1
|
Xie B, Wang H, Mochiwa ZO, Zhou D, Gao L. Highly sensitive detection of alpha-fetoprotein using sandwich sensors. RSC Adv 2024; 14:34661-34667. [PMID: 39479488 PMCID: PMC11520321 DOI: 10.1039/d4ra05930a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Alpha-fetoprotein (AFP) is a crucial biomarker for detecting certain tumors across various demographics, including men, non-pregnant women, and children. However, existing detection methods often lack the desired sensitivity, necessitating the development of a straightforward, dependable, and highly sensitive AFP detection method. In this study, a novel approach utilizing a sandwich sensor system designed around the GDYO@AuNPs@PCN (graphdiyne oxide, gold nanoparticle, and porous coordination network) composite was proposed. The results revealed that this composite material, comprising three key components, offers superior quenching capabilities and heightened sensitivity to AFP compared to DNA sensors employing different nanomaterials. Leveraging the distinctive advantages and properties of the composite material, a "three in one" structure was devised by integrating two aptamers with AFP to form an efficient "sandwich" configuration for AFP capture. Additionally, the inclusion of antifouling peptides in the system effectively mitigates non-specific adsorption of AFP on the sensing interface, ensuring a high signal-to-noise ratio. Notably, the sandwich sensor employing the "three in one" composite with peptides achieves a limit of detection (LOD) of 1.51 pg mL-1, indicative of its ability to reduce background signals, facilitate efficient AFP binding, and enhance sensitivity. Furthermore, the sensor exhibited promising performance and demonstrated consistent results in serum samples, emphasizing its promising practical applications.
Collapse
Affiliation(s)
- Bing Xie
- The Fourth Affiliated Hospital of Jiangsu University Zhenjiang 212001 China
| | - Huixing Wang
- School of Life Sciences, Jiangsu University Zhenjiang 212013 China
| | | | - Dingjie Zhou
- Jiangsu Health Development Research Center, NHC Contraceptive Aduerse Reaction Surveillance Center, Jiangsu Provincial Medical Key Laboratory of Fertility Protection and Health Technology Assessment Nanjing 210036 China
| | - Li Gao
- School of Life Sciences, Jiangsu University Zhenjiang 212013 China
| |
Collapse
|
2
|
Moorthy DN, Dhinasekaran D, Rebecca PNB, Rajendran AR. Optical Biosensors for Detection of Cancer Biomarkers: Current and Future Perspectives. JOURNAL OF BIOPHOTONICS 2024:e202400243. [PMID: 39442779 DOI: 10.1002/jbio.202400243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/22/2024] [Accepted: 08/19/2024] [Indexed: 10/25/2024]
Abstract
Optical biosensors are emerging as a promising technique for the sensitive and accurate detection of cancer biomarkers, enabling significant advancements in the field of early diagnosis. This study elaborates on the latest developments in optical biosensors designed for detecting cancer biomarkers, highlighting their vital significance in early cancer diagnosis. When combined with targeted nanoparticles, the bio-fluids can help in the molecular stage diagnosis of cancer. This enhances the discrimination of disease from the normal subjects drastically. The optical sensor methods that are involved in the disease diagnosis and imaging of cancer taken for the present review are surface plasmon resonance, localized surface plasmon resonance, fluorescence resonance energy transfer, surface-enhanced Raman spectroscopy and colorimetric sensing. The article meticulously describes the specific biomarkers and analytes that optical biosensors target. Beyond elucidating the underlying principles and applications, this article furnishes an overview of recent breakthroughs and emerging trends in the field. This encompasses the evolution of innovative nanomaterials and nanostructures designed to augment sensitivity and the incorporation of microfluidics for facilitating point-of-care testing, thereby charting a course towards prospective advancements.
Collapse
Affiliation(s)
| | | | - P N Blessy Rebecca
- Functional Nano-Materials (FuN) Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ajay Rakkesh Rajendran
- Functional Nano-Materials (FuN) Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
3
|
Gostaviceanu A, Gavrilaş S, Copolovici L, Copolovici DM. Graphene-Oxide Peptide-Containing Materials for Biomedical Applications. Int J Mol Sci 2024; 25:10174. [PMID: 39337659 PMCID: PMC11432502 DOI: 10.3390/ijms251810174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
This review explores the application of graphene-based materials (GBMs) in biomedicine, focusing on graphene oxide (GO) and its interactions with peptides and proteins. GO, a versatile nanomaterial with oxygen-containing functional groups, holds significant potential for biomedical applications but faces challenges related to toxicity and environmental impact. Peptides and proteins can be functionalized on GO surfaces through various methods, including non-covalent interactions such as π-π stacking, electrostatic forces, hydrophobic interactions, hydrogen bonding, and van der Waals forces, as well as covalent bonding through reactions involving amide bond formation, esterification, thiol chemistry, and click chemistry. These approaches enhance GO's functionality in several key areas: biosensing for sensitive biomarker detection, theranostic imaging that integrates diagnostics and therapy for real-time treatment monitoring, and targeted cancer therapy where GO can deliver drugs directly to tumor sites while being tracked by imaging techniques like MRI and photoacoustic imaging. Additionally, GO-based scaffolds are advancing tissue engineering and aiding tissues' bone, muscle, and nerve tissue regeneration, while their antimicrobial properties are improving infection-resistant medical devices. Despite its potential, addressing challenges related to stability and scalability is essential to fully harness the benefits of GBMs in healthcare.
Collapse
Affiliation(s)
- Andreea Gostaviceanu
- Institute for Interdisciplinary Research, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Biomedical Sciences Doctoral School, University of Oradea, University St., No. 1, 410087 Oradea, Romania
| | - Simona Gavrilaş
- Institute for Interdisciplinary Research, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Faculty of Food Engineering, Tourism and Environmental Protection, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania
| | - Lucian Copolovici
- Institute for Interdisciplinary Research, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Faculty of Food Engineering, Tourism and Environmental Protection, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania
| | - Dana Maria Copolovici
- Institute for Interdisciplinary Research, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Faculty of Food Engineering, Tourism and Environmental Protection, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania
| |
Collapse
|
4
|
Li J, Luo P, Liu S, Fu M, Lin A, Liu Y, He Z, Qiao K, Fang Y, Qu L, Yang K, Wang K, Wang L, Jiang A. Effective strategies to enhance the diagnosis and treatment of RCC: The application of biocompatible materials. Mater Today Bio 2024; 27:101149. [PMID: 39100279 PMCID: PMC11296058 DOI: 10.1016/j.mtbio.2024.101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 08/06/2024] Open
Abstract
Renal cell carcinoma (RCC) is recognized as one of the three primary malignant tumors affecting the urinary system, posing a significant risk to human health and life. Despite advancements in understanding RCC, challenges persist in its diagnosis and treatment, particularly in early detection and diagnosis due to issues of low specificity and sensitivity. Consequently, there is an urgent need for the development of effective strategies to enhance diagnostic accuracy and treatment outcomes for RCC. In recent years, with the extensive research on materials for applications in the biomedical field, some materials have been identified as promising for clinical applications, e.g., in the diagnosis and treatment of many tumors, including RCC. Herein, we summarize the latest materials that are being studied and have been applied in the early diagnosis and treatment of RCC. While focusing on their adjuvant effects, we also discuss their technical principles and safety, thus highlighting the value and potential of their application. In addition, we also discuss the limitations of the application of these materials and possible future directions, providing new insights for improving RCC diagnosis and treatment.
Collapse
Affiliation(s)
- Jinxin Li
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Shiyang Liu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Meiling Fu
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Ying Liu
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Ziwei He
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Kun Qiao
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yu Fang
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Le Qu
- Department of Urology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210000, China
| | - Kaidi Yang
- Department of Oncology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan, 572000, China
- Department of Oncology, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Kunpeng Wang
- Department of Urology, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222061, China
- Department of Urology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The first People's Hospital of Lianyungang, 222061, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| |
Collapse
|
5
|
Ding L, Hu J, Liu X, Zeng J, Hu Z, Chen J, Zhu K, Duan H, Huang X. Ultrasensitive dynamic light scattering immunodetection of alpha-fetoprotein using heptamer-amplified nanoparticle crosslinking aggregation. Mikrochim Acta 2024; 191:387. [PMID: 38869719 DOI: 10.1007/s00604-024-06437-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024]
Abstract
A novel construction strategy is introduced for an ultrasensitive dynamic light scattering (DLS) immunosensor targeting alpha fetoprotein (AFP). This approach relies on a self-assembled heptamer fusion protein (A1-C4bpα), incorporating the dual functions of multivalent recognition and crosslinking aggregation amplification due to the presence of seven AFP-specific A1 nanobodies on the A1-C4bpα heptamer. Leveraging antibody-functionalized magnetic nanoparticles for target AFP capture and DLS signal output, the proposed heptamer-assisted DLS immunosensor offers high sensitivity, strong specificity, and ease of operation. Under the optimized conditions, the designed DLS immunosensor demonstrates excellent linear detection of AFP in the concentration range 0.06 ng mL-1 to 512 ng mL-1, with a detection limit of 15 pg mL-1. The selectivity, accuracy, precision, practicability, and reliability of this newly developed method were further validated through an assay of AFP levels in spiked and actual human serum samples. This work introduces a novel approach for constructing ultrasensitive DLS immunosensors, easily extendable to the sensitive determination of other targets via simply replacing the nanobody sequence, holding great promise in various applications, particularly in disease diagnosis.
Collapse
Affiliation(s)
- Lu Ding
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Jiangxi Hypertension Research Institute, Nanchang University, Nanchang, 330006, P. R. China
| | - Jiaqi Hu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
- Songzi Center for Inspection and Test, Songzi, 434200, P. R. China
| | - Xing Liu
- Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, School of Food Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Junyi Zeng
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Jiangxi Hypertension Research Institute, Nanchang University, Nanchang, 330006, P. R. China
| | - Zhiwen Hu
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Jiangxi Hypertension Research Institute, Nanchang University, Nanchang, 330006, P. R. China
| | - Jing Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Kang Zhu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Hong Duan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, 100048, P. R. China.
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China.
- Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang, 330006, P. R. China.
| |
Collapse
|
6
|
He X, Hao T, Geng H, Li S, Ran C, Huo M, Shen Y. Sensitization Strategies of Lateral Flow Immunochromatography for Gold Modified Nanomaterials in Biosensor Development. Int J Nanomedicine 2023; 18:7847-7863. [PMID: 38146466 PMCID: PMC10749510 DOI: 10.2147/ijn.s436379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023] Open
Abstract
Gold nanomaterials have become very attractive nanomaterials for biomedical research due to their unique physical and chemical properties, including size dependent optical, magnetic and catalytic properties, surface plasmon resonance (SPR), biological affinity and structural suitability. The performance of biosensing and biodiagnosis can be significantly improved in sensitivity, specificity, speed, contrast, resolution and so on by utilizing multiple optical properties of different gold nanostructures. Lateral flow immunochromatographic assay (LFIA) based on gold nanoparticles (GNPs) has the advantages of simple, fast operation, stable technology, and low cost, making it one of the most widely used in vitro diagnostics (IVDs). However, the traditional colloidal gold (CG)-based LFIA can only achieve qualitative or semi-quantitative detection, and its low detection sensitivity cannot meet the current detection needs. Due to the strong dependence of the optical properties of gold nanomaterials on their shape and surface properties, gold-based nanomaterial modification has brought new possibilities to the IVDs: people have attempted to change the morphology and size of gold nanomaterials themselves or hybrid with other elements for application in LFIA. In this paper, many well-designed plasmonic gold nanostructures for further improving the sensitivity and signal output stability of LFIA have been summarized. In addition, some opportunities and challenges that gold-based LFIA may encounter at present or in the future are also mentioned in this paper. In summary, this paper will demonstrate some feasible strategies for the manufacture of potential gold-based nanobiosensors of post of care testing (POCT) for faster detection and more accurate disease diagnosis.
Collapse
Affiliation(s)
- Xingyue He
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Tianjiao Hao
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Hongxu Geng
- School of Pharmacy, Yantai University, Yantai, 264005, People’s Republic of China
| | - Shengzhou Li
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Chuanjiang Ran
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Meirong Huo
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Yan Shen
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| |
Collapse
|
7
|
Yin S, Zhao Y, Chen F, Zhong Z, Lu Q, Li H, Zhang Y. DNA Sensor-Based Strategy to Visualize the TRPM7 mRNA-Mg 2+ Signaling Pathway in Cancer Cells. Anal Chem 2023; 95:18107-18113. [PMID: 38019640 DOI: 10.1021/acs.analchem.3c03323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Technological advances and methodological innovations in cell signaling pathway analysis will facilitate progress in understanding biological processes, intervening in diseases, and screening drugs. In this work, an elaborate strategy for visualizing and monitoring the transient receptor potential melastatin 7 (TRPM7)-Mg2+ signaling pathway in living cells was constructed through the logical analysis of upstream mRNA and downstream molecules by two individual DNA sensors. The DNA sensors are constructed by modifying the dye-labeled DNA sequences on the surface of gold nanoparticles. By hybridizing with upstream mRNA, Cy5-modified DNA sensor 1 can detect and silence it simultaneously, outputting a red fluorescence signal. When the upstream mRNA is silenced, the concentration of downstream molecules of Mg2+ will be affected and down-regulated. The FAM-modified DNA sensor 2 detects this change and emits a green fluorescence as a signal. Therefore, the dynamic information on TRPM7 mRNA and the Mg2+-mediated signaling pathway can be successfully obtained by fluorescence imaging methods. Furthermore, the TRPM7 mRNA-Mg2+ signaling pathway also affects cell activity and migratory function through cell scratching and other experiments. More importantly, the proposed sensor also shows potential for screening signaling pathway inhibitors. Our work provides a simple and general strategy for the visualization of signaling pathways, which helps to understand the changes in the physiological activities of cancer cells and the causes of carcinogenesis and is crucial for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Shuhang Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yang Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Feng Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Zijie Zhong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Qiujun Lu
- College of Biological and Chemical Engineering, Changsha University, Changsha, Hunan 410022, China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
8
|
Liu L, Liu C, Gao L. Highly Sensitive Detection of Chymotrypsin Based on Metal Organic Frameworks with Peptides Sensors. BIOSENSORS 2023; 13:263. [PMID: 36832029 PMCID: PMC9954530 DOI: 10.3390/bios13020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
In this study, peptides and composite nanomaterials based on copper nanoclusters (CuNCs) were used to detect chymotrypsin. The peptide was a chymotrypsin-specific cleavage peptide. The amino end of the peptide was covalently bound to CuNCs. The sulfhydryl group at the other end of the peptide can covalently combine with the composite nanomaterials. The fluorescence was quenched by fluorescence resonance energy transfer. The specific site of the peptide was cleaved by chymotrypsin. Therefore, the CuNCs were far away from the surface of the composite nanomaterials, and the intensity of fluorescence was restored. The limit of detection (LOD) using Porous Coordination Network (PCN)@graphene oxide (GO) @ gold nanoparticle (AuNP) sensor was lower than that of using PCN@AuNPs. The LOD based on PCN@GO@AuNPs was reduced from 9.57 pg mL-1 to 3.91 pg mL-1. This method was also used in a real sample. Therefore, it is a promising method in the biomedical field.
Collapse
Affiliation(s)
- Lei Liu
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Cheng Liu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Li Gao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
9
|
Nasrollahpour H, Khalilzadeh B, Hasanzadeh M, Rahbarghazi R, Estrela P, Naseri A, Tasoglu S, Sillanpää M. Nanotechnology‐based electrochemical biosensors for monitoring breast cancer biomarkers. Med Res Rev 2022; 43:464-569. [PMID: 36464910 DOI: 10.1002/med.21931] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/01/2022] [Accepted: 11/04/2022] [Indexed: 12/07/2022]
Abstract
Breast cancer is categorized as the most widespread cancer type among women globally. On-time diagnosis can decrease the mortality rate by making the right decision in the therapy procedure. These features lead to a reduction in medication time and socioeconomic burden. The current review article provides a comprehensive assessment for breast cancer diagnosis using nanomaterials and related technologies. Growing use of the nano/biotechnology domain in terms of electrochemical nanobiosensor designing was discussed in detail. In this regard, recent advances in nanomaterial applied for amplified biosensing methodologies were assessed for breast cancer diagnosis by focusing on the advantages and disadvantages of these approaches. We also monitored designing methods, advantages, and the necessity of suitable (nano) materials from a statistical standpoint. The main objective of this review is to classify the applicable biosensors based on breast cancer biomarkers. With numerous nano-sized platforms published for breast cancer diagnosis, this review tried to collect the most suitable methodologies for detecting biomarkers and certain breast cancer cell types.
Collapse
Affiliation(s)
- Hassan Nasrollahpour
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic and Electrical Engineering University of Bath Bath UK
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Savas Tasoglu
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer Istanbul Turkey
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Environment and Labour Safety Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
10
|
Catalytic nanozyme Zn/Cl-doped carbon quantum dots as ratiometric fluorescent probe for sequential on-off-on detection of riboflavin, Cu 2+ and thiamine. Sci Rep 2022; 12:18276. [PMID: 36316402 PMCID: PMC9622855 DOI: 10.1038/s41598-022-23055-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
A novel metal-doped Zn/Cl carbon quantum dots (Zn/Cl-CQDs) was developed successfully as ratiometric fluorescent probes for the sequential on-off-on detection of riboflavin, Cu2+ ion and thiamine. The excellent catalytic performance of the Zn/Cl-CQDs nanozyme serves as an ideal platform for sensitive detection of thiamine. Due to the addition of riboflavin to the Zn/Cl-CQDs, the blue emission peak of Zn/Cl-CQDs at 440 nm remains unaffected and used as an internal reference approach, while the green emission peak of riboflavin at 520 nm appeared and increased remarkably. Following the presence of Cu2+, a quenching blue fluorescence signal of Zn/Cl-CQDs was observed which resulted in consequent fluorescent 'turn-off' response toward Cu2+ ion. Finally, upon the addition of thiamine to the above solution under alkaline condition, the blue emission of Zn/Cl-CQDs was gradually recovered. The prepared Zn/Cl-CQDs could act as a nanozyme catalyst for directly catalyzing the oxidation of non-fluorescent substrate of thiamine to produce highly fluorescent substrate of thiochrome. As a result, the blue fluorescence emission peak at 440 nm was recovered. Eventually, the sequential detection properties of ratiometric probes for riboflavin, Cu2+ ion and thiamine were successfully applied in VB2 tablets, drinking water and VB1 tablet with good recoveries of 96.21%, 98.25% and 98.44%, respectively.
Collapse
|
11
|
Xia N, Chang Y, Zhou Q, Ding S, Gao F. An Overview of the Design of Metal-Organic Frameworks-Based Fluorescent Chemosensors and Biosensors. BIOSENSORS 2022; 12:bios12110928. [PMID: 36354436 PMCID: PMC9688172 DOI: 10.3390/bios12110928] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 06/12/2023]
Abstract
Taking advantage of high porosity, large surface area, tunable nanostructures and ease of functionalization, metal-organic frameworks (MOFs) have been popularly applied in different fields, including adsorption and separation, heterogeneous catalysis, drug delivery, light harvesting, and chemical/biological sensing. The abundant active sites for specific recognition and adjustable optical and electrical characteristics allow for the design of various sensing platforms with MOFs as promising candidates. In this review, we systematically introduce the recent advancements of MOFs-based fluorescent chemosensors and biosensors, mainly focusing on the sensing mechanisms and analytes, including inorganic ions, small organic molecules and biomarkers (e.g., small biomolecules, nucleic acids, proteins, enzymes, and tumor cells). This review may provide valuable references for the development of novel MOFs-based sensing platforms to meet the requirements of environment monitoring and clinical diagnosis.
Collapse
|
12
|
Su L, Chen Y, Huo H, Liao N, Wu Y, Ge X, Guo Z, Chen Z, Zhang X, Song J. NIR-II Ratiometric Chemiluminescent/Fluorescent Reporters for Real-Time Monitoring and Evaluating Cancer Photodynamic Therapy Efficacy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202551. [PMID: 36089652 DOI: 10.1002/smll.202202551] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The development of probes for early monitoring tumor therapy response may greatly benefit the promotion of photodynamic therapy (PDT) efficacy. Singlet oxygen (1 O2 ) generation is a typical indicator for evaluating PDT efficacy in cancer. However, most existing probes cannot quantitatively detect 1 O2 in vivo due to the high reactivity and transient state, and thus have a poor correlation with PDT response. Herein, a 1 O2 -responsive theranostic platform comprising thiophene-based small molecule (2SeFT-PEG) and photosensitizer Chlorin e6 (Ce6) micelles for real-time monitoring PDT efficacy is developed. After laser irradiation, the Ce6-produced 1 O2 could simultaneously kill cancer and trigger 2SeFT-PEG to produce increased chemiluminescence (CL) and decreased fluorescence (FL) signals variation at 1050 nm in the second near-infrared (NIR-II, 950-1700 nm) window. Significantly, the ratiometric NIR-II CL/FL imaging at 1050 nm could effectively quantify and monitor the concentration of 1 O2 and O2 consumption or recovery, so as to evaluate the therapeutic efficacy of PDT in vivo. Hence, this 1 O2 activated NIR-II CL/FL probe provides an efficient ratiometric optical imaging platform for real-time evaluating PDT effect and precisely guiding the PDT process in vivo.
Collapse
Affiliation(s)
- Lichao Su
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yiming Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Hongqi Huo
- Department of Nuclear Medicine, Han Dan Central Hospital, Handan, Hebei, 056001, P. R. China
| | - Naishun Liao
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Ying Wu
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xiaoguang Ge
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Zhiyong Guo
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Zhongxiang Chen
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xuan Zhang
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Jibin Song
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
13
|
Haider J, Shahzadi A, Akbar MU, Hafeez I, Shahzadi I, Khalid A, Ashfaq A, Ahmad SOA, Dilpazir S, Imran M, Ikram M, Ali G, Khan M, Khan Q, Maqbool M. A review of synthesis, fabrication, and emerging biomedical applications of metal-organic frameworks. BIOMATERIALS ADVANCES 2022; 140:213049. [PMID: 35917685 DOI: 10.1016/j.bioadv.2022.213049] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/13/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
The overwhelming potential of porous coordination polymers (PCP), also known as Metal-Organic Frameworks (MOFs), especially their nanostructures for various biomedical applications, have made these materials worth investigating for more applications and uses. MOFs unique structure has enabled them for most applications, particularly in biomedical and healthcare. A number of very informative review papers are available on the biomedical applications of MOFs for the reader's convenience. However, many of those reviews focus mainly on drug delivery applications, and no significant work has been reported on other MOFs for biomedical applications. This review aims to present a compact and highly informative global assessment of the recent developments in biomedical applications (excluding drug-delivery) of MOFs along with critical analysis. Researchers have recently adopted both synthetic and post-synthetic routes for the fabrication and modification of MOFs that have been discussed and analyzed. A critical review of the latest reports on the significant and exotic area of bio-sensing capabilities and applications of MOFs has been given in this study. In addition, other essential applications of MOFs, including photothermal therapy, photodynamic therapy, and antimicrobial activities, are also included. These recently grown emergent techniques and cancer treatment options have gained attention and require further investigations to achieve fruitful outcomes. MOF's role in these applications has been thoroughly discussed, along with future challenges and valuable suggestions for the research community that will help meet future demands.
Collapse
Affiliation(s)
- Junaid Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Anum Shahzadi
- Faculty of Pharmacy, The university of Lahore, Lahore, Pakistan
| | - Muhammad Usama Akbar
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Pakistan
| | - Izan Hafeez
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| | - Iram Shahzadi
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Ayesha Khalid
- Physics Department, Lahore Garrison University, Lahore, Pakistan
| | - Atif Ashfaq
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Pakistan
| | - Syed Ossama Ali Ahmad
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Pakistan
| | - S Dilpazir
- Department of Chemistry, Comsats University, 45550, Islamabad, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Government College University Faisalabad, Pakpattan Road, Sahiwal, Punjab 57000, Pakistan
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Pakistan.
| | - Ghafar Ali
- Pakistan Institute of Nuclear Sciences and Technology, Islamabad, Pakistan
| | - Maaz Khan
- Pakistan Institute of Nuclear Sciences and Technology, Islamabad, Pakistan
| | - Qasim Khan
- Institute of Microscale Optoelectronics, Shenzhen University, Guangdong 518000, China.
| | - Muhammad Maqbool
- Department of Clinical & Diagnostic Sciences, Health Physics Program, The University of Alabama at Birmingham, USA.
| |
Collapse
|
14
|
Ashraf G, Ahmad T, Ahmed MZ, Murtaza, Rasimi Y. Advances in Metal-Organic Framework (MOFs) based biosensors for diagnosis: An update. Curr Top Med Chem 2022; 22:CTMC-EPUB-125974. [PMID: 36043769 DOI: 10.2174/1568026622666220829125548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/02/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022]
Abstract
Metal-organic frameworks (MOFs) have significant advantages over other candidate classes of chemo-sensory materials owing to their extraordinary structural tunability and characteristics. MOF-based biosensing is a simple, and convenient method for identifying various species. Biomarkers are molecular or cellular processes that link environmental exposure to a health outcome. Biomarkers are important in understanding the links between environmental chemical exposure and the development of chronic diseases, as well as in identifying disease-prone subgroups. Until now, several species, including nanoparticles (NPs) and their nanocomposites, small molecules, and unique complex systems, have been used for the chemical sensing of biomarkers. Following the overview of the field, we discussed the various fabrication methods for MOFs development in this review. We provide a thorough overview of the previous five years of progress to broaden the scope of analytes for future research. Several enzymatic and non-enzymatic sensors are offered, together with a mandatory measuring method that includes detection range and dynamic range. In addition, we reviewed the comparison of enzymatic and non-enzymatic biosensors, inventive edges, and the difficulties that need to be solved. This work might open up new possibilities for material production, sensor development, medical diagnostics, and other sensing fields.
Collapse
Affiliation(s)
- Ghazala Ashraf
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan Hubei, P. R. China
| | - Tauqir Ahmad
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | | | - Murtaza
- Department of Chemical Sciences, University of Lakki Marwat, Khyber Pakhtunkhwa, Pakistan
| | - Yousef Rasimi
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
15
|
Graphene Oxide and Fluorescent-Aptamer-Based Novel Aptasensors for Detection of Metastatic Colorectal Cancer Cells. Polymers (Basel) 2022; 14:polym14153040. [PMID: 35956554 PMCID: PMC9370758 DOI: 10.3390/polym14153040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Early diagnosis of metastatic colorectal cancer (mCRC) is extremely critical to improve treatment and extend survival. W3 is an aptamer that can specifically bind to mCRC cells with high affinity. Graphene oxide (GO) is a two-dimensional graphitic carbon nanomaterial, which has widely used in constructing biosensors. In this study, we have developed a no-wash fluorescent aptasensor for one-step and sensitive detection of mCRC LoVo cells. It is based on fluorescence resonance energy transfer (FRET) between GO and the W3 aptamer labeled with 5-carboxyfluorescein (FAM). GO can quench the green fluorescence of the FAM-labeled W3 (FAM-W3). In the presence of the target cells, FAM-W3 preferentially binds the target cells and detaches from the surface of GO, leading to the fluorescence of FAM recovery. It was demonstrated that the fluorescence recovery increases linearly in a wide range of 0~107 cells/mL (R2 = 0.99). The GO-based FAM-labeled W3 aptasensor (denoted as FAM-W3-GO) not only specifically recognizes mCRC cell lines (LoVo and HCT116), but also sensitively differentiates the target cells from mixed cells, even in the presence of only 5% of the target cells. Furthermore, FAM-W3-GO was applied to detect LoVo cells in human whole blood, which showed good reproducibility with an RSD range of 1.49% to 1.80%. Therefore, FAM-W3-GO may have great potential for early diagnosis of mCRC. This strategy of GO-based fluorescent aptasensor provides a simple, one-step, and highly sensitive approach for the detection of mCRC cells.
Collapse
|
16
|
Lv Q, Xia N, Gao L, Han B. Detection of mercury ions using graphene oxide sensors assisted by Ag@SiO2. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02555-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Peng C, Liang Y, Su N, Chen S, Yuan Z, Chen Y, Wu D, Wu B, Zhang Y, Xu Z, Zheng S, Li Y, Zhao B. Dual nanoenzymes loaded hollow mesoporous organotantalum nanospheres for chemo-radio sensitization. J Control Release 2022; 347:369-378. [PMID: 35577149 DOI: 10.1016/j.jconrel.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022]
Abstract
Chemo-radiotherapy has been extensively used in clinics, displaying substantial advantages in treatment and prognosis. Stimuli-responsive biodegradable nanoagents that can achieve not only delivery and controlled release of chemotherapeutics, but also hypoxia alleviation to enhance chemoradiotherapy therefore has tremendous potential. Herein, glutathione (GSH)-responsive, biodegradable, doxorubicin-carrying hollow mesoporous organotantalum nanospheres modified with Au and Pt dual nanoenzymes (HMOTP@Pt@Au@Dox) were constructed for chemo-radio sensitization. Degradation of HMOTP@Pt@Au@Dox can be self-activated through GSH stimulation and on-demand release packaged Dox owing to the disulfide bond in the hybrid framework of organotantalum nanospheres. Au and Pt nanoenzymes triggered cascade catalytic reactions that could alleviate hypoxia by utilizing β-d-glucose and H2O2, thereby sensitizing ROS-based chemoradiotherapy with synergistic starving therapy. Given the radiosensitization of high-Z elements (Ta, Pt, Au), nanoenzymes induced cascade catalytic reaction for hypoxia relief, and the depletion of the predominant antioxidant GSH, desirable tumor suppression could be achieved both in vitro and in vivo, indicating that HMOTP@Pt@Au@Dox is a promising nanoagent to boost chemo-radiotherapy.
Collapse
Affiliation(s)
- Chao Peng
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Cerebrovascular Diseases, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519099, China.
| | - Yu Liang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ning Su
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Siwen Chen
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Yanqun Chen
- Department of Oncology, Kiang Wu Hospital, Macau 999078, China
| | - Dong Wu
- Institute of Respiratory Diseases, Department of Respiratory, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Bin Wu
- Institute of Respiratory Diseases, Department of Respiratory, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yang Zhang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - ZiTing Xu
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Si Zheng
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yingjia Li
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Bingxia Zhao
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
18
|
Wang M, Zhao Z, Gong W, Zhang M, Lu N. Modulating the Biomimetic and Fluorescence Quenching Activities of Metal-Organic Framework/Platinum Nanoparticle Composites and Their Applications in Molecular Biosensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21677-21686. [PMID: 35499462 DOI: 10.1021/acsami.2c02781] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoscale metal-organic frameworks (nMOFs) have gained considerable attention with significant potential applications. Although great efforts have been devoted to designing and fabricating nanoscaffold structures, approaches of deliberately regulating the intrinsic functionality of nMOFs have been poorly explored. Herein, we report a simple and novel strategy to regulate the catalytic and fluorescence quenching behaviors of nMOFs through coordination-driven self-assembly. As a proof-of-concept, we synthesized a synergistic and stable MOF-metal nanocomposite by loading platinum nanoparticles (PtNPs) on a commonly used Fe-MOF, i.e., MIL-88B-NH2/Pt, as a MOF composite model for exploration. On one hand, the complexation with ATP effectively broke the pH limitation of the peroxidase-mimicking MIL-88B-NH2/Pt nanozyme, bringing a 10-fold increased catalytic activity under alkaline condition. Based on the distinct catalytic enhancement between ATP and other nucleotides, real-time monitoring of apyrase activity as well as colorimetric detection of alkaline phosphatase (ALP) was performed. On the other hand, interactions of MIL-88B-NH2/Pt with fluorescent DNA were tolerant of different nucleic acids and, more importantly, were further manipulated by inorganic molecules. As a result, H2O2 could only trigger the release of a G-rich sequence, while phosphates could readily induce desorption of various DNA molecules with varying lengths, sequences, and fluorescent dyes. Accordingly, fluorescent DNA and MIL-88B-NH2/Pt as functional probe-quencher pairs were proposed, allowing the establishment of a fluorescence bioassay for ALP and PPase detection and Boolean logic calculations. This work offers a means to tune the intrinsic activities of nMOFs by surface engineering, benefiting design of functional nanomaterials and development of advanced biosensing systems.
Collapse
Affiliation(s)
- Mengqin Wang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zhihang Zhao
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Weijing Gong
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Na Lu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
19
|
Guo X, Chen X, Chen R, Tu Y, Lu T, Guo Y, Guo L, Xiong Y, Huang X, Tang BZ. Ratiometric Monitoring of Biogenic Amines by a Simple Ammonia-Response Aiegen. Foods 2022; 11:932. [PMID: 35407018 PMCID: PMC8997827 DOI: 10.3390/foods11070932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Herein, we developed a paper-based smart sensing chip for the real-time, visual, and non-destructive monitoring of food freshness using a ratiometric aggregation-induced emission (AIE) luminogen (i.e., H+MQ, protonated 4-(triphenylamine)styryl)quinoxalin-2(1H)-one) as pH sensitive indicators. Upon exposure to amine vapors, the deprotonation of H+MQ occurs and triggers its color change from blue to yellow, with the fluorescence redshift from blue to amaranth. Consequently, we successfully achieved the sensitive detection of ammonia vapors by recording the bimodal color and fluorescence changes. Given the high sensitivity of H+MQ to ammonia vapor, a paper-based smart sensor chip was prepared by depositing H+MQ on the commercial qualitative filter paper through a physical deposition strategy. After being placed inside the sealed containers, the developed H+MQ-loaded paper chip was applied to the real-time monitoring of biogenic amine contents according to its color difference and ratio fluorescence change. The detection results were further compared with those obtained by the high-performance liquid chromatography method, which verified the feasibility of the designed paper chip for the food spoilage degree evaluation. Briefly, this work indicates that the designed H+MQ-loaded paper chip could be a promising approach for improving food freshness monitoring.
Collapse
Affiliation(s)
- Xujing Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330031, China; (X.G.); (X.C.); (T.L.); (Y.G.); (Y.X.)
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China;
| | - Xirui Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330031, China; (X.G.); (X.C.); (T.L.); (Y.G.); (Y.X.)
| | - Rui Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yujie Tu
- AIE Institute, Guangzhou Development District, Guangzhou 510530, China; (Y.T.); (B.Z.T.)
| | - Tianying Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330031, China; (X.G.); (X.C.); (T.L.); (Y.G.); (Y.X.)
| | - Yuqian Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330031, China; (X.G.); (X.C.); (T.L.); (Y.G.); (Y.X.)
| | - Liang Guo
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China;
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330031, China; (X.G.); (X.C.); (T.L.); (Y.G.); (Y.X.)
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China;
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330031, China; (X.G.); (X.C.); (T.L.); (Y.G.); (Y.X.)
| | - Ben Zhong Tang
- AIE Institute, Guangzhou Development District, Guangzhou 510530, China; (Y.T.); (B.Z.T.)
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
20
|
Chen J, Hao L, Hu J, Zhu K, Li Y, Xiong S, Huang X, Xiong Y, Tang BZ. A Universal Boronate‐Affinity Crosslinking‐Amplified Dynamic Light Scattering Immunoassay for Point‐of‐Care Glycoprotein Detection. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jing Chen
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
| | - Liangwen Hao
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
| | - Jiaqi Hu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
| | - Kang Zhu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
| | - Yu Li
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
| | - Sicheng Xiong
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
- Jiangxi-OAI Joint Research Institute Nanchang University Nanchang 330047 China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology School of Science and Engineering The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| |
Collapse
|
21
|
Liu S, Huo Y, Fan L, Ning B, Sun T, Gao Z. Rapid and ultrasensitive detection of DNA and microRNA-21 using a zirconium porphyrin metal-organic framework-based switch fluorescence biosensor. Anal Chim Acta 2022; 1192:339340. [PMID: 35057960 DOI: 10.1016/j.aca.2021.339340] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/19/2021] [Accepted: 11/28/2021] [Indexed: 01/15/2023]
Abstract
Sensitive and accurate detection of nucleic acid biomarkers is critical for early cancer diagnosis, disease monitoring, and clinical treatment. In this study, we developed a switch fluorescence biosensor for simple and high-efficient detection of nucleic acid biomarkers using 6-carboxyfluorescein (FAM)-modified single-stranded DNA (ssDNA) probes (FAM-P1/P2), and zirconium porphyrin metal-organic framework nanoparticles (ZrMOF) acted as fluorescence quencher. FAM-P1/P2 probes were adsorbed on ZrMOF surface because of π-π stacking, hydrogen bonding, and electrostatic interactions. Fluorescence quenching event occurred by fluorescence resonance energy transfer (FRET) and photo-induced electron transfer (PET) processes, thereby achieving the "off" fluorescence status. Once the specific binding was formed between the fluorescence probes and the targets, the rigid double-stranded DNA (dsDNA) structures were released from ZrMOF surface, resulting in the recovery of fluorescence and the "on" status. Because of the superior adsorption ability of ZrMOF toward ssDNA than dsDNA, the switch of fluorescence signals from "off" to "on" allowed rapid and ultrasensitive detection of ssDNA (T1) and microRNA-21 (miR-21) within 30 min. The limit of detection (signal-to-noise ratio = 3) for T1 and miR-21 were 2 fM and 11 aM, respectively. Moreover, the proposed strategy was very simple as it worked by the facile adsorption-quenching-recovery mechanism without difficult and complicated immobilization processes. Also, this biosensor showed an excellent analytical performance in the detection of miR-21 in human serum samples. Therefore, this biosensor might be considered a potential tool for the detection of DNA and miRNA biomarkers in clinical samples.
Collapse
Affiliation(s)
- Sha Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Yapeng Huo
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Longxing Fan
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Baoan Ning
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Tieqiang Sun
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
22
|
Gong C, Li Z, Liu G, Wang R, Pu S. A sensitive fluorescence "turn on" nanosensor for glutathione detection based on Ce-MOF and gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120362. [PMID: 34509887 DOI: 10.1016/j.saa.2021.120362] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Glutathione (GSH) as an essential biothiol maintains redox homeostasis in human body, the aberrant level of it has been related to various diseases. In this work, we constructed a facile and environment-friendly strategy by using Ce based metal-organic frameworks and gold nanoparticles (AuNPs) for detection of GSH. The fluorescence intensity of the Ce-MOF was quenched by AuNPs, which is ascribed to the existence of fluorescence resonance energy transfer (FRET) and electrostatic interaction between Ce-MOFs and AuNPS. Because of the formation of Au-SH between AuNPs and GSH, the addition GSH induced the Ce-MOF/AuNPs and prevented the occurrence of FRET and electrostatic interaction between Ce-MOFs and AuNPS, which futher recovered the fluorescence of Ce-MOF. Under the optimized conditions, this "turn-on" sensing process revealed a high selectivity toward GSH and displayed good linearity in range of 0.2-32.5 μM with low detection limit of 58 nM. In addition, the practicability of the strategy was testified through analyzing GSH in real human serum samples.
Collapse
Affiliation(s)
- Congcong Gong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Zhijian Li
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Renjie Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; YuZhang Normal University, Nanchang 330013, PR China.
| |
Collapse
|
23
|
Zhao SM, Qiu ZF, Xu ZH, huang Z, Zhao Y, Sun WY. Fluorescent Zn(II) frameworks with multicarboxylate and pyridyl N-donor ligands for sensing specific anions and organic molecules. Dalton Trans 2022; 51:3572-3580. [DOI: 10.1039/d1dt04052a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three novel fluorescent Zn(II) frameworks, namely [Zn(DPA)(NDA)]2·2DMF (1), [Zn2(DPA)(OBA)2]·2DMF·4H2O (2) and [Zn(DPA)(HNTB)]·H2O (3) (DPA = 2,5-di(pyridin-4-yl)aniline, H2NDA = 1,4-naphthalenedicarboxylic acid, H2OBA = 4,4'-oxydibenzoic acid, H3NTB = 4,4',4''-nitrilotribenzoic acid, DMF =...
Collapse
|
24
|
Recent advances in nanoscale metal-organic frameworks biosensors for detection of biomarkers. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Chen J, Hao L, Hu J, Zhu K, Li Y, Xiong S, Huang X, Xiong Y, Tang BZ. A Universal Boronate-Affinity Crosslinking-Amplified Dynamic Light Scattering Immunoassay for Point-of-Care Glycoprotein Detection. Angew Chem Int Ed Engl 2021; 61:e202112031. [PMID: 34881816 DOI: 10.1002/anie.202112031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Indexed: 12/21/2022]
Abstract
Herein, we report a universal boronate-affinity crosslinking-amplified dynamic light scattering (DLS) immunoassay for point-of-care (POC) glycoprotein detection in complex samples. This enhanced DLS immunoassay consists of two elements, i.e., antibody-coated magnetic nanoparticles (MNP@mAb) for target capture and DLS signal transduction, and phenylboronic acid-based boronate-affinity materials as crosslinking amplifiers. Upon the addition of targets, glycoproteins are first captured by MNP@mAb and amplified by target-induced crosslinking stemming from the selective binding between the boronic acid ligand and cis-diol-containing glycoprotein, thereby resulting in a remarkably increased DLS signal in the average nanoparticle size. Benefiting from the multivalent binding and fast boronate-affinity reaction between glycoproteins and crosslinkers, the proposed immunosensing strategy has achieved the ultrasensitive and rapid quantitative assay of glycoproteins at the fM level within 15 min. Overall, this work provides a promising and versatile design strategy for extending the DLS technique to detect glycoproteins even in the field or at POC.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Liangwen Hao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Jiaqi Hu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Kang Zhu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yu Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Sicheng Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
26
|
|
27
|
Zhou Y, Chen Y, Liu W, Fang H, Li X, Hou L, Liu Y, Lai W, Huang X, Xiong Y. Development of a rapid and sensitive quantum dot nanobead-based double-antigen sandwich lateral flow immunoassay and its clinical performance for the detection of SARS-CoV-2 total antibodies. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 343:130139. [PMID: 34035562 DOI: 10.1016/j.snb.2021.130169] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 05/28/2023]
Abstract
Owing to the over-increasing demands in resisting and managing the coronavirus disease 2019 (COVID-19) pandemic, development of rapid, highly sensitive, accurate, and versatile tools for monitoring total antibody concentrations at the population level has been evolved as an urgent challenge on measuring the fatality rate, tracking the changes in incidence and prevalence, comprehending medical sequelae after recovery, as well as characterizing seroprevalence and vaccine coverage. To this end, herein we prepared highly luminescent quantum dot nanobeads (QBs) by embedding numerous quantum dots into polymer matrix, and then applied it as a signal-amplification label in lateral flow immunoassay (LFIA). After covalently linkage with the expressed recombinant SARS-CoV-2 spike protein (RSSP), the synthesized QBs were used to determine the total antibody levels in sera by virtue of a double-antigen sandwich immunoassay. Under the developed condition, the QB-LFIA can allow the rapid detection of SARS-CoV-2 total antibodies within 15 min with about one order of magnitude improvement in analytical sensitivity compared to conventional gold nanoparticle-based LFIA. In addition, the developed QB-LFIA performed well in clinical study in dynamic monitoring of serum antibody levels in the whole course of SARS-CoV-2 infection. In conclusion, we successfully developed a promising fluorescent immunological sensing tool for characterizing the host immune response to SARS-CoV-2 infection and confirming the acquired immunity to COVID-19 by evaluating the SRAS-CoV-2 total antibody level in the crowd.
Collapse
Affiliation(s)
- Yaofeng Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yuan Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- Jiangxi YeLi Medical Device Co., Ltd, Nanchang 330096, PR China
| | - Wenjuan Liu
- Jiangxi Weibang Biological Technology Co. Ltd, Nanchang 330096, PR China
| | - Hao Fang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiangmin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Li Hou
- Jiangxi YeLi Medical Device Co., Ltd, Nanchang 330096, PR China
| | - Yuanjie Liu
- College of Information and Electrical Engineering, China Agricultural University, Haidian, Beijing 100083, PR China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| |
Collapse
|
28
|
Zhou Y, Chen Y, Liu W, Fang H, Li X, Hou L, Liu Y, Lai W, Huang X, Xiong Y. Development of a rapid and sensitive quantum dot nanobead-based double-antigen sandwich lateral flow immunoassay and its clinical performance for the detection of SARS-CoV-2 total antibodies. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 343:130139. [PMID: 34035562 PMCID: PMC8137357 DOI: 10.1016/j.snb.2021.130139] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 05/18/2023]
Abstract
Owing to the over-increasing demands in resisting and managing the coronavirus disease 2019 (COVID-19) pandemic, development of rapid, highly sensitive, accurate, and versatile tools for monitoring total antibody concentrations at the population level has been evolved as an urgent challenge on measuring the fatality rate, tracking the changes in incidence and prevalence, comprehending medical sequelae after recovery, as well as characterizing seroprevalence and vaccine coverage. To this end, herein we prepared highly luminescent quantum dot nanobeads (QBs) by embedding numerous quantum dots into polymer matrix, and then applied it as a signal-amplification label in lateral flow immunoassay (LFIA). After covalently linkage with the expressed recombinant SARS-CoV-2 spike protein (RSSP), the synthesized QBs were used to determine the total antibody levels in sera by virtue of a double-antigen sandwich immunoassay. Under the developed condition, the QB-LFIA can allow the rapid detection of SARS-CoV-2 total antibodies within 15 min with about one order of magnitude improvement in analytical sensitivity compared to conventional gold nanoparticle-based LFIA. In addition, the developed QB-LFIA performed well in clinical study in dynamic monitoring of serum antibody levels in the whole course of SARS-CoV-2 infection. In conclusion, we successfully developed a promising fluorescent immunological sensing tool for characterizing the host immune response to SARS-CoV-2 infection and confirming the acquired immunity to COVID-19 by evaluating the SRAS-CoV-2 total antibody level in the crowd.
Collapse
Affiliation(s)
- Yaofeng Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yuan Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- Jiangxi YeLi Medical Device Co., Ltd, Nanchang 330096, PR China
| | - Wenjuan Liu
- Jiangxi Weibang Biological Technology Co. Ltd, Nanchang 330096, PR China
| | - Hao Fang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiangmin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Li Hou
- Jiangxi YeLi Medical Device Co., Ltd, Nanchang 330096, PR China
| | - Yuanjie Liu
- College of Information and Electrical Engineering, China Agricultural University, Haidian, Beijing 100083, PR China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| |
Collapse
|
29
|
Jin X, Zhang D, Zhang W, Wang Y, Xiao Q, Huang S. Ratiometric electrochemical biosensor for ultrasensitive and highly selective detection of p53 gene based on nicking endonuclease-assisted target recycling and rolling circle amplification. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Metal-organic frameworks conjugated with biomolecules as efficient platforms for development of biosensors. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116285] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Cong Z, Song Z, Ma Y, Zhu M, Zhang Y, Wu S, Gao E. Highly Emissive Metal-Organic Frameworks for Sensitive and Selective Detection of Nitrofuran and Quinolone Antibiotics. Chem Asian J 2021; 16:1773-1779. [PMID: 33945232 DOI: 10.1002/asia.202100352] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/02/2021] [Indexed: 02/06/2023]
Abstract
The overuse of antibiotics makes its detection very significant for human health. New facile methods and high-performance sensory materials will be urgently needed for detection of antibiotics. Unfortunately, there are few reports on fluorescence enhancement of antibiotics detection. Herein, based on the modulability of the coordination mode, we proposed two MOFs with different coordination modes based on different metal ions: Zn-MOF (1) and Cd-MOF (2). The fluorescence of 1 and 2 can be efficiently and selectively quenched by nitrofuran antibiotics (nitrofurazone, NFZ and furazolidone, FZD) and chloramphenicol (CAP), respectively. Particularly, the matched energy levels between 2 and enrofloxacin (ENR) enables 2 with turn-on sensing for ENR. Moreover, apart from the sensitivity and selectivity, 1 and 2 also have strong recyclable ability, fast response time and anti-interference ability, which make them great potential sensory materials to detect antibiotics.
Collapse
Affiliation(s)
- Zhenzhong Cong
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, School of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning, 110142, P. R. China
| | - Zhenfeng Song
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, School of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning, 110142, P. R. China
| | - Yunxiao Ma
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, School of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning, 110142, P. R. China
| | - Mingchang Zhu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, School of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning, 110142, P. R. China
| | - Ying Zhang
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, School of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning, 110142, P. R. China
| | - Shuangyan Wu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, School of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning, 110142, P. R. China
| | - Enjun Gao
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, School of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning, 110142, P. R. China.,University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| |
Collapse
|
32
|
State-of-the-art progress of switch fluorescence biosensors based on metal-organic frameworks and nucleic acids. Mikrochim Acta 2021; 188:168. [PMID: 33884514 DOI: 10.1007/s00604-021-04827-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Metal-organic frameworks (MOFs) have captured substantial attention of an increasing number of scientists working in sensing analysis fields, due to their large surface area, high porosity, and tunable structure. Recently, MOFs as attractive fluorescence quenchers have been extensively investigated. Given their high quenching efficiency toward the fluorescence intensity of dyes-labeled specific biological recognition molecules, such as nucleic acids, MOFs have been widely developed to switch fluorescence biosensors with low background fluorescence signal. These strategies not only lead to specificity, simplicity, and low cost of biosensors, but also possess advantages such as ultrasensitive, rapid, and multiple detection of switch fluorescence methods. At present, researches of the analysis of switch fluorescence biosensors based on MOFs and nucleic acids mainly focus on sensing of different types of in vitro and intracellular analytes, indicating their increasing potential. In this review, we briefly introduce the principle of switch fluorescence biosensor and the mechanism of fluorescence quenching of MOFs, and mainly discuss and summarize the state-of-the-art advances of MOFs and nucleic acids-based switch fluorescence biosensors over the years 2013 to 2020. Most of them have been proposed to the in vitro detection of different types of analytes, showing their wide scope and applicability, such as deoxyribonucleic acid (DNAs), ribonucleic acid (RNAs), proteins, enzymes, antibiotics, and heavy metal ions. Besides, some of them have also been applied to the bioimaging of intracellular analytes, emerging their potential for biomedical applications, for example, cellular adenosine triphosphate (ATP) and subcellular glutathione (GSH). Finally, the remaining challenges in this sensing field and prospects for future research trends are addressed. Graphical abstract.
Collapse
|
33
|
The use of aptamers in prostate cancer: A systematic review of theranostic applications. Clin Biochem 2021; 93:9-25. [PMID: 33794195 DOI: 10.1016/j.clinbiochem.2021.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
Since prostate cancer (PCa) relies on limited diagnosis and therapies, more effective alternatives are needed. Aptamers are versatile tools that may be applied for better clinical management of PCa patients. This review shows the trends on aptamer-based applications for PCa to understand their future development. We searched articles reporting aptamers applied in PCa on the Pubmed, Scopus and Web of Science databases over the last decade. Almost 80% of the articles used previously selected aptamers in novel approaches. However, cell-SELEX was the most applied technique for the selection of new aptamers allowing their binding to targets in their native configuration. ssDNA aptamers were 24% more common than RNA aptamers. The most studied PCa-specific aptamers were the DNA PSA-specific aptamer PSap4#5 and the PSMA-specific RNA aptamers A10 and A9, being PSA and PSMA the most reported targets. Thus, researchers still prefer the ease of use of DNA aptamers. Blood-based liquid biopsies represented 24% of all samples, being the most promising clinical samples. Especially noteworthy, electro-analytical methods accounted for more than 40% of the diagnostic techniques and treatment approaches with drug delivery systems or transcriptional modifiers were reported in 70% of the articles. Although all these articles showed clinically relevant aptamers for PCa and there are good prospects for their use, the development of all these strategies was in its early stages. Thus, the aptamers are not completely validated and we foresee that the completion of clinical studies will allow the implementation of these aptamer-based technologies in the clinical practice of PCa.
Collapse
|
34
|
Dou X, Sun K, Chen H, Jiang Y, Wu L, Mei J, Ding Z, Xie J. Nanoscale Metal-Organic Frameworks as Fluorescence Sensors for Food Safety. Antibiotics (Basel) 2021; 10:358. [PMID: 33800674 PMCID: PMC8067089 DOI: 10.3390/antibiotics10040358] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/21/2021] [Accepted: 03/21/2021] [Indexed: 01/12/2023] Open
Abstract
Food safety has attracted attention worldwide, and how to detect various kinds of hazardous substances in an efficient way has always been a focus. Metal-Organic Frameworks (MOFs) are a class of hybrid porous materials formed by organic ligand and metal ions. Nanoscale MOFs (NMOFs) exhibit great potential in serving as fluorescence sensors for food safety due to their superior properties including high accuracy, great stability, fast response, etc. In this review, we focus on the recent development of NMOFs sensing for food safety. Several typical methods of NMOFs synthesis are presented. NMOFs-based fluorescence sensors for contaminants and adulterants, such as antibiotics, food additives, ions and mycotoxin etc. are summarized, and the sensing mechanisms are also presented. We explore these challenges in detail and provide suggestions about how they may be surmounted. This review could help the exploration of NMOFs sensors in food related work.
Collapse
Affiliation(s)
- Xilin Dou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.D.); (J.M.)
| | - Kai Sun
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; (K.S.); (H.C.); (Y.J.)
| | - Haobin Chen
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; (K.S.); (H.C.); (Y.J.)
| | - Yifei Jiang
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; (K.S.); (H.C.); (Y.J.)
| | - Li Wu
- School of Public Health, Nantong University, Nantong 226019, China;
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.D.); (J.M.)
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.D.); (J.M.)
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.D.); (J.M.)
| |
Collapse
|
35
|
Zhao Y, Zeng H, Zhu XW, Lu W, Li D. Metal–organic frameworks as photoluminescent biosensing platforms: mechanisms and applications. Chem Soc Rev 2021; 50:4484-4513. [DOI: 10.1039/d0cs00955e] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent progress of MOF-based photoluminescent platforms: a comprehensive overview of their applications in biosensing and underlying mechanisms.
Collapse
Affiliation(s)
- Yifang Zhao
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Heng Zeng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Xiao-Wei Zhu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Weigang Lu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| |
Collapse
|
36
|
Zhou Y, Chen Y, Liu Y, Fang H, Huang X, Leng Y, Liu Z, Hou L, Zhang W, Lai W, Xiong Y. Controlled copper in situ growth-amplified lateral flow sensors for sensitive, reliable, and field-deployable infectious disease diagnostics. Biosens Bioelectron 2021; 171:112753. [PMID: 33120235 PMCID: PMC7575433 DOI: 10.1016/j.bios.2020.112753] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 01/10/2023]
Abstract
A polyethyleneimine (PEI)-assisted copper in-situ growth (CISG) strategy was proposed as a controlled signal amplification strategy to enhance the sensitivity of gold nanoparticle-based lateral flow sensors (AuNP-LFS). The controlled signal amplification is achieved by introducing PEI as a structure-directing agent to regulate the thermodynamics of anisotropic Cu nanoshell growth on the AuNP surface, thus controlling shape and size of the resultant AuNP@Cu core-shell nanostructures and confining free reduction and self-nucleation of Cu2+ for improved reproducibility and decreased false positives. The PEI-CISG-enhanced AuNP-LFS showed ultrahigh sensitivities with the detection limits of 50 fg mL-1 for HIV-1 capsid p24 antigen and 6 CFU mL-1 for Escherichia coli O157:H7. We further demonstrated its clinical diagnostic efficacy by configuring PEI-CISG into a commercial AuNP-LFS detection kit for SARS-CoV-2 antibody detection. Altogether, this work provides a reliable signal amplification platform to dramatically enhance the sensitivity of AuNP-LFS for rapid and accurate diagnostics of various infectious diseases.
Collapse
Affiliation(s)
- Yaofeng Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Yuan Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; Jiangxi YeLi Medical Device Co. Ltd, Nanchang, 330096, PR China
| | - Yang Liu
- Department of Clinical Microbiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Hao Fang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Yuankui Leng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Zhengqiong Liu
- Department of Clinical Laboratories, Jiangxi Chest Hospital, Nanchang, 330006, PR China
| | - Li Hou
- Jiangxi YeLi Medical Device Co. Ltd, Nanchang, 330096, PR China
| | - Wei Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
37
|
Gold nanoparticle-decorated metal organic frameworks on immunochromatographic assay for human chorionic gonadotropin detection. Mikrochim Acta 2020; 187:640. [PMID: 33151410 DOI: 10.1007/s00604-020-04617-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022]
Abstract
Gold nanoparticle-decorated metal organic frameworks (MOF@AuNPs) with significantly enhanced color signal intensity were synthesized through in situ growth of AuNPs on the MOF skeleton. The resultant MOF@AuNP nanocomposites were characterized with 16.7-fold higher absorbance than conventional 40 nm AuNPs (AuNP40). Thus, for the first time, we applied it as a signal amplification label to improve the immunochromatographic assay (ICA) of human chorionic gonadotropin (HCG). The detection limit of our enhanced ICA was 1.69 mIU/mL, which is ca. 10.6-fold improvement in sensitivity compared to traditional AuNP40-ICA. The recoveries of this MOF@AuNPs-ICA ranged from 86.03 to 119.22%, with coefficients of variation of 3.05 to 13.74%. The reliability and practicability were further validated by the clinically used chemiluminescence immunoassay method. Given their excellent signal amplification ability, the proposed MOF@AuNPs could serve as an ideal ICA label for rapid and sensitive detection of disease biomarkers. Graphical abstract.
Collapse
|
38
|
Hao L, Chen J, Chen X, Ma T, Cai X, Duan H, Leng Y, Huang X, Xiong Y. A novel magneto-gold nanohybrid-enhanced lateral flow immunoassay for ultrasensitive and rapid detection of ochratoxin A in grape juice. Food Chem 2020; 336:127710. [PMID: 32763739 DOI: 10.1016/j.foodchem.2020.127710] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 07/03/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022]
Abstract
Conventional gold nanoparticle-based lateral flow immunoassay (LFIA) usually suffers a huge challenge in measuring target concentration in food matrices with dark color because of its poor resistance to the background matrix and color interference. To address this issue, we first report a novel bifunctional magneto-gold nanohybrid (MGNH) for the simultaneous magnetic separation and colorimetric target sensing by integrating MGNHs into LFIA. Under optimum conditions, an ultrasensitive detection of ochratoxin A (OTA) in grape juice was achieved with a limit of detection at 0.094 ng mL-1. The average recoveries of this MGNH-LFIA ranged from 92.31% to 108.97% with a coefficient of variation of below 12%. The excellent selectivity of our MGNH-LFIA against OTA was demonstrated. Besides, our MGNH-LFIA is comparable to liquid chromatography coupled with mass spectrometry in terms of accuracy, reproducibility, and practicability. The designed MGNH-LFIA platform is readily extended for improving other small molecule detection in food samples.
Collapse
Affiliation(s)
- Liangwen Hao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Jing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xirui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Tongtong Ma
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiaoxia Cai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Hong Duan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yuankui Leng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| |
Collapse
|
39
|
Xing Q, Pan Y, Hu Y, Wang L. Review of the Biomolecular Modification of the Metal-Organ-Framework. Front Chem 2020; 8:642. [PMID: 32850658 PMCID: PMC7399348 DOI: 10.3389/fchem.2020.00642] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/22/2020] [Indexed: 12/24/2022] Open
Abstract
Metal-organ frameworks (MOFs), as a kind of novel artificial material, have been widely studied in the field of chemistry. MOFs are capable of high loading capacities, controlled release, plasticity, and biosafety because of their porous structure and have been gradually functionalized as a drug carrier. Recently, a completely new strategy of combining biomolecules, such as oligonucleotides, polypeptides, and nucleic acids, with MOF nanoparticles was proposed. The synthetic bio-MOFs conferred strong protection and endowed the MOFs with particular biological functions. Biomolecular modification of MOFs to form bridges for communication between different subjects has received increased attention. This review will focus on bio-MOFs modification methods and discuss the advantages, applications, prospects, and challenges of using MOFs in the field of biomolecule delivery.
Collapse
Affiliation(s)
| | | | | | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
40
|
Li B, Pan W, Liu C, Guo J, Shen J, Feng J, Luo T, Situ B, Zhang Y, An T, Xu C, Zheng W, Zheng L. Homogenous Magneto-Fluorescent Nanosensor for Tumor-Derived Exosome Isolation and Analysis. ACS Sens 2020; 5:2052-2060. [PMID: 32594744 DOI: 10.1021/acssensors.0c00513] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Tumor-derived exosomes carrying unique surface proteins have shown great promise as novel biomarkers for liquid biopsies. However, point-of-care analysis for tumor-derived exosomes in the blood with low-cost and easy processing is still challenging. Herein, we develop an integrated approach, homogenous magneto-fluorescent exosome (hMFEX) nanosensor, for rapid and on-site tumor-derived exosomes analysis. Tumor-derived exosomes are captured immunomagnetically, which further initiates the aptamer-triggered assembly of DNA three-way junctions in homogenous solution containing aggregation-induced emission luminogens and graphene oxide, resulting in an amplified fluorescence signal. By integrating magnetic isolation and enhanced fluorescence measurement, the hMFEX nanosensor detects tumor-derived exosomes in the dynamic range spanning 5 orders of magnitude with high specificity, and the limit of detection is 6.56 × 104 particles/μL. Analyzing tumor-derived exosomes in limited volume plasma from breast cancer patients demonstrates the excellent clinical diagnostic efficacy of the hMFEX nanosensor. This study provides new insights into the point-of-care testing of tumor-derived exosomes for cancer diagnostics.
Collapse
Affiliation(s)
- Bo Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Weilun Pan
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chunchen Liu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jingyun Guo
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junjie Feng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Tingting Luo
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ye Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Taixue An
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chunzuan Xu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wancheng Zheng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
41
|
Huang X, Guo Q, Zhang R, Zhao Z, Leng Y, Lam JWY, Xiong Y, Tang BZ. AIEgens: An emerging fluorescent sensing tool to aid food safety and quality control. Compr Rev Food Sci Food Saf 2020; 19:2297-2329. [PMID: 33337082 DOI: 10.1111/1541-4337.12591] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 12/17/2022]
Abstract
As a global public health problem, food safety has attracted increasing concern. To minimize the risk exposure of food to harmful ingredients, food quality and safety inspection that covers the whole process of "from farm to fork" is much desired. Fluorescent sensing is a promising and powerful screening tool for sensing hazardous substances in food and thus plays a crucial role in promoting food safety assurance. However, traditional fluorphores generally suffer the problem of aggregation-caused quenching (ACQ) effect, which limit their application in food quality and safety inspection. In this regard, luminogens with aggregation-induced emission property (AIEgens) showed large potential in food analysis since AIEgens effectively surmount the ACQ effect with much better detection sensitivity, accuracy, and robustness. In this contribution, we review the latest developments of food safety monitoring by AIEgens, which will focus on the molecular design of AIEgens and their sensing principles. Several examples of AIE-based sensing applications for screening food contaminations are highlighted, and future perspectives and challenges in this emerging field are tentatively elaborated. We hope this review can motivate new research ideas and interest to aid food safety and quality control, and facilitate more collaborative endeavors to advance the state-of-the-art sensing developments and reduce actual translational gap between laboratory research and industrial production.
Collapse
Affiliation(s)
- Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P. R. China.,Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, the Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.,School of Food Science and Technology, Nanchang University, Nanchang, P. R. China
| | - Qian Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P. R. China.,School of Food Science and Technology, Nanchang University, Nanchang, P. R. China
| | - Ruoyao Zhang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, the Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Zheng Zhao
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, the Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Yuankui Leng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P. R. China.,School of Food Science and Technology, Nanchang University, Nanchang, P. R. China
| | - Jacky W Y Lam
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, the Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P. R. China.,School of Food Science and Technology, Nanchang University, Nanchang, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, the Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| |
Collapse
|
42
|
Liu S, Huo Y, Bai J, Ning B, Peng Y, Li S, Han D, Kang W, Gao Z. Rapid and sensitive detection of prostate-specific antigen via label-free frequency shift Raman of sensing graphene. Biosens Bioelectron 2020; 158:112184. [DOI: 10.1016/j.bios.2020.112184] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/22/2020] [Accepted: 03/31/2020] [Indexed: 01/04/2023]
|
43
|
Li Y, Chen X, Yuan J, Leng Y, Lai W, Huang X, Xiong Y. Integrated gold superparticles into lateral flow immunoassays for the rapid and sensitive detection of Escherichia coli O157:H7 in milk. J Dairy Sci 2020; 103:6940-6949. [PMID: 32475677 DOI: 10.3168/jds.2019-17934] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/23/2020] [Indexed: 11/19/2022]
Abstract
Escherichia coli O157:H7 is a common harmful foodborne pathogen that can cause severe diseases at low infectious doses. Traditional lateral flow immunoassay (LFIA) for the rapid screening of E. coli O157:H7 in food suffers from low sensitivity due to its dependence on 20- to 40-nm gold nanoparticles (AuNP) with insufficient brightness as labels. To address this issue, we reported for the first time the successful synthesis of gold superparticles (GSP) by encapsulating numerous small AuNP into a polymer nanobead using an evaporation-induced self-assembly method. Results indicated that the resultant GSP exhibited remarkably enhanced absorbance compared with the most widely used 40 nm AuNP in LFIA. In addition, the absorbance of GSP could be easily tuned by varying GSP sizes. Under optimized conditions, we achieved a rapid and sensitive determination of E. coli O157:H7 in milk with a detection limit of 5.95 × 102 cfu/mL when using the GSP with a size of 342 nm as LFIA signal reporters, exhibiting improvement of approximately 32-fold relative to the conventional 40 nm AuNP-LFIA method. We further demonstrated the selectivity, accuracy, reliability, and practicality of the proposed GSP-LFIA strip. In summary, this work offers a new strategy for improving LFIA sensitivity using assembled GSP as markers and demonstrates huge potential in rapidly and sensitively detecting foodborne pathogens.
Collapse
Affiliation(s)
- Yu Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Xirui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Jing Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Yuankui Leng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| |
Collapse
|
44
|
Pei X, Wu X, Xiong J, Wang G, Tao G, Ma Y, Li N. Competitive aptasensor for the ultrasensitive multiplexed detection of cancer biomarkers by fluorescent nanoparticle counting. Analyst 2020; 145:3612-3619. [PMID: 32285061 DOI: 10.1039/d0an00239a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer biomarker quantification in human serum is of great importance for accurate patient diagnosis and informed clinical management. To date, ultrasensitive multiplexed detection of proteins without amplification is still a major challenge. Herein, we proposed a competitive aptasensor strategy for ultrasensitive multiplexed cancer biomarker detection by fluorescent nanoparticle (FNP) counting. The sequences are designed such that the binding abilities of linker DNA (L-DNA) with DNA-functionalized FNPs (DNA-FNPs) and aptamer are comparable. As long as one target binds with one molecule of aptamer, a signalling FNP forms a sandwich-structured nanocomposite, which was subsequently observed and enumerated with a fluorescence microscope. This 1 : 1 target-to-signal FNP production assured an improved sensitivity, benefiting from the reasonably good brightness and photostability of FNPs. For both singleplexed and multiplexed detection, this proposed strategy achieved an approximately 1000-fold improved limit of detection than the conventional method with the detection volume of 3.2 μL. Notably, the results for carcinoembryonic antigen (CEA) detection obtained directly from 9 human serum samples (colorectal/lung/healthy individuals) were consistent with that obtained by ELISA, showing potential application in clinical diagnosis.
Collapse
Affiliation(s)
- Xiaojing Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Ratiometric Detection of Rifampin by Using Self‐Assembled Nanocomposites with Dual Fluorescence Emissions and Analysis of Two‐Dimensional Correlation Spectroscopy. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.11987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
Hassan EM, DeRosa MC. Recent advances in cancer early detection and diagnosis: Role of nucleic acid based aptasensors. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115806] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
47
|
Yang J, Yang YW. Metal-Organic Frameworks for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906846. [PMID: 32026590 DOI: 10.1002/smll.201906846] [Citation(s) in RCA: 382] [Impact Index Per Article: 95.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/03/2020] [Indexed: 05/21/2023]
Abstract
Metal-organic frameworks (MOFs) are an interesting and useful class of coordination polymers, constructed from metal ion/cluster nodes and functional organic ligands through coordination bonds, and have attracted extensive research interest during the past decades. Due to the unique features of diverse compositions, facile synthesis, easy surface functionalization, high surface areas, adjustable porosity, and tunable biocompatibility, MOFs have been widely used in hydrogen/methane storage, catalysis, biological imaging and sensing, drug delivery, desalination, gas separation, magnetic and electronic devices, nonlinear optics, water vapor capture, etc. Notably, with the rapid development of synthetic methods and surface functionalization strategies, smart MOF-based nanocomposites with advanced bio-related properties have been designed and fabricated to meet the growing demands of MOF materials for biomedical applications. This work outlines the synthesis and functionalization and the recent advances of MOFs in biomedical fields, including cargo (drugs, nucleic acids, proteins, and dyes) delivery for cancer therapy, bioimaging, antimicrobial, biosensing, and biocatalysis. The prospects and challenges in the field of MOF-based biomedical materials are also discussed.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| |
Collapse
|
48
|
A zirconium-porphyrin MOF-based ratiometric fluorescent biosensor for rapid and ultrasensitive detection of chloramphenicol. Biosens Bioelectron 2020; 149:111801. [DOI: 10.1016/j.bios.2019.111801] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/25/2019] [Accepted: 10/19/2019] [Indexed: 12/20/2022]
|
49
|
|
50
|
Afreen S, He Z, Xiao Y, Zhu JJ. Nanoscale metal-organic frameworks in detecting cancer biomarkers. J Mater Chem B 2020; 8:1338-1349. [PMID: 31999289 DOI: 10.1039/c9tb02579k] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Following the efficient performance of metal-organic frameworks (MOFs) as recognition elements in gas sensors, biosensors based on MOFs are now being investigated to capture and quantify potential cancer biomarkers, such as circulating tumor cells (CTCs), nucleic acids and proteins. The current status of MOF-based biosensors in the detection of early stages of cancer is in its infancy, although it has significantly emerged since the beginning of this decade. That said, salient research has been conducted in the past five years to utilize the distinctive porous crystalline structure of MOFs for highly sensitive and selective detection of cancer biomarkers. In this pursual, MOFs designed with bimetallic assembly, doped with magnetic nanoparticles, coated with polymers, and even conjugated with peptides or oligonucleotides have shown promising outcomes in detecting CTCs, nucleic acids and proteins. In particular, aptamer-conjugated MOFs are able to perform at a lower limit of detection down to the femtomolar, implying their efficacy for the point of care testing in clinical trials. In this way, aptasensors based on aptamer-conjugated MOFs present a newer sub-branch, to be coined as a MOFTA sensor in the current review. Considering the emerging progress and promising outcomes of MOFTA sensors as well as a variety of MOF-based techniques of detecting cancer biomarkers, this review will highlight their significant advances and related aspects in the recent five years on the context of detecting CTCs, nucleic acids and proteins for the early-stage detection of cancer.
Collapse
Affiliation(s)
- Sadia Afreen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | | | | | | |
Collapse
|