impair tumor growth in vivo. Int J Pharm 2021; 600:120548. [PMID: 33794324 DOI: 10.1016/j.ijpharm.2021.120548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
The work herein presented reports the development of fucoidan/chitosan nanoparticles (NPs) loaded with gemcitabine and functionalized with ErbB-2 antibody at their surface (NPs + Gem + Ab). The maximum immobilization of ErbB-2 on NPs' surface was set at 10 μg mL-1 and resulted in NPs with a size around 160 nm, a polydispersity index of 0.18, and a zeta potential of 21 mV. ErbB-2 is overexpressed in some subtypes of breast cancers, and the targeting capability of the NPs + Gem + Ab system was confirmed by an increased cellular uptake of SKBR3 cells (ErbB-2 positive) when compared to MDA-MB-231 (ErbB-2 negative). To validate the targeting efficacy of NPs + Gem + Ab, a co-culture system with human endothelial and SKBR3 cells was established. Cytotoxic effects over endothelial cells were similar for all the tested conditions (between 25 and 30%). However, the NPs + Gem + Ab system presented increased toxicity over breast cancer cells, above 80% after 24 h, when compared to free Gem and NPs + Gem (around 15% and 20%, respectively). In vivo studies demonstrated that the developed targeting system significantly reduced tumor growth and the appearance of lung metastasis compared to untreated controls. In summary, the efficacy of the NPs + Gem + Ab system to target cancer cells was established and validated both in vitro and in vivo, being a compelling alternative strategy to current chemotherapeutic approaches.
Collapse
Affiliation(s)
- Catarina Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Céline S Gonçalves
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Eduarda P Martins
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bruno M Costa
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Tiago H Silva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Albino Martins
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
16
|
Expression profiles and prognostic significance of WNT family members in glioma via bioinformatic analysis. Biosci Rep 2021; 40:222401. [PMID: 32181818 PMCID: PMC7103590 DOI: 10.1042/bsr20194255] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/13/2020] [Accepted: 03/16/2020] [Indexed: 01/11/2023] Open
Abstract
AIMS The dysregulation and essential role of WNTs in glioma have been widely implicated. However, there is a paucity of literature on the expression status of all the 19 WNTs in glioma. Our study was aimed to evaluate the expression and prognostic values of the 19 WNTs in glioma. METHODS mRNA expression and clinical data were retrieved from the Cancer Genome Atlas (TCGA) database, Chinese Glioma Genome Atlas (CGGA), GTEx and ONCOMINE databases. The 50 frequent neighbor genes of WNT5A and WNT10B were shown with PPI network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. RESULTS We found that the mRNA expression of WNT5A was significantly higher in glioma; however, the WNT10B expression was significantly lower in glioma. Furthermore, the expression of WNT5A and WNT10B was associated with the clinicopathology of glioma. The survival analysis revealed that the higher expressions of WNT5A and WNT16 were associated poor overall survival (OS) in patients with glioma. Conversely, overexpression of WNT3, WNT5B, and WNT10B was associated with better OS. Finally, Go and KEGG analysis revealed WNT5A was associated with multiple signal translations, and crucial oncogenes (EGFR and MDM2) and 2 important tumor suppressors (PTEN and IKN4a/ARF) were found closely correlated with WNT5A in glioma. CONCLUSION Among 19WNTs, WNT5A can serve as a candidate to diagnose and therapy glioma, while WNT10B might be valuable for anti-glioma research. The presumed direction was provided to explore the relation of WNTs signal and multiple pathways in glioma.
Collapse
|
17
|
Ning W, Huang M, Wu S, Wang H, Yao J, Ge Y, Tang Y, Sun K, Xie X, Hu Q. CT23 knockdown attenuating malignant behaviors of hepatocellular carcinoma cell is associated with upregulation of metallothionein 1. Cell Biol Int 2021; 45:1231-1245. [PMID: 33559934 DOI: 10.1002/cbin.11567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/27/2021] [Accepted: 02/07/2021] [Indexed: 12/17/2022]
Abstract
The cancer-testis antigen 23 (CT23) gene has been reported in association with the pathogenesis and progress of hepatocellular carcinoma (HCC). However, the alterations of gene expression profiling induced by CT23 knockdown in HCC cells remains largely unknown. In this study, the RNA interfering (RNAi) method was used to silence CT23 expression in BEL-7404 cells. Microarray analysis was performed on mRNA extracted from the CT23 knockdown cells and the control cells to determine the alterations of gene expression profiles. The result showed a total of 1051 genes expressed differentially (two-fold change), including 470 genes upregulated and 581 gene downregulated in the CT23 knockdown cells. A bioinformatic analysis showed that the functional differentially expressed genes (DEGs) were linked to cell proliferation, migration, and apoptosis, and metallothionein 1 (MT1) attained the maximum enrichment scores in functional annotation, classification, and pathway analysis of DEGs. Furthermore, Western blot analysis and cell behaviors assays verified that CT23 modulates cell proliferation, migration, and apoptosis by regulating MT1 expression in HCC cells and non-neoplastic hepatocytes. In summary, downregulated CT23 gene in BEL-7404 cells might change the expressions of carcinogenesis and progression related genes in HCC by upregulating MT1 expression, which would provide insight into searching for a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Wanjing Ning
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Miao Huang
- Radiology Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shengming Wu
- Department of Pathology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Wang
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Jiali Yao
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Yingying Ge
- Department of Histology and Embryology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Yulu Tang
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Kejian Sun
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Xiaoxun Xie
- Department of Histology and Embryology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Qiping Hu
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| |
Collapse
|
18
|
Vieira de Castro J, S. Gonçalves C, P. Martins E, Miranda-Lorenzo I, T. Cerqueira M, Longatto-Filho A, A. Pinto A, L. Reis R, Sousa N, Heeschen C, M. Costa B. Intracellular Autofluorescence as a New Biomarker for Cancer Stem Cells in Glioblastoma. Cancers (Basel) 2021; 13:828. [PMID: 33669350 PMCID: PMC7920313 DOI: 10.3390/cancers13040828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
The identification of cancer stem cells (CSCs), which are implicated in tumor initiation, progression, therapy resistance, and relapse, is of great biological and clinical relevance. In glioblastoma (GBM), this is still a challenge, as no single marker is able to universally identify populations of GBM cancer stem cells (GSCs). Indeed, there is still controversy on whether biomarker-expressing cells fulfill the functional criteria of bona fide GSCs, despite being widely used. Here, we describe a novel subpopulation of autofluorescent (Fluo+) cells in GBM that bear all the functional characteristics of GSCs, including higher capacity to grow as neurospheres, long-term self-renewal ability, increased expression of stem cell markers, and enhanced in vivo tumorigenicity. Mechanistically, the autofluorescent phenotype is largely due to the intracellular accumulation of riboflavin, mediated by the ABC transporter ABCG2. In summary, our work identifies an intrinsic cellular autofluorescent phenotype enriched in GBM cells with functional stem cells features that can be used as a novel, simple and reliable biomarker to target these highly malignant tumors, with implications for GBM biological and clinical research.
Collapse
Affiliation(s)
- Joana Vieira de Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.V.d.C.); (C.S.G.); (E.P.M.); (A.L.-F.); (N.S.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; (M.T.C.); (R.L.R.)
| | - Céline S. Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.V.d.C.); (C.S.G.); (E.P.M.); (A.L.-F.); (N.S.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; (M.T.C.); (R.L.R.)
| | - Eduarda P. Martins
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.V.d.C.); (C.S.G.); (E.P.M.); (A.L.-F.); (N.S.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; (M.T.C.); (R.L.R.)
| | - Irene Miranda-Lorenzo
- Stem Cells and Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (I.M.-L.); (C.H.)
| | - Mariana T. Cerqueira
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; (M.T.C.); (R.L.R.)
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Zona Industrial da Gandra, 4805-017 Barco, Portugal
| | - Adhemar Longatto-Filho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.V.d.C.); (C.S.G.); (E.P.M.); (A.L.-F.); (N.S.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; (M.T.C.); (R.L.R.)
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil
- Medical Laboratory of Medical Investigation (LIM) 14, Department of Pathology, Medical School, University of São Paulo, São Paulo 01246-903, Brazil
| | - Afonso A. Pinto
- Department of Neurosurgery, Hospital de Braga, 4710-243 Braga, Portugal;
| | - Rui L. Reis
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; (M.T.C.); (R.L.R.)
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Zona Industrial da Gandra, 4805-017 Barco, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.V.d.C.); (C.S.G.); (E.P.M.); (A.L.-F.); (N.S.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; (M.T.C.); (R.L.R.)
| | - Christopher Heeschen
- Stem Cells and Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (I.M.-L.); (C.H.)
- Center for Single-Cell Omics & State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bruno M. Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.V.d.C.); (C.S.G.); (E.P.M.); (A.L.-F.); (N.S.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; (M.T.C.); (R.L.R.)
| |
Collapse
|
19
|
Wei M, Zhang C, Tian Y, Du X, Wang Q, Zhao H. Expression and Function of WNT6: From Development to Disease. Front Cell Dev Biol 2021; 8:558155. [PMID: 33425886 PMCID: PMC7794017 DOI: 10.3389/fcell.2020.558155] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/04/2020] [Indexed: 11/17/2022] Open
Abstract
WNT family member 6 (WNT6) is a member of the highly conserved WNT protein family. It plays an essential role in the normal development process, not only in embryonic morphogenesis, but also in post-natal homeostasis. WNT6 functions in mice and humans. This review summarizes the current findings on the biological functions of WNT6, describing its involvement in regulating embryogenesis, decidualization, and organ development. Aberrant WNT6 signaling is related to various pathologies, such as promoting cancer development, lung tuberculosis, and kidney fibrosis and improving the symptoms of Rett syndrome (RTT). Thus, due to its various functions, WNT6 has great potential for in-depth research. This work not only describes the signaling mechanism and function of WNT6 under physiological and pathological conditions, but also provides a theoretical basis for targeted therapy.
Collapse
Affiliation(s)
- Ming Wei
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Congmin Zhang
- Department of Scientific Research Center, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yujia Tian
- Department of Scientific Research Center, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xiaohui Du
- Department of Scientific Research Center, The Second Hospital of Dalian Medical University, Dalian, China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Hui Zhao
- The Health Check Up Center, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
20
|
Differential gene expression in cisplatin-resistant and -sensitive testicular germ cell tumor cell lines. Oncotarget 2020; 11:4735-4753. [PMID: 33473258 PMCID: PMC7771712 DOI: 10.18632/oncotarget.27844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) represent a well curable malignity due to their exceptional response to cisplatin (CDDP). Despite remarkable treatment results, approximately 5% of TGCT patients develop CDDP resistance and die. Exceptional curability makes TGCTs a highly valuable model system for studying the molecular mechanisms of CDDP sensitivity. Our study was aimed at revealing difference in gene expression between the CDDP-resistant and -sensitive TGCT cell lines, and hence at identifying candidate genes that could serve as potential biomarkers of CDDP response. Using gene expression array, we identified 281 genes that are differentially expressed in CDDP-resistant compared to -sensitive TGCT cell lines. The expression of 25 genes with the highest fold change was validated by RT-qPCR. Of them, DNMT3L, GAL, IGFBP2, IGFBP7, L1TD1, NANOG, NTF3, POU5F1, SOX2, WNT6, ZFP42, ID2, PCP4, SLC40A1 and TRIB3, displayed comparable expression change in gene expression array and RT-qPCR, when all CDDP-resistant TGCT cell lines were pairwise combined with all -sensitive ones. Products of the identified genes are pluripotency factors, or are involved in processes, such as cell metabolism, proliferation or migration. We propose that, after clinical validation, these genes could serve as prognostic biomarkers for early detection of CDDP response in TGCT patients.
Collapse
|
21
|
Olatz C, Patricia GG, Jon L, Iker B, Carmen DLH, Fernando U, Gaskon I, Ramon PJ. Is There Such a Thing as a Genuine Cancer Stem Cell Marker? Perspectives from the Gut, the Brain and the Dental Pulp. BIOLOGY 2020; 9:biology9120426. [PMID: 33260962 PMCID: PMC7760753 DOI: 10.3390/biology9120426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022]
Abstract
The conversion of healthy stem cells into cancer stem cells (CSCs) is believed to underlie tumor relapse after surgical removal and fuel tumor growth and invasiveness. CSCs often arise from the malignant transformation of resident multipotent stem cells, which are present in most human tissues. Some organs, such as the gut and the brain, can give rise to very aggressive types of cancers, contrary to the dental pulp, which is a tissue with a very remarkable resistance to oncogenesis. In this review, we focus on the similarities and differences between gut, brain and dental pulp stem cells and their related CSCs, placing a particular emphasis on both their shared and distinctive cell markers, including the expression of pluripotency core factors. We discuss some of their similarities and differences with regard to oncogenic signaling, telomerase activity and their intrinsic propensity to degenerate to CSCs. We also explore the characteristics of the events and mutations leading to malignant transformation in each case. Importantly, healthy dental pulp stem cells (DPSCs) share a great deal of features with many of the so far reported CSC phenotypes found in malignant neoplasms. However, there exist literally no reports about the contribution of DPSCs to malignant tumors. This raises the question about the particularities of the dental pulp and what specific barriers to malignancy might be present in the case of this tissue. These notable differences warrant further research to decipher the singular properties of DPSCs that make them resistant to transformation, and to unravel new therapeutic targets to treat deadly tumors.
Collapse
Affiliation(s)
- Crende Olatz
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - García-Gallastegui Patricia
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Luzuriaga Jon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Badiola Iker
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - de la Hoz Carmen
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Unda Fernando
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Ibarretxe Gaskon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
- Correspondence: (I.G.); (P.J.R.); Tel.: +34-946-013-218 (I.G.); +34-946-012-426 (P.J.R.)
| | - Pineda Jose Ramon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
- Achucarro Basque Center for Neuroscience Fundazioa, 48940 Leioa, Spain
- Correspondence: (I.G.); (P.J.R.); Tel.: +34-946-013-218 (I.G.); +34-946-012-426 (P.J.R.)
| |
Collapse
|
22
|
Shahcheraghi SH, Tchokonte-Nana V, Lotfi M, Lotfi M, Ghorbani A, Sadeghnia HR. Wnt/beta-catenin and PI3K/Akt/mTOR Signaling Pathways in Glioblastoma: Two Main Targets for Drug Design: A Review. Curr Pharm Des 2020; 26:1729-1741. [PMID: 32003685 DOI: 10.2174/1381612826666200131100630] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma (GBM) is the most common and malignant astrocytic glioma, accounting for about 90% of all brain tumors with poor prognosis. Despite recent advances in understanding molecular mechanisms of oncogenesis and the improved neuroimaging technologies, surgery, and adjuvant treatments, the clinical prognosis of patients with GBM remains persistently unfavorable. The signaling pathways and the regulation of growth factors of glioblastoma cells are very abnormal. The various signaling pathways have been suggested to be involved in cellular proliferation, invasion, and glioma metastasis. The Wnt signaling pathway with its pleiotropic functions in neurogenesis and stem cell proliferation is implicated in various human cancers, including glioma. In addition, the PI3K/Akt/mTOR pathway is closely related to growth, metabolism, survival, angiogenesis, autophagy, and chemotherapy resistance of GBM. Understanding the mechanisms of GBM's invasion, represented by invasion and migration, is an important tool in designing effective therapeutic interventions. This review will investigate two main signaling pathways in GBM: PI3K/Akt/mTOR and Wnt/beta-catenin signaling pathways.
Collapse
Affiliation(s)
- Seyed H Shahcheraghi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of medical sciences, Yazd, Iran
| | - Venant Tchokonte-Nana
- Comparative Anatomy, Experimental Anatomopathology and Surgery, Faculty of Medicine and Health Sciences, University des Montagnes, Bangangte, Cameroon
| | - Marzieh Lotfi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of medical sciences, Yazd, Iran
| | - Malihe Lotfi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid R Sadeghnia
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Gonçalves CS, Le Boiteux E, Arnaud P, Costa BM. HOX gene cluster (de)regulation in brain: from neurodevelopment to malignant glial tumours. Cell Mol Life Sci 2020; 77:3797-3821. [PMID: 32239260 PMCID: PMC11105007 DOI: 10.1007/s00018-020-03508-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022]
Abstract
HOX genes encode a family of evolutionarily conserved homeodomain transcription factors that are crucial both during development and adult life. In humans, 39 HOX genes are arranged in four clusters (HOXA, B, C, and D) in chromosomes 7, 17, 12, and 2, respectively. During embryonic development, particular epigenetic states accompany their expression along the anterior-posterior body axis. This tightly regulated temporal-spatial expression pattern reflects their relative chromosomal localization, and is critical for normal embryonic brain development when HOX genes are mainly expressed in the hindbrain and mostly absent in the forebrain region. Epigenetic marks, mostly polycomb-associated, are dynamically regulated at HOX loci and regulatory regions to ensure the finely tuned HOX activation and repression, highlighting a crucial epigenetic plasticity necessary for homeostatic development. HOX genes are essentially absent in healthy adult brain, whereas they are detected in malignant brain tumours, namely gliomas, where HOX genes display critical roles by regulating several hallmarks of cancer. Here, we review the major mechanisms involved in HOX genes (de)regulation in the brain, from embryonic to adult stages, in physiological and oncologic conditions. We focus particularly on the emerging causes of HOX gene deregulation in glioma, as well as on their functional and clinical implications.
Collapse
Affiliation(s)
- Céline S Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Elisa Le Boiteux
- Université Clermont Auvergne, CNRS, INSERM-iGReD, Clermont-Ferrand, France
| | - Philippe Arnaud
- Université Clermont Auvergne, CNRS, INSERM-iGReD, Clermont-Ferrand, France
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
24
|
Del Corvo M, Bongiorni S, Stefanon B, Sgorlon S, Valentini A, Ajmone Marsan P, Chillemi G. Genome-Wide DNA Methylation and Gene Expression Profiles in Cows Subjected to Different Stress Level as Assessed by Cortisol in Milk. Genes (Basel) 2020; 11:genes11080850. [PMID: 32722461 PMCID: PMC7464205 DOI: 10.3390/genes11080850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022] Open
Abstract
Dairy cattle health, wellbeing and productivity are deeply affected by stress. Its influence on metabolism and immune response is well known, but the underlying epigenetic mechanisms require further investigation. In this study, we compared DNA methylation and gene expression signatures between two dairy cattle populations falling in the high- and low-variant tails of the distribution of milk cortisol concentration (MC), a neuroendocrine marker of stress in dairy cows. Reduced Representation Bisulfite Sequencing was used to obtain a methylation map from blood samples of these animals. The high and low groups exhibited similar amounts of methylated CpGs, while we found differences among non-CpG sites. Significant methylation changes were detected in 248 genes. We also identified significant fold differences in the expression of 324 genes. KEGG and Gene Ontology (GO) analysis showed that genes of both groups act together in several pathways, such as nervous system activity, immune regulatory functions and glucocorticoid metabolism. These preliminary results suggest that, in livestock, cortisol secretion could act as a trigger for epigenetic regulation and that peripheral changes in methylation can provide an insight into central nervous system functions.
Collapse
Affiliation(s)
- Marcello Del Corvo
- Department of Animal Science Food and Nutrition—DIANA, Nutrigenomics and Proteomics Research Centre—PRONUTRIGEN, and Biodiversity and Ancient DNA Research Centre, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
- Istituto di Biologia e BiotecnologiaAgraria, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy
- Correspondence:
| | - Silvia Bongiorni
- Department of Ecological and Biological sciences DEB, University of Tuscia, 01100 Viterbo, Italy;
| | - Bruno Stefanon
- Department of Agrifood, Environmental and Animal Science–University of Udine, 33100 Udine, Italy; (B.S.); (S.S.)
| | - Sandy Sgorlon
- Department of Agrifood, Environmental and Animal Science–University of Udine, 33100 Udine, Italy; (B.S.); (S.S.)
| | - Alessio Valentini
- Department for Innovation in Biological, Agro-food and Forest systems DIBAF, University of Tuscia, 01100 Viterbo, Italy; (A.V.); (G.C.)
| | - Paolo Ajmone Marsan
- Department of Animal Science Food and Nutrition—DIANA, Nutrigenomics and Proteomics Research Centre—PRONUTRIGEN, and Biodiversity and Ancient DNA Research Centre, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-food and Forest systems DIBAF, University of Tuscia, 01100 Viterbo, Italy; (A.V.); (G.C.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, IBIOM, CNR, 70126 Bari, Italy
| |
Collapse
|
25
|
Vieira de Castro J, Gonçalves CS, Hormigo A, Costa BM. Exploiting the Complexities of Glioblastoma Stem Cells: Insights for Cancer Initiation and Therapeutic Targeting. Int J Mol Sci 2020; 21:ijms21155278. [PMID: 32722427 PMCID: PMC7432229 DOI: 10.3390/ijms21155278] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
The discovery of glioblastoma stem cells (GSCs) in the 2000s revolutionized the cancer research field, raising new questions regarding the putative cell(s) of origin of this tumor type, and partly explaining the highly heterogeneous nature of glioblastoma (GBM). Increasing evidence has suggested that GSCs play critical roles in tumor initiation, progression, and resistance to conventional therapies. The remarkable oncogenic features of GSCs have generated significant interest in better defining and characterizing these cells and determining novel pathways driving GBM that could constitute attractive key therapeutic targets. While exciting breakthroughs have been achieved in the field, the characterization of GSCs is a challenge and the cell of origin of GBM remains controversial. For example, the use of several cell-surface molecular markers to identify and isolate GSCs has been a challenge. It is now widely accepted that none of these markers is, per se, sufficiently robust to distinguish GSCs from normal stem cells. Finding new strategies that are able to more efficiently and specifically target these niches could also prove invaluable against this devastating and therapy-insensitive tumor. In this review paper, we summarize the most relevant findings and discuss emerging concepts and open questions in the field of GSCs, some of which are, to some extent, pertinent to other cancer stem cells.
Collapse
Affiliation(s)
- Joana Vieira de Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.V.d.C.); (C.S.G.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Céline S. Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.V.d.C.); (C.S.G.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Adília Hormigo
- Department of Neurology, Neurosurgery, Medicine, The Tisch Cancer Institute and Icahn School of Medicine at Mount Sinai, NY 10029-6574, USA;
| | - Bruno M. Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.V.d.C.); (C.S.G.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- Correspondence: ; Tel.: +35-1-253-604-872
| |
Collapse
|
26
|
Yang L, Zhang J, Yang G, Xu H, Lin J, Shao L, Li J, Guo C, Du Y, Guo L, Li X, Han-Zhang H, Wang C, Chuai S, Ye J, Kang Q, Liu H, Ying J, Wang Y. The prognostic value of a Methylome-based Malignancy Density Scoring System to predict recurrence risk in early-stage Lung Adenocarcinoma. Theranostics 2020; 10:7635-7644. [PMID: 32685009 PMCID: PMC7359091 DOI: 10.7150/thno.44229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Current NCCN guidelines do not recommend the use of adjuvant chemotherapy for stage IA lung adenocarcinoma patients with R0 surgery. However, 25% to 40% of patients with stage IA disease experience recurrence. Stratifying patients according to the recurrence risk may tailor adjuvant therapy and surveillance imaging for those with a higher risk. However, prognostic markers are often identified by comparing high-risk and low-risk cases which might introduce bias due to the widespread interpatient heterogeneity. Here, we developed a scoring system quantifying the degree of field cancerization in adjacent normal tissues and revealed its association with disease-free survival (DFS). Methods: We recruited a cohort of 44 patients with resected stage IA lung adenocarcinoma who did not receive adjuvant therapy. Both tumor and adjacent normal tissues were obtained from each patient and subjected to capture-based targeted genomic and epigenomic profiling. A novel methylome-based scoring system namely malignancy density ratio (MD ratio) was developed based on 39 patients by comparing tumor and corresponding adjacent normal tissues of each patient. A MD score was then obtained by Wald statistics. The correlations of MD ratio, MD score, and genomic features with clinical outcome were investigated. Results: Patients with a high-risk MD ratio showed a significantly shorter postsurgical DFS compared with those with a low-risk MD ratio (HR=4.47, P=0.01). The MD ratio was not associated with T stage (P=1), tumor cell fraction (P=0.748) nor inflammatory status (p=0.548). Patients with a high-risk MD score also demonstrated an inferior DFS (HR=4.69, P=0.039). In addition, multivariate analysis revealed EGFR 19 del (HR=5.39, P=0.012) and MD score (HR= 7.90, P=0.01) were independent prognostic markers. Conclusion: The novel methylome-based scoring system, developed by comparing the signatures between tumor and corresponding adjacent normal tissues of individual patients, largely minimizes the bias of interpatient heterogeneity and reveals a robust prognostic value in patients with resected lung adenocarcinoma.
Collapse
|
27
|
Gonçalves CS, Xavier-Magalhães A, Martins EP, Pinto AA, Pires MM, Pinheiro C, Reis RM, Sousa N, Costa BM. A novel molecular link between HOXA9 and WNT6 in glioblastoma identifies a subgroup of patients with particular poor prognosis. Mol Oncol 2020; 14:1224-1241. [PMID: 31923345 PMCID: PMC7266278 DOI: 10.1002/1878-0261.12633] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/11/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Despite much effort to improve treatments, patients with malignant glioma still present a very poor prognosis that has not changed significantly in the last decades. In this context, it is crucial to better understand glioma pathogenesis to identify new molecular prognostic subgroups and therapeutic targets. WNT6 was recently identified as a new oncogenic molecule in glioblastoma (GBM), with prognostic value in patients, but the mechanisms underlying WNT6 aberrant expression in glioma are still unknown. WNT6 was overexpressed in a subset of gliomas independently of IDH mutations, 1p/19q codeletion status, and WNT6 gene copy number. Interestingly, WNT6 expression is associated with the DNA methylation levels of particular CpG regions at both the WNT6 promoter and the gene body in glioma patient samples. HOXA9, a transcription factor previously associated with poorer clinical outcome in GBM, was identified as a novel transcriptional regulator of WNT6, activating the WNT/β‐catenin pathway in vitro and in vivo. In various cohorts of glioma patients, mRNA levels of WNT6 and HOXA9 were significantly correlated, extending our in vitro and in vivo findings into the clinical setting. Interestingly, this novel molecular link between WNT6 and HOXA9 was not limited to glioma, as they were co‐expressed also in patients with other tumor types. Clinically, WNT6 was a prognostic biomarker of shorter survival in GBM, independently of HOXA9 expression. Concomitant high expression of both WNT6 and HOXA9 identified a subgroup of patients with particularly dismal survival. These findings describe novel WNT6 regulatory mechanisms in GBM, establishing particular DNA methylation patterns and HOXA9 as critical regulators of WNT6 expression in glioma. This HOXA9‐WNT6 molecular link supports WNT signaling in GBM cells and is a powerful prognostic biomarker, highlighting the clinical relevance of this axis in patients. Novel therapies targeting WNT6‐HOXA9 signaling may thus be useful for this deadly disease.
Collapse
Affiliation(s)
- Céline S Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Xavier-Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduarda P Martins
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Afonso A Pinto
- Department of Neurosurgery, Hospital Escala Braga, Braga, Portugal
| | | | - Célia Pinheiro
- Neurosurgery Centro Hospitalar do Porto, Porto, Portugal
| | - Rui M Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
28
|
Dong H, Wang Q, Li N, Lv J, Ge L, Yang M, Zhang G, An Y, Wang F, Xie L, Li Y, Zhu W, Zhang H, Zhang M, Guo X. OSgbm: An Online Consensus Survival Analysis Web Server for Glioblastoma. Front Genet 2020; 10:1378. [PMID: 32153627 PMCID: PMC7046682 DOI: 10.3389/fgene.2019.01378] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant tumor of the central nervous system. GBM causes poor clinical outcome and high mortality rate, mainly due to the lack of effective targeted therapy and prognostic biomarkers. Here, we developed a user-friendly Online Survival analysis web server for GlioBlastoMa, abbreviated OSgbm, to assess the prognostic value of candidate genes. Currently, OSgbm contains 684 samples with transcriptome profiles and clinical information from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and Chinese Glioma Genome Atlas (CGGA). The survival analysis results can be graphically presented by Kaplan-Meier (KM) plot with Hazard ratio (HR) and log-rank p value. As demonstration, the prognostic value of 51 previously reported survival associated biomarkers, such as PROM1 (HR = 2.4120, p = 0.0071) and CXCR4 (HR = 1.5578, p < 0.001), were confirmed in OSgbm. In summary, OSgbm allows users to evaluate and develop prognostic biomarkers of GBM. The web server of OSgbm is available at http://bioinfo.henu.edu.cn/GBM/GBMList.jsp.
Collapse
Affiliation(s)
- Huan Dong
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Qiang Wang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Ning Li
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Jiajia Lv
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Linna Ge
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Mengsi Yang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Guosen Zhang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yang An
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Fengling Wang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Longxiang Xie
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yongqiang Li
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Wan Zhu
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - Haiyu Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | | | - Xiangqian Guo
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
29
|
Xing J, Wang Z, Xu H, Liu C, Wei Z, Zhao L, Ren L. Pak2 inhibition promotes resveratrol-mediated glioblastoma A172 cell apoptosis via modulating the AMPK-YAP signaling pathway. J Cell Physiol 2020; 235:6563-6573. [PMID: 32017068 DOI: 10.1002/jcp.29515] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 01/08/2020] [Indexed: 12/28/2022]
Abstract
As a polyphenolic compound, resveratrol (Res) is widely present in a variety of plants. Previous studies have shown that Res can inhibit various tumors. However, its role in c remains largely unexplored. In the present study, we first demonstrated that Res inhibited cell viability and induced apoptosis of glioblastoma A172 cell. Further experiments showed that Res induced mitochondrial dysfunction and activated the activity of caspase-9. Functional studies have found that Res treatment is associated with an increase in the expression of Pak2. Interestingly, inhibition of Pak2 could further augment the proapoptotic effect of Res. Mechanistically, Pak2 inhibition induced reactive oxygen species overproduction, mitochondria-JNK pathway activation, and AMPK-YAP axis suppression. However, overexpression of YAP could abolish the anticancer effects of Res and Pak2 inhibition, suggesting a necessary role played by the AMPK-YAP pathway in regulating cancer-suppressive actions of Res and Pak2 inhibition. Altogether, our results indicated that Res in combination with Pak2 inhibition could further enhance the anticancer property of Res and this effect is mediated via the AMPK-YAP pathway.
Collapse
Affiliation(s)
- Jin Xing
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, China
| | - Zhihan Wang
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, China
| | - Hao Xu
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, China
| | - Chaobo Liu
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, China
| | - Zilong Wei
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, China
| | - Liang Zhao
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, China
| | - Li Ren
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Jiang N, Zou C, Zhu Y, Luo Y, Chen L, Lei Y, Tang K, Sun Y, Zhang W, Li S, He Q, Zhou J, Chen Y, Luo J, Jiang W, Ke Z. HIF-1ɑ-regulated miR-1275 maintains stem cell-like phenotypes and promotes the progression of LUAD by simultaneously activating Wnt/β-catenin and Notch signaling. Am J Cancer Res 2020; 10:2553-2570. [PMID: 32194819 PMCID: PMC7052895 DOI: 10.7150/thno.41120] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/05/2020] [Indexed: 02/07/2023] Open
Abstract
Rationale: Cancer stem cells (CSCs) are considered to be essential for tumorigenesis, recurrence, and metastasis and therefore serve as a biomarker for tumor progression in diverse cancers. Recent studies have illustrated that specific miRNAs exhibit novel therapeutic potential by controlling CSC properties. miR-1275 is upregulated in lung adenocarcinoma (LUAD) and enhances its stemness. However, the underlying mechanisms have not been elucidated. Methods: miRNA expression microarray of LUAD and adjacent nontumor tissues was used to identify miRNAs involved in LUAD malignant progression. miR-1275 expression level was determined using quantitative real-time PCR (RT-qPCR) and in situ hybridization (ISH), and its correlation with clinicopathological characteristics was analyzed in LUAD specimens. The upstream regulator of miR-1275 was validated by chromatin immunoprecipitation (ChIP). The biological functions and underlying mechanisms of miR-1275 were investigated both in vitro and in vivo. Results: MiR-1275 was highly upregulated in lung cancer cell lines and LUAD tissues. Overexpression of miR-1275 in lung cancer patients was associated with shorter overall- and recurrence-free-survival. Proto-oncogene HIF-1ɑ was identified as the transcription mediator of miR-1275. Activation of Wnt/β-catenin and Notch signaling by miR-1275 was found to enhance the stemness of LUAD cells, while antagonizing miR-1275 or suppressing Wnt/β-catenin and Notch pathways potently reversed miR-1275-induced pathway co-activation and stemness. Enhanced stemness dramatically promoted tumorigenicity, recurrence, and metastasis. miR-1275 directly targeted multiple antagonists of Wnt/β-catenin and Notch pathways, including DKK3, SFRP1, GSK3β, RUNX3, and NUMB, respectively, which resulted in signaling activation. Conclusions: Our findings identified miR-1275 as a potential oncogene in LUAD that exerts its tumorigenic effect through co-activating Wnt/β-catenin and Notch signaling pathways. Thus, HIF-1ɑ-regulated miR-1275 might be a potential therapeutic target for LUAD.
Collapse
|
31
|
Chen X, Hao A, Li X, Ye K, Zhao C, Yang H, Ma H, Hu L, Zhao Z, Hu L, Ye F, Sun Q, Zhang H, Wang H, Yao X, Fang Z. Activation of JNK and p38 MAPK Mediated by ZDHHC17 Drives Glioblastoma Multiforme Development and Malignant Progression. Theranostics 2020; 10:998-1015. [PMID: 31938047 PMCID: PMC6956818 DOI: 10.7150/thno.40076] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/02/2019] [Indexed: 01/05/2023] Open
Abstract
Rationale: Glioblastoma multiforme (GBM) almost invariably gain invasive phenotype with limited therapeutic strategy and ill-defined mechanism. By studying the aberrant expression landscape of gliomas, we find significant up-regulation of p-MAPK level in GBM and a potent independent prognostic marker for overall survival. DHHC family was generally expressed in glioma and closely related to the activation of MAPK signaling pathway, but its role and clinical significance in GBM development and malignant progression are yet to be determined. Method: Bioinformatics analysis, western blotting and immunohistochemistry (IHC) were performed to detect the expression of ZDHHC17 in GBM. The biological function of ZDHHC17 was demonstrated by a series of in vitro and in vivo experiments. Pharmacological treatment, flow cytometry, Transwell migration assay, Co- Immunoprecipitation and GST pulldown were carried out to demonstrate the potential mechanisms of ZDHHC17. Results: ZDHHC17 is up-regulated and coordinated with MAPK activation in GBM. Mechanistically, ZDHHC17 interacts with MAP2K4 and p38/JNK to build a signaling module for MAPK activation and malignant progression. Notably, the ZDHHC17-MAP2K4-JNK/p38 signaling module contributes to GBM development and malignant progression by promoting GBM cell tumorigenicity and glioma stem cell (GSC) self-renewal. Moreover, we identify a small molecule, genistein, as a specific inhibitor to disrupt ZDHHC17-MAP2K4 complex formation for GBM cell proliferation and GSC self-renewal. Moreover, genistein, identified herein as a lead candidate for ZDHHC17-MAP2K4 inhibition, demonstrated potential therapeutic effect in patients with ZDHHC17-expressing GBM. Conclusions: Our study identified disruption of a previously unrecognized signaling module as a target strategy for GBM treatment, and provided direct evidence of the efficacy of its inhibition in glioma using a specific inhibitor.
Collapse
|
32
|
He QJ, Wang P, Liu QQ, Wu QG, Li YF, Wang J, Lee SC. Secreted Wnt6 mediates diabetes-associated centrosome amplification via its receptor FZD4. Am J Physiol Cell Physiol 2020; 318:C48-C62. [DOI: 10.1152/ajpcell.00091.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We recently published that type 2 diabetes promotes cell centrosome amplification via upregulation of Rho-associated protein kinase 1 (ROCK1) and 14-3-3 protein-σ (14-3-3σ). This study further investigates the molecular mechanisms underlying diabetes-associated centrosome amplification. We found that treatment of cells with high glucose, insulin, and palmitic acid levels increased the intracellular and extracellular protein levels of Wingless-type MMTV integration site family member 6 (Wnt6) as well as the cellular level of β-catenin. The treatment also activated β-catenin and promoted its nuclear translocation. Treatment of cells with siRNA species for Wnt6, Frizzled-4 (FZD4), or β-catenin as well as introduction of antibodies against Wnt6 or FZD4 to the cell culture medium could all attenuate the treatment-triggered centrosome amplification. Moreover, we showed that secreted Wnt6-FZD4-β-catenin was the signaling pathway that was upstream of ROCK1 and 14-3-3σ. We found that advanced glycation end products (AGEs) were also able to increase the cellular and extracellular levels of Wnt6, the cellular protein level of β-catenin, and centrosome amplification. Treatment of the cells with siRNA species for Wnt6 or FZD4 as well as introduction of antibodies against Wnt6 or FZD4 to the cell culture could all inhibit the AGEs-elicited centrosome amplification. In colon tissues from a diabetic mouse model, the protein levels of Wnt6 and 14-3-3σ were increased. In conclusion, our results showed that the pathophysiological factors in type 2 diabetes, including AGEs, were able to induce centrosome amplification. It is suggested that secreted Wnt6 binds to FZD4 to activate the canonical Wnt6 signaling pathway, which is upstream of ROCK1 and 14-3-3σ, and that this is the cell signaling pathway underlying diabetes-associated centrosome amplification.
Collapse
Affiliation(s)
- Qin Ju He
- School of Life Sciences, Shanxi University, Taiyuan, People’s Republic of China
| | - Pu Wang
- School of Life Sciences, Shanxi University, Taiyuan, People’s Republic of China
| | - Qin Qin Liu
- School of Life Sciences, Shanxi University, Taiyuan, People’s Republic of China
| | - Qi Gui Wu
- School of Life Sciences, Shanxi University, Taiyuan, People’s Republic of China
| | - Yuan Fei Li
- Department of Oncology, First Clinical Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jie Wang
- Shanxi College of Traditional Chinese Medicine, Taiyuan, People’s Republic of China
| | - Shao Chin Lee
- School of Life Sciences, Shanxi University, Taiyuan, People’s Republic of China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, People’s Republic of China
| |
Collapse
|
33
|
Tomko N, Kluever M, Wu C, Zhu J, Wang Y, Salomon RG. 4-Hydroxy-7-oxo-5-heptenoic acid lactone is a potent inducer of brain cancer cell invasiveness that may contribute to the failure of anti-angiogenic therapies. Free Radic Biol Med 2020; 146:234-256. [PMID: 31715381 DOI: 10.1016/j.freeradbiomed.2019.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
Previously, we discovered that free radical-induced oxidative fragmentation of the docosahexaenoate ester of 2-lysophosphatidylcholine produces 4-hydroxy-7-oxo-5-heptenoic acid (HOHA) lactone that, in turn, promotes the migration and invasion of endothelial cells. This suggested that HOHA lactone might similarly promote migration and invasion of glioblastoma multiformae (GBM) brain cancer stem cells (CSCs). A bioinformatics analysis of clinical cancer genomic data revealed that matrix metalloproteinase (MMP)1 and three markers of oxidative stress - superoxide dismutase 2, NADPH oxidase 4, and carbonic anhydrase 9 - are upregulated in human mesenchymal GBM cancer tissue, and that MMP1 is positively correlated to all three of these oxidative stress markers. In addition, elevated levels of MMP1 are indicative of GBM invasion, while low levels of MMP1 indicate survival. We also explored the hypothesis that the transition from the proneural to the more aggressive mesenchymal phenotype, e.g., after treatment with an anti-angiogenic therapy, is promoted by the effects of lipid oxidation products on GBM CSCs. We found that low micromolar concentrations of HOHA lactone increase the cell migration velocity of cultured GBM CSCs, and induce the expression of MMP1 and two protein biomarkers of the proneural to mesenchymal transition (PMT): p65 NF-κβ and vimentin. Exposure of cultured GBM CSCs to HOHA lactone causes an increase in phosphorylation of mitogen-activated protein kinases and Akt kinases that are dependent on both protease-activated receptor 1 (PAR1) and MMP1 activity. We conclude that HOHA lactone promotes the PMT in GBM through the activation of PAR1 and MMP1. This contributes to a fatal flaw in antiangiogenic, chemo, and radiation therapies: they promote oxidative stress and the generation of HOHA lactone in the tumor that fosters a change from the proliferative proneural to the migratory mesenchymal GBM CSC phenotype that seeds new tumor growth. Inhibition of PAR1 and HOHA lactone are potential new therapeutic targets for impeding GBM tumor recurrence.
Collapse
Affiliation(s)
- Nicholas Tomko
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mark Kluever
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Chunying Wu
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Junqing Zhu
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yanming Wang
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
34
|
Li H, Shen S, Ruan X, Liu X, Zheng J, Liu Y, Yang C, Wang D, Liu L, Ma J, Ma T, Wang P, Cai H, Li Z, Zhao L, Xue Y. Biosynthetic CircRNA_001160 induced by PTBP1 regulates the permeability of BTB via the CircRNA_001160/miR-195-5p/ETV1 axis. Cell Death Dis 2019; 10:960. [PMID: 31862871 PMCID: PMC6925104 DOI: 10.1038/s41419-019-2191-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
Abstract
The presence of the blood-tumor barrier (BTB) severely impedes the transport of anti-neoplasm drugs to the central nervous system, affecting the therapeutic effects of glioma. Glioma endothelial cells (GECs) are the main structural basis of the BTB. Circular RNA is considered to be an important regulator of endothelial cell growth. In this study, we found that polypyrimidine tract binding protein 1 (PTBP1) and circRNA_001160 were remarkably upregulated in GECs. Knockdown of PTBP1 or circRNA_001160 significantly increased BTB permeability, respectively. As a molecular sponge of miR-195-5p, circRNA_001160 attenuated its negative regulation of the target gene ETV1 by adsorbing miR-195-5p. In addition, ETV1 was overexpression in GECs. ETV1 bounded to the promoter regions of tight junction-related proteins and increased the promoter activities, which significantly promoted the expression levels of tight junction-related proteins. The present study showed that the combined application of PTBP1, circRNA_001160, and miR-195-5p with the anti-tumor drug Dox effectively promoted Dox through BTB and extremely induced the apoptosis of glioma cells. Our results demonstrated that the PTBP1/circRNA_001160/miR-195-5p/ETV1 axis was critical in the regulation of BTB permeability and provided new targets for the treatment of glioma.
Collapse
Affiliation(s)
- Hua Li
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Shuyuan Shen
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xuelei Ruan
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Teng Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Lini Zhao
- Department of pharmacology, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China. .,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China. .,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China.
| |
Collapse
|